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Abstract A Virtual Test Facility (VIF) for studying
the three-dimensional dynamic response of solid mate-
rials subject to strong shock and detonation waves has
been constructed as part of the Center for Simulating the
Dynamic Response of Materials at the California Insti-
tute of Technology. The compressible fluid flow is simu-
lated with a Cartesian finite volume method treating the
solid as an embedded moving body, while a Lagrangian
finite element scheme is employed to describe the mate-
rial response to the hydrodynamic pressure loading on
the solid. A temporal splitting method is applied to up-
date the position and velocity of the boundary between
time steps. The incorporation of Cartesian finite volume
schemes into a structured dynamic mesh adaptation al-
gorithm with hierarchical time step refinement allows for
an efficient treatment of the issues arising from the pos-
sibly disparate fluid and solid time scales. The bound-
ary is represented implicitly in the fluid solver with a
level set function. An efficient algorithm used to trans-
form a given triangulated surface provided by the La-
grangian finite element solver into a point set of signed
distance values is described. The modification of this
algorithm for patch-based mesh refinement methods is
discussed. All algorithmic components have been par-
allelized for distributed memory machines; partitioning
strategies (which are critical to efficient parallel perfor-
mance) are sketched briefly. The dynamic deformation
of a Tantalum cylinder due to the detonation of a high-
explosive (HMX) interior to the cylinder, and the impact
of an explosion-induced shock wave on a multi-material
soft tissue body are presented as examples of our ap-
proach.
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1 Introduction

The Virtual Test Facility (VTF) is a software environ-
ment for coupling solvers for compressible computational
fluid dynamics (CFD) with solvers for computational
solid dynamics (CSD). The CFD solvers facilitate the
computation of flows with strong shocks as well as fluid
mixing. The CSD solvers provide capabilities for simu-
lation of dynamic response in solids such as large plastic
deformations, fracture and fragmentation. In addition,
the VTF can be used to simulate highly coupled fluid-
structure interaction problems, such as the high rate de-
formation experienced by a metallic solid target forced
by the loading originating from the detonation of en-
ergetic materials, or the rupture and fragmentation of
brittle materials under shock wave impact. At present,
all VTF solvers use time-explicit numerical methods that
track the various wave phenomena responsible for medi-
ating the dynamic response through the application of
suitable numerical methods.

In order to implement the solid-fluid coupling in the
VTF, we apply a loosely coupled, partitioned approach,
with modular software components for each solver. The
fluid-structure coupling technique operates as follows:
one assumes disjoint fluid and solid domains and that
the interaction takes place only at the fluid-solid inter-
face. In this way, one can apply algorithms that are in-
trinsically suited for simulation of phenomena such as
shock propagation, detonation or fluid mixing in the
fluid solver, while applying algorithms similarly opti-
mized for phenomena such as high-rate plastic deforma-
tion, fracture, etc. in the solid solver. For example, a
Lagrangian representation is most suitable to account
numerically for large solid deformations, contact and
fracture, while the governing equations of compressible
fluid motion are most effectively solved in an Eulerian
frame of reference [1]. In the loose fluid-structure cou-
pling adopted, the information exchange between the
fluid and the solid solver is reduced to communicating
the velocities and the geometry of the solid surface to the



Eulerian fluid, and communicating the hydrostatic pres-
sure back to the Lagrangian solid as a force acting on
its exterior [1,2,3,4,5,6,7]. This approach offers several
advantages. Firstly, it allows for solver reuse (see [8] or
[2] for details on the idea of modularization). Secondly,
it becomes straightforward to take advantage of recent
advances in multiscale constitutive modeling to describe
the dynamic response of both the solid and fluid. Such
modeling typically also employs a Lagrangian descrip-
tion for solids and an Eulerian description for the fluid.

A key issue that arises with the proposed approach
is how to represent the evolving surface geometry on the
Eulerian fluid mesh. The application of body-conforming
meshes is extraordinarily cumbersome, because the fluid
equations first need to be cast into a local arbitrary
Lagrangian-Eulerian (ALE) frame of reference [9]. At
each step, the mesh topology would have to be recon-
structed and the solution re-interpolated. While this is
possible (and successfully implemented in many present
day codes), the issues of mesh tangling and the require-
ments of frequent re-meshing in the case of large defor-
mations remain a challenge. The need to re-mesh is also
an inherent bottleneck in massively parallel simulations
[6].

An alternative to the use of body-aligned fluid grids
is the use of Cartesian meshes with immersed or em-
bedded irregular boundaries. Here, there are two basic
approaches: “cut-cell” techniques that construct smaller
cells by intersecting the Cartesian mesh exactly with the
(triangulated) boundary and techniques that “diffuse”
the boundary within one cell [10]. Cut-cell methods have
the advantage that they can represent accurately the
boundary flux and thus facilitate the implementation of
discretely conservative fluid solvers. However, the pro-
posed numerical circumventions of the severe time step
restriction in time-explicit schemes [11,12], which can re-
sult from very small cells created by the boundary inter-
section, are logically quite complicated. Most approaches
have not yet been extended successfully to three spa-
tial dimensions even for pure fluid flow problems. In the
VTF, we therefore employ a diffused boundary technique
in which some interior cells are used directly to enforce
the embedded boundary conditions in the vicinity of
the solid surface [13,4]. This has been called the “ghost
fluid” approach. One advantage of this approach is that
the numerical stencil is not modified, thus ensuring opti-
mal parallel scalability. We minimize conservation errors
as well as possible numerical “staircase” artifacts result-
ing from the use of numerics to “capture” the boundary
by using block-structured dynamic mesh adaptation to
refine the Cartesian mesh along the boundary. As the
solid deforms, the solid-fluid boundary is represented im-
plicitly with a scalar level set variable that is updated
on-the-fly using an efficient algorithm described in more
detail below. An important additional advantage of this
approach is the ability to cope with topological transi-
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tions such as fracture or penetration of the solid-fluid
boundary.

The present paper details the implementation of the
VTF approach and also describes its application to fluid-
solid interaction problems wherein detonation and shock
waves impinge on thick three-dimensional solid materi-
als. An extension of the fluid-solid coupling algorithm
adopted in this paper to thin, open structures has been
presented in [15]. In Sec. 2, a Cartesian dynamically
adaptive finite volume fluid solver for Euler equations
with one-step chemistry is described. Section 4 describes
a highly efficient algorithm to transform a triangulated
surface mesh into a signed distance function on a hi-
erarchical Cartesian mesh. Section 3 outlines the La-
grangian finite element solver for solid materials sub-
jected to high-intensity shock loadings, and Sec. 6 pro-
vides two three-dimensional computational examples. In
Sec. 6.1, we simulate the impact event of a strong hydro-
dynamic shock wave on a body comprised of soft-tissue;
in Sec. 6.2 the propagation of a detonation wave in HMX
through a plastic Tantalum cylinder is simulated. Both
computations have been run on distributed memory ma-
chines. We also briefly comment on the overall compu-
tational efficiency of our approach.

2 Eulerian Fluid Dynamics

In this section, we are concerned with the construction
of an Eulerian fluid solver framework suitable for effi-
cient fluid-structure coupling. Although the presentation
is tailored to the Euler equations with simple one-step
reaction, the concepts are equally applicable to general
conservation laws with arbitrary source terms. Within
the Center for Simulating the Dynamic Response of Ma-
terials at the California Institute of Technology, the same
framework is also used successfully with solvers for the
compressible Favre-averaged Navier-Stokes equations
with large-eddy turbulence model [16,17] and for deto-
nation simulation in thermally perfect gas mixtures with
detailed chemical kinetics [18,19,20,21,22,23,24].

2.1 Governing Equations

In order to model detonation waves in solid energetic
materials we utilize the single-phase model proposed by
Fickett and Davis [25], which has also been used by
Clarke et al. [26] to evaluate numerical methods for det-
onation simulation. We assume a single chemical reac-
tion A — B that is modeled by a progress variable
A, which corresponds to the mass fraction ratio between
the density of the product B and the total density p, i.e.
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A = pp/p. The governing equations of the model read

Osp + V- (pu) =0, (1)
d(pu) + V- (pu®u)+Vp=0, (2)
d%(pE)+ V- ((pE+pu) =0, (3)

dA+  u-VA =4, (4)

Here u is the velocity vector and E the specific total
energy. The hydrostatic pressure p is given by

p=(7—¢)@E-%puTu+pA® (5)

with v denoting the ratio of specific heats and q the heat
release due to the chemical reaction per unit mass. The
reaction itself is modeled by the simple rate function

_ 2 1/2

b= (=N (6)
In (6), Tr denotes a typical time associated with the
reaction, in which the depletion from A to B is complete.
It is worth mentioning that the above model includes
the Euler equations for a single polytropic gas as (1)-(3)
and (5) for ¢» = 0 and ¢ = 0, which is the appropriate
model for purely hydrodynamic shock wave propagation
(cf. Sec. 6.1).

2.2 Cartesian Finite Volume Schemes with Embedded
Boundaries

Following Clarke et al. [26], we apply the method of
fractional steps to decouple the chemical reaction and
hydrodynamic transport numerically. The homogeneous
system of (1) to (4) and the scalar ordinary differential
equation

OpA = (A)

are solved successively with the data of the preceding
step as initial conditions. As the homogeneous system
(1) to (4) is a hyperbolic conservation law that admits
discontinuous solutions (cf. [26]), we use a time-explicit
finite volume discretization that achieves a proper up-
winding in all characteristic fields. The scheme is based
on a straightforward generalization of the Roe scheme for
the purely hydrodynamic Euler equations (1) to (3) and
is extended to a multi-dimensional Cartesian scheme via
the method of fractional steps (cf. [27]). To circumvent
the intrinsic problem of unphysical total densities and
internal energies near vacuum due to the Roe lineariza-
tion (cf. [28]), the scheme has the possibility to switch to
the simple, but extremely robust Harten-Lax-Van Leer
(HLL) Riemann solver. The occurrence of the disastrous
carbuncle phenomena [29], a multi-dimensional numeri-
cal cross-flow instability that affects every simulation of
strong grid-aligned shocks or detonation waves, is pre-
vented by introducing a small amount of additional nu-
merical viscosity in a multi-dimensional way [30]. This

hybrid Riemann solver is supplemented with the MUSCL-
Hancock variable extrapolation technique of Van Leer
[27] to achieve second-order accuracy in regions where
the solution is smooth.

Geometrically complex moving boundaries are con-
sidered within the Cartesian method outlined above by
utilizing some of the finite volume cells as ghost cells to
enforce immersed boundary conditions [31,10]. An ex-
tension of this approach to the case of arbitrarily-thin
open immersed boundaries has recently been proposed
by Tam et al [15]. The ghost cell values are set immedi-
ately before the original numerical update to model mov-
ing embedded walls. The boundary geometry is mapped
onto the Cartesian mesh by employing a scalar level
set function ¢ that stores the signed distance to the
boundary surface and allows the efficient evaluation of
the boundary outer normal in every mesh point as n =
—V¢/|Vé| [32]. In coupled Eulerian-Lagrangian simula-
tions ¢ is updated on-the-fly by calling the closest-point-
transform algorithm described in detail in Sec. 4. A cell
is considered to be a valid fluid cell within the interior
if the distance ¢ in the cell midpoint is positive, and is
treated as exterior otherwise. The numerical stencil it-
self is not modified, which causes a slight diffusion of the
boundary location throughout the method and results in
an overall non-conservative scheme. We alleviate such er-
rors and the unavoidable staircase approximation of the
boundary with this approach effectively by using the dy-
namic mesh adaptation technique described in the next
section to also refine the Cartesian mesh appropriately
along the boundary.

For the system of equations (1)-(4), the boundary
condition at a rigid wall moving with velocity w isu-n =
w - n. Enforcing the latter with ghost cells, in which the
discrete values are located in the cell centers, requires
the mirroring of the primitive values p, u, p, A across the
embedded boundary. The normal velocity in the ghost
cells is set to (2w - n — u - n)n, while the mirrored tan-
gential velocity remains unmodified. The construction of
the velocity vector within the ghost cells therefore reads

u' = (2wn—un)n+(ut)t =2((w—u) -n)ntu (7)

with t denoting the boundary tangent.

The utilization of mirrored ghost cell values in a
ghost cell center x requires the calculation of spatially
interpolated values at the point

X=x+2¢n (8)

from neighboring interior cells. For instance, in two spa-
tial dimensions we employ a bilinear interpolation be-
tween (usually) four adjacent cell values, but directly
near the boundary the number of cells contributing to
the interpolation needs to be decreased (cf. Fig. 1). It
has to be emphasized that for hyperbolic problems with
discontinuities like detonation waves, special care must



Figure 1 Interpolation from interior cells to construct mir-
rored values to be used within internal ghost cells (gray).

be taken throughout the extrapolation operation to pre-
serve the monotonicity of the numerical solution. Figure
1 highlights the reduction of the interpolation stencil for
some exemplary cases close to the embedded boundary.
The interpolation locations according to (8) are indi-
cated by the origins of the arrows normal to the complex
boundary (dotted).

After the application of the numerical scheme, the
cells that have been used to impose the internal bound-
ary conditions are set to the entire state vector of the
nearest cell in the interior. This operation achieves a
constant value extrapolation and ensures proper values
in case such a cell becomes a regular interior cell in the
next step due to boundary movement. Note that the
boundary velocity w gets automatically considered via
operation (7) and the usual stability condition for time-
explicit methods for system (1)-(4) also ensures that the
embedded boundary propagates at most one cell further
in every time step.

2.8 Structured Adaptive Mesh Refinement

In order to supply the required temporal and spatial
resolution efficiently, we employ the structured adaptive
mesh refinement (SAMR) method of Berger and Colella
[33], which is tailored especially for hyperbolic conserva-
tion laws on logically rectilinear finite volume grids. In-
stead of replacing single cells by finer ones, as it is done
in cell-oriented refinement techniques, the Berger-Collela
SAMR method follows a patch-oriented approach. Cells
being flagged by various error indicators (shaded in Fig.
2) are clustered with a special algorithm [14] into non-
overlapping rectangular grids. Refinement grids are de-
rived recursively from coarser ones and a hierarchy of
successively embedded levels is thereby constructed (cf.
Fig. 2). All mesh widths on level | are r;-times finer
than on level I — 1, i.e. Aty := At;_q1/r and Axy, =
Azxgg—1/m with 7 > 2 for I > 0 and with 7o = 1, and
a time-explicit finite volume scheme will (in principle)
remain stable on all levels of the hierarchy.

The numerical scheme is applied on level [ by calling
a single-grid routine in a loop over all subgrids. The sub-
grids get computationally decoupled by employing addi-
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Figure 2 The AMR method creates a hierarchy of rectan-
gular subgrids.

tional ghost cells around each computational grid. Three
different types of ghost cells have to be considered: Cells
outside of the root domain are used to implement phys-
ical boundary conditions. Ghost cells overlaid by a grid
on level [ have a unique interior cell analog and are set by
copying the data value from the grid, where the interior
cell is contained (synchronization). On the root level no
further boundary conditions need to be considered, but
for [ > 0 internal boundaries can also occur. They are
set by a conservative time-space interpolation from two
previously calculated time steps of level [ — 1.

Besides a general tree data structure that stores the
topology of the hierarchy (cf. Fig. 2), the SAMR method
requires at most two regular arrays assigned to each sub-
grid. They contain the discrete vector of state for the ac-
tual and updated time step. The regularity of the data
allows high performance on vector and super-scalar pro-
cessors that allow cache optimizations. Small data ar-
rays are effectively avoided by leaving coarse level data
structures untouched when higher level grids are cre-
ated. Values of cells covered by finer subgrids are sub-
sequently overwritten by averaged fine grid values. This
operation leads to a modification of the numerical stencil
on the coarse mesh and requires a special flux correction
in cells abutting a fine grid. The correction replaces the
coarse grid flux along the fine grid boundary by a sum
of fine grid fluxes and ensures the discrete conservation
property of the hierarchical method (at least for purely
Cartesian problems without embedded boundaries; see
[33] or [23] for details).

2.4 Parallel Implementation

SAMR in the Virtual Test Facility at the California
Institute of Technology is provided generically by the
AMROC (Adaptive Mesh Refinement in Object-oriented
C++) framework [34]. AMROC has been parallelized ef-
fectively for distributed memory machines [35] and can
be used on all systems that provide the MPI library. The
parallelization strategy is a rigorous domain decomposi-
tion approach that partitions the SAMR hierarchy from
the root level on. The key idea is that all higher level
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domains are required to follow this “floor plan”. A care-
ful analysis of the AMR algorithm uncovers that the
only parallel operations under this paradigm are ghost
cell synchronization, redistribution of the SAMR hier-
archy and the application of the previously mentioned
flux correction terms. Interpolation and averaging, and
in particular the calculation of the flux corrections, re-
main strictly local [35]. In AMROC, a generalization of
Hilbert’s space-filling curve [36] is used to derive load-
balanced root level distributions at run time. The entire
SAMR hierarchy is considered by projecting the accu-
mulated work from higher levels onto the root level cells.
On top of the generic SAMR algorithm and its parallel
hierarchical data structures in C++, a specific applica-
tion is formulated with single-grid routines. A user must
provide routines for the numerical scheme, for setting up
boundary and initial conditions, and for the interpola-
tion and averaging operations. The results throughout
this paper have been produced with all these routines
written in Fortran 77.

3 Lagrangian Formulation of Solid Dynamics

We adopt a conventional Lagrangian formulation [37]
for describing the large, dynamic deformations of solid
materials subject to high-intensity shock loadings. The
formulation accounts for finite kinematics, inertia and
general constitutive behavior, including strength.

We select the configuration By C R3 of the body at
time ¢y as the reference configuration. The coordinates
X of points in By are used to identify material parti-
cles throughout the motion. The motion of the body is
described by the deformation mapping

x = (X, t), X € By (9)
Thus, x is the position of material particle X at time ¢.
We shall denote by B; the deformed configuration of the
body at time ¢. The material velocity and acceleration
fields follow from (9) as p(X,t) and $(X,t), X € By,
respectively, where a superposed () denotes partial dif-
ferentiation with respect to time at fixed X. The local
deformation of an infinitesimal material neighborhood is
described by the deformation gradient
F = VO(P(X,t), X € By (10)
where V( denotes the material gradient of a function
defined over By. Thus, the components of Vg f are the
partial derivatives of f with respect to X. The scalar
function

J = det (F(X,1t)) (11)

is the Jacobian of the deformation, and measures the
ratio of the deformed to undeformed volume of an in-
finitesimal material neighborhood.

The motion of the body is subject to conservation of
mass, linear momentum and energy (cf. [37]). The local
form of mass balance is

p-o =0 in BO (12)
where po(X) is the mass density over By. The local form
of linear momentum balance is

VO -P + poB = pOva in BO (13)

where B(X,t) are the body forces per unit mass, and
P(X,t) is the first Piola-Kirchhoff stress tensor. The
Cauchy stress tensor follows from P through the rela-
tion

o= J 'PFT (14)

Conservation of angular momentum requires o to be
symmetric. The local form of energy balance is

Po%+V0-H=P!V0¢+PoR (15)
where U is the internal energy per unit mass, H is the
heat flux per unit of undeformed area, and R is the heat
source rate per unit mass.

For purposes of formulating boundary conditions, we
partition the boundary 9By of By into a Dirichlet or
displacement boundary 0By; and a Neumann or traction
boundary dBgs. The displacement boundary conditions
then take the form:

=, on 0By (16)
where @(X, ) is the prescribed deformation mapping on
0By1. The traction boundary conditions take the form:

P-N= T, on 8B02 (17)

where N is the unit outward normal to Bgz and T(X,t)
are the prescribed tractions applied to 9Bys. Finally, dy-
namic problems require initial conditions g (X), ¢0(X)
and Up(X) to be specified over By.

A general constitutive theory of inelastic material be-
havior may be based on irreversible continuum thermo-
dynamics (cf. [38,39,40] for more extensive accounts). In
this context, viscosity may be modeled by assuming an
additive decomposition

P =P°+ P’ (18)

of the first Piola-Kirchhoff stress tensor into an equi-
librium part P€ and a viscous part P*. Additionally,
we assume that the local thermodynamic state of the
material is fully described by the local deformation F,
the local absolute temperature 7', and a collection q of
internal state variables. In particular, the free energy
per unit undeformed volume is expressible as a function
A(F,T,q). The equilibrium stresses then follow from the
free energy in the form

P°=Ar(F,T,q) (19)



In materials without strength, A depends on deforma-
tion only through the Jacobian J of the deformation
and (19) reduces to

Pe=—JpF T (20)

where p = —A,; is the hydrostatic pressure. Here we
adopt the usual fluids convention and regard compres-
sive pressure as positive. In the presence of shocks prop-
agating in the solid, the volumetric response is described
by a suitable equation of state (EOS). The constitu-
tive library in the VTF is endowed with well-established
phenomenological equations of state for solids including
the Mie-Gruneisen EOS, as well as others obtained from
first-principles quantum mechanics calculations as part
of the Center’s efforts in multiscale modeling.
The viscous stresses are assumed to take the form

PY(F,F) = Jo"F~ T (21)

with .
ol = 277(symFF_1)dCV (22)

where 7 is the viscosity coeflicient, and sym and dev
denote the symmetric and deviatoric components of a
tensor, respectively.

In the presence of strong shocks propagating inside
the solid material, a shock-capturing numerical scheme
is necessary just as with the case of fluids. In the VTF,
the artificial viscosity approach for Lagrangian analy-
sis of shocks in solids with strength on unstructured,
arbitrary-order tetrahedral meshes presented in [41] is
adopted. The main purpose of artificial viscosity schemes
is to enable the simulation of strong shocks of thickness
so small that they cannot possibly be resolved by the
grid. The addition of an artificial viscosity, as first pro-
posed by von Neumann and Richtmyer [42], has the in-
tended effect of spreading the shock front over several
grid points without affecting key aspects of the shock
dynamics such as the shock speed, and without the in-
troduction of artifacts such as spurious oscillations in
the shock profile. The formulation presented in [41] and
adopted in this paper addresses some of the issues that
are specific to solids undergoing large plastic deforma-
tions under shock loading: it is formulated within a gen-
eral finite-deformation framework; it satisfies material-
frame indifference exactly; it is applicable to high-order
tetrahedral elements and unstructured meshes, which
provides a means of avoiding locking problems associ-
ated with the plastic incompressibility constraint. For
completeness, we summarize the key elements of the for-
mulation.

We assume that the viscosity coeflicient comprises
two terms,

np=n-+ An (23)

where 7 is the physical viscosity coefficient of the mate-
rial and An is the added artificial viscosity. The artifi-
cial viscosity coefficient An at a given Gauss quadrature
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point of the mesh is assumed to be of the form

0 Au>0 (24)

Ap = {max (0,—2¢p(c1Au—cra) —n) Au <0
where ¢ is a measure of the element size and Au is a
measure of the velocity jump across the element; ¢; and
cy, are coefficients; a is a characteristic sound speed of
the material; and p = po/J is the mass density per unit
deformed volume.

In a one-dimensional problem, the values of Au and
£ simply correspond to the jump in velocity across an
element and the element size in the deformed configura-
tion. In a multidimensional simulation, Au and ¢ must
be defined in a way that renders the artificial viscosity
formulation material-frame indifferent. A simple way to
satisfy this requirement is to express the value of Au as
a function of the Jacobian of the deformation or its time
derivatives. This suggests writing

_ OlogJ
where
(= (Jd\|K|)'4 (26)

d is the dimension of space and |K| is the volume of
element K in its reference configuration. Eqgs. (25) and
(26) are evaluated at every Gauss quadrature point in
the mesh. We further approximate the velocity jump as

log Jp 11 —log Jy,
At

Aun+1 = En-{-l (27)
More general forms of the artificial viscosity can be for-
mulated in terms of the invariants of the right Cauchy-
Green tensor and their time derivatives.

A widely-used procedure for calibrating ¢; and cp,
attributed to Christensen is discussed by Benson [43].
Briefly, the method is based on the fact that the Rankine-

Hugoniot jump conditions define an implicit relation D(Au)

between the shock speed and the jump in velocity. This
relation is usually well approximated by a linear fit of
the form

D =sg+s14u (28)

for a wide variety of materials and for each set of initial
conditions, where sy and s; are adjustable parameters.
By inserting this relation into the Rankine-Hugoniot lin-
ear momentum jump condition for a steady shock

Ap = pDAu (29)

a quadratic relation in Aw is obtained. In this relation,
p represents the unshocked density. By regarding the
artificial viscosity scheme as an approximate Riemann
solver, the following relations for ¢; and cy, are obtained:

C1 ~ 81
crL = so/a (30)
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Our experience suggests that these values tend to be
overly diffusive and to perform better for strong shocks
than for weak shocks. For weaker shocks, the coefficients
(30) usually smear the shock over more elements than
strictly necessary and exacerbate overheating effects. The
value of ¢; may be expected to remain close to 1, since
for strong shocks it follows directly from the Rankine-
Hugoniot jump conditions that Ap ~ p;(Au)?. The value
of ¢y, is typically in the range of 0.1 to 1.

A complete characterization of the behavior of the
solid requires, in addition to a volumetric equation of
state, a description of its strength, including its elas-
ticity, yield point, strain hardening, rate sensitivity and
temperature dependence. In the constitutive framework
described above, this is accomplished by the specification
of the internal energy density A, plus suitable kinetic
equations for the internal state variables q and the heat
flux H. For simplicity in the calculations presented sub-
sequently, we assume adiabatic conditions; consequently,
the heat flux and the heat sources are presumed negligi-
ble and drop out of the energy equation (15).

The VTF possesses a large set of constitutive models
and algorithmic updates describing a wide range of ma-
terial response, including elasticity, isotropic viscoplas-
ticity, crystal plasticity elastic and plastic response of
solid materials. Some of these models were developed
as part of the Center’s efforts on multiscale modeling
of materials at high deformation rates, including varia-
tional updates for isotropic and crystal plasticity [40],
a multiscale model of single-crystal b.c.c. Tantalum [44]
and a polyconvex model for anisotropic cubic crystals
[45]. The specific constitutive models employed in the
calculations presented in this work are described in the
respective subsections of Sec. 6.

The preceding continuum formulation may be ren-
dered into a form suitable for computation by a combi-
nation of a time discretization of the momentum and
constitutive equations and a finite-element discretiza-
tion of the reference configuration of the solid. Some
key aspects of the particular approach adopted here are
summarized next for completeness and later referenced.
More detailed accounts may be found in ([39,40]).

3.1 Temporal Discretization

Here and subsequently, we envision an incremental solu-
tion procedure aimed at sampling the solution at discrete
times tg, t1,...,t,, where t,11 = t,, + At. The mass con-
servation equation (12) is trivially satisfied keeping the
value of py constant at every sampling time instant. The
linear-momentum balance equation (13) is discretized in
time by employing the Newmark family of time-stepping
algorithms:

Pri1 = Pn + Dty + AP[(1/2 = B)@n + BPn1(31)
Pntl = Pn + At [(1 - ’7)9‘% + 785n+1] (32)
PoPr+1 — Vo - Pri1 = poBri1 (33)

where § and y are Newmark’s parameters, the subscript
n refers to time ¢,,, and ¢,, and ¢,, are the material ve-
locity and acceleration fields. The performance of New-
mark’s algorithm, including its range of stability, has
been extensively documented in the literature (e.g., [46,
47,48]). The particular case of # = 0,7 = % is explicit
and second-order accurate and corresponds to central
differences.

The updated stresses P,,11 required for the compu-
tation of the internal forces in (33) follow from (18) as

Popn=P +P) (34)

In calculations we adopt a staggered constitutive update
procedure consisting of an evaluation of the equilibrium
relations

Pl =P (Fn1,Uy) (35)

at constant internal energy U,, followed by an adiabatic
update of the internal energy of the form

poUns1 = poUpn +Pryr - (Fry1 — Fy) (36)

The viscous stresses P}, | may be computed from Egs. (21)
and (22) by recourse to a difference approximation for F
[39]. For general materials, the formulation of incremen-
tal equilibrium relation such as Eq. (35) requires an al-
gorithm for updating the internal variables. Variational
forms of these update algorithms may be found elsewhere
[39,40].

3.2 Spatial Discretization

The spatial finite-element discretization of the linear mo-
mentum balance equation adopted here is based on the
weak form

j/ p0¢n+1~vd!2+:/n Pn+11‘nﬂ7d£2=
Bo BO

T vdS —l—/ poBni1-vdR Vv € V(37)
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where V' is the space of admissible displacements, i.e.,
such incremental displacements, or alternatively veloci-
ties, that satisfy the essential boundary conditions (16)
in the sense of traces. This weak statement is also known
as the principle of virtual work. We consider finite-element
interpolations of the form

N
en(X) =Y xaNa(X) (38)

E Q
Un(X) =Y "> UsM(X) (39)

e=1g=1

where ¢y, is the deformation mapping interpolant, Uy,
is the internal energy interpolant, and N, and Mg are
the displacement and internal energy shape functions,
respectively. The sum on a ranges over the N nodes in



the mesh, whereas the sum on e ranges over the F ele-
ments in the mesh, and the sum over g ranges over the @
quadrature points per element. The displacement shape
functions N, must be conforming. In calculations we
employ standard quadratic, six-noded triangles or ten-
noded tetrahedra (e.g., [49]). By contrast, because of the
absence of heat conduction, the internal energy interpo-
lation need only ensure that U}, be essentially bounded;
consequently, the shape functions M7 can be chosen to
be piecewise polynomials. In the calculations presented
here, we take M{ to be constant over the Voronoi cell
of the corresponding quadrature point, whence Ug be-
comes the value of the internal energy at the quadrature
point. For general materials with strength, all remaining
internal variables q are interpolated likewise.

3.8 Parallel Implementation

The parallel implementation of the solid solver is based
on mesh partitioning using a heuristic graph partition-
ing algorithm as provided by the well-established soft-
ware package METIS, [50]. An initial coarse mesh (typi-
cally of one hundred thousand elements) is constructed,
partitioned and distributed among the solid processors
participating in the simulation. Each processor adopts a
single mesh partition for the remaining of the computa-
tion. The local mesh is recursively refined using a mesh
subdivision algorithm for tetrahedral meshes proposed
by Liu and Joe [51]. At each refinement iteration, each
tetrahedron is subdivided into eight new ones. The chief
advantage of this algorithm is that only two new classes
of slightly lower-regularity tetrahedra are introduced in
the refined mesh irrespective of the number of refine-
ment iterations, thus enabling the creation of massive
partition meshes in each processors in a scalable way.
The conformity of the inter-processor meshes at parti-
tion boundaries is guaranteed by the initial conformity
of the coarse mesh and the uniqueness of the refinement
algorithms. In the case of subdivision, the inter-partition
communication maps need to be reconstructed.

In the explicit time-integration scheme adopted to
describe the fast dynamics processes of interest, the solid
calculation proceeds by applying the initial conditions at
the beginning of the time step and the traction bound-
ary conditions produced by the fluid pressure, then by
computing the predictor configuration of the solid and
performing the necessary constitutive updates at each
element quadrature point as part of the assembly of the
global residual vector. At this point, a point-to-point
communication step consisting of exchanging the incom-
plete residuals at partition boundary nodes is carried out
after which the corrected nodal accelerations and veloc-
ities can be obtained locally by application of the un-
modified corrector algorithmic step. It bears emphasis
that the communications only involve partition bound-
ary data and, thus, retain a surface to volume character
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which, in turn, results in excellent scalability proper-
ties. The approach described above has been extensively
tested and successfully employed in a variety of problems
related to the dynamic response of polycrystalline mate-
rials, [52,53,54,55,56,57], in which the computationally-
intensive multiscale models of single-crystal plasticity
and the need to obtain full-solutions in three dimen-
sions can only be achieved by recourse to very large-
scale simulation. In the problems studied in the refer-
ences above, computations involving multi-million ele-
ment meshes, the tracking of multi-billion internal vari-
ables and conducted on upward of one thousand proces-
sors are typical. These studies were possible owing to the
massive computer resources provided by the ASC-DOE
Supercomputers.

4 Closest-Point-Transform Algorithm

In section 2, we have introduced the concept of a signed
distance function as a natural way to represent a com-
plex embedded boundary on a Cartesian mesh. While
signed distance functions are easily prescribed for single
elementary geometric objects, their evaluation can be
extremely cumbersome for complex shapes. In coupled
Eulerian-Lagrangian simulations, this complex shape is
defined by the boundary of the solid mesh. Since the solid
mesh is tetrahedral (cf. Sec. 3), the interface is a trian-
gular mesh. In the following, we outline the specific al-
gorithm that we have developed to effectively transform
the explicit description of a triangulated surface mesh
into a signed distance function. The problem is equiva-
lent to finding for every discrete point on the Cartesian
SAMR grid the nearest or closest point on this surface
mesh. The algorithm is therefore named the closest point
transform (CPT). Without loss of generality, we assume
a single uniform Cartesian grid in the following discus-
sion.

4.1 Problem Description

Let ¢(x), x € R™, be the distance from the point x to a
manifold Z. If dim(Z) = n—1 and the manifold is closed,
(for example, curves in 2-D or surfaces in 3-D), then the
distance may be signed. The orientation of the manifold
determines the sign of the distance. We adopt the con-
vention that the outward normal points in the positive
direction. In order for the distance to be well defined,
the manifold must be orientable and have a consistent
orientation. A Klein bottle in 3-D, for example, is not
orientable. Two concentric circles in 2-D have consistent
orientations only if the normals of the inner circle point
“inward” and the normals of the outer circle point “out-
ward”, or vice versa. Otherwise, the distance would be
ill,defined in the region between the circles. For mani-
folds which are not closed, the signed distance is ill de-
fined in any neighborhood of the boundary. However, the
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Figure 3 The characteristic polyhedra for faces, edges, and
vertices.

distance is well defined in neighborhoods of the manifold
which do not contain the boundary.

The signed distance ¢ to a surface Z satisfies the
eikonal equation

Vgl =1 (40)

with boundary conditions ¢|I = 0 (see [58]). For most
boundary conditions, a solution to (40) exists only in the
weak sense. It is continuous, but only piecewise differ-
entiable. The solution is non-differentiable where char-
acteristics intersect. These are places that have multiple
closest points to the manifold. At differentiable points on
the manifold, the direction of the characteristics of (40)
is given by the local normal on Z, i.e. V¢/|V¢|, and the
characteristics are straight lines.

In computing the distance and closest point to a tri-
angular mesh surface, one can consider each component
of the mesh (face, edge or vertex) separately. For each
entity, there are simple geometric formulas for comput-
ing the distance and closest point. For signed distance,
one needs to use the surface normals to determine the
sign of the distance. The surface normal along an edge
is in the direction of the average of the incident face
normals. The surface normal at a vertex is a weighted
average of the incident face normals. The weighting is
proportional to the angle in the face at that vertex.

For the fluid-solid coupling, we only need to deter-
mine the distance and closest point information in a nar-
row band around the interface. The information is only
utilized in the ghost cells. Let § be the Cartesian dis-
tance such that all ghost cells are within that distance
of the interface surface. If the distance is computed up
to d, then one can flood fill the distance to determine
which of the remaining grid points are inside or outside
solid. (Flood filling means looping over the grid points
while only keeping track of the sign of the distance.)

4.2 Iteration and Tree Data Structures

In the simplest algorithm for computing distance ¢ and
closest point information C up to a distance §, one loops
over all components of the surface mesh 7 (faces, edges
and vertices) and all Cartesian grid points. This straight-
forward algorithm reads:

simplest( ¢, C, Z, § )
for all i,j k:
o1kl = oo
for all face in 7:
for all i j k:
d = distance from grid point (i,j,k) to face
if |d| <4 and |d| < |9[i,jK]I:
olij k] =d
Cli,j,k] = closest point on face
for all edge in 7:

for all vertex in Z:

return

The algorithm has computational complexity O(MG),
where M is the number of components in the mesh and
G is the number of grid points. Since time-explicit finite
volume methods basically have complexity O(G) for a
single time step, this naive algorithm is not suitable for
computing the CPT during the course of a simulation.
An alternative could be to store the mesh in a data
structure that supports minimum distance queries, like
a bounding box tree [59]. However, the average expected
complexity of a single distance or closest point computa-
tion in this approach would still be O(log M). This im-
plies an overall complexity of O(Glog M) for the CPT
algorithm. By taking advantage of the fact that the grid
points of the Cartesian mesh form a lattice, we have been
able to develop a CPT algorithm tailored especially for
our purposes with better computational complexity.

4.8 The CSC Algorithm

One can efficiently compute the distance and closest
point on a grid by solving the eikonal equation with
the method of characteristics and utilizing polyhedron
scan conversion. This is called the characteristics/scan
conversion (CSC) algorithm [60]. For a given grid point,
the closest point on the triangular mesh lies on one of
the primitives (faces, edges and vertices) that comprise
the surface. The characteristics emanating from each
of these primitives form polyhedral shapes, which we
call characteristic polyhedra. A characteristic polyhedron
contains all of the points which are possibly closest to
its corresponding face, edge or vertex. We determine the
grid points that lie within each of these polyhedra, then
use simple geometric formulas to calculate distance and
closest points for the primitive.
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Figure 4 Scan conversion of a polygon in 2-D and slicing of
a polyhedron to form polygons.

The closest points to a triangle face must lie within
a triangular prism defined by the face and its normal.
The prism contains the characteristic lines emanating
from the face (see Figure 3a for the face polyhedra of
an icosahedron). Each edge in the mesh is shared by two
faces. The closest points to an edge must lie in a cylindri-
cal wedge defined by the line segment and the normals
to the two incident faces, which is depicted in Figure 3b.
A single edge polyhedron is shown in Figure 3c. Each
vertex in the mesh is shared by three or more faces. The
closest points to a vertex must lie in a polygonal pyramid
defined by the normals to the incident faces. The vertex
polyhedra of an icosahedron are displayed in Figure 3d.

We can determine the grid points that lie inside a
characteristic polyhedron with polyhedron scan conver-
sion. The polyhedron is first sliced along each sheet of the
grid lattice to produce polygons. Polygon scan conver-
sion (or rasterization) is a standard technique in com-
puter graphics for displaying filled polygons on raster
displays [61,62]. It is a method for determining the pix-
els on the display which lie inside a polygon. Figure 4
depicts polygon scan conversion and slicing of a poly-
hedron. Utilizing the method of characteristics and scan
conversion together, we formulate the algorithm for com-
puting the CPT now as follows:

cpt( ¢, C, Z,6)
for all i,j k:
olijk] = oo

for all face in Z:
p = polyhedron containing closest points to face
grid_indices = scan_convert( p )
// Loop over the scan converted points.
for i,j,k in grid_indices:
d = distance from grid point (i,j,k) to face
if |d| <4 and |d] < |9[i,jK]]:
olijk] = d
C1i.j,k] = closest point on face
for all edge in Z:

for all vertex in Z:

return
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4.4 Computational Complexity

Consider computing the closest point transform up to
a distance of . If § is small and the surface is smooth,
the computational complexity of the algorithm is linear
in both the size of the mesh and the number of grid
points within ¢ of the surface. Thus, it has the optimal
complexity.

Let the Cartesian grid have N points within a dis-
tance 0 of the surface, and let v be the ratio of the sum
of the volumes of all the scan converted polyhedra di-
vided by the volume of the domain within a distance ¢
of the surface. The ratio v depends on the shape of the
surface and the distance §. If the surface is jagged and
¢ is relatively large, then v will be large. If the surface
is smooth and ¢ is relatively small, then v will be close
to unity. The total computational complexity of the al-
gorithm is O(vN + M). The O(vN) term again comes
from scan conversion and the closest point and distance
computations for the grid points. The O(M) term rep-
resents the construction of the characteristic polyhedra.
Since we expect both M and N to be small compared to
the total number of grid points G, the CSC algorithm is
suitable for computing the CPT during the course of a
simulation.

The CSC algorithm stores the grids for distance and
closest point and the mesh for which the CPT is com-
puted. Beyond these data structures which define the
problem, it does not require significant additional stor-
age. The components of the mesh (i.e., the faces, edges
and vertices) are dealt with one at a time. The memory
required to scan convert a single polyhedron is insignif-
icant compared to the memory needs of the grid and
the mesh. Thus, the CSC algorithm essentially has the
minimum storage requirements for the CPT problem.

4.5 Concurrency and SAMR

If the solid mesh (and hence the solid boundary) is dis-
tributed over multiple processes, the pieces must be as-
sembled into a cohesive triangular mesh before comput-
ing the CPT. This is because one needs to know the
incident faces of edges and vertices in order to compute
the correct sign of the distance. We accomplish this by
maintaining global identifiers for the nodes in the solid
mesh.

In the course of a simulation with the SAMR frame-
work sketched in Sec. 2.4, each fluid process performs the
sequential CSC algorithm. As we use a rigorous domain
decomposition to partition the SAMR hierarchy, only
those components of the triangulated surface meshes
that are within a distance § of the local domain need
to be considered for this computation. The necessary
clipping operation is best performed before sending the
distributed parts of the solid surface mesh to the receiv-
ing fluid processes. The details of our implementation
are outlined in Sec. 5.2.
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In order to make efficient use of the CPT algorithm
within the SAMR method, we have organized our CPT
implementation such that the algorithm can be called
once for a multitude of subgrids that effectively lie within
the same lattice. This arrangement ensures that each
characteristic polyhedron is constructed and scan con-
verted only once for each level in the SAMR hierarchy
and guarantees computational performance that is basi-
cally independent of the number of subgrids.

5 Fluid-Structure Coupling

The explicit fluid and solid solvers are weakly coupled by
applying appropriate boundary conditions at the fluid-
solid interface Z via a time-splitting technique described
below. In the case of inviscid flows considered here, these
boundary conditions correspond—in the Lagrangian no-
tation of section 3, [15]—to the continuity of the normal
component of the velocity field:

[u-n] =0 on 7 (41)

and the continuity of the normal component of the trac-
tion across the fluid-solid interface:

[t-n] = [oinn;] =[0.] =0 on Z, (42)

which enforce conservation of mass and linear momen-
tum, respectively. In the expressions above, [.] repre-
sents field jumps, u is the spatial velocity field which in
the solid can be expressed in terms of the deformation
mapping ¢ (X, t) as

u® (x,t) = (90 ° 90_1) (x,1), (43)

t and n are the spatial surface traction and normal vec-

tors, respectively and o;; are the components of the

Cauchy stress tensor as defined in equation (14). The

resulting boundary conditions at the fluid solid interface
are simply

uy =u

Opn =P T

Sy

(44)

For simplicity and owing to the extremely-short time
scales involved in the problems of interest, it is assumed
that heat transfer across the fluid-solid interface is neg-
ligible and, thus, can be ignored.

The following simple temporal splitting scheme is
adopted to accomplish the loose coupling between the
fluid and solid solvers [2]:

uy = up (b))
update_fluid( At)
o =pl(t+ At)|Z
update_solid( At)
t:=t+ At

F1

'S1'S2 'S3 S4 S5 S6 S7 S8

Time
Figure 5 Data exchange between the recursive fluid SAMR
solver and the linear solid solver throughout one root level
time step. Red and blue arrows: flow of interface data from
fluid to solid and vice-versa. Gray arrows: regridding of higher
SAMR levels, base level (gray circles) stays fixed.

More general implicit and staggering schemes for cou-
pled systems have been proposed and studied in detail
in [63,64].

We have implemented this algorithm with an ad-hoc
partitioning into dedicated fluid and solid processes that
communicate to exchange the data along Z. In the fol-
lowing subsections we will outline some of the specifics
of our approach that make the VTF a highly efficient
framework for fluid-structure simulation on distributed
memory machines.

5.1 Coupled Simulations with Fulerian SAMR

Unsteady compressible fluid flows typically show a wide
range of temporal and spatial scales. While the correct
numerical representation of supersonic shock and deto-
nation waves usually requires very fine resolution only
in a small band around the phenomenon of interest, a
considerably coarser resolution is often sufficient in the
majority of the fluid domain. This is in particular true in
our case of strong pressure waves arising from the det-
onation of highly energetic materials; one is interested
mainly in the stress waves produced by shock impact in
the solid target materials and the resulting material re-
sponse. Hence, incoming fluid waves and the near-body
fluid-structure interaction have to be captured with high
accuracy, but resolution can be reduced for outgoing
fluid phenomena and in the far field. We achieve the re-
quired solution adaptation in the fluid by applying the
dynamic mesh adaptation algorithm described in Sec.
2.3. The fluid-solid interface 7 is treated herein as a dis-
continuity with a-priori refinement at least up to the
coupling level [.. As the wave phenomena in solid ma-
terials are usually at least as fast as the waves in com-
pressible fluids, the coupling level [, will usually be the
highest computationally permissible choice in order to
ensure an accurate wave transmission. But special care
is required to initiate the data exchange according to the
above basic coupling method in a way that is compatible
with the recursive SAMR algorithm.
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The coupled SAMR method is implemented below
in the routine advance_level() that calls itself recursively
with the current level as argument I:

advance_level( 1)
repeat r; times
if time to regrid
regrid( [ )
cpt( ¢!, CL T, 8;)
update_fluid_level( Q!, ¢!, C, uS|I, Aty)
if level [ + 1 exists
advance_level(l + 1)
Correct Q!(t + At;) with Q! (t + Aty)
if =1,
send_interface_data( p*'(t + At;)| )
if t + At < to+ Aty
receive_interface_data( Z, u|, )
t:=t+ At
return

The algorithm calls the routine cpt() from Sec. 4.3 to
evaluate the signed distance ¢ and the closest point in-
formation C' for the actual level [ based on the currently
available interface Z. Together with the recent solid ve-
locity on the interface u®| 7> the discrete vector of state in
the fluid Q is updated for the entire level with the numer-
ical scheme outlined in Sec. 2.2. The SAMR method then
proceeds as usual recursively to higher levels and utilizes
the (more accurate) data from the next higher level to
correct the values of the current level in cells overlaid
by refinement. If level [ is the coupling level [., we use
the updated fluid data to evaluate the pressure values
to be sent to the solid and to receive an updated inter-
face mesh and velocities u® | ;- The recursive order of the
SAMR algorithm automatically ensures that updated in-
terface mesh information is available for later time steps
on coarser levels and to adjust the grids on level I, dy-
namically before the current mesh (i.e., the level set in-
formation derived from it) is actually used to again ad-
vance level [.. In order to achieve a proper matching of
communication operations, we start the cycle by posting
a receive-message in the routine fluid_step(), which does
one fluid time step on level 0, before entering into the
SAMR recursion. The routine fluid_step() below high-
lights a straightforward automatic time step adjustment
for the SAMR method coupled to a solid solver.

fluid_step( )
ATF = min

maX(Rl- stable_fluid_timestep((), A7)

Atl = ATF/RI forl:0,~«~ ,L
receive_interface_data( Z, uS|I )
advance_level( 0 )

return

During one root level time step at level 0 the time steps
on all levels remain fixed and are calculated in advance
by employing the refinement factor with respect to the
root level R, = Hi:o r; (cf. Sec. 2.3). The root level
time step A, by itself is taken to be the minimum
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of the stable time step estimations from all levels and a
corresponding time step A7 in the solid. We define At
as a multiple of the stable time step estimation in the
solid solver with respect to the communication frequency
R, in one fluid root level step and an additional factor
K that allows sub-iterations in the solid solver in case of
considerably smaller solid time steps. The solid update
algorithm used to advance the solid by one fluid root
level step A7, is given below.

solid_step( )
Aty = min(K - Ry, stable_solid_timestep(), A7)
repeat R; times
tend (=1 + ATS/RlC, At = ATS/(KRZC)
while ¢ < tenq
send_interface_data( Z(¢), uS|I(t) )
receive_interface_data( p'|, )
update_solid( p”|,, At )
t:=t+ At
At := min(stable_solid_timestep(), tena — t)
return

The data exchange between solid_step() and fluid_step(),
within advance_level(), is visualized in Fig. 5 for an ex-
emplary SAMR hierarchy with two additional levels with
r1 = ro = 2 and K = 4 sub-iterations in solid_step().
Like in the simulations in the Secs. 6.1 and 6.2, the
coupling level [, = 1 is not the maximum level of re-
finement. Figure 5 visualizes the recursion in the SAMR
method by numbering the fluid update steps (F) accord-
ing to the order determined by advance_level(). The or-
der of the solid update steps (S) on the other hand is
strictly linear. The flow of coupling information between
solid_step() and advance_level() is visualized by the red
and blue arrows. The red arrows correspond to the send-
ing of the interface pressure values p’’ |, from fluid to
solid at the end of advancelevel(l.). The blue arrows
represent the sending of the interface mesh Z and its
nodal velocities uS|I after at least K solid steps. Note
that the receive_interface_data() call for the latter oper-
ation is placed into fluid_step() and advance_level() such
that the updated mesh information can be employed to
adjust the adaptive refinement in regrid() before it is
actually used in an update_fluid_level() operation. The
modification of refinement meshes is indicated in Fig. 5
by the gray arrows; the initiating base level that remains
fixed throughout the regridding operation is indicated by
the gray circles.

5.2 Efficient Inter-solver Communication

Critical for the performance of the coupled algorithms
are the inter-solver communication routines send_inter-
face_data() and receive_interface_data(). In order to en-
sure good communication performance, we have imple-
mented a dedicated asynchronous communication library
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that sets up detailed point-to-point communication pat-
terns between the fluid and solid processes and avoids
assembling global data structures.

The domain decomposition of the solid mesh across
the solid processes also partitions the triangular surface
mesh (cf. 3.3). Counsider a single fluid process whose grids
lie in a domain {2. Suppose the closest point transform
will be computed to a distance of §. Then the fluid pro-
cess needs only those portions of the interface that are
within 0 of £2. If the fluid process receives only the rele-
vant portions of the interface, it can assemble them into a
local triangular mesh that is sufficient for computing the
CPT and setting the boundary conditions in the ghost
cells.

We determine the point-to-point communication pat-
tern with bounding box information. Each solid process
constructs a Cartesian bounding box around its portion
of the interface; each fluid process makes a Cartesian
bounding box around its domain and enlarges it by d.
These bounding boxes are gathered to the root fluid and
solid processes. The root processes then exchange their
sets of bounding boxes and broadcast the set to either
the fluid or solid processes. Now each fluid process has
all of the solid bounding boxes and vice versa. Each pro-
cess intersects its own bounding box with the received
set of bounding boxes to set up communication data
structures that consider only those portions of the sur-
face mesh and the data defined on it that are relevant
to the local process. The communication between solid
and fluid is non-blocking to enable overlapping synchro-
nization and computation.

It is worth mentioning that the efficiency of the above
point-to-point communication scheme necessarily relies
on the fact that the fluid and solid meshes by themselves
are reasonably partitioned. One could easily construct
pathological cases where each is partitioned into long,
thin pieces and each fluid process needs to communi-
cate with each solid process. However, with the locality-
preserving partitioning strategies employed in AMROC
(generalized space-filling curve) and the parallel solid
solver (graph-partitioning provided by Metis), this never
occurs in practice.

6 Examples of Application

In this section, we present two examples of application
of the computational framework described above. The
first example corresponds to the simulation of the ef-
fects of a blast wave on the human body. The second
example is a simulation of a detonation wave confined
in a detonation tube and impacting a Tantalum target.
These applications illustrate the robustness and versa-
tility of the coupled computational approach as well as
the computational performance on parallel machines of
moderate size.

i

Figure 6 Mesh of the liver inside the torso (left). Domain
decomposition of the solid mesh and fluid mesh adaptation
at the boundary (right).

6.1 Shock Wave Impact on Soft-tissue Body

As a first example, we consider a three-dimensional fluid-
structure interaction problem with ¢ = 0, ¢ = 0, which
requires only the equations (1)-(3) and (5) to simulate
the purely-hydrodynamic fluid flow. The problem is the
dynamic interaction of a spherical blast pressure wave
with a very simplified human body. Human injuries caused
by the nearby explosion of a small amount of highly en-
ergetic material are divided into primary and secondary
types: primary injuries are due to the blast wave, while
secondary injuries are due to shrapnel. Primary injuries
occur within a close distance of 1 to 2m and lead to
strong impulses of 1 to 2ms duration. Under such condi-
tions, conventional ballistic protective armor has proved
to be effective for mitigating the causes leading to sec-
ondary injuries. Unfortunately, armored vests do not
protect against the shock wave and can even enhance
harmful blast effects. In the following, we study the stress
concentrations in the human liver resulting from a blast
event. An idealized geometric model of the liver is em-
bedded in a homogeneous model torso of soft material
(see Fig. 6). The liver is assumed softer and denser than
the torso. Table 1) enumerates the elastic material prop-
erties adopted in the calculation.

We assume an explosion of 0.5kg TNT in air at a
distance of 1.5 m from the body. The ambient fluid pres-
sure is p, = 100 KPa and the temperature is T, = 293 K.
The ideal gas relation p = pRT then yields an ambient
density of p, = 1.212kg/m3, and the ratio of specific
heats is set to the constant value v = 1.4. The energy re-
lease from the TNT explosion is E; = 2260 kJ/kg, which,
for simplicity, we model as uniformly distributed over a
small sphere of radius 5 cm with its gas initially at rest.

Table 1 Material properties of soft tissues.

Liver Torso
Young modulus 5 MPa 100 MPa
Poisson coefficient 0.3 0.3
Density 1500kg/m*  950kg/m?
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Figure 7 Formation and propagation of the blast wave
(time=0.31 ms).
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Figure 8 Stress waves in the torso after the impact.

The initial temperature in this sphere is assumed to be
T; = 1465 K. Using (5) and the ideal gas relation to-
gether we evaluate pressure and density within the small
sphere to be p; ~ 1700 KPa and p; ~ 4122kg/m?. These
initial conditions result in the formation of a blast wave
in the fluid (cf. Fig. 7).

The solid mesh used for this simulation has 19562
nodes, while the SAMR mesh in the fluid has 100 x 100 x
100 cells at the root level and employs two additional lev-
els, both refined by a factor of 2 (cf. Fig. 6). The fluid
domain is 5m x 5m x 5m. Scaled gradients of pressure
and density are used as refinement criteria to resolve the
incoming pressure wave accurately. The coupling level
is set to I, = 1, and we use K = 20 sub-iterations in
the solid solver. The distance § within which the exact
signed distance information around the interface mesh is
evaluated by the CPT algorithm is set to three times the
diagonal of a finite volume cell.! This setting is sufficient
to allow the construction of two internal ghost cells ac-
cording to Sec. 2.2. With a target CFL condition of 0.3 in

L This choice makes § dependent on the mesh width on
each SAMR level.
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Figure 9 Interaction of the shock wave with the body
(time=1.55 ms).

Strain energy density [J/m"3]

time = 3.29 ms

time =2.28 ms

Figure 10 Stress wave reflection in the liver.

the fluid and 1.0 in the solid, we calculate 420 fluid root
level steps to reach a final time of 6 ms, which involves
16800 update steps in the solid solver. The simulation is
completed in about 10 hours on 10 dual-processor 2 GHz
G5 nodes of a Linux Beowulf cluster connected with a
Myrinet switch. In this computation, 14 and 6 processes
were used for the fluid and solid solvers, respectively. The
size of the fluid SAMR mesh increases during the sim-
ulation from approximately 1,045,000 cells initially to
about 2,026,000 cells, when the pressure wave impacts
the torso.

A non-dimensional analysis due to Taylor for a local-
ized explosion gives the following relations for the peak
overpressure Apg and its arrival time ¢ at a distance d
from the center of the explosion, [65]:

E &0,
t= Ky | 2L

Aps:Klﬁa Ez

(45)

In these relations, K7 and K5 are non-dimensional con-
stants and p, is the ambient density. For air, Taylor has
measured K; = 0.155 and K5 = 0.926. More accurate
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values have been given by Brode who conducted exten-
sive numerical investigations and summarized the results
in the following formulae [66]:

Apslbar] = g + 1 bar

if Aps > 10p,
0.975 1455 585

Apg[bar] = 5 5 — 0.019 bar
z z
if 0.1p, < Ap, < 10p, (46)
where pressures are in bars and z = V[;il expressed in
3

mkg~1/3 is the distance scaled with the charge mass
W expressed in kilograms of equivalent TNT. In our
simulation a value W = 0.5 is adopted. Figures 7-10
show the simulation results. The shock wave reaches the
torso at ¢ = 1.55ms (see Fig. 9). This value is in rea-
sonable agreement with the prediction from (45) con-
sidering the fact that (45) is derived for an ideal spher-
ical shock wave emanating from a point source. At a
distance d = 1.5m, the overpressure peak according to
(45) is Aps ~ 104 KPa. Our computation gives a value
Aps = 175 KPa, which is close to Brode’s approximation
(46) Aps ~ 177KPa at z = 1.89. It leads to an overall
pressure peak of py = p, + Aps =~ 275 KPa. An estimate
of the reflected overpressure Ap, can be calculated from
the standard Rankine-Hugoniot relations for the Euler
equations (cf. [27]). For the normal reflection of a planar
shock on a fixed wall we obtain

1
Ap, = 2Ap, + [y + 1] ipﬂ@ ,
2 1
YPa /[y + 1] Aps + 27pa

where u, denotes the fluid velocity behind the shock and
¢, the ambient sound speed. For v = 1.4 these relations
lead to the simple form

Us = Apsca

Tpa + 4Ap;
° 7pa + Aps

which yields Ap, ~ 560 KPa for Aps ~ 1.75 KPa. The
absolute reflected pressures obtained in the simulation
are shown in Fig. 9. The peak values are in the order of
600 KPa, which is lower than the value p, = p, + Ap, =
660 KPa obtained from equation (47), as expected.
Finally, we discuss briefly the effects of the blast wave
on the body. One of the main mechanisms of internal in-
jury due to blast is related to the impedance mismatch
between air and fluid filled organs in the human body.
This significantly affects the propagation of stress waves
transmitted by the blast and causes stress concentra-
tions and localized deformations at high rates which are
responsible for tissue failure and injury. The mitigat-
ing effect of the fluid-solid interaction which reduces the
amount of impulse transmitted to the body is not well
understood, especially when strong compressibility ef-
fects are important, as is the case in air blasts. Fig. 8-10

Ap, ~ 2Ap € [2Ap,; 8Ap,] (47)

show different snapshots of the transmitted stress waves
propagating in the torso and their interactions with the
liver as measured by the elastic strain energy density.
Despite the significant idealizations of this simulation, it
is clear that this approach provides a viable strategy for
exploring material systems for blast-injury mitigation.

6.2 HMX Detonation in a Tantalum Cylinder

The second and final simulation we want to discuss is the
propagation of a detonation wave in in a high-energy ex-
plosive material confined in a thick-walled solid cylinder
closed at one end. The properties of the explosive cor-
respond to HMX (C4HsNgOg) and those of the cylinder
material to Tantalum. The volumetric response of tanta-
lum is modeled by recourse to Vinet’s equation of state
as fitted to first-principle calculations by Cohen et al
[67]. The internal energy per unit mass is
) +

(48)
where T is the absolute temperature, v the specific vol-
ume per unit mass, vo = 5.959m3Kg~! is the specific
volume at zero pressure and temperature, and A;; is a
matrix of constants. The entropy S(7,v) per unit mass
is given by

U(T,v) = —2.218 x 10"+

1
o o8(35)? (1.813 % 10° — 2.306 x 10° (i)
Vo

ol

3

3RT — Y i(z‘ —1)A,T (;;)H

i=2 j

3 4
S(T,v) = 3R+ 3Rlog(T) = > > AT (v/vg)’ ™
i=1 j=1
(49)
where R = 1.5045 J/(K g K) is the gas constant for Tan-
talum. The matrix A;; is identified as (SI units)

9.212 x 10> —2.007 x 10> 7.640 —3.574 x 10
A= 1.243x 1072 —3.806 x 1072 2.519 x 1072 —9.233 x 10~*
—6.506 x 1077 1.505 x 1077 —7.261 x 1077 —2.320 x 107

Egs. (48) and (49) completely define the thermodynamic
behavior of the material. In addition, the material is as-
sumed to obey Jo-flow theory of plasticity. We adopt
a standard formulation of finite-deformation plasticity
based on a multiplicative decomposition of the deforma-
tion gradient into elastic and plastic components:

F = F°F” (50)

where F? is assumed to be volume-preserving. The equi-
librium stress-strain relation (20) is now extended to in-
clude the elasticity of the material in shear, with the
result [68,40]

of = —pI+J’1F8 {‘u(log,/ce)dcv}FeT (51)
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Figure 11 Pressure distributions of the detonation wave in
HMX in the inner detonation chamber from a purely hydro-
dynamic one-dimensional simulation.

where C¢ = F¢TF¢ is the elastic Cauchy-Green defor-
mation tensor, log v/C¢ is the logarithmic elastic strain,
1 is a shear modulus, and the pressure p follows from
the equation of state defined by (48) and (49). The nu-
merical advantages of using logarithmic elastic strains in
conjunction with Jo-flow theory of plasticity have been
documented by Cuitino and Ortiz [68] and by Ortiz and
Stainier [40]. Explicit formulae for the calculation of the
exponential and logarithmic mappings, and the calcula-
tion of their first and second linearizations, have been
given by Ortiz et al. [69]. For small incremental elastic
strains, as may be expected to occur in explicit dynam-
ics, the exponential and logarithmic mappings may be
computed simply by recourse to a Taylor expansion [69].

The dependence of the elastic constants of Tantalum
on pressure and temperature has been computed by Co-
hen [67] from first principles. It is found that the temper-
ature dependence of the elastic constants at fixed volume
is small, which suggests that the effect of temperature is
ostensibly confined to thermal expansion. Therefore, to
a first approximation we neglect the explicit dependence
of the elastic constants on temperature at fixed volume
and express c11, ¢12 and ¢4 as a function of J only. We
also neglect the anisotropy of the crystal and assume
isotropic elastic behavior in terms of a shear modulus
given by the Voigt average:

3 1 3 2
p=x Cua E (2C12 — Cny) 5 Cua + 5 Cs  (52)

Table 2 Material parameters corresponding to the plastic
response of Tantalum (SI units).

b 5x 107"
éb 3x107°
m 12.5
n 5

oy 5 x 10%
Tres 293
Tomett 1343
« 1

B 1
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The plastic deformation FP is assumed to obey the
Prandtl-Reuss flow rule

3s€

FPFP~1 = ¢p (53)

— a.e,dev

where s¢ is the stress deviator, ¢ =

\/ 3/2) ’Lj z]
is the Mises stress, and €P is the effective plastic strain.
A variational formulation of J-flow theory in finite de-
formations has been given by Ortiz and Stainier [40]. We
additionally assume power-law rate-sensitivity, harden-

ing and Steinberg-Guinan [70] pressure dependence of

the form , S
5= (orn) (54

[ e o T“ilf) (145)" o
gl 1.0) =0 (56)

Here, €} is a reference plastlc strain, € is a reference
plastic strain rate, m is the rate sensitivity exponent,
n is the hardening exponent, g is the flow stress, o, is
the initial yield stress, T;..f is a reference temperature,
Tinerr is the melting temperature, « is the thermal soft-
ening exponent, and pg is the shear modulus at zero
pressure. The contribution of the plastic dissipation to
the energy equation, Eq. (15), is regarded as an addi-
tional heat source of strength

poR = WP (57)

where W7 is the plastic power per unit undeformed vol-
ume and [ is the fraction of the plastic work converted
into heat. The coefficient § is known to be a function
of deformation and temperature. However, for simplic-
ity we treat § as constant. The material parameters used
in calculations are collected in Table 2.

The fluid part of this simulation uses the entire set of
equations (1)-(5) and in particular the reaction term (6).
The cylinder has length 0.10m and an outer radius of
0.0185 m. An inner detonation chamber filled with HMX
with radius 0.0085 m and depth 0.055 m opens at the left
end of the cylinder. For the fluid initial conditions at
t = 0, we assume a fully developed steady detonation
wave with its front located at * = 0.01m. The deto-
nation is propagating in the positive direction, which is
enforced by the prescription of constant inflow boundary
conditions at the open left end (cf. Fig. 11). No defor-
mations are allowed in the entire solid for z < 0.01m
to model a fully rigid material downstream of the initial
wave. Further, no deformations are possible on the outer
hull of the Ta cylinder for 0.0l m < x < 0.03 m.

According to Mader [71] unreacted HMX has a den-
sity of po = 1900kg/m?, and we assume atmospheric
pressure pg = 100 KPa in the unreacted material. The
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Figure 12 [Initiation of stress waves in the solid and com-
pression of the wall material next to the detonation chamber
due to the detonation passage.

detonation velocity for a freely propagating Chapman-
Jouguet detonation (cf. [25]) in HMX is experimentally
known to be approximately 9100 m/s and the entire hy-
drodynamic flow can be described with reasonable accu-
racy with a constant adiabatic exponent of v = 3 [71].
The rate factor Tg is unknown; we therefore set it to
Tr = 1ps, which is a reasonable value for most solid
explosives [25].

The above values specify the process of steady one-
dimensional detonation propagation completely. A det-
onation wave consists of a leading hydrodynamic shock
wave followed by a region of decaying continuous detona-
tion toward chemical equilibrium. The simplified
Chapman-Jouguet theory can be used to evaluate the
energy release of our configuration to be ¢ = 5176kJ /kg
and to predict the hydrodynamic values in the equilib-
rium state p; ~ 39.3 GPa and p; ~ 2533kg/m®. The
steady internal structure can be calculated with the the-
ory of Zeldovich, Neumann, and Doéring (ZND), which
constructs an analytic solution of Egs. (1) to (6). De-
tailed derivations of the ZND solution can be found in
the book by Ficket and Davis [25] or, for instance, in
[35]. According to the ZND solution the peak values
at the head of the detonation are p =~ 78.7 GPa and
P ~ 3800 kg /m3. We use the analytic ZND solution as
our hydrodynamic initial conditions. Fig. 11 displays the
initial pressure distribution and its steady propagation
in a one-dimensional simulation on a uniform mesh with
960 finite volume cells. At considerably coarser resolu-
tions, the reaction front is not resolved with sufficient
accuracy, resulting in an incorrect speed of propagation
and a significant underestimation of the peak value p_ .
However, this high resolution is necessary only inside the

p(Fa),
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| isoerio
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Figure 13 Strong material compression in constrained and
outward movement of unconstrained walls and the strong
compression in axial direction due to the impact event.

reaction zone, which is made possible by the effective ap-
plication of dynamic mesh adaptation.

We therefore simulate the three-dimensional fluid
problem in the detonation chamber with a SAMR base
grid of 60 x 60 x 120 cells and use two additional lev-
els of refinement with factors ry = 2, ro = 4. While
the solid boundary is adequately refined at the coupling
level I, = 1, level 2 is necessary to capture the deto-
nation wave accurately (adaptation criteria are scaled
gradients in pressure and mass fraction \). Its effective
resolution corresponds to the uncoupled one-dimensional
simulation shown in Fig. 11. To allow for large defor-
mations of the cylinder walls the fluid domain spans
0.03m x 0.03m x 0.06 m, but only the flow in the inner
detonation chamber is simulated. Zero pressure values
are exported to all interface mesh points at the outer
hull within the fluid domain. The simulation shown in
Figs. 12-14 uses a solid mesh of 56,080 elements. With
a target CFL condition of 0.6 in the fluid and 0.2 in
the solid, we simulate the entire detonation process and
a small portion of the purely hydrodynamic shock wave
reflection at the closed end of the tube propagating back-
wards through the fully reacted material. The final time
is set to 5.8 us, and it takes about 400 fluid root level
base steps to reach it. K = 4 sub-iterations are used in
the solid, which corresponds to approximately 3200 solid
update steps. The distance parameter ¢ is chosen as in
Sec. 6.1.

Throughout the simulation the SAMR mesh increases
from an initial size of approximately 706 k cells on level
1 and 6.5 M on level 2 to about 930k and 10.0 M, respec-
tively. The number of grids on both levels varies between
400 and 1000. Compared with a uniform fluid mesh of
480 x 480 x 960 ~ 221 M cells that would otherwise be
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Figure 14 Schlieren plot of the density on regions covered
by SAMR level 1 (blue) and 2 (red) inside the deforming
cylinder for ¢t = 3.0 us.

necessary to capture the detonation with similar accu-
racy, mesh adaptivity clearly provides enormous savings.
Fig. 14 shows the highly-localized fluid mesh adaptation
in the midplane for the time snapshot shown in Fig. 12.

The simulation ran on 4 nodes of a Pentium-4 2.4 GHz
dual-processor system connected with Quadrics inter-
connect for about 63 h real time. Six processes were ded-
icated to the adaptive fluid simulation, while two were
used for the smaller solid problem. The signed distance
calculation with the CPT algorithm takes only 0.8 % of
the computational costs on the fluid nodes, which im-
pressively confirms the practical applicability of the idea
of implicit geometry representation for evolving surface
meshes of moderate size.

Snapshots of the simulation displaying a cut through
the hydrodynamic pressure distribution and the normal
stress in the axial direction are shown in Figs. 12 and
13. These figures show several salient features of this
coupled problem: the superseismic loading of the lower-
impedance cylinder walls leading to an inclined shock
front in the solid (Fig. 12), the ensuing large deforma-
tions of the cylinder wall (Fig. 13 and lower graphic of
Fig. 12), the reflection of the shocks in the solid at the
constrained outer cylinder wall (Fig. 13), and the trans-
mission of a high-intensity shock into the solid target
(lower graphic of Fig. 13). In the last shown time step,
the HMX is fully depleted and a non-reactive, purely
hyrdodynamic, shock wave, caused by the reflection of
the detonation wave at the target, can be seen to prop-
agate upstream in the fluid.

7 Conclusions

A loosely coupled fluid-structure interaction method for
the time-accurate simulation of solid materials respond-
ing dynamically to strong shock and detonation waves
arising from the detonation of highly energetic mate-
rials has been presented. The approach utilizes a La-
grangian finite element solver for large deformations and
a Cartesian dynamically adaptive finite volume solver,
with the additional capability to deal with moving em-
bedded boundaries via the ghost-fluid method. Both sol-
vers have been parallelized for distributed memory ma-
chines via domain decomposition, and an effective cor-

Ralf Deiterding et al.

responding inter-solver communication module has been
outlined. An algorithm has been presented that trans-
forms the Lagrangian surface mesh very efficiently into
a signed distance function on the Cartesian mesh. The
application of our approach to two distinct fluid-solid
interaction problems has also been described.

We close by noting that the combined approach can
lead to high efficiencies in the solution of coupled fluid-
solid interaction problems. For instance the second ex-
ample, in which a detonation wave in solid highly en-
ergetic material impinges on a dynamically deforming
Tantalum cylinder, demonstrates the enormous savings
in computational costs that can be obtained through
structured dynamic mesh adaptation in the fluid for the
considered problem class. This calculation required only
504 h CPU, whereas a simulation with an equivalent fluid
unigrid mesh can be expected to be in the range of 10° h
CPU.

Future development efforts will focus on the imple-
mentation of dynamic adaptation and mesh smoothing
techniques for the solid solver, as well as investigations
of the integration of implicit solvers for both the fluid
and solid into the VTF.
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