

Walking speed during daily living, a systematic review

C. TYCHON, M. POLEUR, L. SERVAIS

validation

Introduction: why do we need new endpoints?

- Objective, quantifiable walking speed endpoints are lacking
- Real-life walking speed is a key factor of quality of life

Current walking speed evaluation compared to wearable devices:

	Dedicated labs	6-minute walking test	Wearable
Cost	+++		+
Availability			
Workload	+++	++	
Hawthorne effect (Patients perform better when observed)	+++	+++	

Methods:

We searched the MEDLINE database for studies on the assessment of real-life walking speed using a wearable device, in any population and for any disease.

66 papers **503 papers** After screening by Initial search title/abstract

 Small academic studies ++ No intent of achieving

10 papers

After screening by

full-text

Results divided into 5 categories:

Wearable devices offer:

- Cost-effective and available solutions
- Reduce workload
- Eliminate biais
- ➡ Endpoints have to be validated by regulatory agencies such as the EMA or FDA before clinical use.

Results for Duchenne Muscular Dystrophy

Validity:

 Ability to distinguish patients from healthy controls

Reliability:

• Measurements are consistent for the same patient

Feasibility:

 Affordability and patient adherence

Accuracy:

 Comparison with validated gait assessment method

Sensitivity to change:

 Tracking patient performance changes

- Currently published data
- Focus on Duchenne Muscular Dystrophy
- What is missing for global validation?

What has been

Pediatric focus:

proposed so far:

Duchenne Muscular Disease (DMD):

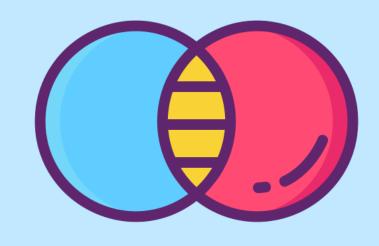
endpoint by the EMA

Only disease with a validated digital

• Uses Sv95c : 95th percentile of walking speed

Validity confirmed : compared to controls

• Sensitivity to change : confirmed


→ Insufficient data for official validation

These results are displayed in the main circle 1,2

• Good reliability: intraclass correlation coefficient > 0.9

Sv95c have also been used inFacioscapulohumeral dystrophy:

Insights on clinical application

Validity

Reliability

Intraclass correlation coefficient of 0.97

Walking speed is significantly reduced in patients compared to controls

Sensitivity to change

Accuracy

Sv95c correlated with the 6-minute walk test

Sv95c correlated with movement laboratory measurements

Sv95c correlated with the North Star Ambulatory Assessment and the 4-stair climb test

Discussion:

Bridging the gap in digital endpoint validation:

Feasibility

Wearable devices are cost-effective

Patients, including children⁶, show good compliance

There is a clear interest from regulators:

- EMA has validated Sv95c for DMD before 4 years old
- FDA has accepted multiple letters of intent

But what is missing?

- Limited large-scale initiatives : mainly small, academic studies without clear interest or ressources for validation. Only MOBILISE-D and Sv95c generate extensive database
- Costly and long validation process: even MOBILISE-D, a \$50 million-funded project faced significant challenges that limited its ability to develop and implement a digital mobility assessment solution

How can validation be facilitated ?

- Streamlined regulatory pathways: the EMA has fast-tracking pathways for pain medication approval across various diseases - why not digital endpoints?
- Improved study framework: A unified approach would allow data integration across diseases, populations and devices

What does the future hold:

- Early detection of decline though a clinician-friendly app, prompting therapeutic changes
- Tracking therapy impact by the clinician and the patient through the app, enhancing motivation and engagement
- Accelerate drug approvals and improve patient's quality of life

And beyond pediatrics:

	Validity	Reliability	Feasibility	Accuracy	Sensitivity to change	Letter of intent
Parkinson's ³	YES	Ś	YES	+/- (medium bouts did not correlate to MDS-UPDRS III)	YES	YES (FDA)
Sarcopenia	Ś	Ś	YES	YES (Medium correlation with 6-MWT)	Ś	YES (FDA)
Multiple sclerosis ^{4,5}	Ś	Ś	YES	+/- (Real-walking speed overestimate)	Ś	YES (FDA)
Huntington disease	Ś	Ś	Ś	Ś	Ś	YES (but rejected by FDA)

Scan the QR code for references

