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Abstract

In order to solve highly non-linear dynamic problems, an explicit method, which is con-
ditionally stable, is the most adapted. Such an algorithm presents the advantage of be-
ing non-iterative, and the conditional stability is not a disadvantage since time steps must
be small enough for an accurate computation. But for more linear dynamics, an implicit
method, which is iterative, presents the advantage of more stability and of unconditional
stability. Therefore, time step size can be increased and the method becomes cheaper than
an explicit one. Typical sheet metal forming processes are governed by high non-linearities
during the stamping process and by quasi-linear dynamics during the spring-back process.
The optimal solution is then to have both implicit and explicit methods readily available in
the same code and to be able to switch automatically from one to the other. Criteria that
decide to shift from a method to another, depending on the dynamics, have been developed.
Those criteria are based on CPU costs and integration error evaluations. Implicit restart-
ing conditions are also proposed that annihilate numerical oscillations resulting of explicit
calculation. The combined method then allows computation of problems such as the sheet
metal forming into a ”S” shaped rail. In such a problem, an implicit solution is not stable or
is expensive during the stamping process. On the other hand, during the springback simula-
tion, the contact configuration does not evolve rapidly, and an explicit method with a small
time step is much more expensive than an implicit method that can increase the time step.
The combined implicit-explicit algorithms are then the solution that minimize the CPU cost.
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1 Introduction

Many industrial problems of today need to be simulated with non-linear models. The choice
of a time integration algorithm is an essential criterion to ensure efficiency and robustness of
the numerical simulations. Difficulty in this choice resides in being able to combine robustness,
accuracy and stability of the algorithm. Implicit algorithms need to be solved iteratively on
each time increment (time step), contrarily to explicit ones. But, for stability reasons, explicit
methods use smaller time steps than implicit ones. Explicit methods, avoiding iterations and
convergence problems, are therefore generally used for highly non-linear problems with many
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degrees of freedom, for which iterations are very expensive and convergence problems are fre-
quent [14]. On the other hand, for slower dynamics problems with less non-linearities, implicit
algorithms allow to work with larger time step size, resulting in more numerical stability and
accuracy [5, 13, 14]. A sheet metal forming process has some time intervals governed by high
non-linear dynamics (stamping) and others governed by slower non-linear dynamics (spring-
back). Then, one can take advantage from a solution method that combines both families of
integration algorithms.

A solution is to integrate over some time intervals with an implicit method and other time
intervals with an explicit one. Few works have been developed with this latter combination and
they were all developed for sheet metal forming analysis. Jung and Yang [9] have simulated a
stamping simulation that begins with an implicit scheme and shifts to an explicit one when a
problem of convergence appears. No return to implicit scheme is actually planned. Another
method, developed by Finn et al. [4] and by Narkeeran and Lovell [10], simulates stamping
(as a fast dynamics problem) with an explicit scheme and springback phase (slow dynamics)
is subsequently analyzed with an implicit one. The time of transition is fixed by the user and
initial conditions for the implicit phase, such as velocities and accelerations, are set to zero.
This method has been generalized in this work and automatic criteria that decide to shift from
a family to another have been developed. They depend on an integration error [6, 11] that allows
to determine implicit time step size and they also depend on a ratio between the computational
time (or CPU) needed to solve an implicit time step and the CPU needed to solve an explicit
time step. Initial conditions, when shifting from explicit to implicit scheme occurs, are also
defined to avoid lack of stability and convergence.

This paper will be organized into three sections. First, time integration algorithms will be briefly
explained. Second, the mentioned criteria and initial restarting conditions will be detailed.
Third, a numerical simulation of an ”S” shaped rail sheet forming will be exposed to validate
the methodologies.

2 Numerical integration of transient problems

2.1 Equations of motion

FEM (Finite Element Model) semi-discretization of the equations of motion of a nonlinear
structure leads to the following coupled set of second order nonlinear differential equations
2,7, 12]:

R = Mi+ F™ (¢,4) — F (z,4) = 0 (2.1)

where R is the residual vector, z the vector of the nodal positions at current time, # the vector
of nodal velocities, # the vector of nodal accelerations. M is the mass matrix, F*** the vector
of internal forces resulting from body’s deformation and F¢*' the vector of external forces.
Both vectors are non-linear in  and in £ due to the coupled phenomena of contact, plastic
deformations or geometrical non-linearities.

2.2 Implicit schemes

The most general scheme for implicit integration of equation (2.1) is a generalized trapezoidal
scheme [2, 3, 7] where updating of positions and velocities is based on ”averaged” accelerations
stemming from associated values between ¢, and %,,1. It reads for instance



Tpi1 = Tn + Atz + <% — ,6) A&, + BA 5,4 (2.3)

The discretized motion equation (2.1) can be rewritten under the form proposed by Chung and
Hulbert [3]:

— l-amprs (254 - int ext
Rupir = gy MEner + 720 M + (B, - Fih)

I (24)
(8]
+—17§F (F,;” — BT ) =0

where R, ;11 is the residual vector of time step n to n + 1.
Iterative solution of the nonlinear equation (2.4) requires the writing of the Hessian matrix of
the system, i.e.

1 1—apy 0%
S = M+ —Cr+ K 2.5
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where Kp, Cr are respectively the tangent stiffness and damping matrices. Using equations
(2.2) to (2.5) and a Newton-Raphson technique, the iterative solution of the problem can be
written as:

SAx = —R (2.6)

2.3 Ezxplicit Scheme

Chung and Hulbert have extended their implicit scheme to an explicit one, taking arp = 1 in
equation (2.4) [8]. Its principal advantage is its numerical dissipation property. Time integration

is then: )
M~ (FEot — Fi™) — apgiy,
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. 1 . .
Tntl = Tn + Atd, + At? [(5 — ﬁ) Ty + ﬁmn_H] (2.9)

This scheme is conditionally stable and time step size is limited, depending on maximal model
frequency wpqz, but also depending on spectral radius (pp):

Q
Al = ygAberip = Ys—2 (p) (2.10)
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In equation (2.10), s is a safety factor (< 1) that accounts for the destabilizing effects of
non-linearities.

2.4 Implicit time step size control

The implicit time step size control is the one proposed by Géradin [6], extended to highly non-
linear problems by Noels et al. [11]. This scheme continuously adapts time step size to physical
modes evolution and keeps time step size constant during long time intervals. To estimate time
step size an integration error is computed.

The integration error is deduced from truncated terms of equation (2.2) and equation (2.3).
This error is of the third order: O (%At?’i) ~ 0 (%AtgAi). To have a problem independent



error, it is made non dimensional, using z( (the initial position vector) and a reference error
[6, 11]. To take into account the rotation, the integration error is then rewritten by taking the
variation of the nodal acceleration modulus (N is the number of nodes)[11]:

_ AT A

int = 2.12

Time step size is deduced from the integration error defined in equation (2.12) and from a
tolerance PRCU fixed by the user. The relation to be verified is:

eint < PRCU (2.13)

The new time step size Atne, to reach a reference integration error (half of the tolerance
PRCU) is deduced from the current time step size (Atcy) and from the current integration
error (eint,cur), using the following relation developed by Geradin [6]:

Atnew\"  PRCU
Atcur

with n € [2,3] a user specified parameter [6, 11]. The time step size management, based on
equations (2.13) and (2.14), is the one developed by Noels et al. [11].

(2.14)

2eint,cur

3 Shifts from an algorithm family to another

3.1 Shift from an implicit algorithm to an explicit algorithm

First the ratio r* between the CPU needed for an implicit time step computation and the CPU
needed for an explicit time step computation, is evaluated. In this paper, this ratio is averaged
for each step, in order to be able to shift from a method to another for non-linear simulation.
Shift to explicit method occurs if:

NAtimpl < T*Atempl (315)

where Aty is evaluated with equation (2.10). The factor p is taken greater than unity (typical
values disscussed in section 4) to avoid shifting from a method to another too frequently. This
methodology allows to take into account the number of degrees of freedom, the algorithms
efficiency, the residual tolerance required and the non-linearities evolution.

3.2 Shift from an explicit algorithm to an implicit algorithm

While the method used is an implicit one, the explicit time step size can always be easily
computed from equation (2.10). When the current method is explicit, the implicit time step size,
which correctly integrates the problem, does not remain directly accessible. Using developments
of section (2.4), nodal acceleration variations can provide us with this implicit time step size.
Using equation (2.14), acceleration variation is proportional to At". Inverting equation (2.12)
the implicit time step size is (with N the number of nodes):

Mg Hl'[] H (Atexpl)n72

Atimpl = |6—2 N - (3'16)
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Therefore the explicit to implicit shift criterion is similar to equation (3.15). It yields:
Atimpl > MT*AtefL‘Pl (317)

with At.., the current explicit time step size.
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Figure 1: Transition scheme from an explicit scheme to an implicit one.

3.3 Initial conditions when shifting to an implicit scheme

Classical explicit schemes such as the central difference method [2] are well known to generate
oscillatory (though stable) solutions. Two solutions are provided here to stabilize and balance
the Gauss points values and the nodal values.

First, numerical oscillations of the Gauss points values and of the nodal values are annihilated
thanks to the numerical dissipation property of the generalized-«a explicit scheme. Indeed, when
equation (3.17) is satisfied, thus resulting in the choice to switch to implicit, at step number
n (at time t,), r* explicit steps occur with a spectral radius p, (section 2.3) set equal to zero
(pp is a user parameter). Thus, numerical oscillations have been greatly reduced at time 4«
(Figure 1).

The second step in the algorithm is to determine a balanced configuration at time t, 4y« 4.

Therefore, we act in two stage. First an explicit solution using r** (r** will be defined on
expl . expl

next paragraph) explicit steps is computed. This solution results in z,, [« .«x, £, and
in xzsz, 4=, Which in turn is used as a predictor value for an implicit solution in one time

step between time ¢, ,+ (where numerical oscillations have been reduced) and time &« p+=.
This procedure proved to be very effective in order to restart an implicit solution based on
explicit unbalanced solution. Therefore, a balanced step of size equal to the implicit time step
size is reached. The methodology is illustrated on Figure (1). This balanced solution is reached
considering an implicit time step size equal to Atq«« = r**At,,,;. In general, the iterative process
necessary to reach this equilibrium quickly converges and this allows to begin the implicit method
with a balanced solution at time ¢, 4« 1,+«. Anyway r** must be defined. It is always lower or
equal to pur*. It is lower if r* is too large to lead to convergence of the first truly implicit step
after time ¢, 4p«4,+=. In this work r** is limited to 100. But if »** is lower than ur*, time step
size is increased (multiplied by 2) each two steps to reach At = pur*Ateyy

4 Numerical examples

The numerical example consists in sheet forming of an ”S”-shaped rail [1]. A description of the
bench and of the die is given on Figure (2). Properties of the material are reported on Table (1).
The stamping process is simulated in a time of bms. It consists of a doped stamping process
with the true density but with a shorter time of stamping. The dies are removed in a total time
of 1s to simulate springback of the process.

The simulation used the proposed combined implicit-explicit algorithm. There is 1800 elements
(30 in length, 30 in width and 2 on the thickness). The finite elements use selective reduced
integration, to avoid volumetric locking resulting from the incompressibility condition of plastic
deformations. There are 8 deviatoric Gauss points and 1 volumetric Gauss point. Moreover,the
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Figure 2: Description of the ”S”-shaped sheet forming.
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Thickness e = 0.92mm
Density p = 8900kg/m>
Young’s modulus

E = 206000N/mm?

Poisson’s ratio

v=0.31

Initial yield stress

o¢ = 158 N/mm?

Hardening parameter

h = 1000N/mm?

Table 1: Properties of the sheet.
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Table 2: Numerical properties for the implicit scheme.

Pb 0.2
(033 —1.6
p 5.5
Y 3.1
Vs 0.9

Table 3: Numerical properties for the explicit scheme.

parameters 7 of equation (3.16) and p of equations (3.15, 3.17) are respectively taken equal to
2.5 and 1.5. Decreasing n or p will result in more shifts from a method to another and thus
will degrade the efficiency of the algorithm. Since a return to an implicit scheme leads to some
iterations (section 3.8), computation costs can increase. Numerical parameters used for the time
integration scheme (section 2) are reported in (table 2 and 3). The frictional contact simulation
uses the penalty method with a normal penalty of 10e® and a tangent penalty of 10e®. The
Coulomb coefficient is equal to 0.2.

During the stamping process (from time = 0s to time = 5ms), the combined scheme shifts 5
times from an implicit scheme to an explicit scheme, when problems of convergence appear,
before returning to the implicit scheme. During the 5ms of the stamping process, there are
about 3ms computed with an implicit scheme and 2ms with an explicit scheme. The solution
obtained at the end of the stamping is illustrated on Figure (3). During the springback the
implicit scheme is selected until the end of the springback process (1s). The advantage of the
implicit scheme during the springback process is the accuracy obtained [14, 5, 13]. The solution
obtained after springback is illustrated on Figure (4).
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Figure 3: Deformation and von Mises stress (N/mm?) after stamping of the ”S”-shaped sheet.
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Figure 4: Deformation and von Mises stress (N/mm?) after springback of the ”S”-shaped sheet

5 Conclusions

An integration scheme that combines implicit and explicit schemes was presented. This scheme
integrates some time intervals with an implicit scheme, and others with an explicit scheme.
First, automatic criteria that decide to shift from an algorithm family to another were developed.
Next, stable balanced initial conditions have also been proposed when shifting from an explicit
algorithm to an implicit algorithm. Finally, a numerical example of sheet metal forming was
proposed that confirms the interest of the combined algorithm. In this example, the stamping
was processed with an explicit scheme when divergence problems appear. On the other hand,
the springback process was performed with an implicit scheme that has a dynamic balanced
solution.
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