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Abstract. In this paper, two efficient convection algorithms are briefly presented in order
to update the values stored at the Gauss point during the Eulerian step of an Arbitrary
Lagrangian Eulerian computation in solid mechanics. They are based on the finite volume
method and on the Streamline Upwind Petrov Galerkin method. Two applications are
presented : a cold rolling simulation and a drawbead simulation.
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1 INTRODUCTION

The general frame of this paper is in the field of numerical simulation of forming pro-
cesses by the finite element method. In order to find the solution of steady state processes
by numerical simulation with the classical Lagrangian formulation, very large and use-
less meshes have to be considered. For example, when dealing with rolling simulation, a
large part of the sheet has to be discretised even if the results in the first finite elements,
which are introduced between the rolls, are not important. However, these finite elements
cannot be removed because they are required in order to reach the steady state solution.
Consequently, the CPU time is very large. Another approach is the well-known Eule-
rian formulation: the media flows through the mesh, which is fixed in space. However,
boundary conditions are rather difficult to handle particularly frictional contact and free
surfaces.

The Arbitrary Lagrangian Eulerian (ALE) formulation was introduced to overcome
these problems (see e.g. [7, 8, 2] ). The mesh can be handled by the software, irrespective
to the body motion, so that both previous formulations can be obtained as particular
cases if the mesh sticks to the body or is fixed in space. In such a formulation, time steps
are divided into two phases: the first one is Lagrangian and the second one a convective
Eulerian phase, where the values stored at the Gauss points have to be updated. In order
to avoid oscillations and instability, efficient convection algorithms have to be used. In
the present paper, two convection methods will be presented and compared: the first
one, called ‘Godunov-type update technique , is based on a finite volume method and the
second is based on the Streamline Upwind Petrov Galerkin (SUPG) method. This work
has been introduced in MEFAFOR [7], the non-linear finite element code developed at
the LTAS, University of Liège, Belgium.

2 THE GODUNOV-TYPE UPDATE TECHNIQUE

Once the first (Lagrangian) step is completed, the studied body is automatically
remeshed by the program following the users instructions (it can be a minimization of
the meshs distortion or, in the case of stationary processes, most of the nodes are fixed
in space). When non linear problems are considered, some important values, like the
stress tensor or the equivalent plastic strain, are stored at the Gauss points and have to
be updated from the Lagrangian mesh to the new one. This convective step consists of
solving a classical convection equation, which can be written :

∂ σ

∂ t
|χ + wj

∂ σ

∂ xj

= 0 (1)

where σ is a value stored at the Gauss point (e.g. a component of the stress tensor),
wj is the relative velocity between the new mesh and the Lagrangian mesh and χ is the
coordinate system associated with the new mesh.
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Although this scalar equation is well-known in fluid mechanics, it is rather difficult
to solve it because σ is not a continuous field but is only defined at the Gauss point.
Consequently, the gradient cannot be evaluated.

In order to overcome this problem, the values can be extrapolated and averaged to
the mesh nodes and the gradient is computed from the resulting continuous field. But
this first simple method shows a large amount of numerical diffusion. More sophisticated
methods must be used.

Figure 1: A finite element and its division in 4 finite volumes

The Godunov-update technique was firstly introduced by Casadei, Donéa and Huerta
[4, 5]. This method can be useful on structured meshes of Q4P0 hybrid finite elements
(4 Gauss points are used to integrate all the values except pressure, for which 1 point
is used to prevent locking). It consists of dividing each finite element into four (one for
the pressure) cells surrounding each Gauss point (fig. 1). The field to be transferred
is assumed to be constant on each cell and thus discontinuous across them. The finite
volume problem is solved by the classical Godunov method and an explicit Euler scheme
is used for the time integration. The resulting update formula [4] is given below for the
cell s :

σn+1

s = σn
s −

∆ t

2 As

Ns∑
i=1

fi (τ
c
i − τs) (1 − α sign(fi)), (2)

where ∆ t is the time step, As is the area of the cell, Ns is the number of boundary
lines of the cell (4 in this case), τ c

i is the value of the adjacent cell sharing the boundary
i with the cell s, α is an upwind factor and fi is the flux of σ across the boundary i.
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Figure 2: Auxiliary meshes for the SUPG update.

3 THE SUPG TECHNIQUE

We compare the latter method with another one based on the Streamline Upwind
Petrov Galerkin technique [3], which was introduced in order to avoid the cross-wind
diffusion appearing in the solution of the convection problem. The main idea of the
method is the definition of a second mesh defined on the Gauss points. The Lagrangian
step is solved on the classical finite element mesh and the convection step is performed
on the second mesh by the finite element method and the SUPG technique.

The equation 1 can be written in matrix form (see [1] for more details) :

Cu̇ + Ku = 0, (3)

with

Cij =
∫

V
Ni Nj dV +

∫
V

k

‖w‖2
wk

∂ Ni

∂ xk

Nj dV (4)

Kij =
∫

V
wk Ni

∂ Nj

∂ xk

dV +
∫

V

k

‖w‖2
wk wl

∂ Nj

∂ xk

∂ Nj

∂ xl

dV (5)

where Ni are the shape functions and k is a diffusion coefficient computed locally by

k = α (|~w. ~h1| + |~w. ~h2|), (6)

where α is an upwind parameter and ~h1 and ~h2 are the median vectors of the element
concerned. As in the previous algorithm, an explicit Euler scheme is used for the time
integration and the matrix C is diagonalized. It can be shown that it improves the
stability of the algorithm.
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Figure 3: Evolution of the equivalent stress for the Godunov-like update.

4 APPLICATION TO THE ROLLING PROCESS

Both presented algorithms have been tested on a simulation of a cold rolling process.
In this case, the ALE formulation is very well suited because we can only study the
interesting zone of the process, that is the part of the sheet between the rolls. The
problem is symmetric and only one half of the process is studied. The table 1 shows the
material properties used for this simulation.

The optimal value for the upwind factor is rather difficult to find. If a low value is
chosen, oscillations may appear in the solution. However, a high value introduces too
much artificial diffusion.

The roll is a flexible body with the same Young s modulus as the sheet. Only one
quarter of the roll is meshed. As far as the mesh of the sheet is concerned, we use an
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Young modulus E = 6.895 104 MPa
Poisson ratio ν = 0.33
Yield stress σ0

Y = 50.3(1 + εp/0.55)0.26 MPa
Rolls radius R = 158.75 mm
Half initial thickness Hi = 6.274 mm
Half final thickness H0 = 5.385 mm
Friction coefficient µ = 0.1
Upwind factor α = 1.0

Table 1: Material properties, geometry and parameters of the rolling process.
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Figure 4: Von Mises stress for the Godunov-like and the SUPG updates compared to the lagrangian case.
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Eulerian mesh in the rolling direction and a Lagrangian-Eulerian mesh in the perpendic-
ular direction. Thus, the free surface of the sheet is automatically computed. The ALE
method is used for the sheet and the roll.

The Eulerian domain for the sheet is 60 mm long and discretised with 40 x 6 elements
and the roll with 120 x 15 elements. The meshes are refined near the contact area in order
to get more accurate results.

The calculation is divided into two steps (see figure 3). The first one consists of the
clamping of the sheet by the rolls. Once the desired reduction is obtained, the rolls start
to rotate with a constant velocity. The computation is stopped after a rotation of 180
degrees in order to check the stability of both algorithms.

Actually, the steady state is reached rather quickly after a 15 degrees rotation. Its
obtained after about 440 time steps. The Godunov-like algorithm is approximately 30%
faster than the SUPG method (4 min 40 s instead of 6 min 02 s). The equivalent stress
is shown on figure 4. On the left, the Godunov and SUPG updates are compared. We
see that the results are very similar. However, the SUPG solution shows more numerical
oscillations. On the right, the Godunov update is compared to the equivalent Lagrangian
simulation and both solutions are very similar.

5 APPLICATION TO A DRAWBEAD SIMULATION

Another interesting simulation has been considered to compare our update algorithms.
In this case, we try to simulate a drawbead test presented by Nine [6], which consist in
clamping a thin sheet of metal between three cylindrical rolls and pulling the sheet to
make it bend and unbend through the system. This kind of experiment is very important
in the deep drawing industry because the forces of such a system are rather difficult to
predict.

The geometry and material properties used for the simulation are presented in the
table 2.

Young modulus E = 200 GPa
Poisson ratio ν = 0.3
Yield stress σ0

Y = 516(8.2139 10−3 + εp)
0.23 MPa

Roll bead radius R1 = 5.5 mm
Roll shoulder radius R2 = 5.5 mm
Friction coefficient µ = 0.0
Upwind factor α = 1.0

Table 2: Material properties, geometry and parameters of the drawbead simulation.

The frictionless case is chosen here for the comparison. This means that the rolls are
not fixed and can roll to follow the sheet motion.
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The figure 5 explains the two successive steps during the test. At the beginning,
the sheet lies undeformed between the rolls. Then, the clamping phase begins. Once
the desired clamping distance is obtained, the drawing phase begins until a stationary
solution is computed.

In the case of a Lagrangian simulation, a long part of the sheet must be discretised
because the steady state is not obtained immediately. With the ALE formalism, only a
small part of the sheet, that is the interesting part, is considered and discretised (this
part is called ‘ALE region’ in figure 5). The sheet flows into the ALE mesh.
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Figure 5: ALE Region for the drawbead simulation.

The figure 6 compares the results obtained by both update methods and the Lagrangian
case. Once again, we see that the equivalent plastic strain is very similar in the three
cases

8



R. Boman and J.-P. Ponthot

0

45

90

135

180

225

270

315

360

405

450

ALE - Godunov Lagrangian ALE - SUPG

Equivalent plastic strain

[x 10   ]-3

Figure 6: Comparison of the equivalent plastic strain for the Lagrangian and ALE simulations.

6 CONCLUSIONS

In this paper, two efficient convection algorithms have been introduced in the frame
of Arbitrary Lagrangian- Eulerian methods in solid mechanics. They can be very useful
when dealing with stationary processes like rolling. However, these results cannot be
extended easily to unstructured meshes.
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Belgium, 1998.

[2] R. Boman and J.-P. Ponthot. ALE methods for stationary solutions of metal forming
processes. In J.A. Cavas, editor, Second ESAFORM conference on Material Forming,
pages 585–589, Guimaraes, Portugal, 1998.

[3] A. N. Brooks and T. J. R. Hughes. Streamline upwind/petrov-galerkin formulations
for convection dominated flows with particular emphasis on the incompressible navier-
stokes equations. Computer Methods in Applied Mechanics and Engineering, 32:199–
259, 1982.

[4] F. Casadei, J. Donea, and A. Huerta. Arbitrary lagrangian eulerian finite elements
in non-linear fast transient continuum mechanics. Technical Report EUR 16327 EN,
University of Catalunya, Barcelona, Spain, 1995.

[5] A. Huerta. ALE stress update in transient plasticity problems. In E. Hinton
D.R.J. Owen, E. Onate, editor, Computational Plasticity, pages 1865–1871. 1995.

[6] H.D. Nine. The applicability of Coulomb’s friction law to drawbeads in sheet metal
forming. Jounal of Applied metal Working, 2:200–210, 1982.
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