

Advancing CO₂ Capture: From Lab to Industry by Process Modelling

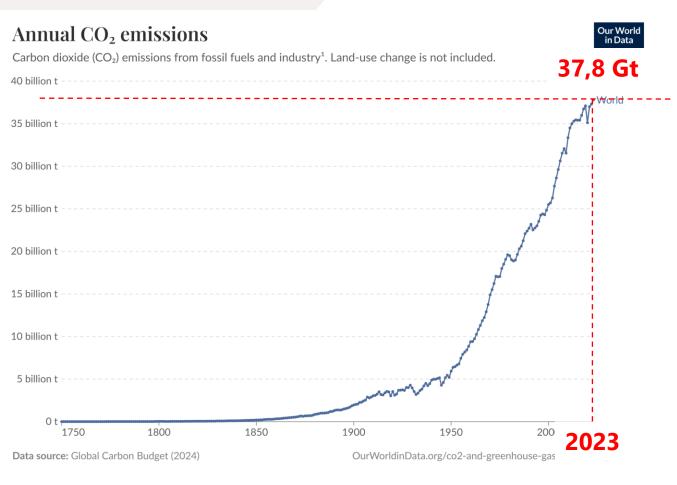
Loris Baggio

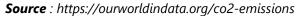
Content of the presentation

- How I Got Involved in CO₂ Capture Research?
- ▶ Why studying CO₂ capture? Why do we need this?
- ► HECO2 Saturn Project
- PhD Thesis
 - Experimental work
 - O Modelling work
- Conclusion

► How I Got Involved in CO₂ Capture Research? PEPs CHEMICAL PROPERTY CHEMICAL PROPERTY CHEMICAL PROPERTY PEPS CHEMICAL PEPS CHEMICAL PROPERTY PEPS CHEMICAL PEPS CHEMIC

- 2017 (2020) 2022: (Chemical) Engineering studies at ULiège
 - Master's thesis focused on industrial processes and modeling
 - 'Modeling of a CO₂ Purification Unit via a Liquefaction Process' (3B Fiberglass ULiège)
- August 2022 December 2022: Preparation of a FRIA grant proposal
 - 'Comparison Between Centralized and Decentralized Approaches for Methanol and Dimethyl Ether Synthesis from CO₂'
 - **▶** Grant rejected

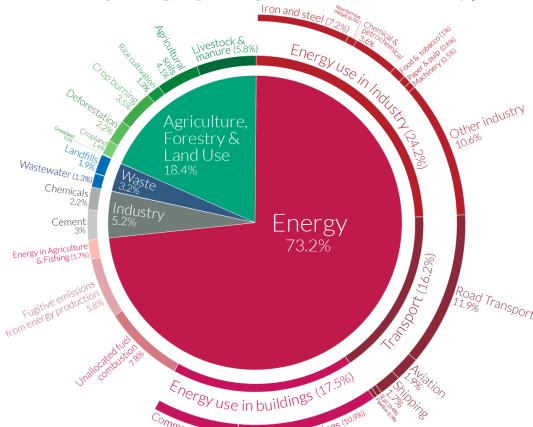



- 2023 Present: HECO2 Saturn Project WP5: CO₂ capture on industrial processes
 - PhD linked to the project

Why studying CO₂ capture?

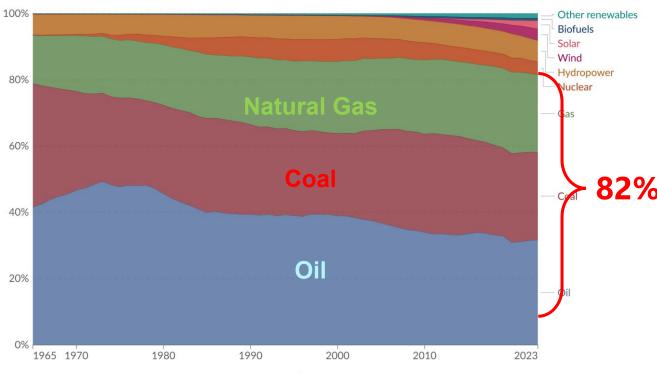
2023: 83,4 Mt de CO₂ ~**2,2%** of global emission

~20 kg/day/inh.


Why studying CO₂ capture?

Global greenhouse gas emissions by sector

Our World in Data


This is shown for the year 2016 − global greenhouse gas emissions were 49.4 billion tonnes CO₂eq.

Energy consumption by source, World

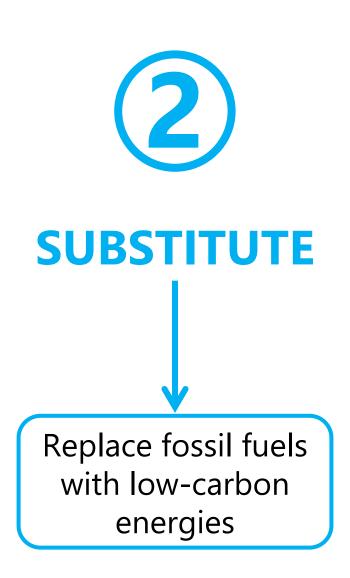
Measured in terms of primary energy¹ using the substitution method².

Data source: Energy Institute - Statistical Review of World Energy (2024)

OurWorldinData.org/energy | CC BY

Note: "Other renewables" include geothermal, biomass, and waste energy.

Source: https://ourworldindata.org/grapher/energy-consumption-by-source-and-country

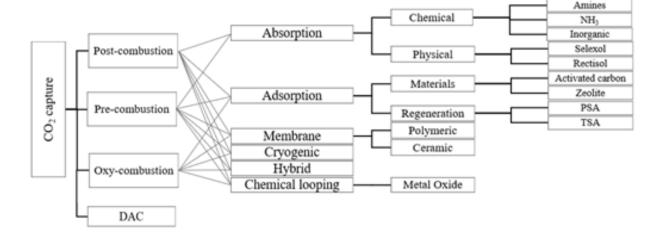

Source: https://ourworldindata.org/ghg-emissions-by-sector

Why studying CO₂ capture?

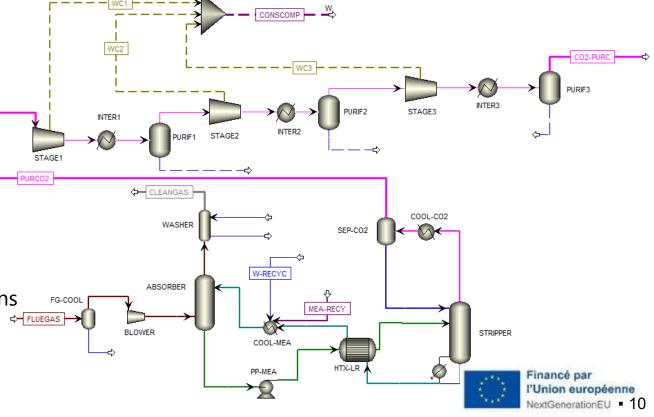
- Funded by EU through Wallonia Region
 - Towards decarbonising Walloon heavy industry
 - ► Lime, Steel, Glass & Chemical sectors (Process-inherent CO₂ emissions)
- Goals of the project
 - O Characterization of CO₂ emissions from industrial partners (AGC, APERAM, CARMEUSE & PRAYON)
 - Analysis and characterization of various CO₂ capture technologies
 - Modelling of different capture technologies (including LCA development)
 - O Construction of a mobile cryogenic CO₂ capture unit
 - To be tested on the different industrial sites
 - O Tests on a fixed CO₂ capture unit at CRM
 - Absorption-regeneration process using aqueous amine liquid solvent

- ► Analysis and characterization of various CO₂ capture technologies
 - Technology suppliers from around the world (47 listed)
 - Different technologies represented with hybrid ones

- Collaboration with UMons for this nonexhaustive list
- Handle information received from suppliers
 - Literature review
 - Modelling if needed


30 pages report including technologies description and comparison

- ► Analysis and characterization of various CO₂ capture technologies
 - Increasing knowledge for DST operations
 - Decision Support Tool for industrials to match their needs with the optimal CO₂ capture process
 - Which one will fit with my requirements? Key Performance Indicators (KPIs)
 - ► TRL
 - Purity
 - Impurity Tolerance
 - Installation footprints
 - CAPEX & OPEX
 - Safety Issues
 - Thermal and Electrical Energy Requirements
 - ..



- ► Modelling of different capture technologies
 - Focus on MEA absorption-regeneration technology
 - Benchmark solution for absorption
 - High TRL
 - SaskPower's Boundary Dam Unit 3
 - ► 1 Mt/year
 - Saskatchewan (Canada)
 - But nothing in Belgium
 - Adapted to Partners Flue Gas Conditions

- ► Modelling of different capture technologies
 - Focus on MEA absorption-regeneration technology
 - Consumption (3-4 GJ/t CO₂)
 - ► Waste Heat for some sectors → decreasing by 50 %
 - Cost: 150 160 €/t CO₂
 - ► Not including Transport
 - ▶ Neither transport specification (Fluxys, Northern Lights, ...)

PEPS
CHEMICAL
ENGINEERING

- ► Tests on a fixed CO₂ capture unit at CRM
 - O Modelling the entire pilot plant, unit

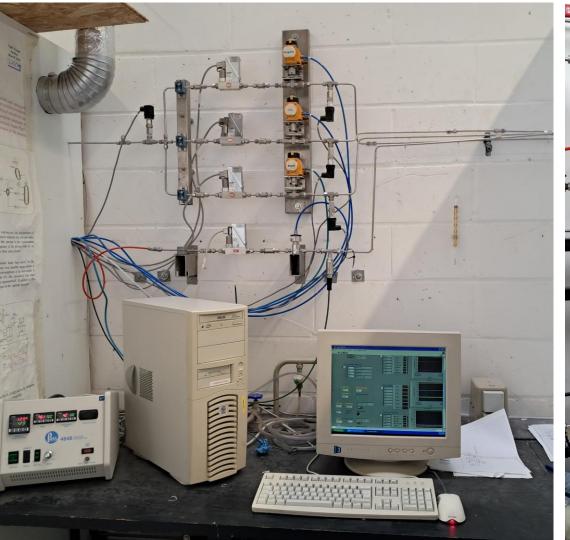
- ► Tests on a fixed CO₂ capture unit at CRM
 - Modelling the entire pilot plant unit
 - Design of main equipment
 - ▶ 15 base cases simulations
 - ► Flue gas composition
 - Amine flowrate
 - Work pressure
 - ► Amine solvent (MEA 30 wt.-%, AMP-PZ, ...)

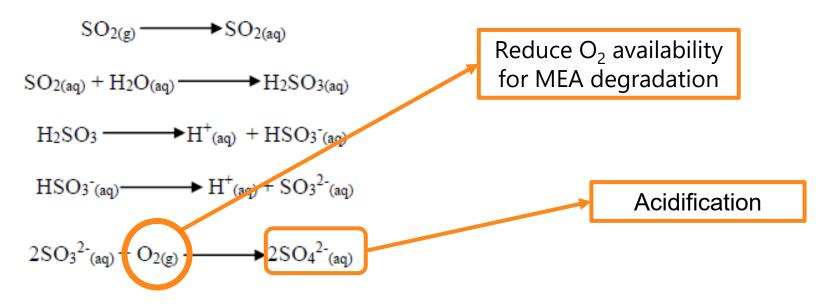
- Type of PhD
 - Experimental and Modelling
- Studied Processes
 - CO₂ capture process using absorption-regeneration technologies with amine solvent
- Application of the study
 - Process Industry in Wallonia
- Precise Topic
 - O Acid gases and their impact on solvent degradation

"Experimental and Modeling Study of CO₂
Capture Processes by Absorption in Liquid
Amine Solvents for Application in the Process
Industry in Wallonia: Impact of SOx and NOx
on Solvent Degradation"

- PhD Thesis of Prof. G. Léonard
 - O "Optimal design of a CO₂ capture unit with assessment of solvent degradation" (2013)
 - ► Oxidative and thermal degradation of MEA (monoethanolamine)
 - ► Ternary mixture $(N_2 O_2 CO_2)$
 - Degradation experiments on Test Bench (DTR)
 - ► Kinetic modelling of these degradation pathways

My PhD

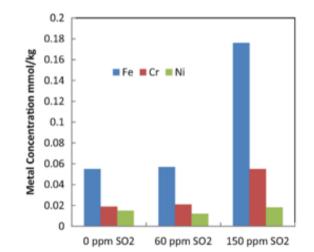

- \circ Extend the models to MEA degradation induced by $SO_x & NO_x$
 - Upgrade of the Degradation Test Rig
 - ▶ Quaternary Mixture $(CO_2 O_2 N_2 SO_x / NOx)$
 - Analytical devices
 - ► HPLC-RID (MEA concentration)
 - ► GC-FID (Liquid degradation products)
 - ► IC (Anions → sulfate, formate, glycolate, acetate, ... responsible for HSS)
 - ► FT-IR (NH₃ emission due to oxidative degradation)
 - ► ICP-MS (Metal cations due to corrosion)


- My PhD
 - O Extend the models to MEA degradation induced by SO_x & NO_x
 - ► Reactions identification & Kinetic development
 - Inclusion to actual ASPEN models
 - Quantification of the impact on Energy Consumption
 - ► Quantification of MEA loss for CO₂ capture

► SO_x influence

 \bigcirc Impact on the oxidative degradation (reactions between MEA and \bigcirc 2)

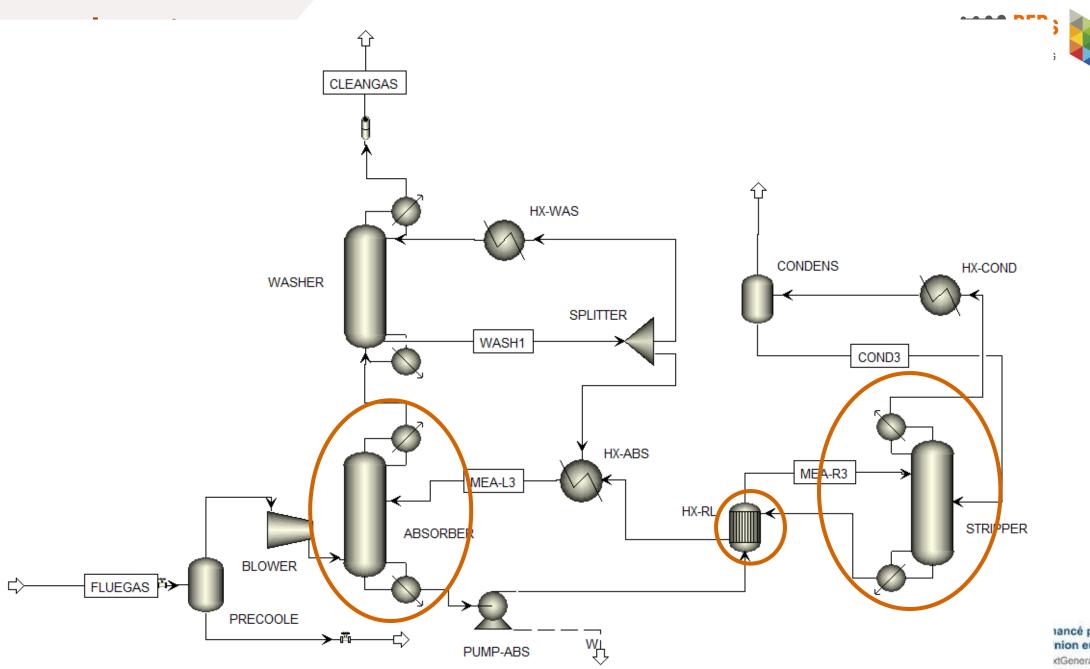
Production of Heat Stable Salts (HSS) with MEA+



 \triangleright SO₄²⁻ + 2 MEA⁺ \rightarrow HSS

- ► SO_x influence
 - Impact on the corrosion
 - Metal cations released into solution
 - Catalytic effect
 - Increasing products from oxidative degradation mechanisms

C. Sun, S. Wang, S. Zhou, and C. Chen, 'SO₂ effect on monoethanolamine oxidative degradation in CO₂ capture process', International Journal of Greenhouse Gas Control, vol. 23, pp. 98–104, Apr. 2014, Doi: 10.1016/j.ijggc.2014.02.010.


Modelling part

Modification of previous kinetics and inclusions of new ones

	Rxn No.	Reaction type	Stoichiometry
>	1	EQUIL	MEAH+ + H2O <> MEA + H3O+
>	2	EQUIL	2 H2O <> H3O+ + OH-
>	3	EQUIL	HCO3- + H2O <> CO3-2 + H3O+
>	4	KINETIC	OH- + CO2> HCO3-
>	5	KINETIC	HCO3> OH- + CO2
Þ	6	KINETIC	MEA + CO2 + H2O> MEACOO- + H3O+
>	7	KINETIC	MEACOO- + H3O+> MEA + CO2 + H2O
>	8	KINETIC	MEA + 1,3 O2> 0,6 H3N + 0,1 HEI + 0,1 HEPO + 0,1 HCOOH + 0,8 CO2 + 1,5 H2O
>	9	KINETIC	2 MEA> HEEDA + H2O
>	10	KINETIC	MEA + HEEDA> TRIMEA + H2O
>	11	KINETIC	HEEDA + CO2> HEIA + H2O
Þ	12	KINETIC	TRIMEA + CO2> AEHEIA + H2O
>	13	KINETIC	2 MEA + CO2> BHEU + H2O
Þ	14	KINETIC	2 MEA + 0.5 O2 + SO2 + H2O> 2 MEAH+ + SO4-2

nancé par nion européenne xtGenerationEU • 23

What's next?

- ► Understanding deeply how SO₂ interact in the solution
 - Varying experimental conditions in the DTR
 - \triangleright $[O_2] & [SO_2]$
 - ▶ Temperature
 - Pressure
 - Identify and quantify degradation products
 - Extract reaction mechanisms and kinetic parameters
 - Put it into simulation model

General Conclusion

- ► CO₂ capture is a global topic with lots of interest
 - O But there are still some missing parts
 - Degradation is still a hot topic for years
 - Proper solvent management will be key in addressing industrial reluctance toward implementation
- ► However, it is not the primary solution for fighting climate change
 - Keeping in mind the 3 principles
 - Avoid
 - Substitute
 - Upgrade

Thank you!

Ir. Loris Baggio

Contact: Loris Baggio

Email: loris.baggio@uliege,be

Tel: +32 475232981