A MODULE SUPPORTING THE COLLABORATIVE DESIGN AND
BUILD ACTIVITY

G. Brieven, A. Labrahimi Kasdaoui, B. Donnet
Uliege (BELGIUM)

Abstract

The Collaborative Design and Build (CDB) activity addresses key STEM education challenges:
developing 21st century skills, scaling feedback for large classes, and enabling hybrid learning. In CDB
sessions, teams of students form problem-solving chains where each team builds upon previous work.
This approach suits any STEM course requiring multi-step problem solving.

Until this semester, CDB sessions were conducted using physical worksheets. We now use a digital
module that manages the flow of step-by-step solutions and feedback between teams, while also
supporting real-time collaboration on shared solutions within each team. In this module, instructors can
configure problem statements, solution steps, criteria for feedback, group and team size, and timing of
each step. When a session begins, problems are distributed among teams, solutions advance between
teams with structured feedback periods, and the activity concludes with validation and retrospective
analysis.

We used this module for the first time in our CS2 course where students tackled recursive problems
through three steps: mathematical formulation, function specification, and implementation.

At the end of the session, we collected student perception data, mainly to compare digital versus paper-
based approaches. Student feedback favored the digital CDB module (86% found its interface clear,
80% reported smoother workflow, and 83% noted improved collaboration) compared to paper-based
approaches. The coding step was identified as the most suitable step for digitalization (90%). The
primary challenges were time constraints and team interdependence, suggesting the need for flexible
timing features and highlighting the inherent collaborative nature of the activity.

Keywords: Collaborative Problem solving, Assembly-line Learning, Hybrid learning, 21st Century Skills.

17 INTRODUCTION

In our Introduction and Complement to Programming courses (CS1 and CS2), it is crucial to prepare
students to solve complex problems. The format of their final answer should be a piece of code.
Upstream the development of the solution, students are taught to process it at higher levels of
abstraction via specific modeling steps, promoting so a top-down approach ([1]).

In practice, students tend to skip these modeling steps and straightly code via trial and error. That may
work for simple problems. But as soon as students face more complex ones, they end up with less
robust solutions and longer code.

To overcome this, we motivate this top-down approach by connecting it to students’ future professional
life and embedding it in a Collaborative activity called CDB (standing for Collaborative Design and Build).

The Collaborative Design and Build (CDB) activity addresses three major challenges faced by STEM
instructors: promoting 21st century skills (communication, collaboration, critical thinking, and problem-
solving) ([2]), achieving scalability coupled with rapid feedback (supporting up to 500 students), and
enabling hybrid learning through online accessibility.

In a CDB session, teams of students belong to a chain made up of problem-solving steps interspersed
with transition phases. Only the first team in the chain can access the problem statement, while
subsequent teams must build upon the work of previous teams to advance the solution.

This activity is suitable for any STEM course that requires multiple steps to solve problems. While
previously limited to in-person classroom settings (using paper-based methods), the CDB activity is now
a module that integrates with existing Learning Management Systems through LTI (Learning Tool
Interoperability).

2 HOW THE COLLABORATIVE DESIGN & BUILD (CDB) ACTIVITY WORKS?

The CDB activity consists of two phases: Design and Build. This approach encourages students to
reflect on a solution before developing it, to limit solution patching afterwards.

As shown in Figure 1, groups of students are divided into T teams, with each team working on problems
in parallel through T given steps. The Design phase typically involves analysis and modeling, while the
building phase focuses on implementation.

In our CS2 course specifically, students are progressing through three sequential steps (7=3). They
should first provide a recursive definition of the problem, then specify the functions to implement, and
finally write the actual code. Each team handles one step before passing their work to the next team.

Transition periods allow teams to provide feedback on previous work using checklists ([3], [4]), helping
to maintain quality throughout the process. At the same time, they also receive feedback from their peer
and should refresh their own solution step ([5]).

This structure mirrors professional environments where large projects require effective team
collaboration.

Design Phase Building Phase
r = 2] f_J—l
Step 1. Step 2. Step 3.
Recursive Signature Coding N
Definition and Classroom Configuration

Transition 12 ; Specification = Transition 2>3

Feedback Loop Feedback Loop m {Group 1} G 6]
M= Ry SR 2
3.4 X : :

Team 1 $» Team 1
Problem A | : Problem A&C : Problem C : Problem C&B :| Problem B PN B
1 3 1 _ \
Owner of i | Team 2 ;| Team 2 |«g
Problem Problem B Problem B&A Problem A Problem A&C | Problem C E F] :
: et oo
i | Team 3 1- : [Team 3 >
Problem C Problem C&B Problem B - Problem B&A:-| Problem A L gbANCATE ™ ™
Il | 1 Il | |
T 1 T 1 T L
00h00 00h30 00h55 01h20 01h40 02h00

Resolution over time

Figure 1. CDB Organization, instantiated in our CS2 course, with three problem-solving steps.

3 FUNCTIONALITIES OF THE CDB MODULE

The CDB Module provides distinct functionalities tailored for two different types of users: the instructor
and the student. Functionalities are summarized in Figure 2.

3.1 Instructor View

The CDB module allows instructors to define: (i) the problem statements (i.e., uploading a PDF), (ii) the
solution steps (e.g., problem decomposition, coding (in Computer Science)), (iii) acceptance criteria for
each step (forming the basis for transition phases), (iv) the number of groups and team size, and (v) the
duration of both problem-solving steps, and transitions from one step to another.

The instructor functionalities are primarily accessible through the Administration Panel, organized in
three tabs: Libraries, Sessions Preparation (see Figure 3) and Courses. Next, instructors can also
monitor on-going sessions via the Running Sessions Monitoring page.

In the current version, two types of libraries are proposed: one for predefined answers and another one
for checklists. Before an instructor defines a session (in the Session Preparation tab), they should make

sure to have predefined the answers and checklists they need in their problem-solving flow. To do so,
they should either create a new checklist/predefined answer or copy and modify an existing one. LaTeX
format is also supported. Checklist and predefined answers can also be previewed or deleted.

Interface of the CDB module
I > oups and Teams Admin Panel | ¥ (1) Course creation/deletion
L LT I TI T L™ ourses
and a team H =
4 Step Solvin H
: P g :[| Libraries
(2) Contribute to z = | |- Checklist) Templat > N\
Tsolutions = = | |- Template of Answer (2) Temp setup / \
— Feedback :
N = = (3) Session creation C
H = Sessions (4) Upload pdf statements —» ¥ \|
= =) (5) Define the flow of steps ‘
= Update based on = Preparatlon (6) Add Complementary files
Student : feedback : " Instructor
(I3)Tk t' :I Illlllll: R .
ake part in unning J
the retrospective Review of the Sessions - (7) Initialize/Build the
whole solution Moni toring session for each team

Figure 2. Overview of the functionalities of the CDB module.

CAFE 2.0 Running Sessions Monitoring /‘ Administration

Administration Panel

Sessions Preparation Courses Libraries
Session 1: Recursivity Session 2: Modularity
Course: [INFO0947] - Complément de Programmation Course: [INFO0947] - Complément de Programmation
Start: On 08/04/2025 at 10:41 Start: On 23/04/2025 at 15:56
End: On 08/04/2025 at 11:44 End: On 23/04/2025 at 16:56

[~] o o EAiKS o

Session 3: Session 3

Course: [INFO0947] - Complément de Programmation
Start: On 01/06/2025 at 08:30
End: On 01/06/2025 at 10:30

[=] o o

Figure 3. Administration Panel - Sessions Preparation tab.

In the Sessions Preparation tab, instructors have an overview of all existing sessions and can create
new ones. To create a new session, instructors should first specify its main settings (title, course,
number of groups, teams and team members, start and end time, description and access). Once a
session has been created, its content can be specified (see Figure 4). Instructors can update the main
parameters at any time before starting the session. They also must upload T problem statements and
define T problem-solving steps in the Flow of Steps page (Figure 5). In the Flow of Steps page,
instructors should also specify the Feedback and Correction sub steps, following each problem-solving
sub step (except the last one for which it's optional). The instructor also indicates the amount of time

allocated to each sub step. Ultimately, the instructor can launch a session by clicking the Play button on
the main page (accessible through the Running Sessions Monitoring tab, next to Administration).

CAFE 2.0 Running Sessions Monitoring /‘ Administration

Recursivity []

Main Settings
& Groups and Teams Title
28 Problem Statements .
Recursivity
B Complementary Files
Course
& Flow of Steps
[INFO0947] - Complément de Programmation v
~{ Statistics
Maximum Number of Groups Maximum Number of Teams per Group ©
& History
10
Start End
08/04/2025] 08/04/2025 [m]
10:41] 11:44 ©
Description
The goal of this session is to be able to write a recursive definition and implement a corresponding c-function.
Locked @) visible
Figure 4. Main Settings Page to define a CDB session.
CAFE 2.0 Running Sessions Monitoring ¥ Administration ® 6
test2 |]
@ Main Settings Flow of Steps |
2 Groups and Teams Class Type

28 Problem Statements

Solution Step

B Complementary Files

2 Flow of Steps.

~ Statistics
© History
°
. Design (Etape 1) :
Définition Récursive
3

x®

Design (Etape 2) :
Interface de la fonction
®

& Implémentation de la
solution (Etape 3)
°

Ty

L]

°
Feedback (Etape 1) :
Définition Récursive
°

3
Feedback (Etape 2) :
Interface de la fonction
°

°
Feedback (Etape 3) :
Implémentation

L

x®

semaiin i oo (RN

Correction Etape 1)
»® : Définition x®
Récursive o

Correction (gtape 2):
»@ Interface de la x e
fonction

°
Correction (Etape 3) e
: Implémentation

°

Update Diagram

Figure 5. Flow of steps, where each step is composed of a solution part, feedback on it and the
elaboration of a new version of the solution part, based on the feedback.

3.2 Student View

After instructors have configured a CDB session, students can join a group via the Join a Team page,
and, inside the group, join a team. Once a group is complete, distinct problem statements are distributed
to each team in a group for parallel solving. As illustrated in Figure 1, if T steps are required to solve the

problems, then T teams stand in a group and T problem statements initiate T problem-solving chains in
each group. During the first step, the teams solve the step directly based on the problem statement (see
Figure 6).

CAFE 2.0 Sessions 23 Joina Team e
Q 13V Q 70%v @ @ 4+ L 8 B ¢
o GROUP N°: { — TERM N°: 2
8
B8
INFOO94T : Complément de Programmation Lgevas
» Collaborative Design & Build - Enonct B : Occurrences d'un Définition

Définissez précisément le probleme récursivement en suivant la méthodologie vue au cours (voir Chap 4, Slides 42 - 70).
Normal ¢ B I U & fi |aTeX

n ifn<10
n%10 + sum_digit(n/10) otherwise.

sum_digit(n) = {

Figure 6. Students solving the first step, based on the problem statement.

When the time allocated for a step expires, step solutions advance to the next team. This team reviews
it based on predetermined acceptance criteria (see Figure 7). In Figure 7, the right panel displays the
checklist, automatically populated from a library template. All team members can edit the grid in real
time, selecting checkboxes and entering comments against each criterion. The left panel shows the
submission under review (from the previous team), while also providing access to earlier rotations’
submissions for additional context.

CAFE 2.0 Sessions 2 Join a Team o

PRODUCTION TO REVIEW

SROSP I TEAR N 3 —
Interface de la fonction Feedback (Etape 2) : Interface de la fonction
Donnez la signature et la spécification du module & implémenter.
Interface. Critéres de I'Etape 1 0K? Commentaires (référés par des tags si besoin)
‘Signature + spécification Tout est parfait
- L'interface est compléte (su:.;namre, précondition, Yes
postcondition)
PREVIOUS PRODUCTIONS
insert a LaToX formula
Définition Tout est parfait
Définissez i le probléme ré it en suivant la Vue au cours (voir
Chap 4, Slides.
42 5 70).
Format de la signature (type de retour, identificateur,
arguments) :
o ifn<10 Yes
sum_digit(n) = {n% 10-+ sum_digit(n/10) _otherwise retType fctName(argTypel argNamel, ..., ar|
Insert a LaTeX formula
L'identificateur de la fonction C est différent du nom] No
de la fonction mathématique
https:/foury-cloud34.segi.ulg.ac.be

Figure 7. Students review previous team’s work and fill in a checklist listing acceptance criteria.

Once feedback time is completed, step solutions return to the original team (see Figure 8). Their window
is organized similarly to the feedback view. The right panel loads the submission they originally
produced, allowing them to incorporate received feedback directly into their work. The left panel displays
the corresponding feedback, ensuring they can see reviewer comments while making revisions. The
goal of this transition phase is to maintain continuity in the problem-solving chain.

CAFE20 (E) Sessions 2} Joina Team

FEEDBACK

Feedback (Etape 2) : Interface de la fonction

o

FROUP I = TER 2 _

Commentaire

Interface de la fonction

Donnez la signature et la spécification du module & implémenter.

Normal ¢ B I U @ f LaTex
Interface

Signature + specification

modifié (ou pas)

Critéres de I'Etape 1 ok? 5
- Uinterface est compléte (signature,
précondition, Yes Tout est parfait
postcondition)
Format de la signature (type de retour,
identificateur,
arguments) :
Yes Tout est parfait
retType fctlame(argTypet argliamet,
Lid de la fonction C est
No
de la fo thématique
Lidentificateur de la fonction est pertinent No
La fonction dispose d'arguments formels No
La précondition porte sur des contraintes
potentielles que les input doivent No
rencontrer
La postcondition décrit le résultat final en
s'appuyant sur la fonction récursive No
mathématique
La posteondition dépend des inputs No
La postcondition décrit comment chaque
input a été No

PREVIOUS PRODUCTIONS

Définition

425 70).

Définissez précisément le probléme récursivement en suivant la méthodologie vue au cours (voir Chap 4, Slides

itn<io

- it i

Figure 8. Students improve their step solution, based on the feedback the next team has provided.

After correction, team’s work moves to the next team and the team progress the current solution by
solving the next step, based on the previous one(s). The corresponding interface is illustrated in Figure

9.

CAFE 2.0 Sessions 2, Join a Team o

GREUP HO: '~ TEH” HO: E _
Définissez précisément le probléme récursivement en suivant la

méthodologie vue au cours (voir Chap 4, Slides Interface de Ia fonCtlon

42 - 70). Donnez la signature et la spécification du module a implémenter.

Définition

ifn<10 Normal ¢ B I U & fi LaTeX

n
um_digit(n) =
sum. digit(n) {n%10+sum,digit(n/1o) otherwise.

Interface :

Signature + spécification|

Figure 9. Students progress the solution by solving a given step, based on previous one(s) already
being achieved by the previous team(s).

Finally, in the last step of our session, students translate their solutions into executable code (see Figure
10). The left panel continues to provide contextual information being the submissions from previous
teams for that problem, guiding ongoing development. The right panel hosts a real-time collaborative
code editor where students work together to create and modify files. Instructors pre-upload supporting
resources, some marked read-only, alongside editable starter code. Beneath the editor, an integrated
terminal allows immediate compilation and execution, with output and error messages displayed live.
This shared workspace makes it easier for students to write, test, and improve their code.

CAFE 2.0 Sessions 2 Join a Team

Définition ¢ main.c
1 #include <stdio.h

Définissez précisément le probléme récursivement en
suivant la méthodologie vue au cours (voir Chap 4, Slides
42 > 70).

int main() {

ifn<10

n
m_digit(n) =
su git(n) {n%10+sum,digit(n/10) otherwise.

Interface de la fonction

Donnez la signature et la spécification du module &
implémenter.

Interface :

Signature + spécification

£ Compile

Figure 10. Students implement their solution, based on the design provided by the previous teams.

Upon completing the final step, solutions return to their initial team for validation against expected
outcomes, expressed in the initial statement. Results are classified as correct, incomplete, or incorrect.
Finally, a CDB session concludes with an inter-team meeting where representatives share their solution
outcomes and perform a retrospective analysis (i.e., what went well and what went wrong).

4 METHODOLOGY

Prior to the implementation of the CDB module, the CDB activity was conducted entirely on paper, with
students solving problems and handling peer feedback using physical worksheets. For this semester,
we implemented the CDB module in our Complement to Programming course (CS2). Students tackled
recursive problems through three structured steps: (i) mathematical recursive formulation, (ii) formal C-
function specification, and (iii) C function implementation. The activity engaged 35 students organized
into 6 groups, each containing 3 teams of 2 students (with one exception having a single student).

To assess our collaborative module's effectiveness, we conducted an anonymous post-session survey,
which received responses from 30 students. All of them consented to their answers being used in this
study. The survey comprised 12 questions using both open-ended formats and 5-point Likert scales.
Seven questions specifically evaluated the benefits of running the activity through a digital module
versus traditional paper methods. In this paper, we present findings related to this comparison and
identify students' primary challenges in completing their tasks. Section 6 further discusses functionality
gaps observed during this first experiment.

5 RESULTS

Overall, 86% of students rated the module's interface as clear. When comparing digital versus paper-
based approaches, only 3.5% of students preferred solving problems on paper. Notably, 80% found the
digital workflow smoother, and 83% reported easier collaboration with teammates thanks to shared
documents with updates in real-time. However, a somewhat lower percentage (63%) preferred the CDB
module over paper for supporting their solution reasoning process. This opinion is aligned with results
from previous work, stating that digital formats increase the cognitive load in some cases ([6]).

When asked which solution step was most suitable for digitalization, 90% identified the development
(coding) step, likely because they could immediately test their solution. Conversely, 55% struggled most
with the mathematical definition step, likely due to discomfort with LaTeX expressions. We also observed
the need to implement an automatic saving feature, as some students lost their work during transitions
between steps due to elapsed time limits.

Regarding the question "What was the greatest difficulty during the activity?", the most common
response concerned time constraints, with many students unable to complete tasks within the
timeframes. This suggests implementing a feature allowing instructors to extend time for specific steps
based on student time requests. Beyond timing issues, many students also noted the challenge of
interdependence on teammates' work, which, while difficult, remains fundamental to the CDB activity's
purpose.

6 FURTHER STEPS

As detailed in the previous section, a relevant feature would be offering a more flexible timing for each
step, to limit bad quality step solution, due to a lack of time. Two students explicitly proposed this new
feature. Additionally, to reduce students’ discomfort with relying on other teams, we could better balance
group composition by distributing higher-performing students across different groups. To support this, a
new feature could allow instructors to pre-assign students to groups and teams based on recent
assignment grades and other factors ([7]). Currently, students are free to choose their own groups and
teams.

To go further, now we have seen that the CDB module was running smoothly in an in-person setting, a
next step could be organizing it in a hybrid setting, with some students participating online.

7 CONCLUSIONS

The Collaborative Design and Build (CDB) module represents a significant advancement in collaborative
learning for STEM education. By transitioning from paper-based to digital formats, we have successfully
addressed key challenges in promoting 21st century skills, providing scalable feedback mechanisms,
and enabling greater accessibility through technology integration. Student feedback clearly
demonstrates the advantages of our digital approach, with a strong preference for the module over
traditional paper methods. The enhanced real-time collaboration capability and the immediate testing
functionality in the coding step proved especially valuable to students. The challenges identified -
primarily time constraints and the complexities of interdependent teamwork - provide clear directions for
future improvements. Implementing flexible timing features and refining mathematical input methods will
enhance the user experience. Additionally, having validated the module's effectiveness in an in-person
setting, we are now positioned to extend its application to hybrid learning environments, further
increasing its accessibility and impact.

We encourage educators to implement the CDB activity in their own STEM classrooms. Our module is
designed to be accessible and adaptable across various disciplines, making it straightforward to
organize collaborative problem-solving sessions that engage students in methodical approaches while
developing essential teamwork skills. By sharing this tool with the broader educational community, we
hope to contribute to more effective and engaging collaborative learning experiences.

ACKNOWLEDGEMENTS

This work is supported by the CyberExcellence project funded by the Walloon Region, under number
2110186.

REFERENCES

[11 G. Brieven and B. Donnet. "Practicing Abstraction through a Top-Down Problem-Solving
Framework in a CS1 Course.", 10th International Conference on Higher Education Advances
(HEAQ’24), 2024. doi:10.4995/HEAd24.2024.17110.

[2] G. Brieven, M. Moraes, D. Pawelczak, S. Vasilache, and B. Donnet. “Integrating Soft Skills
Training Into your Course Through a Collaborative Activity.”, ACM Technical Symposium on
Computer Science Education (SIGCSE). ACM, 2025. doi:10.1145/3641554.3701877

[3] S.Bharuthram and M. Patel M, “Co-Constructing a Rubrick Checklist with First Year University
Students: A Self-Assessment Tool”, Journal of Applied Language Studies (Apples), vol. 11, no.
4, pp. 35-55, 2017. 10.17011/apples/urn.201708073430.

[4] D. Alt and L. Naamati-Schneider and D. J. N. Weishut, “Competency-Based Learning and
Formative Assessment Feedback as Precursors of College Students' Soft Skills Acquisition”,
Studies in Higher Education, vol. 48, no. 12, 1901-1917., 2023.
10.1080/03075079.2023.2217203.

[6] G. Brieven, L. Leduc, and B. Donnet, “How Students Manage Peer Feedback through a
Collaborative Activity in a CS1 Course”, 9th International Conference on Higher Education
Advances (HEAd), 2023. 10.4995/ HEAd23.2023.16142.

[6] P. R. Whipp, J. Pengelley, A. Malpique, “A testing load: a review of cognitive load in computer
and paper-based learning and assessment”, Technology, Pedagogy and Education, 34. 1-17,
2024. 10.1080/1475939X.2024.2367517.

[71 Chih-Ming Chen & Chi-Hsiung Kuo, “An optimized group formation scheme to promote
collaborative problem-based learning.”, Computers & Education, 2019.
10.1016/j.compedu.2019.01.011.

