
Submission Details: pos115s1
Form first submitted: 2024-12-13 08:00 CST
Form last updated: 2025-04-04 10:33 CDT

Scientific Domain
Engineering: 3
Physics: 2
Computational Methods and Applied Mathematics: 1

Title (Maximum 25 words)
Title (Maximum 25 words): Graph Abstraction for Efficient Scheduling of Synchronous Workloads on
GPU

Author Information
Author 1: 
Gender: male
Name: Mr. Romin Tomasetti
Email: romin.tomasetti@gmail.com
Affiliation: University of Liège
2nd Affiliation: 
Country of the Primary Affiliation: Belgium
Will this person present the poster at the conference? Yes

Author 2: 
Gender: male
Name: Prof. Maarten Arnst
Email: maarten.arnst@uliege.be
Affiliation: University of Liège
2nd Affiliation: 
Country of the Primary Affiliation: Belgium
Will this person present the poster at the conference? No

Long Abstract
Long Abstract (Maximum 800 words):

Many computational physics simulations need to efficiently execute asynchronous
workloads (FEM assembly, linear algebra, etc) that can be organised as a Direct Acyclic
Graph (DAG).

Ad hoc scheduling of these asynchronous workloads is an additional burden to the code
and might not fully exploit the available execution resources (e.g. a multi-GPU node). By
contrast, architecting the code based on a graph abstraction exposes the whole
computational graph to the compiler/driver
ahead of execution, thereby enabling as many optimisations as possible. Therefore, a
graph abstraction that can be prescribed either at compile time or at runtime is necessary,
and it must be mappable to the best backend scheduler, thus maximising resource usage.

We contribute to the Kokkos implementation of this graph abstraction which allows for a
performance portable single source code. More specifically, this poster will focus on recent
contributions to Kokkos::Graph that make it evolve towards the C++ std::execution proposal
for managing



asynchronous execution on generic execution resources (P2300).

We will demonstrate the benefits of using Kokkos::Graph both in terms of performance and
software design. We will present several examples of varying complexity, including a FEM
simulation of electromagnetic wave scattering.

Short Abstract
Short Abstract (Maximum 200 words):

Many computational physics simulations need to efficiently execute asynchronous workloads
(FEM assembly, linear algebra, etc) that can be organised as a Direct Acyclic Graph (DAG). Ad
hoc scheduling of these asynchronous workloads is an additional burden to the code and might
not fully exploit the available execution resources (e.g. a multi-GPU node). By contrast,
architecting the code based on a graph abstraction exposes the whole computational graph to the
compiler/driver ahead of execution, thereby enabling as many optimisations as possible.
Therefore, a graph abstraction that can be prescribed either at compile time or at runtime is
necessary, and it must be mappable to the best backend scheduler, thus maximising resource
usage. We contribute to the Kokkos implementation of this graph abstraction which allows for a
performance portable single source code. More specifically, this poster will focus on recent
contributions to Kokkos::Graph that make it evolve towards the C++ std::execution proposal for
managing asynchronous execution on generic execution resources (P2300). We will demonstrate
the benefits of using Kokkos::Graph both in terms of performance and software design. We will
present several examples of varying complexity, including a FEM simulation of electromagnetic
wave scattering.

Acknowledgement
Acknowledgement: yes


