
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Int. J. Numer. Meth. Engng 2000; 00:1–6 Prepared using nmeauth.cls [Version: 2002/09/18 v2.02]

An energy momentum conserving algorithm using the variational

formulation of visco-plastic updates

L. Noels†, L. Stainier‡∗, J.-P. Ponthot

University of Liège, LTAS-Milieux Continus & Thermomécanique, Chemin des Chevreuils 1, B-4000 Liège,
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2 L. NOELS ET AL.

1. INTRODUCTION

One can resort to two families of algorithms to integrate the equations of evolution of

dynamical systems: the implicit family and the explicit family. In this paper, we focus on

the implicit family. The most widely used implicit algorithm is the Newmark algorithm [1].

For linear models, this algorithm is unconditionally stable. For non-linear models, Belytschko

and Schoeberle [2] proved that the discrete energy, computed from the work of internal forces

and from the kinetic energy, is bounded if it remains positive. Nevertheless, since the work of

internal forces is different from the internal energy variation when the Newmark algorithm is

used in the non-linear range, Hughes et al. [3] have proved that Newmark algorithm remains

physically consistent only for small time step sizes. To avoid divergence due to numerical

instabilities, numerical damping was thus introduced, leading to the generalized-α methods [4].

Nevertheless, the unconditional stability of these methods is guaranteed only for linear systems

or asymptotically for the high frequencies in the non-linear range [5].

To overcome that drawback, a new class of algorithms, verifying the conservation laws

in the non-linear range, appeared. To demonstrate stability, these new algorithms were not

studied on a linear system as the previous ones, but were studied by taking into account non-

linearities. The first algorithm verifying these properties was proposed by Simo and Tarnow [6].

They called this algorithm ”Energy Momentum Conserving Algorithms” or EMCA. It consists

in a mid-point scheme with an adequate evaluation of the internal forces. This adequate

evaluation was given for a Saint Venant-Kirchhoff hyperelastic material. A generalization to

other hyperelastic models was given by Laursen and Meng [7], who iteratively solve a new

equation for each Gauss point to determine the adequate second Piola-Kirchhoff stress tensor.

Another solution that avoids this iterative procedure leads to a general formulation in term of
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 3

the second Piola-Kirchhoff stress tensor, as proposed by Gonzalez [8]. This formulation is valid

for general hyperelastic materials. The EMCA was then extended to dynamic finite deformation

plasticity based on a hyperelastic model by Meng and Laursen [9, 10], and to dynamic finite

deformation plasticity based on a hypoelastic model by the present authors [11, 12]. In such

formulations, the algorithm remains energy conserving when no plastic deformation occurs, and

”dissipates energy in a manner consistent with the physical model in use” (sic [9]) when plastic

deformation occurs. Recently, contrarily to Gonzalez [8] who proposed a particular expression

of the second Piola-Kirchhoff stress tensor to reach the conserving properties, Sansour et

al. [13] have proposed an expression (restrained to elasticity) by integrating the second Piola-

Kirchhoff stress tensor in time. The expression thus obtained is therefore less arbitrary than

that of Gonzalez.

In the same context, for contact treatment, a penalty method was developed to simulate

non-frictional and frictional contact interactions by Armero and Petöcz [14, 15]. This method

allows surface penetration but ensures conservation of the energy for frictionless problems and

consistent dissipation for frictional ones. Laursen and Chawla [16, 17] developed Lagrangian

and augmented Lagrangian methods to simulate non-frictional and frictional contact. Finally

to avoid the lack of convergence due to the presence of high frequency modes, numerical

dissipation was introduced in the conserving algorithms by Armero and Romero [18, 19] for

hyperelastic materials. In the same way, Noels et al. [20] introduced dissipation for hypoelastic

materials.

Let us note that the properties of conservation can be reached by using a Petrov-Galerkin

time finite-element method as described by Betsch and Steinmann [21, 22]. They can also be

satisfied by using an approximation of the time Galerkin method as proposed by Bauchau and
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4 L. NOELS ET AL.

Joo [23]. In the same way, an approximation of the time discontinuous Galerkin method leads

to an Energy Decaying scheme [23] that presents some numerical dissipation. Another Energy

Preserving/Decaying algorithm can also be obtained using a Runge-Kutta method (e.g. [24]).

Let us now focus on the plasticity treatments leading to an energy-momentum conserving

scheme. The hyperelastic-based formulation, proposed by Meng and Laursen [9, 10] is based

on the elastic formulation proposed by Gonzalez [8] and is restrained to isotropic hardening.

The hypoelastic-based formulation, as proposed by Noels et al. [11, 12], can additionally

account for kinematic hardening but suffers from other restrictions (Hooke’s parameter needs

to be constant and no internal potential can be defined). In this paper we propose a more

general hyperelastic-based formulation, using the variational visco-plastic constitutive updates

proposed by Ortiz and Stainier [25]. The mathematical structure of this formulation provides

many interesting features, e.g. for error estimation [26]. The main feature of this formulation is

that the stress tensor always derives from an incremental potential, even if plastic deformations

occur. Therefore, in such a framework we can use the formulation based on the second Piola-

Kirchhoff stress tensor as proposed by Gonzalez [8] without any modification. Moreover, the

use of the variational formulation does not lead to any a priori restrictions on the material

laws or parameters, even if in this paper we focus on elasto-plasticity with isotropic hardening.

Finally, we think that the use of the variational updates can be compatible with the method

proposed by Sansour et al. [13], even if in this paper we focus on the method proposed by

Gonzalez [8].

The plan of the paper is the following. Section 2 will expose preliminaries such as the dynamic

conservation laws and the finite-element discretization. We will also explain the split of the

internal potential leading to a locking-free element. In section 3, we will recall the variational
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 5

formulation of elasto-plasic updates. In section 4, we will use this formulation in combination

with the Gonzalez method to design an energy-momentum conserving scheme. In section 5

we will show the accuracy and consistency of the proposed algorithm on numerical examples.

Finally we will draw some conclusions.

2. PRELIMINARIES

In this section we will define the notations in use in this work. Therefore we will be able

to recall the continuum laws. Then we will introduce the finite-element discretization. In this

work we will use a quasi-incompressible formulation.

2.1. Notations

Let V ⊂ R3 be the manifold of points defining the body and S ⊂ R3 be the manifold of its

boundary. Since we will work with regular bodies in Euclidean space, we will identify the body

with the space it occupies and will freely pass between the material and spatial descriptions of

a field whenever it is convenient to do so. We define two configurations: the initial configuration

referred to by subscript 0 and the current configuration at time t. Let ρ0: V0 → R+ be the

initial density. Boundary S is decomposed into two parts: the first one S~x is the part where

the displacements are known and the second one S~T
is the part where the surface tractions are

known. It yields S~x ∪ S~T
= S and S~x ∩ S~T

= 0. Let us note that in case of interaction between

different bodies this theory has to be rewritten to take into account the contact forces between

different bodies, but it does not modify results we use to describe body deformations. Let ~x

be the current positions and ~x0 be the initial positions. Therefore, the two-point gradient of
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6 L. NOELS ET AL.

deformation tensor is defined by

F ≡ ∂~x

∂~x0
with f ≡ F

−1 and J ≡ detF (1)

The right Cauchy-Green strain tensor is defined by

C ≡ F
T
F (2)

Conservation of the mass leads to

ρdV = ρ0dV0 and ρJ = J0 (3)

To use the quasi-incompressible technique as proposed by Simo and Taylor [27] we need more

definitions. Let θe (physical meaning of θe will be deduced later) be a constant scalar on the

volume part Ve
0, with

⋃
e Ve

0 = V0 and
⋂

e Ve
0 = 0. Exponent e will refer to values for the

volume part Ve
0 (for a finite-element decomposition, e will be the index of an element). Let

the two modified gradients of deformation F̂ and F̄, the first one having unitary determinant,

defined by

F̂ ≡ J− 1
3 F and F̄ ≡ θe 1

3 F̂ =

[
θe

J

] 1
3

F (4)

In the same way, the two modified right Cauchy-Green strain tensors are defined by

Ĉ ≡ F̂
T
F̂ =

[
1

J

] 2
3

C and C̄ ≡ F̄
T
F̄ =

[
θe

J

] 2
3

C (5)

Let X be the manifold of admissible positions

X ≡
{
~x : V0 → R

3|
[
J > 0 and ~x|S~x

= ~̄x
]
∀~x0 ∈ V0

}
(6)

with ~̄x the known (imposed) positions. Let t be the current time and let T = [0, tf ] be the time

integration interval. Therefore, the motion of the body is defined by t ∈ T → ~x (t) ∈ X. During

this motion, the body is subject to specific loads~b (t) : V0×T → R3. Let Σ be the Cauchy stress
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 7

tensor. Boundary pressures ~TS (t) : S~T 0
×T → R3 verify the condition ~TS (t) = Σ (t)~n (t) with

~n the outward unit normal to S.

When the body is decomposed into finite elements thanks to shape functions ϕξ: V0 → R

with ξ ∈ [1, N ] (N the total number of nodes), and with ϕξ (~xµ
0 ) = δ

µ
ξ (δ is the Kronecker

symbol), it leads for each node ξ ∈ [1, N ]

~x (~x0) = ϕξ (~x0) ~xξ , ~̇x (~x0) = ϕξ (~x0) ~̇xξ and ~̈x (~x0) = ϕξ (~x0) ~̈xξ (7)

where Einstein’s notations have been used. Let ~v be an admissible virtual displacement defined

by the manifold

D ≡
{
~v : V0 → R

3| [~v|S~x
= 0 et ~v (~x0, 0) = 0, ~v (~x0, tf ) = 0 ∀~x0 ∈ V0]

}
(8)

Let Dv ⊂ D be the manifold of admissible virtual displacements δ~x that can be decomposed

such as (7). In this manifold of test functions, we have introduced boundary conditions for the

initial time and for the final time. These conditions are needed when using the principle of

virtual work.

2.2. The continuous problem

The following quasi-variational principle (principle of virtual power of forces) must hold

∀δ~x ∈ Dv [28, page 412]

∫ tf

0

{∫

V

[
ρ~̈x · δ~x + Σ

T :
∂δ~x

∂~x
− ρ~b · δ~x

]
dV −

∫

S~T

[
~TS · δ~x

]
dS

}
dt = 0 (9)

where ~a ·~b = ~ai
~bi and where A : B = AijBij . Let PK be the second Piola-Kirchhoff stress

tensor defined by

PK = JF
−1

ΣF
−T (10)
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8 L. NOELS ET AL.

Using relation (3) and (10), integrating (9) by parts leads to

∫

V0

{
ρ0~̈x · δ~x

}
dV0

︸ ︷︷ ︸
≡δK

=

∫

V0

{
ρ0

~b · δ~x
}

dV0 +

∫

S~T

{
~TS · δ~x

}
dS

︸ ︷︷ ︸
≡δWext

−

∫

V

{
FPK

T :
∂δ~x

∂~x0

}
dV0

︸ ︷︷ ︸
≡δWint

∀t ∈ T (11)

where δWint, δWext and δK are respectively the virtual work of internal forces, the virtual work

of external forces and the virtual work of inertia forces. This principle leads to the dynamics

conservation laws.

2.2.1. Conservation of linear momentum. Let ~L be the linear momentum defined by

~L ≡
∫

V0

{
ρ0~̇x
}

dV0 (12)

where relation (3) has been used. Assuming pure Neumann boundary conditions (i.e. S~x = ∅),

if δ~x ∈ Dv is taken constant, relation (11) leads to the conservation of the linear momentum

~̇L =

∫

V0

{
ρ0

~b
}

dV +

∫

S~T

{
~TS

}
dS

︸ ︷︷ ︸
≡~Fext

∀t ∈ T (13)

2.2.2. Conservation of angular momentum. Let ~J be the angular momentum defined by

~J ≡
∫

V0

{
ρ0~x ∧ ~̇x

}
dV0 (14)

Assuming pure Neumann boundary conditions (i.e. S~x = ∅), taking δ~x = ~η∧~x with ~η constant,

since PK is symmetric, and ~η is an arbitrary constant, relation (11) leads to the conservation

of the angular momentum

~̇J =

∫

V0

{
ρ0~x ∧~b

}
dV0 +

∫

S~T

{
~x ∧ ~TS

}
dS ∀t ∈ T (15)
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 9

2.2.3. Conservation of the energy. Let K, Wint and Wext respectively be the kinetic energy,

the internal forces power and the external forces power, with

K ≡
∫

V0

{
1

2
ρ0~̇x

2

}
dV0

Ẇint ≡
∫

V0

{
PK

T :
[
F

T
Ḟ

]}
dV0

Ẇext ≡
∫

V0

{
ρ0

~b · ~̇x
}

dV0 +

∫

S~T

{
~TS · ~̇x

}
dS (16)

where relation (3) has been used. If the power of internal forces Ẇint is decomposed into a

reversible part Ẇ el
int and an irreversible part Ẇ

pl
int ≥ 0 (plastic dissipation, ...) and if E is the

system energy, one gets

Ẇint ≡ Ẇ el
int + Ẇ

pl
int and E ≡ K + W el (17)

Therefore, assuming pure Neumann boundary conditions (i.e. S~x = ∅), if δ~x = ~̇x, relation (11)

leads to the first thermodynamics principle

Ė = Ẇext − Ẇ
pl
int ∀t ∈ T (18)

Let us assume that, even when internal dissipation occurs, we can write

PK = 2
∂Deff

∂C
(19)

with C defined by relation (2), and with Deff the effective stress potential. Therefore, using

the symmetry of the stress tensor PK, Ẇint defined in relation (16) can be rewritten as

Ẇint =

∫

V0

{
Ḋeff

}
dV0 (20)

and relations (17) and (18) are rewritten as

K̇ +

∫

V0

{
Ḋeff

}
dV0 = Ẇext ∀t ∈ T (21)
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10 L. NOELS ET AL.

Nevertheless, a direct application of the finite element method to expression (20) can lead

to pressure-locking problems in the case of (quasi-)incompressible behaviors such as those

encountered in viscoplasticity. To overcome this, we use the modification proposed by Simo and

Taylor [27]. It is important to note that for materials without incompressibility constraints, one

could directly proceed with a standard finite element discretization of the problem, without

loosing any of the consistency properties. Our formalism can easily be simplified for this

approach.

2.2.4. Quasi-incompressible technique. Using relations (4) and (5), with θe a constant value

on the volume part V
e
0, the internal energy on the volume part V

e
0 can be rewritten as a

modified internal energy W̄ e
int

(
~x0, C̄ (~x, θe)

)
depending on θe and depending on the positions

~x. Let pe be constant for each volume part Ve
0 (physical meaning of pe will be deduced later).

Then Simo and Taylor [27] proposed, for each volume part Ve
0, the following expression†

δW e
int (~x, θe, pe) ≡ δ

∫

Ve
0

{
Deff

(
~x0, C̄ (~x, θe)

)
+ pe [J − θe]

}
dV

e
0 (22)

where Deff

(
~x0, C̄ (~x, θe)

)
is the new effective internal energy which is a particular choice of

Deff (~x0, ~x). Since neither δK, nor δWext depend on pe, the variational principle, applied to pe,

leads to the definition of θe

θe =
1

Ve
0

∫

Ve
0

{J} dV
e
0 (23)

that represents the mean volumic deformation of Ve
0. In the same way, one has

pe =
1

Ve
0

∫

Ve
0

{
∂Deff

(
~x0, C̄ (~x, θe)

)

∂θe

}
dV

e
0 (24)

†This expression is similar to the 3-field Hu-Washizu-Fraeijs de Veubeke (HWF) variational principle [29–31]

(regarding denomination, see also [32]).
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 11

Finally, it yields

∂W e
int

∂~x
· δ~x =

∫

Ve
0

{
∂Deff

(
~x0, C̄ (~x, θe)

)

∂~x
· δ~x + pe ∂J

∂~x
· δ~x
}

dV
e
0 (25)

Since Gâteau derivatives lead to

∂J

∂~x
δ~x = Jtr

∂δ~x

∂~x
and

∂C̄

∂~x
· δ~x = 2F̄T ∂δ~x

∂~x

T

F̄− 2

3
C̄tr

∂δ~x

∂~x
(26)

relation (25) can be rewritten as

∂W e
int

∂~x
· δ~x =

∫

Ve
0

{[
2dev

(
F̄

∂Deff

∂C̄
F̄

T

)
+ peJI

]
:

∂δ~x

∂~x

T
}

dV
e
0 (27)

where devAij ≡ Aij − 1
3 trAδij defines the deviatoric part of a tensor. Thanks to this relation

it appears that pe is the constant pressure associated to the volume Ve
0

2.3. Finite-elements decomposition

Thanks to relation (7), the discrete variation of kinetic energy and of external energy from

relation (11) can be rewritten as

δK =

∫

V0

{
ρ0ϕ

ξϕµ
}

dV0

[
~̈x
]µ

· δ~xξ = M ξµ
[
~̈x
]µ

· δ~xξ

δWext =

∫

V0

{
ρ0

~bϕξ
}

dV0 · δ~xξ +

∫

S~T

{
~TSϕξ

}
dS · δ~xξ =

[
~Fext

]ξ
· δ~xξ (28)

where M ξµ is the mass related to nodes ξ and µ. Using the quasi-incompressible method, the

variation of the internal energy is defined from relation (27), where Ve
0 represents a single

finite-element. Therefore, using the following definition of the internal forces at node ξ

~F
ξ
int =

⋃

e

∫

Ve
0

{[
2dev

(
F̄

∂Deff

∂C̄
F̄

T

)
+ peJI

]
f
T ~Dξ

}
dV

e
0 (29)

where ~Dξ ≡ ∂ϕξ

∂~x0
is the derivative, in the initial configuration, of the shape functions. Using

relations (28) and since δ~x ∈ Dv is an arbitrary vector, relations (11) and (27) lead to the
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12 L. NOELS ET AL.

balance equation

M ξµ
[
~̈x
]µ

=
[
~Fext − ~Fint

]ξ
∀t ∈ T (30)

Let us note that internal forces (29) can be rewritten as

~F
ξ
int =

∫

Ve
0

{
F

[
2

[
θe

J

] 2
3

DEV
∂Deff

∂C̄
+ peJC

−1

]
~Dξ

}
dV

e
0 (31)

with DEVA ≡ A − 1
3A : CC

−1 the deviatoric operation in the reference configuration. Since

∂C̄

∂C
=

[
θe

J

] 2
3
[
I − 1

3
C⊗ C

−1

]
(32)

with Iijkl = 1
2δikδjl + 1

2δilδjk and [A ⊗ B]ijkl = AijBkl, relation (31) can be rewritten as

~F
ξ
int =

∫

Ve
0





F

[
2
∂Deff

∂C
+ peJC

−1

]

︸ ︷︷ ︸
PK

~Dξ





dV
e
0 (33)

To be able to integrate the balance equation (30) in time, T is decomposed into some

intervals
[
tn, tn+1

]
such that T =

⋃n=nf

n=0

[
tn, tn+1

]
. Let ∆t = tn+1 − tn be the time step size.

Superscripts n and n+1 will refer to configurations at time tn and tn+1. To be consistent, the

integration scheme must verify relations (13), (15) and (21).

Now we will explain how ∂Deff

∂C̄
and pe can be computed.

2.3.1. Split of the internal potential. To simplify the above relations, let Deff be split into a

volumic part Φvol (θe) (depending only on detF̄ = θe assumed constant for each element), and

into a deviatoric part D̂eff, with

Deff

(
~x0, C̄ (~x, θe)

)
= Φvol (θe) + D̂eff

(
Ĉ

)
(34)

Then relation (24) can directly be evaluated by

pe =
∂Φvol (θe)

∂θe
(35)
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 13

Since

∂Ĉ

∂C
=

[
1

J

] 2
3
[
I − 1

3
C ⊗ C

−1

]
(36)

and since C⊗ C
−1 = Ĉ⊗ Ĉ

−1, the deviatoric stress can be simplified into

2
∂Deff

∂C
=

[
1

J

] 2
3

2

[
∂D̂eff

∂Ĉ
− 1

3

∂D̂eff

∂Ĉ
: ĈĈ

−1

]
= 2

[
1

J

] 2
3

DEV
∂D̂eff

∂Ĉ
(37)

2.3.2. Example of the bi-logarithmic potential. In this paper we will focus on bi-logarithmic

potentials that are well suited to simulate metal models. These models also have interesting

properties allowing for simpler expressions in the forthcoming developments, as was illustrated

in [25]. In elasticity, volumic and deviatoric internal energy are obtained from

Φvol (θe) ≡ K0

2
[ln (θe)]

2
and D̂eff

(
Ĉ

)
≡ G0

4
ln
(
Ĉ

)
: ln
(
Ĉ

)
(38)

with K0 the initial bulk modulus and with G0 the initial shear modulus.

Pressure (35) is directly computed by

pe =
∂Φvol (θe)

∂θe
= K0

ln (θe)

θe
(39)

The deviatoric stresses are obtained from a spectral decomposition of Ĉ into eigenvalues λ(α)

and eigenvectors ~e(α)

Ĉ =

3∑

α=1

{
λ(α)~e(α) ⊗ ~e(α)

}
(40)

leading to

∂D̂eff

(
~x0, Ĉ

)

∂Ĉ
=

G0

2

3∑

α=1

{
lnλ(α)

λ(α)
~e(α) ⊗ ~e(α)

}
(41)

Now, we will expose how to adapt these potentials (and resulting stress) for an elasto-plastic

formulation.
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14 L. NOELS ET AL.

3. THE VARIATIONAL FORMULATION OF ELASTO-PLASTICITY UPDATES

In this section we recall the main lines of the variational formulation of visco-plastic updates

proposed by Ortiz and Stainier [25]. Next we will particularize these expressions to an elasto-

plastic model based on a bi-logarithmic potential with isotropic hardening.

3.1. Hypothesis and definitions

The strain tensor (1) is multiplicatively decomposed into a plastic part F
pl and into an

elastic part F
el as

F = F
el
F

pl (42)

Let Φel
(
F

el
)

be the elastic potential and let Φpl
(
F

pl (Q) , Q
)

be the plastic potential,

depending on plastic deformations but also on n internal variables Q(α) ∈ Rn. A flow rule

couples the plastic deformation to the internal variable by

Ḟ
pl = Q̇(α)

N
(α)

F
pl (43)

where N
(α) is the flow direction corresponding to value Q(α). In the particular case of a von

Mises flow rule with only one internal variable, one has [25]

Q = εpl and trN = 0 and N : N =
3

2
(44)

where εpl corresponds to the equivalent plastic strain. In the following, we will assume this

flow rule to hold .

Helmholtz free energy function A is therefore rewritten as

A
(
F,Fpl, εpl

)
≡ Φel

(
FF

pl−1
)

+ Φpl
(
F

pl
(
εpl
)
, εpl

)
(45)

From this free energy, the first Piola-Kirchhoff stress tensor P is obtained by

P ≡ ∂A
(
F,Fpl, εpl

)

∂F
=

∂Φel
(
FF

pl−1
)

∂F
= A,F (46)
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 15

Let T be the force conjugated to F
pl and let Y be the force conjugated to εpl, with

T ≡ −∂A
(
F,Fpl, εpl

)

∂Fpl
= −A,Fpl and Y ≡ −∂A

(
F,Fpl, εpl

)

∂εpl
(47)

Let Ψ be a dissipation pseudo potential associated to ε̇pl such that

ε̇pl =
∂Ψ (Y )

∂Y
= Ψ,Y (48)

A Legendre mapping leads to the dual potential Ψ∗ with

Ψ∗
(
ε̇pl
)

= sup
Y

(
Y ε̇pl − Ψ (Y )

)
and Y =

∂Ψ∗
(
ε̇pl
)

∂ε̇pl
= Ψ∗

,ε̇pl (49)

If Ψ is convex, with Ψ (0) = 0, it leads to the property ε̇pl > 0 if Y remains positive. The

hypothesis of a Perzyna model leads to

Ψ∗ =





mY0ε̇
pl
0

m+1

[
ε̇pl

ε̇
pl
0

]m+1
m

ifε̇pl ≥ 0

∞ ifε̇pl < 0

(50)

where Y0, ε̇
pl
0 and m are constants. Particular choice of m → ∞ yields

Ψ∗ =





Y0ε̇
pl ifε̇pl ≥ 0

∞ ifε̇pl < 0

(51)

that will ensure the elasto-plastic flow occurs with ε̇pl > 0.

Let us now establish some basic relations. Using (42), (43) and (45), forces T and Y (47)

can be rewritten as

T = F
elT

P − ∂Φpl
(
F

pl, εpl
)

∂Fpl︸ ︷︷ ︸
≡Tc

Y = −∂A
(
F,Fpl, εpl

)

∂Fpl
:

∂F
pl

∂εpl
− ∂A

(
εpl
)

∂εpl︸ ︷︷ ︸
≡A

,εpl

= T :
[
NF

pl
]
− A,εpl (52)

where Tc is therefore the backstress tensor and where A,εpl comes from the explicit dependence

of A to εpl.
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16 L. NOELS ET AL.

3.2. Continuous dynamics

Using the free energy function A (45) with three new independent variables, Ortiz and

Stainier [25] proposed the following expression of a functional

D
(
Ḟ, ε̇pl,N

)
≡ ∂A

∂F
: Ḟ− Y ε̇pl + Ψ∗

(
ε̇pl
)

(53)

3.2.1. Differentiation with respect to ε̇pl. Using (51) yields

∂D
(
Ḟ, ε̇pl,N

)

∂ε̇pl
= −Y +

∂Ψ∗

∂ε̇pl
= 0 (54)

demonstrating D must be minimum with respect to ε̇pl.

3.2.2. Differentiation with respect to N. Functional D depends on N through term Y . Using

relation (52) leads to

∂D
(
Ḟ, ε̇pl,N

)

∂N
= −∂ε̇pl

T : NF
pl

∂N
(55)

Assuming the functional is minimum related to the flow direction N under constraints (44)

leads to a flow direction oriented along the deviatoric stress, that is consistent with the usual

models of plasticity. Indeed, using (44), and introducing Langrangian multipliers λ1 and λ2,

minimisation of D becomes

min
N,λ1,λ2

(
−TF

plT : N + λ1trN + λ2

[
N : N− 3

2

])
(56)

Differentiation with respect to N leads to

0 = −TF
plT + λ1I + 2λ2N ⇔ λ1 =

1

3
tr
(
TF

plT
)

(57)

Therefore N is oriented along dev
(
TF

plT
)
, and since N : N = 3

2 , it yields

N =

√
3

2

dev
(
TF

plT
)

√
dev

(
TFplT

)
: dev

(
TFplT

) (58)

Therefore D, constrained by (44) must be minimum with respect to N.
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 17

3.2.3. Differentiation with respect to Ḟ. If we identify the effective potential Deff to the

minimum of D related to ε̇pl and N

Deff

(
Ḟ

)
≡ min

ε̇pl,N
D
(
Ḟ, ε̇pl,N

)
(59)

using (46) and (53) leads to

∂Deff

(
Ḟ

)

∂Ḟ
=

∂A

∂F
= P (60)

This relation demonstrates that the stress tensor (here the first Piola-Kirchhoff, but it

remains also true for the second Piola-Kirchhoff one) derives from a rate potential even if

plasticity occurs, as assumed in relation (19).

3.3. Incremental formulation: elasto-plastic updates

Let us assume a time increment ∆t from configuration n to configuration n + 1. Integration

of relation (43) using relation (44), leads to [25]

F
pln+1

= exp
([

εpln+1 − εpln
]
N

)

︸ ︷︷ ︸
≡A(εpln+1−εpln)

F
pln (61)

where tensor A has the following properties

detA = exp tr
(
∆εpl

N
)

= 1 and ∆εpl =

√
2

3
lnA : lnA (62)

with ∆εpl = εpln+1 − εpln.

Time integration of functional D (53) leads to

∆D
(
F

n+1,Fn, εpln+1
, εpln,N

)
≡ A

(
F

n+1,Fpln+1
(
εpln+1

)
, εpln+1

)
−

A
(
F

n,Fpln
(
εpln

)
, εpln

)
+ ∆tΨ∗

(
εpln+1 − εpln

∆t

)
(63)

with A defined by (45) and Ψ∗ defined by (49).
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18 L. NOELS ET AL.

3.3.1. Differentiation with respect to εpln+1
. Using (47) and (49) yields

∂∆D

∂εpln+1 =
∂A
(
F

n+1,Fpln+1
(
εpln+1

)
, εpln+1

)

∂εpln+1 +
∂Ψ∗

∂εpln+1 = −Y +
∂Ψ∗

∂ε̇pl
= 0 (64)

demonstrating ∆D must be minimum with respect to εpln+1
.

3.3.2. Differentiation with respect to N. Functional ∆D depends on N through F
pl. Using

relation (47), relation (61) leads to

∂∆D

∂N
=

∂A
(
F

n+1,Fpln+1
(
εpln+1

)
, εpln+1

)

∂Fpln+1 :
∂F

pln+1

∂N
= −T :

[
∂A

∂N
F

pln
]

(65)

Assuming ∆D must be minimum with respect to the flow direction N leads, under some

assumptions, to a radial return mapping scheme as we will see in the next section.

3.3.3. Differentiation with respect to F
n+1. Assuming sufficient convexity properties for the

physical potentials A and Ψ∗, the stationary point of ∆D will correspond to a minimum.

Therefore, the effective incremental potential ∆Deff is identified to this minimum of ∆D with

respect to εpln+1
and N

∆Deff (F) ≡ min
εpln+1,N

∆D
(
F

n+1,Fn, εpln+1
, εpln,N

)
(66)

Using relations (46) and (63) leads to

∂∆Deff

(
F

n+1
)

∂Fn+1
=

∂A
(
F

n+1
)

∂Fn+1
= P

n+1 (67)

This relation demonstrates that, even when plasticity occurs, the stress tensor derives from

an incremental potential.

When adapting these relations to the particular case of bi-logarithmic potentials and

isotropic hardening, one can find:

PK
n+1 = peJ

[
C

n+1
]−1

+ 2

[
1

J

] 2
3

DEV


f

pln+1
∂Φ̂el

(
Ĉ

el
)

∂Ĉel
f
pln+1T




︸ ︷︷ ︸
=

∂ d∆Deff
∂C

(68)
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 19

with Φ̂el
(
Ĉ

el
)

the deviatoric part of the elastic potential. Details of this evaluation can be

found in appendix I.

Now we will use this variational formalism to design an energy-momentum conserving time

integration algorithm.

4. THE ENERGY MOMENTUM CONSERVING ALGORITHM (EMCA)

Once the balance relation (30) is established for a given time t, this relation must be

integrated in time. To achieve this goal, Simo and Tarnow [6] proposed the EMCA. In this

section we will present the main features of the EMCA algorithm. Next we will deduce the

conditions on the forces resulting from the conservations laws expressed by relations (13), (15)

and (21).

4.1. Description of the EMCA

The relation between positions and velocities at node ξ is

[
~xn+1

]ξ
= [~xn]

ξ
+

∆t

2

[
~̇xn+1

]ξ
+

∆t

2

[
~̇xn
]ξ

(69)

This relation is a second order approximation (in ∆t). A second order approximation of the

relations between the velocities and the accelerations at node ξ is

[
~̇xn+1

]ξ
=

[
~̇xn
]ξ

+
∆t

2

[
~̈xn+1

]ξ
+

∆t

2

[
~̈xn
]ξ

(70)

The balance relation (30) is discretized in time at node ξ by

1

2
M ξµ

[
~̈xn+1 + ~̈xn

]µ
=

[
~F

n+ 1
2

ext − ~F
n+ 1

2

int

]ξ
(71)

This relation is a second order approximation of relation (30) if the internal forces ~F
n+ 1

2

int are

a second order approximation of ~Fint

(
tn+ 1

2

)
. The set of relations (69), (70) and (71) is solved
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20 L. NOELS ET AL.

by a predictor-corrector algorithm enhanced with a line search resolution [33, page 254].

4.2. Verification of conservation laws

In this section we will verify the conservation laws expressed by relations (13), (15) and (21).

4.2.1. Conservation of linear momentum. A sum on ξ in relation (71) and the use of relation

(70) leads to

∑

ξ

M ξµ
[
~̇xn+1

]µ

︸ ︷︷ ︸
~Ln+1

−
∑

ξ

M ξµ
[
~̇xn
]µ

︸ ︷︷ ︸
~Ln

= ∆t
∑

ξ

[
~F

n+ 1
2

ext − ~F
n+ 1

2

int

]ξ
(72)

where the continuous linear momentum ~L defined by relation (12) is discretized thanks to

relation (7) in ~L =
∑

ξ M ξµ~̇xµ. Relation (72) is a time discretization of relation (13) if

∑

ξ

[
~F

n+ 1
2

int

]ξ
= 0 (73)

4.2.2. Conservation of angular momentum. Thanks to relations (69) and (70), the vector

product between ~xn+ 1
2 = ~xn+~xn+1

2 and relation (71) leads to

1
∆t

M ξµ
[
~xn+1

]ξ ∧
[
~̇xn+1

]µ

︸ ︷︷ ︸
~Jn+1

− 1
∆t

M ξµ [~xn]ξ ∧
[
~̇xn
]µ

︸ ︷︷ ︸
~Jn

=

[
~xn+ 1

2

]ξ
∧
[
~F

n+ 1
2

ext − ~F
n+ 1

2

int

]ξ
(74)

where the continuous angular momentum ~J defined by relation (14) is discretized thanks to

relation (7) in ~J = M ξµ~xξ ∧ ~̇xµ. Therefore, relation (74) is a discretization of (14) if

[
~xn+1 + ~xn

2

]ξ

∧
[
~F

n+ 1
2

int

]ξ
= 0 (75)
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 21

4.2.3. Conservation of energy. Thanks to relations (69) and (70), the dot product between

~̇xn+ 1
2 = ~̇xn+~̇xn+1

2 and relation (71) leads to

M ξµ

2

[
~̇xn+1

]ξ
·
[
~̇xn+1

]µ

︸ ︷︷ ︸
Kn+1

− M ξµ

2

[
~̇xn
]ξ

·
[
~̇xn
]µ

︸ ︷︷ ︸
Kn

+
[
~xn+1 − ~xn

]ξ ·
[
~F

n+ 1
2

int

]ξ

=
[
~xn+1 − ~xn

]ξ ·
[
~F

n+ 1
2

ext

]ξ

︸ ︷︷ ︸
W n+1

ext −W n
ext

(76)

where the continuous kinetic energy K defined in relation (16) is dicretized thanks to relation

(7) in K = 1
2M ξµ~̇xξ · ~̇xµ and where the power of the external forces Ẇext defined in relation

(16) is discretized and integrated in Wn+1
ext − Wn

ext =
[
~xn+1 − ~xn

]ξ ·
[
~F

n+ 1
2

ext

]ξ
. Let E be the

discretized energy, let W el be the discretized reversible energy, let W pl be the discretized

irreversible energy and let Deff be the discretized effective potential. Let us define

∆W el =

∫

V0

{
∆Φel

}
dV0

∆W pl =

∫

V0

{
∆Φpl + ∆tΨ∗

}
dV0 (77)

Therefore relation (21) can be discretized into

Kn+1 − Kn +
[
W el + W pl

]n+1 −
[
W el + W pl

]n
︸ ︷︷ ︸

=
R

V0
{Dn+1

eff
−Dn

eff}dV0

= Wn+1
ext − Wn

ext (78)

If this last expression is compared with relation (76), the internal forces must lead to

[
~F

n+ 1
2

int

]ξ
·
[
~xn+1 − ~xn

]ξ
=

∫

V0

{
Dn+1

eff − Dn
eff

}
dV0 =

∫

V0

{∆Deff} dV0 (79)

The challenge of the EMCA algorithm is to find a consistent expression of the internal forces

and of the dissipation terms that satisfies relations (73), (75) and (79). This will be the topic

of the next section.
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4.3. Internal formulation of the internal forces

Let us extend the general formulation of the second Piola-Kirchhoff stress tensor proposed

by Gonzalez [8] for hyper-elasticity to our elasto-plastic formulation. Gonzalez [8] defined

modified values to reach the conservation of the thermodynamics laws. Let P̂K
n+ 1

2 be the

modified deviatoric stresses and let pn+ 1
2 be the modified pressure. Let the internal forces be

[
~F

n+ 1
2

int

]ξ
=

∫

V0

{
F

n+1 + F
n

2

[
P̂K

n+ 1
2 + 2pn+ 1

2 dG

]
~Dξ

}
dV0 (80)

with dG the modified differentiation of J by C. Let us use the split of ∆Deff defined by

relations (106) and (107).

Therefore the general expression proposed by Gonzalez [8] can be rewritten by using the

variational formulation of elasto-plastic updates. The modified differentiation of J becomes

dG = DG
n+ 1

2 +

[
Jn+1 − Jn − DG

n+ 1
2 : ∆C

‖∆C‖2

]
∆C

DG
n+ 1

2 =
1

2

√
det

(
Cn+1 + Cn

2

)[
C

n+1 + C
n

2

]−1

∆C = C
n+1 − C

n (81)

while the modified pressure becomes

pn+ 1
2 =

∂Uvol

∂θe

n+1
2

+


Uvol

(
θen+1

)
− Uvol (θen) − ∂Uvol

∂θe

n+1
2

∆θe

|∆θe|2


∆θe

∂Uvol

∂θe

n+1
2

=
∂Uvol

∂θe

(
θen+1 + θen

2

)

∆θe = θen+1 − θen (82)
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AN ENERGY MOMENTUM ALGORITHM USING THE VARIATIONAL FORMULATION. 23

Modified deviatoric stresses are obtained by

P̂K
n+ 1

2 = 2D∆̂Deff

n+ 1
2

+ 2


∆̂Deff

(
C

n+1,Cn
)
− D∆̂Deff

n+ 1
2

: ∆C

‖∆C‖2


∆C

D∆̂Deff

n+ 1
2

=
∂∆̂Deff

∂C

(
C

n+1 + C
n

2

)

∆C = C
n+1 − C

n (83)

In this last expression, ∂ d∆Deff

∂C

(
Cn+1+Cn

2

)
is obtained as the deviatoric part of relation (68),

i.e.

∂∆̂Deff

∂C
= 2

[
1

J

] 2
3

DEV


f

pl
∂Φ̂el

(
Ĉ

el
)

∂Ĉel
f
plT


 (84)

Let us draw some remarks:

(i) This method requires to compute the effective potential for Cn+1+Cn

2 and also for C
n+1.

(ii) These expressions lead to a second order approximation of the internal forces computed

in the mid-configuration (i.e. ~Fint

(
~xn+1+~xn

2

)
) [8]. Let us note that using the internal

forces computed in the mid-configuration introduces a coupling between rotation and

stretches. This coupling introduces some instabilities [34].

(iii) These expressions are valid for any formulation using the variational formulation.

(iv) Expression of the consistent stiffness matrix K =
∂ ~F

n+1
2

int

∂~xn+1 associated to internal forces

can be found in appendix II. The resulting expression is

K
ξµ
ik =

∫

V0

{
~D

ξ
jGijkl

~D
ξ
l

}
dV0 +

∫

V0

{
~D

ξ
jHvol1

ijkl

1

V0

∫

V0

{
Jf

n+1T

lp
~Dµ

p

}
dV0

}
dV0 +

∫

V0

{
~D

ξ
jHvol2

ijkl
~D

µ
l

}
+

∫

V0

{
~D

ξ
jHdev

ijkl
~D

µ
l

}
dV0 (85)

where G results from the geometric part, where Hvol1 results form the differentiation of

the pressure, where Hvol2 results from the differentiation of the differentiation of J and

where Hdev results from the differentiation of the deviatoric stresses. These tensors are
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evaluated in appendix II. Unfortunately Hijkl 6= Hkjil, leading to a non-symmetrical

stiffness.

Now let us demonstrate that the expression (80) of the internal forces satisfies the

conservation laws (73), (75) and (79).

4.3.1. Conservation of linear momentum. Using properties of the shape functions, a sum on

ξ in relation (80) leads to

∑

ξ

[
~F

n+ 1
2

int

]ξ
=

∫

V0





F
n+1 + F

n

2

[
P̂K

n+ 1
2 + 2pn+ 1

2 dG

]∑

ξ

~Dξ

︸ ︷︷ ︸
=0





dV0 = 0 (86)

4.3.2. Conservation of angular momentum. Using the symmetry properties of P̂K and of

dG, relation (80) leads to

[
~xn+1 + ~xn

2

]ξ

∧
[
~F

n+ 1
2

int

]ξ
=

∫

V0

{
ǫ :

[
F

n+1 + F
n

2

[
P̂K

n+ 1
2 + 2pn+ 1

2 dG

] [
F

n+1 + F
n
]T

2

]}
dV0 = 0 (87)

where ǫ is the third order permutation tensor. This expression is equal to zero since [ǫ : A]i =

ǫijk : Ajk is always equal to zero if A is symmetric.

4.3.3. Conservation of energy. Using the symmetry properties of P̂K and of dG, relations

(80), (81) and (83) lead to

[
~F

n+ 1
2

int

]ξ
·
[
~xn+1 − ~xn

]ξ
=

∫

V0

{
C

n+1 − C
n

2
:

[
P̂K

n+ 1
2 + 2pn+ 1

2 dG

]}
dV0

=

∫

V0

{
∆̂Deff + pn+ 1

2

[
Jn+1 − Jn

]}
dV0 (88)
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Since pn+ 1
2 is constant over the element, using definition of θe (23) and (82) yields

[
~F

n+ 1
2

int

]ξ
·
[
~xn+1 − ~xn

]ξ
=

∫

V0

{
∆̂Deff

}
dV0 + pn+ 1

2

∫

V0

{[
θen+1 − θen

]}
dV0

=

∫

V0

{
∆̂Deff + Uvol

(
θen+1

)
− Uvol (θen)

}
dV0

=

∫

V0

{
Dn+1

eff − Dn
eff

}
dV0 (89)

that satisfies relation (79).

These developments prove that the variational formulation allows us to use the general

expression of Gonzalez without modification (except the use of the incremental potential).

5. NUMERICAL EXAMPLES

In this section we will verify that the proposed scheme leads to consistent time integration

for numerical applications. Moreover, we will show that the scheme is effectively second order

accurate. In the first example we will demonstrate that the proposed scheme is consistent when

plastic deformation occurs. Next, we will prove on the Taylor bar problem that an increase of

the time step size does not lead to divergence or lack of accuracy, contrarily to the Newmark

scheme. Next, we will study a problem exhibiting contact interactions that will confirm the

previous observations. Finally a more dramatic example of impact will illustrate the robustness

of the code. The finite element discretization considers bilinear 4-node quadrangles with 4

Gauss points for 2-dimensional problems and trilinear 8-node bricks with 8 Gauss points for

3-dimensional problems.

5.1. Numerical example 1: tumbling beam

[Figure 1 about here.]
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[Table 1 about here.]

Let us study the tumbling beam proposed by Meng and Laursen [9]. Figure 1 illustrates the

geometry of the beam and its properties are reported in Table I. The beam is discretized into

64 quadrangles (4 along the height and 16 along the length). The applied nodal forces Fi (see

Figure 1) are described by the equations

Fi (t) = i ∗ t
5 if 0 ≤ t ≤ 5s

= i ∗ 10−t
5 if 5s < t ≤ 10s (90)

and are released after 10s. The material is assumed to be elastic perfectly plastic. The problem

is solved with the EMCA algorithm and a constant time step ∆t = 0.5s.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Figure 2(a) illustrates the time evolution of the angular momentum (around z-axis). During

the initial loading (t ≤ 10s) this value decreases and remains constant during the following

computation. When analyzing the energy plastically dissipated (Figure 2(b)) it appears that

most of the increase occurs during the loading and that this energy remains almost constant

after 100s. Let us analyse the energy balance. The internal energy and the energy plastically

dissipated can be computed from the internal potential at each time step. The finite work of

the internal forces is computed by adding the incremental work during each time step:

Wn+1
int =

n∑

i=0

{
~F

i+ 1
2

int ·
[
~xi+1 − ~xi

]}
(91)
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Relation (79) shows that this work must be equal to the sum of the internal energy with

the energy plastically dissipated. Figure 3(a) illustrates the balance of the internal energy. It

appears that the sum of the internal energy and the plastically dissipated energy is exactly

equal to the work done by the internal forces (since the two curves are the same, only a few

points of the work of internal forces are represented by a triangle for clarity purpose). Moreover,

summing the kinetic energy and the work done by the internal forces (Figure 3(b)) leads to

a value exactly equal to the work of the external forces. These observations demonstrate

the consistency of the time integration. Finally Figure 4 illustrates the distribution of the

equivalent plastic strain. When the external forces are maximum (Figure 4(a)) there is no

plastic deformation, when the loading is released (Figure 4(b)) localized plastic strains appear

where loads were applied, and after a long time (Figure 4(c)) it appears that there are also

plastic strains on the opposite side.

5.2. Numerical example 2: Taylor’s bar impact

[Figure 5 about here.]

[Table 2 about here.]

The initial geometry of Taylors’s bar is illustrated at Figure 5 and geometrical and material

properties are reported in Table II. The bar has an initial velocity ~̇x0 and its lower face is

constrained to stay in the plane z = 0. The material behavior assumed to be elasto-plastic

with linear isotropic hardening. A quarter of the bar is modelled with 576 elements (48 on

the base, and 12 along the length). This example was largely studied in the literature (see

e.g. [35]). It was also studied in the framework of consistent time algorithms for hyper-elastic

based elasto-plastic models by Meng and Laursen [10], and in the framework of consistent time
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algorithms for hypo-elastic based elasto-plastic models by Noels et al. [12]‡. In this paper we

compare previous results with

(i) The EMCA scheme developed in this paper with the variational formulation of elasto-

plastic updates.

(ii) The Newmark [1] scheme combined with the variational formulation of elasto-plastic

updates.

We will compare results obtained with the following constant time step sizes: 0.4µs, 0.2µs,

0.1µs, 0.05µs and 0.025µs.

[Figure 6 about here.]

[Figure 7 about here.]

[Table 3 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

Equivalent plastic strains obtained with the consistent algorithm are illustrated in Figure

6. Let us point out that the model used is a 3-dimension one, but for clarity purpose we

represent a slice. For the different time step sizes, results are similar. But with the Newmark

scheme it appears that when time step size is larger than 0.05µs the equivalent strains are

‡In [12], nodes belonging to the face z = 0 have no initial velocity to be able to verify the balance of the energy.

In fact, if these nodes have an initial velocity, the constraints correspond to a modification of the boundary

conditions, and therefore the sum of the kinetic energy and the work of internal forces does not remain constant.

In the present paper these nodes have an initial velocity, leading to a slightly different result than in [12].
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overestimated (Figure 7). When time step size is multiplied by 8, strains are overestimated

by about 10%. When analyzing the final results obtained (Table III), it appears that with the

EMCA scheme they are similar whatever time step and that they correspond to previous results

obtained by Meng and Laursen [9]. But for the Newmark scheme (both present results and

those presented by Simo [35]) when the time step increases, the final radius and the maximal

equivalent strain are overestimated, while the final length is slightly underestimated. Figure

8(a) illustrates the plastically dissipated energy (initial kinetic energy is equal to 59.57J).

This value is underestimated when the time size increases, mostly for the Newmark scheme.

Figure 8(b) illustrates the error on this value. The EMCA scheme is second order accurate with

respect to the time step size. Figure 9a illustrates the number of Newton-Raphson iterations.

This number is similar for the Newmark scheme and for the consistent algorithm. Cost of

evaluation of the internal forces and stiffness matrix for the consistent scheme is twice higher

than for the Newmark scheme. The stiffness matrix resulting from the proposed formulation

is non-symmetric. But, due to the quasi-incompressible formulation, the volumic part of the

stiffness matrix of the traditional Newmark scheme is not symmetric either, and thus this lack

of symmetry does not play against the consistent scheme. Overall, the consistent scheme is not

more expensive since time step size can be larger to integrate with the same accuracy. Figure

9b illustrates the number of line-search iterations. For the consistent scheme, if time step size

increases, this number increases too. For the Newmark scheme this number is almost always

lower than for the consistent scheme.

5.3. Numerical example 3: impact of two cylinders

[Figure 10 about here.]
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[Table 4 about here.]

Let us now study the impact of two cylinders. Geometry is illustrated in Figure 10 and

properties are reported in Table IV. Each cylinder is discretized into 192 quadrangles. The left

cylinder has an initial velocity ~̇x0 and impacts the right one initially at rest. Both cylinders are

identical and are made of a perfectly plastic material. Frictionless contact is treated with the

consistent method proposed by Armero and Petöcz [14]. This example was first proposed by

Meng and Laursen [10] in the framework of consistent time algorithm for hyper-elastic based

elasto-plastic models, and was also studied by Noels et al. [12] in the framework of consistent

time algorithm for hypo-elastic based elasto-plastic models. In this paper we compare previous

results with

(i) The EMCA scheme developed in this paper with the variational formulation of elasto-

plastic updates.

(ii) The Newmark [1] scheme combined with the variational formulation of elasto-plastic

updates.

We will compare results obtained with the following constant time step sizes: 20ms, 10ms,

5ms and 2.5ms.

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]
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When studying the effect of the time step size we have to notice that for the Newmark

algorithm both simulations with ∆t = 20ms and ∆t = 10ms need a reduction of the step§

during the contact phase. Figure 11 illustrates the equivalent von Mises stress obtained by the

two algorithms with ∆t = 2.5ms. It appears that results are quite similar. But when using

a larger time step ∆t = 20ms, if the solution obtained with the EMCA algorithm (Figure

12(a)) remains similar that the one with ∆t = 2.5ms, the solution obtained with Newmark

algorithm is quite different (12(b)). If we analyse the time evolution of the energy that is

plastically dissipated (Figure 13(a)) with a time step equal to ∆t = 20ms, it appears that

the EMCA algorithm gives the same solution than those obtained by Meng and Laursen [10]

and with an hypo-elastic model [12]. The Newmark solution diverges after a few ms to reach

a 100% error. If we analyse the effect of the time step size (Figure 13(b)) on this plastically

dissipated energy, it appears that for the Newmark scheme only the solution obtained with

∆t = 2.5ms corresponds to the EMCA solutions. The fact that the Newmark algorithm is

not designed to integrate a non-linear model (the work of internal forces is different from the

sum of the internal energy and the plastically dissipated energy [36]) leads to this error, but

there is another problem. If we analyse the time evolution of the work of contact forces (Figure

14(a)) it appears that the Newmark algorithm with ∆t = 20ms introduces some energy into

the system. If we analyse the final results (Figure 14(b)) it appears that for the Newmark

scheme the larger the time step size the larger the energy numerically introduced. With the

EMCA scheme this energy is always strictly equal to zero.

§Tile step size is divided by three when the Newton-Raphson iterative scheme does not converge.
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5.4. Numerical example 4: impact of two hollow cylinders

[Figure 15 about here.]

[Table 5 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

The problem under consideration is the interaction of two hollow perpendicular cylinders

(Figure 15a). Both cylinders have the same geometry and are both in steel (Table V). The

right cylinder has no initial velocity, while the left one has an initial velocity (Table V). Each

cylinder has 330 trilinear bricks (1 through the thickness, 22 along the circumference, 15 along

the length). The interaction between the cylinders occurs with a Coulomb frictional law. The

contact interaction is treated in the consistent way we proposed in [37], based on the method

of Armero and Petzöcz [15]. With this formalism, the work of the contact forces is equal to the

friction dissipation once the contact is released. The time step used is ∆t = 1µs. Figure 15b

illustrates the configuration once the contact is released.

Figure 16a illustrates the time evolution of the linear momentum along x for each cylinder.

During the contact the left cylinder gives a part of its momentum to the right one. The sum

is constant over the time. Figure 16b illustrates the time evolution of the angular momentum

along z for each cylinder. Since the impact occurs above the center of gravity of the right

cylinder, this generates a rotation of the two cylinders. But after a while the rotation velocity

decreases, because of the friction between cylinders. The angular momentum for the two

cylinders is constant. Figure 17a illustrates the work of the contact forces. Once the contact

is released, this work corresponds to the frictional dissipation (see [37] for details). When
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comparing to the initial kinetic energy (Figure 17b), this work is small. Half of the initial kinetic

energy is plastically dissipated (Figure 17b) and a small part is transformed into elastic energy.

This example illustrates the robustness of the scheme when treating 3D-impact problems.
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6. CONCLUSIONS

In this paper we have presented a new formulation of the internal forces for an elasto-plastic

material using a variational formulation of visco-plastic updates. This formulation is similar

to the one Gonzalez has developed for elasticity, leading to an energy-momentum conserving

scheme, but the new formulation presented is able to take into account the plastic behavior.

When plasticity occurs, the work of the internal forces corresponds to the sum of the internal

energy variation with the energy plastically dissipated energy, leading to a consistent time

integration scheme. This property is not verified with a traditional Newmark algorithm. Since

the energy is preserved in the non-linear range no numerical energy is introduced in the system

during the time integration. This result is very important because it demonstrates that the

scheme is numerically stable in the non-linear range. This is a necessary condition for accuracy

of the results. Nevertheless, it can be useful to introduce in this scheme numerical dissipation

to decrease the oscillations in the answer due to the high frequency numerical modes. The

proposed scheme is second order accurate with the time step size and has shown a good

accuracy on the numerical examples. The advantage of our formulation is that there is no

restriction on the hardening laws, even if in this paper we have used only isotropic hardening.
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APPENDIX

I. FORMULATION OF ELASTO-PLASTIC UPDATES FOR BI-LOGARITHMIC

POTENTIALS USING THE QUASI-INCOMPRESSIBLE METHOD

Relations (62) implies that F
pl has a determinant equal to the unity. Using relations (42)

then leads to

J = det
(
F

el
F

pl
)

= detFel = Jel (92)

Then, using (62), relation (5) becomes

[
Ĉ

el
]n+1

=

[
1

Jn+1

] 2
3

A
−T
(
∆εpl

) [
F

pln
]−T

C
n+1

[
F

pln
]−1

A
−1
(
∆εpl

)
(93)

This relation allow us to define the elastic predictor

Ĉ
pr =

[
1

Jn+1

] 2
3 [

F
pln
]−T

C
n+1

[
F

pln
]−1

(94)

Using the split of the potential considered in section 2.3.1, leads to a new expression of the

elastic potential

Φeln+1
(
C

n+1,Fpln+1
)

= Φvol
(
detCn+1

)
+ Φ̂el

(
A

−T
(
∆εpl

)
Ĉ

pr
A

−1
(
∆εpl

))
(95)

Assuming pure isotropic hardening is equivalent to choosing the plastic potential

Φpln+1
= Φpln+1

(
εpln+1

)
(96)

with the hardening parameter h and the yield stress Σv defined by

Σv =
∂Φpln+1

(
εpln+1

)

∂εpln+1 and h =
∂2Φpln+1

“
εpln+1

”

∂[εpln+1]2
(97)

In the particular case of linear hardening, Φpln+1
= Σv0ε

pln+1
+ h

2

[
εpln+1

]2
with Σv0 the
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initial yield stress. The dissipation dual pseudo potential (50) is then rewritten as

Ψ∗ =





Y0
εpln+1

−εpln

∆t
if εpln+1 − εpln ≥ 0

∞ if ˙εpl < 0

(98)

with Y0 = 0 a particular case.

With these definitions, functional (63) can be rewritten as

∆D
(
F

n+1,Fn, εpln+1
, εpln,N

)
= Φpln+1 − Φpln + Φvol

(
detCn+1

)
− Φvol (detCn) +

Φ̂el
(
A

−T
(
∆εpl

)
Ĉ

pr
A

−1
(
∆εpl

))
− Φ̂el

(
F

n, εpln
)

+ ∆tΨ∗

(
εpln+1 − εpln

∆t

)
(99)

I.1. Minimisation with respect to εpln+1
.

Functional (99) is derived with respect to εpln+1
. First let us study the differentiation of

Φ̂el, that is rewritten in a similar form to that in the elastic case (37). Assuming Ĉ
pr and A

−1

commute (this will be demonstrated a posteriori), and using relations (61) and (62), it leads

to

Φ̂el =
G0

4
ln
(
A

−T
(
∆εpl

)
Ĉ

pr
A

−1
(
∆εpl

))
: ln
(
A

−T
(
∆εpl

)
Ĉ

pr
A

−1
(
∆εpl

))

=
G0

4

[
ln Ĉ

pr − 2∆εpl
N

]
:
[
ln Ĉ

pr − 2∆εpl
N

]
(100)

Deriving this expression with respect to εpln+1
yields

∂Φ̂el

∂εpln+1 = −G0

[
ln Ĉ

pr − 2∆εpl
N

]
: N (101)

Finally the derivative of (99) is obtained by using relations (97), (98) and (101), and leading

to

G0

[
ln Ĉ

pr − 2∆εpl
N

]
: N = Σv

(
εpln+1

)
+ Y0 (102)
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I.2. Minimization with respect to N.

The functional (99) must be minimum with respect to N under the constraints (44). Since

only Φ̂el depends on N, one must have

min
N,λ1,λ2

(
G0

4

[
ln Ĉ

pr − 2∆εpl
N

]
:
[
ln Ĉ

pr − 2∆εpl
N

]
+ λ1trN + λ2

[
N : N − 3

2

])
(103)

leading to

N =

√
3
2 ln Ĉ

pr

√
ln Ĉpr : ln Ĉpr

(104)

Let us note that this last expression ensures that both A and Ĉ
pr have the same spectral

basis, and therefore commute.

Combining relations (102) and (104) leads to the equation giving εpln+1
. Indeed, one has

Σv

(
εpln+1

)
+ 3G0ε

pln+1
= G0

√
3

2
ln Ĉpr : ln Ĉpr + 3G0ε

pln − Y0 (105)

Finally, (104) and (105) allow us to compute F
pl thanks to (61).

I.3. Stress derivation.

At this point, functional (99) depends only on F
n+1, and is rewritten

∆Deff

(
C

n+1,Cn
)

= Φvol
(
detCn+1

)
− Φvol (detCn) + ∆̂Deff

(
C

n+1,Cn
)

(106)

with

∆̂Deff

(
C

n+1,Cn
)

= Φ̂el

(
F

pln+1−T

Ĉ
n+1

F
pln+1−1

)
+
[
Φ̂pl
]n+1

−
[
Φ̂el + Φ̂pl

]n
+ ∆tΨ∗ (107)

We can also define

Dn+1
eff

(
C

n+1,Cn
)

= Dn
eff + ∆Deff

(
C

n+1,Cn
)

(108)
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Proceeding as in section 2.3.1, second Piola-Kirchhoff stress tensor PK is obtained by

differentiation of (106) with respect to C
n+1, and becomes

PK
n+1 =

∂∆Deff

(
C

n+1,Cn
)

∂Cn+1

=
∂Φvol (θe)

∂θe︸ ︷︷ ︸
pe

JC
n+1−1

+ 2
∂Φ̂el

(
Ĉ

el
)

∂Ĉel
:

∂F
pln+1−T

Ĉ
n+1

F
pln+1−1

∂Cn+1
(109)

with θe computed from (23) and with, the deviatoric part computed by using (41)

∂Φ̂el
(
Ĉ

el
)

∂Ĉel
=

G0

2

3∑

α=1

{
lnλ(α)

λ(α)
~e(α) ⊗ ~e(α)

}
(110)

In this last expression, we have used the spectral decomposition

Ĉ
el =

3∑

α=1

{
λ(α)~e(α) ⊗ ~e(α)

}
(111)

Moreover, using (36) leads to

∂F
pln+1−T

Ĉ
n+1

F
pln+1−1

∂Cn+1
=

[
1

J

] 2
3

f
pln+1T

[
I − 1

3
C

n+1 ⊗ C
n+1−1

]
f
pln+1

(112)

and relation (109) is rewritten as

PK
n+1 = peJ

[
C

n+1
]−1

+ 2

[
1

J

] 2
3

DEV


f

pln+1
∂Φ̂el

(
Ĉ

el
)

∂Ĉel
f
pln+1T




︸ ︷︷ ︸
=

∂ d∆Deff
∂C

(113)
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II. CONSISTENT TANGENT STIFFNESS MATRIX

Let the consistent tangent stiffness matrix K be defined by

K
ξµ
ik =

∂
[
~F

n+ 1
2

int

]ξ
i

∂ [~xn+1]µk
=

∫

V0





∂
F

n+1
ir +Fn

ir

2

∂ [~xn+1]µk

[
P̂K

n+ 1
2

rj + 2pn+ 1
2 dGrj

]
~D

ξ
j



 dV0

︸ ︷︷ ︸
K

geo

ik

+

∫

V0





F
n+1
ir + F

n
ir

2

∂P̂K
n+ 1

2

rj

∂ [~xn+1]µk
~D

ξ
j



 dV0

︸ ︷︷ ︸
Kdev

ik

+

∫

V0

{
F

n+1
ir + F

n
ir

2

∂2pn+ 1
2 dGrj

∂ [~xn+1]µk
~D

ξ
j

}
dV0

︸ ︷︷ ︸
Kvol

ik

(114)

Let us use the following results

∂F
n+1
ij

∂ [~xn+1]
µ
k

= ~D
µ
j δik and

∂C
n+1
ij

∂~x
µ
k

=
[
δliF

n+1
kj + F

n+1
ki δlj

]
~D

µ
l (115)

and

∂
∥∥Cn+1 − C

n
∥∥2

∂Cn+1
= 2Cn+1 − 2Cn and

∂
√

detCn+1

∂Cn+1
=

1

2

√
detCn+1C

n+1−T
(116)

II.1. Geometrical part

Using relations (115), the geometrical part from relation (114) can be computed as

K
geoξµ

ik =

∫

V0





∂
F

n+1
ir +Fn

ir

2

∂ [~xn+1]µk

[
P̂K

n+ 1
2

rj + 2pn+ 1
2 dGrj

]
~D

ξ
j



 dV0

=

∫

V0

{
~D

ξ
jGijkl

~D
ξ
l

}
dV0 (117)

with the four order tensor G defined by

Gijkl =
1

2
δik

[
P̂K

n+ 1
2

lj + 2pn+ 1
2 dGlj

]
(118)
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II.2. Volumic part

The volumic part is decomposed into two terms. The first one results from the differentiation

of the constant pressure (over the element), while the second one results from the differentiation

of dG.

Using (23), the first term becomes

K
vol1ξµ

ik =

∫

V0

{
F

n+1
ir + F

n
ir

2
dGrj

~D
ξ
j

∂2pn+ 1
2

∂θen+1

∂θen+1

∂~x
µ
k

}
dV0

=

∫

V0

{
~D

ξ
jHvol1

ijkl

1

V0

∫

V0

{
Jf

n+1T

lp
~Dµ

p

}
dV0

}
dV0 (119)

with (using (82))

Hvol1
ijkl =

F
n+1
ir +Fn

ir

2 dGrjδkl
∂2Φvol

∂θe2

(
θen+1+θen

2

)
if θen+1 = θen

=
F

n+1
ir +Fn

ir

2 dGrjδkl2

[
∂Φvol

∂θe (θen+1)−
Φvol(θen+1)−Φvol(θen)

∆θe

∆θe

]
if θen+1 6= θen (120)

The second term becomes

K
vol2ξµ

ik =

∫

V0

{
F

n+1
ir + F

n
ir

2
2pn+ 1

2
∂dGrj

∂ [~xn+1]
µ
k

~D
ξ
j

}
dV0 =

∫

V0

{
~D

ξ
jHvol2

ijkl
~D

µ
l

}
(121)

where (using (115), and the symmetry properties of C)

Hvol2
ijkl = 2pn+ 1

2
F

n+1
ir + F

n
ir

2

∂dGrj

∂C
n+1
mn

[
δmlF

n+1T

nk + F
n+1T

mkδnl

]

= 4pn+ 1
2
F

n+1
ir + F

n
ir

2
F

n+1
km

∂dGrj

∂C
n+1
ml

(122)

Using relations (81) and (116), one has

∂dG

∂Cn+1
=

1

2

[
I − ∆C⊗ ∆C

‖∆C‖2

]
:

∂DG
n+ 1

2

∂Cn+ 1
2

− ∆C⊗ DG
n+ 1

2

‖∆C‖2 +
1

2
Jn+1 ∆C⊗ C

n+1−1

‖∆C‖2

+

[
Jn+1 − Jn − DG

n+ 1
2 : ∆C

‖∆C‖2

][
I − 2

∆C⊗ ∆C

‖∆C‖2

]
(123)

with

∂DG
n+ 1

2

∂Cn+ 1
2

=
1

2

√
det
(
Cn+ 1

2

) [1

2
C

n+ 1
2

−1 ⊗ C
n+ 1

2

−1 − I
C

n+1
2

−1

]
(124)
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In this expression we use the notations C
n+ 1

2 = Cn+1+Cn

2 and [IA]ijkl = 1
2AikAjl + 1

2AilAjk.

II.3. Deviatoric part

Using relations (115), the deviatoric term becomes

K
devξµ

ik =

∫

V0





F
n+1
ir + F

n
ir

2

∂P̂K
n+ 1

2

rj

∂ [~xn+1]
µ
k

~D
ξ
j



 dV0 =

∫

V0

{
~D

ξ
jHdev

ijkl
~D

µ
l

}
dV0 (125)

with

Hdev
ijkl =

F
n+1
ir + F

n
ir

2
F

n+1
km 2

∂P̂K
n+ 1

2

rj

C
n+1
ml

(126)

Using relations (83) and (116) yields

2
∂P̂K

n+ 1
2

Cn+1
=

1

2

[
I − ∆C⊗ ∆C

‖∆C‖2

]
:

d4D∆̂Deff

n+ 1
2

dCn+ 1
2

+

∆C

‖∆C‖2 ⊗ 4
d∆̂Deff

(
C

n+1 − C
n
)

dCn+1
− ∆C

‖∆C‖2 ⊗ 4D∆̂Deff

n+ 1
2

+

4


∆̂Deff

(
C

n+1 − C
n
)
− D∆̂Deff

n+ 1
2

: ∆C

‖∆C‖2



[
I − 2

∆C⊗ ∆C

‖∆C‖2

]
(127)

In this expression, we use differentiation with symbol d and not ∂ because the minimum value

of ∆D̂ depends only on C. Moreover, we use exponent n + 1
2 to refer to values computed for

Cn+1+Cn

2 .

Let M = 4 dD d∆Deff
n+1

2

dC
n+1

2

be the material tensor. Proceeding as Simo and Taylor [27] yields

M = det
(
C

n+ 1
2

)− 2
3 [Cn+ 1

2 +
4

3

[
f
pl ∂Φ̂el

∂Ĉel
f
plT : Ĉ

]n+ 1
2 [

IĈ−1 −
1

3
Ĉ

−1 ⊗ Ĉ
−1

]n+ 1
2

−2

3

[
Ĉ

−1 ⊗ 2D∆̂Deff + 2D∆̂Deff ⊗ Ĉ
−1
]n+ 1

2 ] (128)

with

C = 4
dD∆̂Deff

dĈ
− 4

3
Ĉ

−1 ⊗
[
Ĉ :

dD∆̂Deff

dĈ

]
− 4

3

[
dD∆̂Deff

dĈ
: Ĉ

]
⊗ Ĉ

−1 +

4

9

[
Ĉ :

dD∆̂Deff

dĈ
: Ĉ

]
Ĉ

−1 ⊗ Ĉ
−1 (129)
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Now we have to compute dd∆Deff

dCn+1 and dD d∆Deff

dĈ
. First term is obtained by

d∆̂Deff

dCn+1
=

d∆̂Deff

dĈn+1
:

∂Ĉ
n+1

∂Cn+1
= Jn+1−

2
3

[
DEV

d∆̂Deff

dĈn+1

]n+1

(130)

with

d∆̂Deff

dĈn+1
=

∂∆̂D

∂Ĉn+1
+

∂∆̂D

∂εpln+1

∂εpln+1

∂Ĉn+1
+

∂∆̂D

∂Nn+1
:

∂N
n+1

∂Ĉn+1
(131)

Second term is obtained by
[

dD∆̂Deff

dĈ

]n+ 1
2

= [∂D∆D̂

∂Ĉ
+

1

2

∂D∆D̂

∂εpl
⊗ ∂εpl

∂Ĉ
+

1

2

∂εpl

∂Ĉ
⊗ ∂D∆D̂

∂εpl
+

1

2

∂D∆D̂

∂N
:

∂N

∂Ĉ
+

1

2

[
∂N

∂Ĉ

]TT

:

[
∂D∆D̂

∂N

]TT

]
n+ 1

2

(132)

where Hijkl
TT = Hklij . In this last expression, we have ensured that dD d∆Deff

dĈ ijkl
= dD d∆Deff

dĈ klij

(to be consistent with the fact that a double differentiation with respect to C must lead to a

symmetric tensor).

II.4. Particular case of bi-logarithmic potential and isotropic hardening

In this section, expressions are valid in configuration n + 1 and in configuration n + 1
2 . For

the volumic part (120), one has easily

∂2Φ̂vol

∂θe∂θe
= K0

1 − ln (θe)

θe2 (133)

For the deviatoric parts (131) and (132), we have more relations to evaluate. Since only Φ̂el

depends explicitly on Ĉ, one has

∂∆̂D

∂Ĉ
=

∂Φ̂el

∂Ĉ
= f

pl ∂Φ̂el

∂Ĉel
f
plT (134)

with ∂Φ̂el

∂Ĉel
computed thanks to spectral decomposition.

Since ∆̂D is minimum with respect to εpl, one has

∂∆̂D

∂εpl
= 0 (135)
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Using relation (62) yields

∂f
pl

ij

∂εpl
= −f

pl
imNmj and

∂f
pl

ij

∂Nkl

= −f
pl

imDexp
mrklF

pln

rnf
pl

nj (136)

where Dexp =
∂ exp (∆εplN)

∂N
and where F

pln is the plastic deformation tensor at previous step.

Let us define the following operation [AHB]ijkl = AimHmnklBjn, [HB]ijkl = HinklBjn and

[AH]ijkl = AimHmjkl. Let us define HT
ijkl = Hjilk , therefore, using (136) leads to

∂∆̂D

∂N
= −

[
f
pl ∂Φ̂el

∂Ĉel
f
plT

]
:
[
Ĉf

plDexp
F

plnT
]
−
[
f
pl ∂Φ̂el

∂Ĉel
f
plT

]
:
[
Ĉf

plDexp
F

plnT
]T

(137)

that is different from zero since minimum of ∆̂D is reached under constraints.

From relation (94), one gets

∂Ĉ
pr

∂Ĉ
= I[fpln]T (138)

Therefore, thanks to relation (105), one has

∂εpln+1

∂Ĉ
=

√
3

2

G0

[3G0 + h]
√

ln Ĉpr : ln Ĉpr
ln Ĉ

pr : Dln Ĉpr

: I[fpln]T (139)

with Dln Ĉpr

= ∂ ln Ĉpr

∂Ĉ
. Moreover, using relation (104) leads to

∂N

∂Ĉ
=

√
3
2√

ln Ĉpr : ln Ĉpr
Dln Ĉpr

: I[fpln]T −
√

3
2 ln Ĉ

pr

[
ln Ĉpr : ln Ĉpr

] 3
2

⊗ ln Ĉ
pr : Dln Ĉpr

: I[fpln]T (140)

Finally, let us study the missing terms in (132). Let us define the following operation

[ABHCD]ijkl = AimBjnHmnpqCkpDlq, then we have directly

∂D∆D̂

∂Ĉ
= f

pl
f
pl ∂2Ψ̂el

∂Ĉel∂Ĉel
f
pl

f
pl (141)
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Using previous definitions and results leads to

∂D∆D̂

∂εpl
= −

[
f
pl

NF
pl
]

fpl

∂Ψ̂el
(
Ĉ

el
)

∂Ĉel
f
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
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
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(
Ĉ
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
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∂Ĉ
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Ĉf
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(142)

and to

∂D∆D̂

∂N
= −

[
f
plDexp

F
plnT

]

fpl

∂Ψ̂el
(
Ĉ

el
)

∂Ĉel
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
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
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∂Ψ̂el
(
Ĉ
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)
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(143)
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Figure 1. Geometry and loading of the tumbling beam.
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Figure 2. Time evolution for the tumbling beam.
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Figure 3. Energy balance for the tumbling beam.
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Figure 4. Equivalent plastic strain.
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Figure 5. Initial geometry of the Taylor’s bar.
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Figure 6. Equivalent plastic strain for the Taylor’s bar with the EMCA scheme.
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Figure 7. Equivalent plastic strain for the Taylor’s bar with the Newmark scheme.
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Figure 8. Plastically dissipated energy for the Taylor’s bar (logarithmic scales).
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Figure 9. Number of iterations for the Taylor’s bar.
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Figure 10. Geometry and initial velocity of the two cylinders.
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Figure 11. Equivalent plastic strain for the two cylinders with ∆t = 2.5ms.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



60 FIGURES

0.000    0.098    0.196    0.294    0.393

(a) EMCA

0.000    0.528    1.060    1.580    2.111

(b) Newmark

Figure 12. Equivalent plastic strain for the two cylinders with ∆t = 20ms.
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Figure 13. Plastically dissipated energy for the two cylinders.
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(b) Final results

Figure 14. Work done by contact forces for the cylinders problem.
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Figure 15. Geometry and equivalent plastic strain for the two hollow cylinders.
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(a) Linear momentum (b) Angular momentum

Figure 16. Time evolution of the momenta for the hollow cylinders.
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(a) Work of contact forces (b) Energy

Figure 17. Time evolution of the energies of the two hollow cylinders.
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TABLES 67

Table I. Properties of the tumbling beam.

Properties Values

Length L = 16m
Height h = 1m

Initial density ρ0 = 10kgm−3

Bulk modulus K0 = 500Nm−2

Shear modulus G0 = 40Nm−2

Initial yield stress Σ0 = 15Nm−2
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Table II. Properties of the Taylor’s bar.

Properties Values

Radius R = 0.0032m
Length L = 0.0324m

Initial velocity ~̇x0 = (0; 0;−227ms−1)
Initial density ρ0 = 8930kgm−3

Bulk modulus K0 = 130000Nmm−2

Shear modulus G0 = 433333Nmm−2

Initial yield stress Σ0 = 400Nmm−2

Linear hardening h = 100Nmm−2
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Table III. Final results for the Taylor’s bar.

Scheme Radius Length εpl

EMCA, ∆t = 0.05µs 0.006774m 0.02140m 2.61
EMCA, ∆t = 0.025µs 0.006775m 0.02140m 2.62
EMCA, ∆t = 0.1µs 0.006777m 0.02140m 2.60
EMCA, ∆t = 0.2µs 0.006783m 0.02140m 2.61
EMCA, ∆t = 0.4µs 0.006813m 0.02141m 2.61
Newmark, ∆t = 0.025µs 0.006774m 0.02140m 2.61
Newmark, ∆t = 0.05µs 0.006778m 0.02140m 2.62
Newmark, ∆t = 0.1µs 0.006798m 0.02142m 2.65
Newmark, ∆t = 0.2µs 0.006842m 0.02145m 2.74
Newmark, ∆t = 0.4µs 0.006874m 0.02146m 2.81
Simo [35], ∆t = 0.5µs 0.00697m - -
Meng and Laursen [9], ∆t = 1µs 0.006775 0.02164m 2.62
Hypo-elastic [12], ∆t = 0.5µs 0.006553m 0.02158m 2.37
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Table IV. Properties of the two cylinders.

Properties Values

Radius R = 1m

Distance between the two gravity centers ~d = (2.18m; 0m)

Initial velocity of left cylinder ~̇x0 = (1ms−1;−0.1ms−1)
Initial density ρ0 = 8.93kgm−3

Bulk modulus K0 = 130Nm−2

Shear modulus G0 = 43.3Nm−2

Initial yield stress Σ0 = 10Nm−2

Normal penalty of contact kN = 104
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Table V. Properties of the two hollow cylinders.

Properties Values

Mean radius R = 98.5mm
Thickness e = 3mm

Distance between the two gravity centers ~d = (250mm; 0mm; 0mm)

Initial velocity of left cylinder ~̇x0 = (40ms−1; 4ms−1; 0ms−1)
Initial density ρ0 = 8930kgm−3

Bulk modulus K0 = 130000Nmm−2

Shear modulus G0 = 433333Nmm−2

Initial yield stress Σ0 = 400Nmm−2

Linear hardening h = 100Nmm−2

Normal penalty of contact kN = 105

Tangential penalty of contact kT = 103

Coulomb coefficient µc = 0.1
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