## Local stability of kidney exchanges

Élise Vandomme Joint work with Yves Crama & Marie Baratto

HEC Liege Research Day 2025



### Joint work with

#### Yves Crama



Professor HEC Liege Liege University

#### Marie Baratto



PostDoc at Rotterdam School of Management Erasmus University

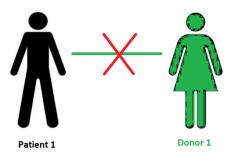
# Kidney Exchange Programs (KEP)

Patient with a serious kidney disease may resort to:

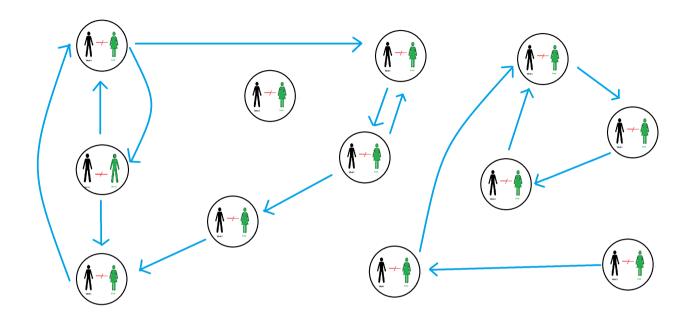
- Dialysis
- ► Transplant from a deceased donor
- ► Transplant from a willing donor

Patient might not be compatible with the donor: e.g.,

- ▶ Blood incompatibility
- ► Tissue type incompatibility



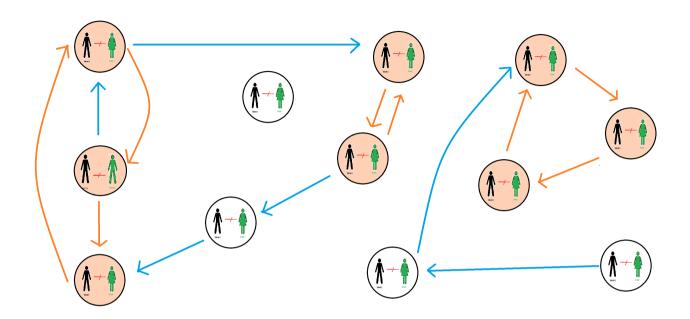
### KEP - Compatibility graph



### G=(V,A) where:

- $\triangleright$  V set of vertices, consisting of all patient-donor pairs.
- ▶ A, the set of arcs, designating compatibilities between the vertices. Two vertices i and j are connected by arc (i, j) if the donor in pair i is compatible with the patient in pair j.

### KEP - Possible exchanges



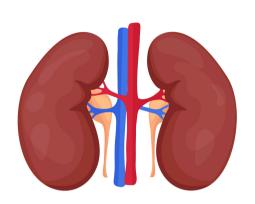
#### Definition

An exchange is a set of disjoint cycles in the directed graph such that every cycle length does not exceed a given limit K.

- ► Aim: to maximize the number of patients transplanted
- ▶ When K = 2, an exchange is a matching.

# Kidney Exchange Programs

### What is the link between



and



?

### From Kidneys to Corporations



Kidney Exchange

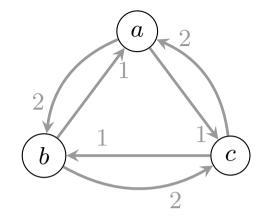
Corporate Partnership

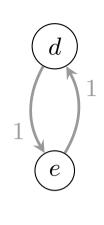
► KEP: Stable matchings among incompatible donor—patient pairs

► CEOs: Stable partnerships among companies

► Shared goal: Maximize number of matches while ensuring stable configurations

### Instances



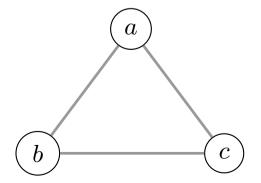


### Definition

An instance consists of

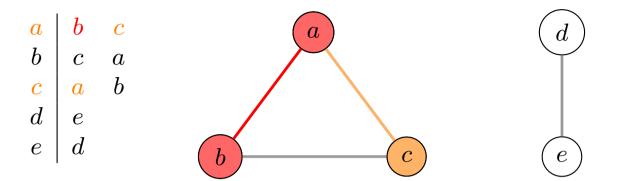
- ▶ a preference table
- ▶ an undirected graph

$$egin{array}{c|cccc} a & b & c \\ b & c & a \\ c & a & b \\ d & e \\ e & d \end{array}$$





### Stable Matching

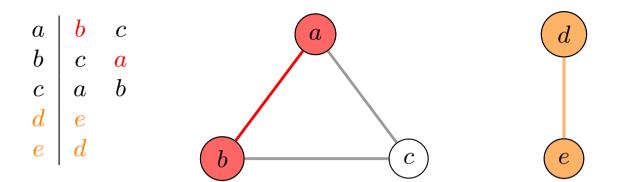


#### Definition

Given an undirected graph G = (V, E),

- ► a matching is a collection of disjoint edges
- $\triangleright$  a matching M is stable if there are no blocking pairs
- ▶ a blocking pair for M is an edge  $xy \in E \setminus M$  such that
  - ightharpoonup either x prefers y to its mate M(x) or x is not matched in M, and
  - ightharpoonup either y prefers x to its mate M(y) or y is not matched in M.

### Stable Matching

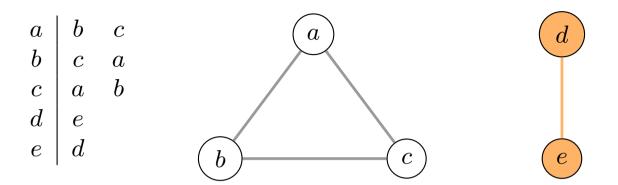


#### Definition

Given an undirected graph G = (V, E),

- ► a matching is a collection of disjoint edges
- $\triangleright$  a matching M is stable if there are no blocking pairs
- ▶ a blocking pair for M is an edge  $xy \in E \setminus M$  such that
  - ightharpoonup either x prefers y to its mate M(x) or x is not matched in M, and
  - ightharpoonup either y prefers x to its mate M(y) or y is not matched in M.

### Locally Stable Matching

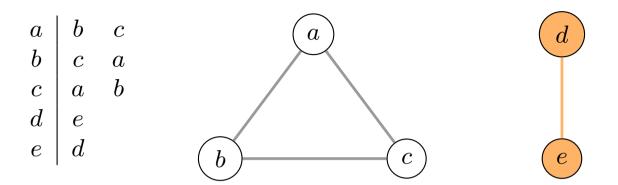


Definition (Baratto-Crama-Pedroso-Viana, 2025)

Given an undirected graph G = (V, E),

- $\triangleright$  a matching M is locally stable if there are no locally blocking pairs
- ▶ a locally blocking pair for M is an edge  $xy \in E \setminus M$  such that
  - $\triangleright$  xy is blocking for M, and
  - ightharpoonup x or y is matched in M

### Locally Stable Matching



Definition (Baratto-Crama-Pedroso-Viana, 2025)

Given an undirected graph G = (V, E),

- $\triangleright$  a matching M is locally stable if there are no locally blocking pairs
- ▶ a locally blocking pair for M is an edge  $xy \in E \setminus M$  such that
  - $\triangleright$  xy is blocking for M, and
  - $\triangleright$  x or y is matched in M

All stable matchings are locally stable ones. Empty matchings are locally stable ones.

### Stability vs Local Stability

A stable matching is maximum if it has the largest possible size among all stable matchings. And similarly for maximum locally stable matchings.

- ➤ Stability: Stable Roommates Problem (SRP)
  What is the maximum size of a stable matching?
  (72 don't have a stable matching out of 600 tested: 12%)
- ► Local Stability: Locally Stable Roommates Problem (L-SRP) What is the maximum size of a locally stable matching? (1 out of 600 tested has a solution of cardinality zero : 0.2%)
  - For 50 instances with  $|V| \approx 200$ , 45 out of 50 have a stable exchange; 50 out of 50 have a non-trivial locally stable exchange; 45 instances max. stable exchange = max. locally stable exchange

#### Our contribution:

► (L-SRP) Computing a maximum locally stable matching is polynomial.

#### Structural results

#### Proposition

If M is a stable matching and M' is a locally stable matching, then  $V(M') \subseteq V(M)$  and  $|M'| \leq |M|$ .

#### Proposition

If a graph has a stable matching, then

- ▶ all its stable matchings cover the same set of vertices, and
- ▶ all its stable matchings are maximum locally stable.

A locally stable matching is maximal if it is not included (edge-wise) in any other locally stable matching.

#### Proposition

All maximal locally stable matchings cover the same set of vertices and hence, they have the same size.

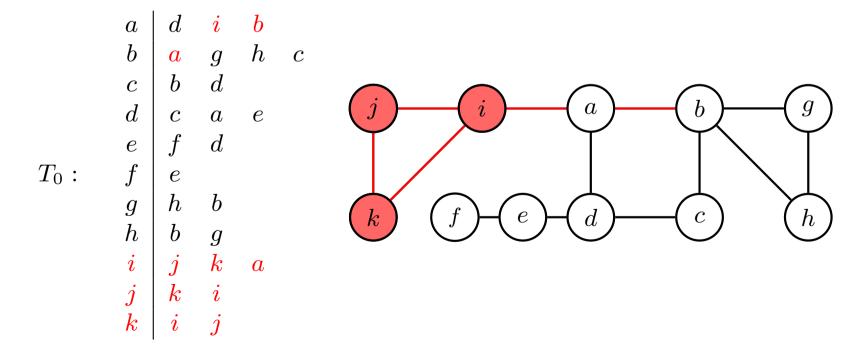
#### Theorem

If a graph has a stable matching, then all its maximal locally stable matchings are stable.

### Algorithm

**Idea:** Perform repeatedly transformations so that each solution of the initial instance is still a solution of the modified instance.

- ▶ Identify vertices that can never be covered by a maximal locally stable matching
  - ► Mark them as rejected
- ▶ Deduce all the possible consequences for edges to be rejected



### Algorithm

```
function MAXLSTABLE(T: a preference table)
      Build G = (V, E), the graph associated with T
      V^r \leftarrow \emptyset
      E^r \leftarrow \emptyset
      repeat
            G^- \leftarrow (V \setminus V^r, E \setminus E^r)
            \pi \leftarrow \text{stable partition of } G^-
\mathcal{O} \leftarrow \text{union of odd parties of } \pi
Identify vertices to reject
            V^r \leftarrow V^r \cup \mathcal{O}
            \Delta \leftarrow \{xy \in E \setminus E^r : x \in \mathcal{O} \text{ or } \exists z \in \mathcal{O} \text{ s.t. } x \text{ prefers } z \text{ to } y\}
E^r \leftarrow E^r \cup \Delta
Deduce edges to reject
      until \mathcal{O} = \emptyset
                                                 \blacktriangleright G^- has a perfect stable matching given by \pi
      M \leftarrow \text{perfect stable matching of } G
      return M
end function
```

ightharpoonup Overall time complexity :  $\mathcal{O}(|V||E|)$ 

### Conclusion

- ▶ Local stability is a natural extension of the classical stability concept for the roommates problem.
- ▶ We described an algorithm which identifies a maximum locally stable matching in polynomial time.
  - ▶ We can deduce from it an efficient algorithm to enumerate all of them
- ► Can we find a succinct certificate as it is done for the classical stable roommates problem?

### Want to know more?

#### Check our preprint:

Vandomme, E., Crama, Y., & Baratto, M. (2025).
 Locally stable matchings for the roommates problem.
 ORBi-University of Liège. https://hdl.handle.net/2268/330279

