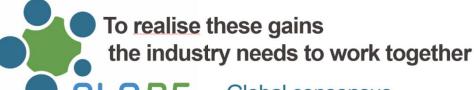

Notre Dame University (NDU) Shouf Campus Ramez G.Chagoury Faculty of Architecture, Art, and Design

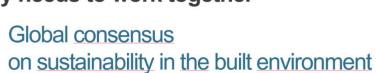
Future Technologies for Achieving Net-Zero Carbon Buildings

Lebanon | April 09, 2025

Prof. Dr. Shady Attia
Sustainable Building Design Lab, UEE,
Applied Sciences, University of Liège, Belgium
shady.attia@uliege.be

Acknowledgment




Al Shouf 09/04/2025

CLAUDINE CHAMOUN

Senior Lecturer FAAD Coordinator, Shouf Campus.

Ramez G.Chagoury Faculty of Architecture, Art, and Design

- 5000+ experts
- 50+ years of expert networks
- Standards and guidelines
- Research and education
- Innovation

www.globe-consensus.com

Content

1. Cause of Climate Change

- 1. Climate Disruptions in India
- 2. Global Climate Change
- 3. Carbon Neutral Communities
- 4. What cause climate change?
- 5. Zero Net Carbon Buildings

2. Why Whole-Life Carbon Buildings

- 1. 'Embodied' and 'operational' impacts
- 2. Reducing 'embodied' impacts
- 3. Lifecycle Stages of Buildings: ISO 14040

3. Net-Zero Whole-Life Carbon Buildings


- 1. EU Carbon Neurality 2050
- 2. Operational vs Embodied emissions
- 3. GHG Emissions
- 4. Corporate ESG strategies
- 5. Embodied GHG Emissions
- 6. Building Stock Renovation
- 7. Building Example for New Construction

4. Pathways and Solutions

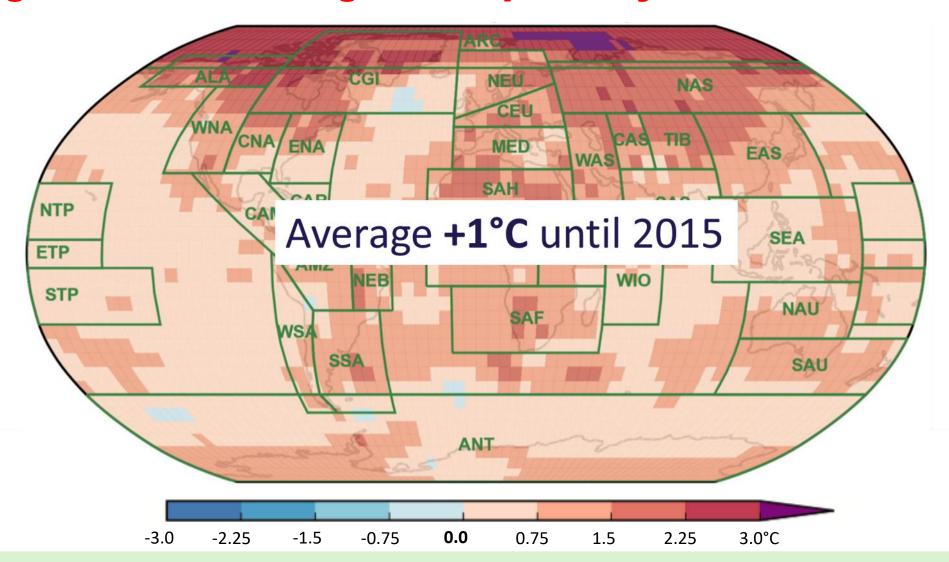
- 1. IEQ, Energy Efficiency and RES Balance
- 2. Decarbonization of Heating & Cooling
- 3. All Electric with Heat Pumps
- 4. District Heating & Cooling
- 5. The Neutral Grid: Centralized Heat Pumps
- 6. Storage and Batteries
- 7. Refrigerants
- 8. Smart Meters and Grid's Energy Mix
- 9. Carbon Neutral Communities

5. Conclusion

- 1. The transition towards zero-emission buildings
- 2. Framework for Building Modelling
- 3. Recommendations

Climate Disruptions in Lebanon

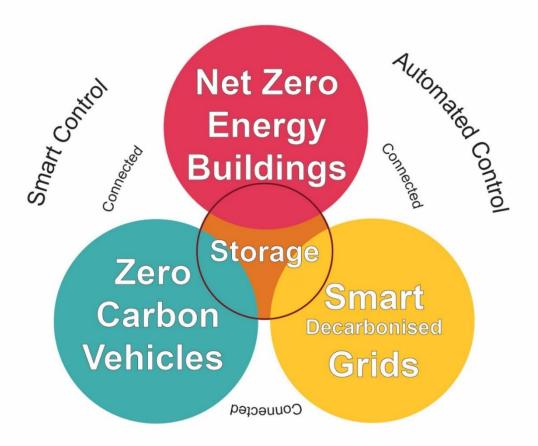
Al-Shouf Cedar Reserve

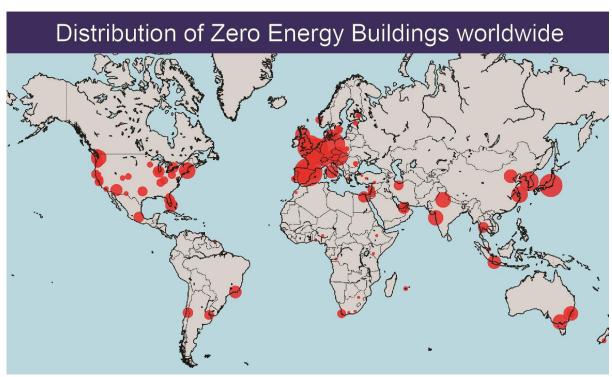

- Floods
- Sea Level Rise
- Windstorms
- Heat Waves
- Fires
- Power outages
- Earthquakes
- Water Shortages
- Air Pollution
- Pandemics
- 2024 Dubai
- 2023 Darna
- 2021 Beirut
- 2019 Shouf (Storm Norma)
- 2018 Jeddah
- 2016 Kuwait

International Panal on Climate Change 2019

Global Climate Change

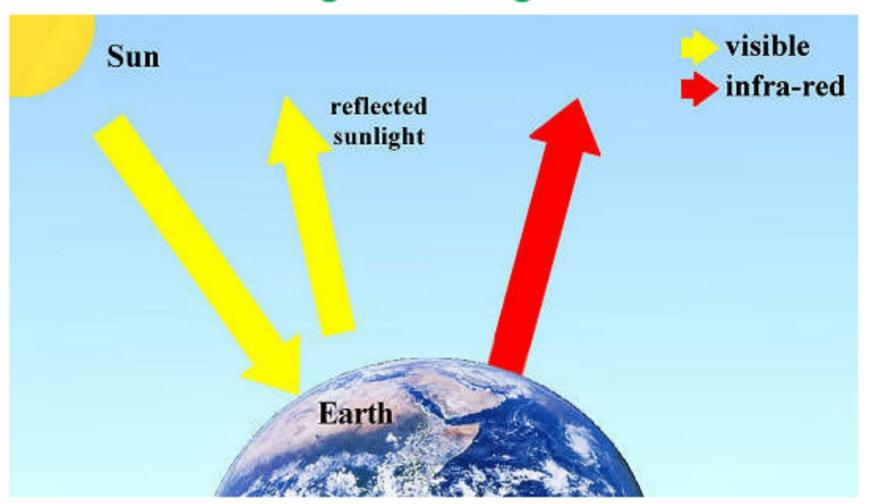
LIÈGE université SBD Lab


Paris Agreement 2015 Targets Compatibility



Carbon Neutral Communities

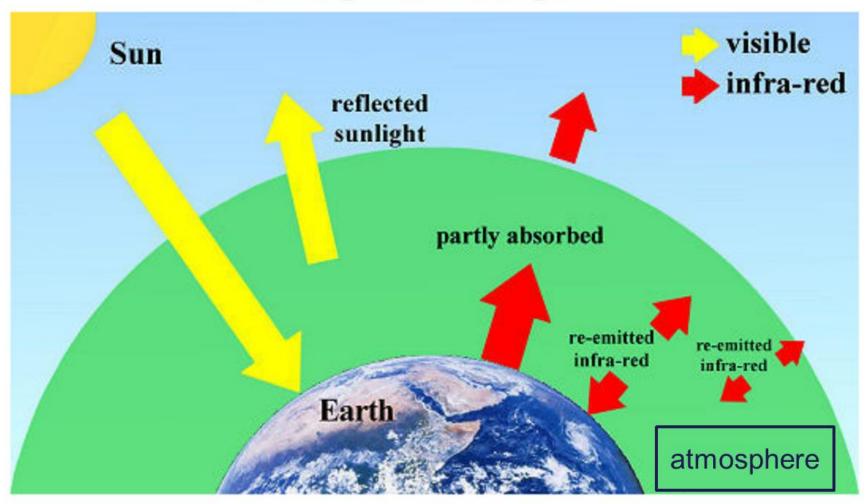
Storage & Scale the Core of Carbon Neutrality


Micro Grids

Source: Attia, S. (2025) **Net Zero Energy Buildings (NZEB)**, Elsevier, 2nd

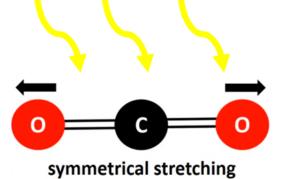
What cause climate change?

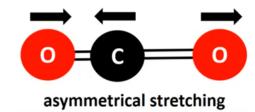
No greenhouse gases



-18°C

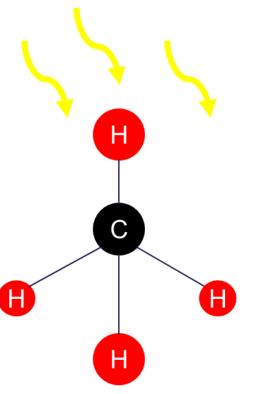
What cause climate change?

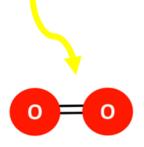

With greenhouse gases

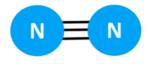


15°C

What cause climate change?







burning of fossil fuels such as coal, oil, natural gas, and deforestation

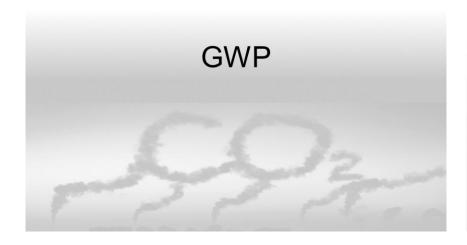
Methane is emitted by livestock, agricultural practices, decay of organic waste in municipal solid waste landfills and during processing of coal, oil, and natural gas. It traps the heat.

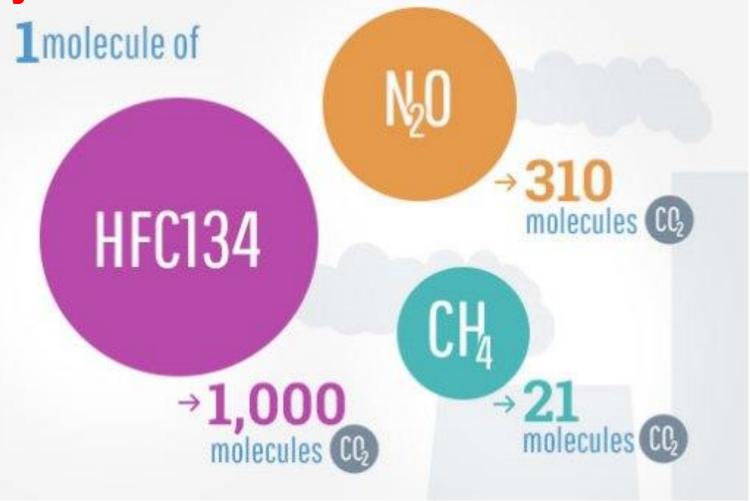
No GHG

ISBN: 0780446352

What cause climate change?

Molecule	x or %	μmol mol ⁻¹ (ppmv) ^a (2014)	μmol mol ⁻¹ (ppmv) (1750)			
N_2	0.78 or 78%	780 900	780 900			
O_2	0.21 or 21%	209 400	209 400			
H ₂ O	0.03 (100% humidity, 298 K)	30 000	31 000			
H ₂ O	0.01 (50% humidity, 298 K)	10 000	16 000			
Ar	0.01 or 1%	9300	9300			
CO ₂	3.8×10^{-4} or 0.038%	393	280			
Ne	1.8×10^{-5} or 0.002%	18	18			
CH ₄	1.77×10^{-6} or 0.0002%	1.80	0.72			
N_2O	3.2×10^{-7} or 0.00003%	0.32	0.27			
O_3^b	3.4×10^{-8} or 0.000003%	0.034	0.025			
All CFCs ^c	8.7×10^{-10} or $8.7 \times 10^{-8}\%$	0.0009	0			
All HCFCs ^d	1.9×10^{-10} or $1.9 \times 10^{-8}\%$	0.0002	0			
All PFCs ^e	8.3×10^{-11} or $8.3 \times 10^{-9}\%$	0.00008	0			
All HFCs ^f	6.1×10^{-11} or $6.1 \times 10^{-9}\%$	0.00006	0			

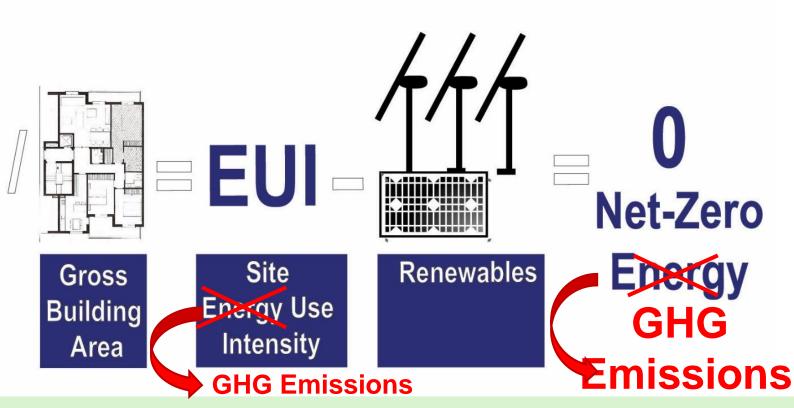

Climate change indicator?



1. GHG Emissions Intensity

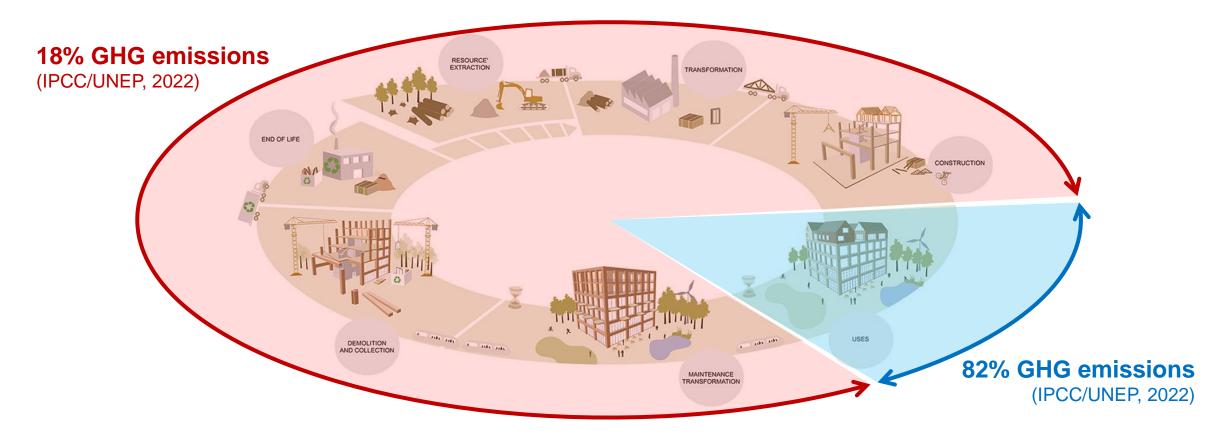
GWP kgCO_{2.e}/m²/year

Zero Net Carbon Buildings

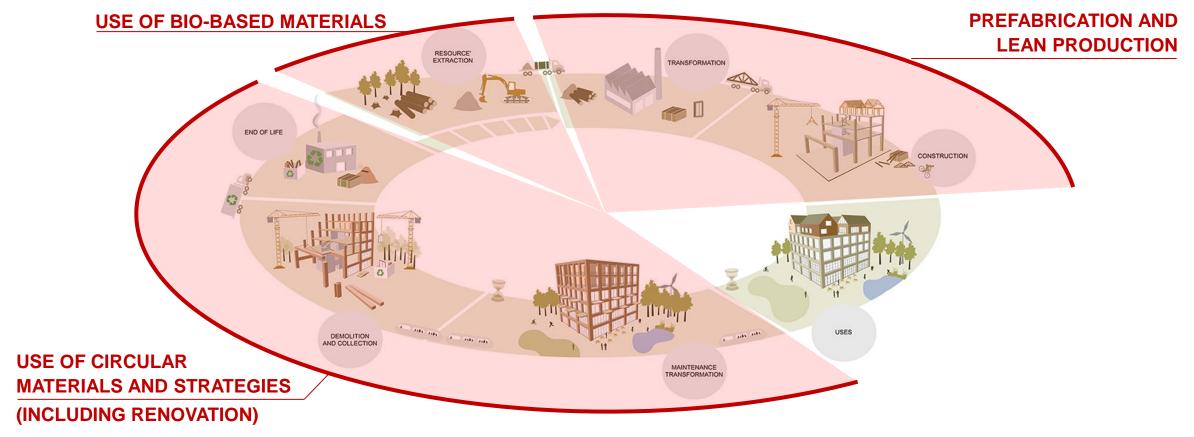


ISO 52000-1:2021

From Energy Use Intensity to GHG Emissions Intensity

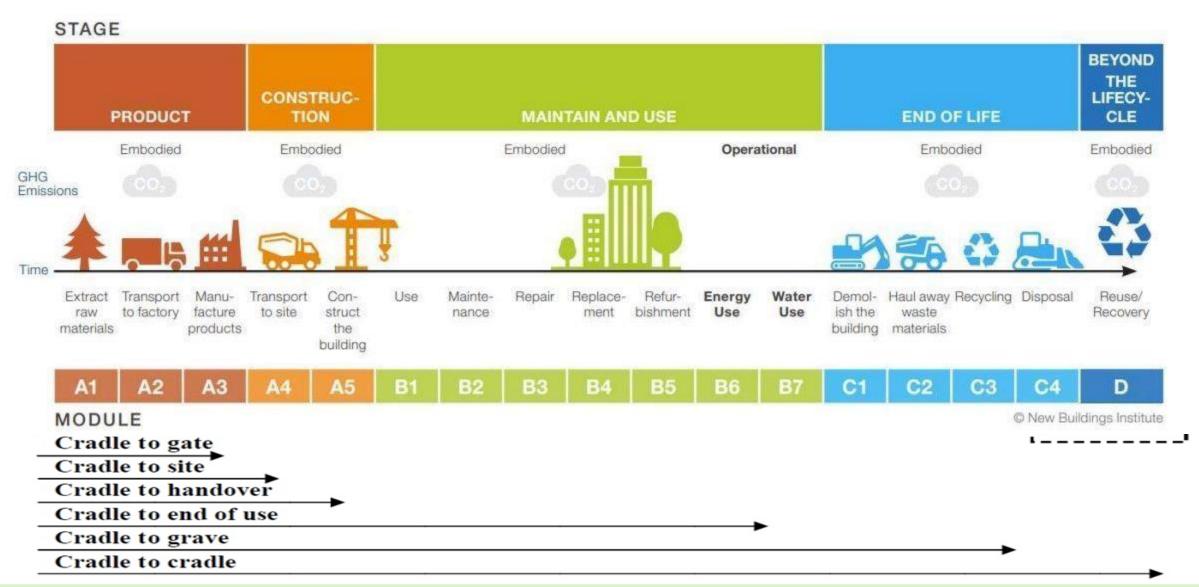

Measuring Energy Emissions

Why Whole-Life Carbon Buildings


'Embodied' and 'operational' impacts

Life cycle phases of buildings

Source: https://www.smartlivinglab.ch/en/infrastructures/smart-living-building/


Reducing 'embodied' impacts

Life cycle phases of buildings

Source: https://www.smartlivinglab.ch/en/infrastructures/smart-living-building/

Lifecycle Stages of Buildings: ISO 14040

Why whole life cycle carbon?

ISO 14040

- 1. Comprehensive Carbon Footprint Assessment
- **2.** Long-term Sustainability Goals Climate-neutral by 2050.
- 3. Regulatory Efficiency Resources efficiency
- 4. Market Transformation accelerate the adoption of green technologies
- **5. Holistic Environmental Impact**: circular economy

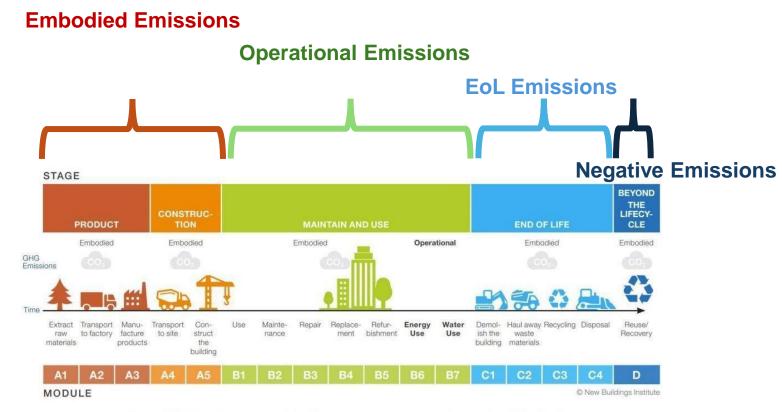
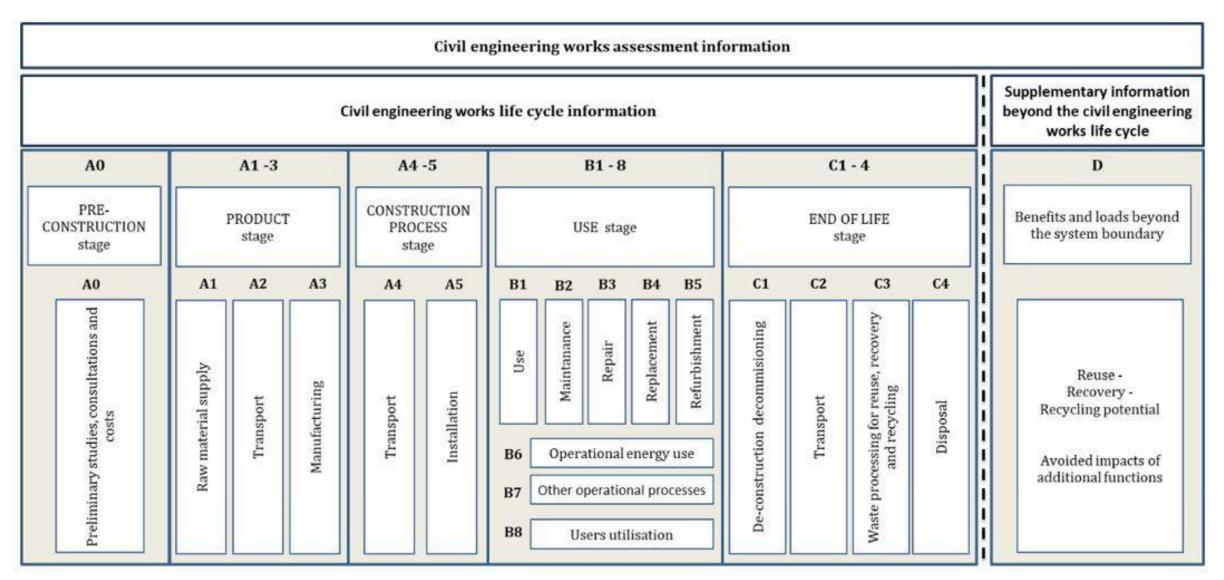
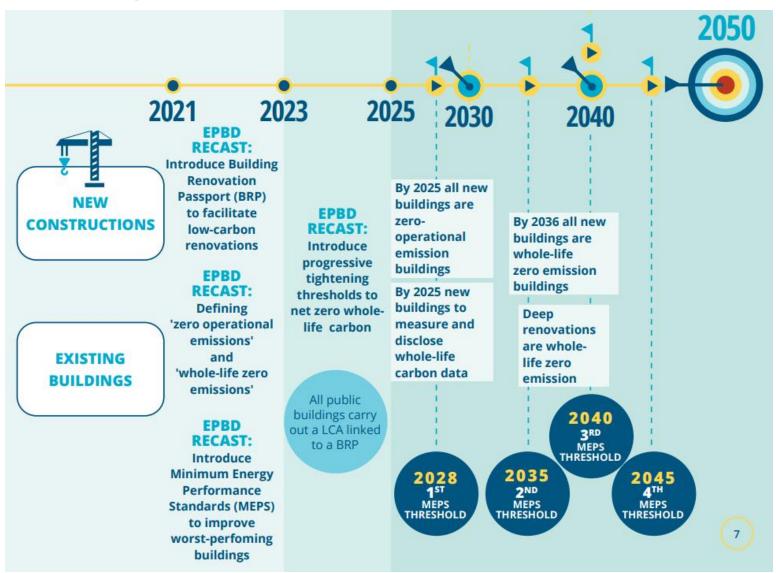



Figure 1: Lifecycle stages of building carbon. Data source: BS EN 15978:2011 Source: Bowles, Cheslak, and Edelson 2022


Lifecycle Stages of Buildings: EN 15643

Net-Zero Whole-Life Carbon Buildings

EU Carbon Neurality 2050

- 1. All-electric buildings
- 2. Low carbon buildings
- 3. Decarbonization of heating & cooling
- 4. Decarbonization of Energy Mix
- 5. Low carbon building services

Why whole life cycle carbon?

Denmark

regulation year: 2023

all new buildings > 1000 m₂

system boundary: A1-A3, B4, B6, C3-C4

lifespan: 50 years

from 2025: max. 7,1 kg CO_{2-eq}/m₂/ year

1,5 kg CO_{2-eq}/m₂/ year: A4-A5

France

regulation year: 2022

all new buildings > 50 m₂

system boundary: A1-A5

lifespan: 50 years

from 2022: max. 640-980 kg CO_{2-eq} /m₂,

depending on building typology

The Nederlands (MilieuPrestatie Gebouw)

regulation year: 2017

all new buildings > 100 m₂

system boundary: A1-A5

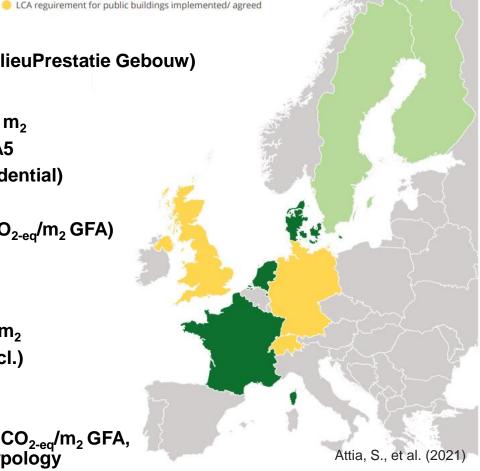
lifespan: 75 years (residential)

• from 2021: ≤ 0.8

(<u>DGBC</u> max. 200-260 CO_{2-eq}/m₂ GFA)

<u>Sweden</u>

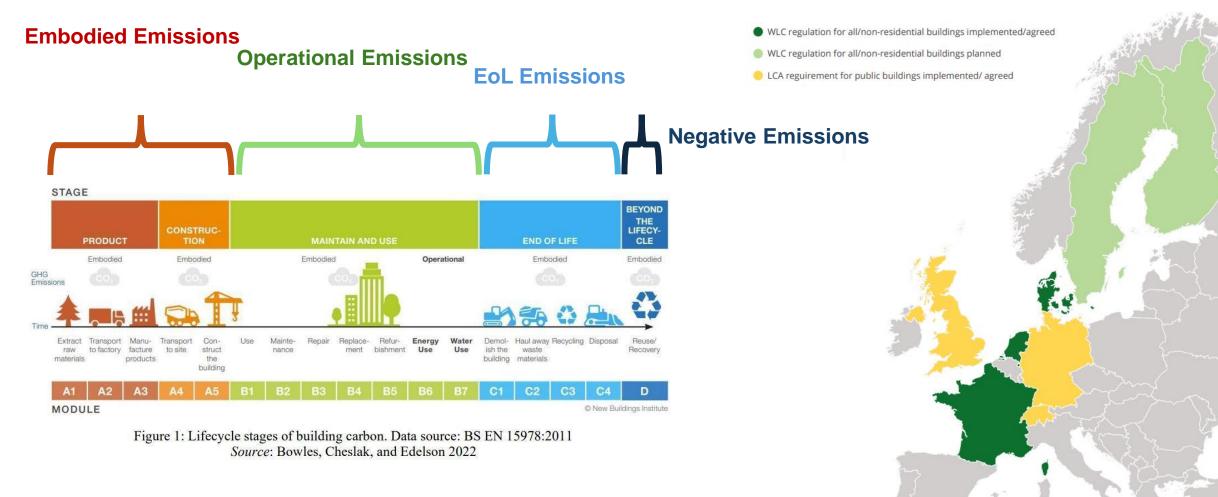
regulation year: 2022


all new buildings > 1000 m₂

(single-family houses excl.)

system boundary: A1-A5

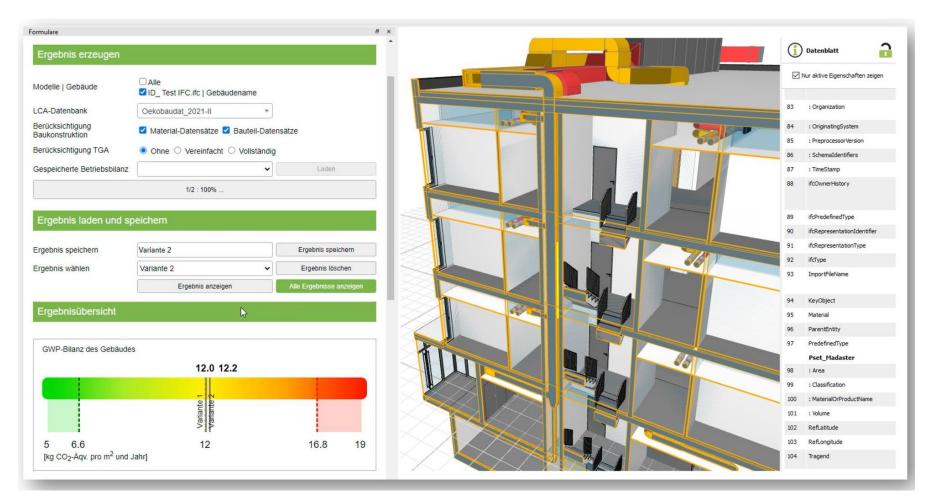
· lifespan: 50 years


 from 2025: max. 180-460 CO_{2-eq}/m₂ GFA, depending on building typology

WLC regulation for all/non-residential buildings implemented/agreed

WLC regulation for all/non-residential buildings planned

Operational vs Embodied emissions


RE2020 threshold of 4 kgCO2.equiv. operational emissions per m2 for new residential buildings

• Dynamic LCA calculation method + threshold for embodied carbon emission of 100 kgCO2.equiv per m2

GHG Emissions

Embodied and Operational Emissions

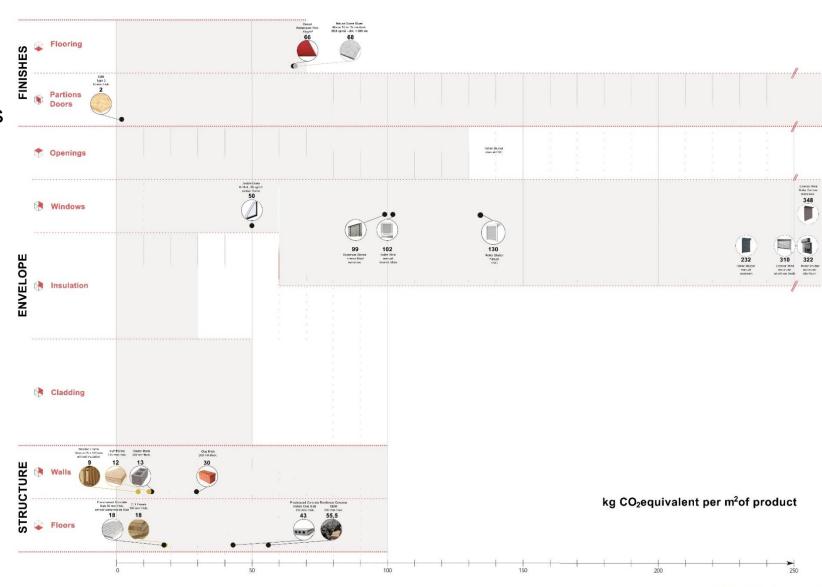
- 2023, Operational emissions:
- 4 kgCO2.equiv. per m2 for new residential buildings
- 2023, Embodied emissions (Office)
 24 kgCO2.equiv per m2

- 2025 Operational + Embodied emissions:
- 7,1 kgCO2.equiv. per m2 for new residential buildings: A1-A3, B4, B6, C3-C4
- 1,5 kg CO2-eq /m2 / year: A4-A5

Source: DGNB, Sebastian Theißen, BIM-based emissions modeling

Many of the mostly widely used construction materials are from carbonintensive heavy industries

Materials Embodied Energy Content


The length of the bars is proportional

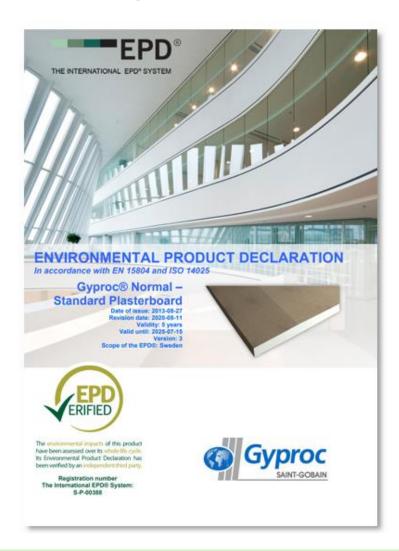
Amount of energy needed for a material, including mining, production and delivery at construction site Reinforced Concrete Red Brick Clay Block Concrete Key questions to answer Autoclaved aerated Does the material fit the purpose? To what extend is the material available? Sand Lime Brick KWh/m3 Can the raw material be mined locally? Sand Lime Brick How much energy is needed to produce the material? perforated Is the production process happening locally? **Cement Mortar** How much waste is produced during the production process? Is there environmental contamination or hindrances Wood Untreated during the production process? What maintenance does the material require? Straw Bales & Is the product ready for disassembly? Can the product be recycled?

Source: https://materialepyramiden.dk/

- Taking a Broader View of Carbon
- Whole life carbon Assessment
- Environmental Product Declarations

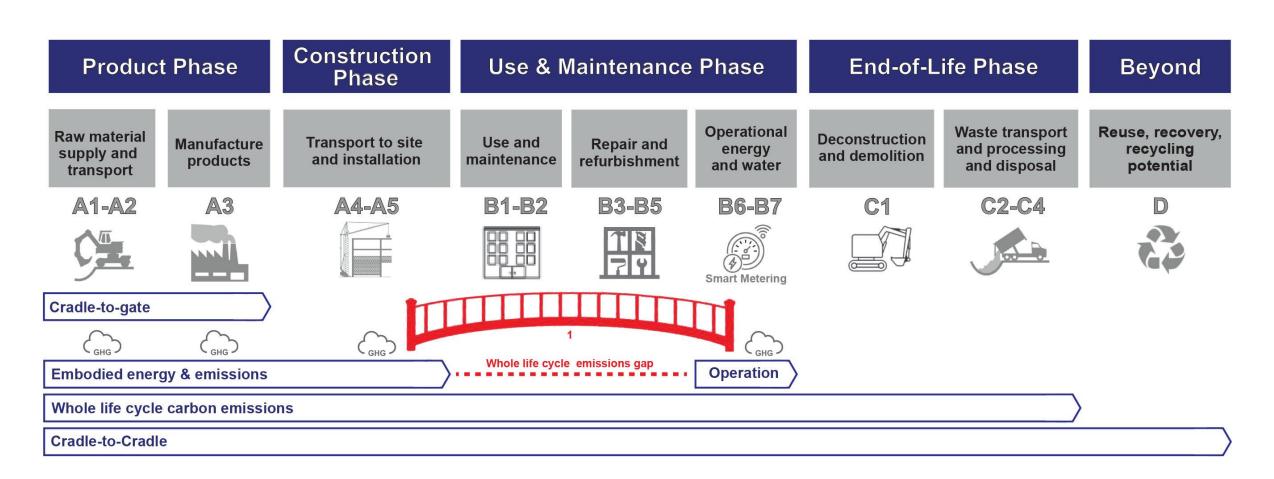
Categories of carbon negative materials & potential of negative emissions

Biochar


Captured carbon

Biomineralization (Low carbon aggregates)

Potential of negative emissions								
Biobased Materials	10-50%							
Charcoal Concrete	2-10%							
Carbonized Concrete	2-3%							

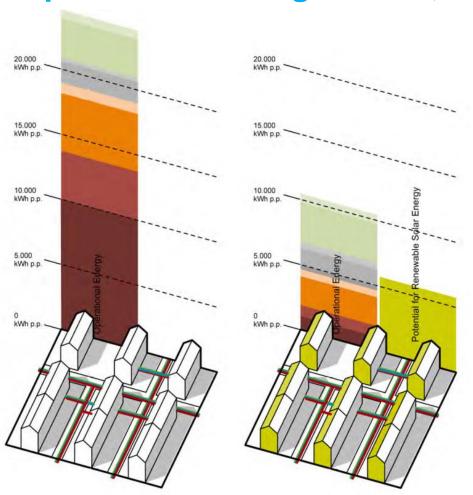

Environmental Product Declaration

Life Cycle Impact Assessment of Building Materials and Products

					E	NVIRON	MENTAL	IMPACT	S							
	Product stage				Use stage						End-of-life stage				ές. Έ	
Parameters		A11A21A3	A4 Transport		B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstructio n / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recove recycling
Global	Global Warming Potential (GWP 100) - kg CO ₂ equiv/FU	2,14E+00	1,24E-01	1,52E-01	0	0	0	0	0	0	0	4,10E-02	1,34E-02	1,54E-03	1,24E-01	-2,18E-02
(GWP		The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1.														
	Ozone Depletion (ODP) kg CFC 11 equiv/FU	5,52E-08	1,90E-17	2,76E-09	0	0	0	0	0	0	0	5,59E-18	7,03E-15	2,47E-12	6,94E-16	9,80E-05
		Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.														
Acidific	Acidification potential (AP) kg SO ₂ equiv/FU	8,24E-03	4,95E-04	5,54E-04	0	0	0	0	0	0	0	1,44E-04	5,48E-05	1,74E-05	7,08E-04	1,82E-05
		Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.														
	Eutrophication potential (EP) kg (PO ₄) ³⁻ equiv/FU	1,51E-03	1,21E-04	9,33E-05	0	0	0	0	0	0	0	8,38E-06	1,38E-05	3,2E-06	8,03E-05	-3,45E-01
kg (FO ₂)		Excessive enrichment of waters and continental surfaces with nutrients, and the associated adverse biological effects.														
	Photochemical ozone creation (POPC) kg Ethylene equiv/FU	3,03E-04	1,81E-05	5,11E-05	0	0	0	0	0	0	0	9,68E-06	2,25E-06	2,14E-06	5,84E-05	0
		Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.														
non-fos	depletion potential for sail ressources (ADP-ts) - kg Sb equiv/FU	1,96E-06	1,65E-09	1,99E-06	0	0	0	0	0	0	0	1,02E-09	1,15E-09	8,46E-10	4,22E-08	0
	Abiotic depletion potential for fossil ressources (ADP-fossil fuels) - <i>MJ/FU</i>	3,66E+01	1,73E+00	2,29E+00	0	0	0	0	0	0	0	5,11E-01	1,81E-01	1,64E-02	1,65E+00	0
fuels) -					Consur	mption of no	n-renewabl	e resources,	thereby lov	wering their	availability for	or future ge	nerations.			

Coupling of Embodied and Operational GHG Emissions Modeling

Source: Attia, S. (2025) Net Zero Energy Buildings (NZEB), Elsevier, 2nd


Some low carbon solutions

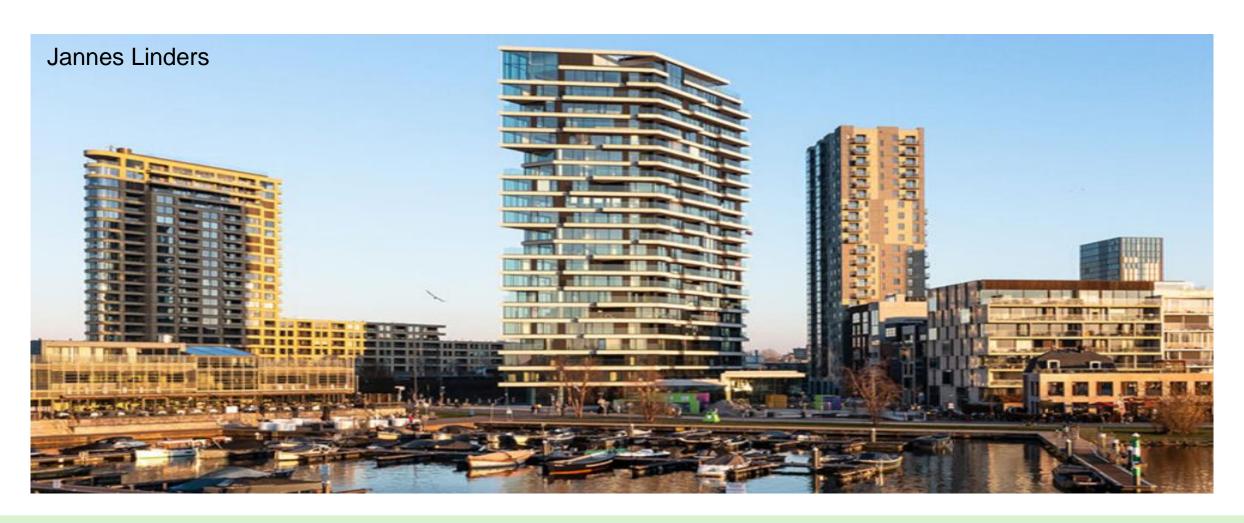
Nr.	Low carbon solutions	Category			
1	Renovate instead of building new				
2	Design for flexibility, resilience and extended lifespan	0: 1:: : : 1			
3	Design for disassembly	Circularity principles and downsizing in the conceptual			
4	Re-use existing materials in construction	design stage			
5	Optimize the use of space in offices, residential buildings				
6	Design based on light construction method instead of massive construction				
7a	Use industry by-products instead of cement				
7b	Use recycled concrete and other by-products as aggregate for new concrete				
8	Reduce concrete demand through material use optimization in (structural) design	Carbon reduction in material selection and sourcing			
9	Offsite construction and design for less waste on-site				
10	Use of locally sourced materials and clean transportation				
11	Use timber structures in new construction				
12	Use hybrid (concrete + timber) structures in new construction	Carbon reduction in material			
13	Use timber roof elements in standard structure	selection and sourcing – bio- based materials			
14	Use other bio-based materials				

Building Stock Renovation

Evaluate systematic strategies to increase the deep renovation rate before implementation to gain time, money and energy.

Zero Net Carbon Buildings

De Tippe Zwolle (F6), The Netherlands

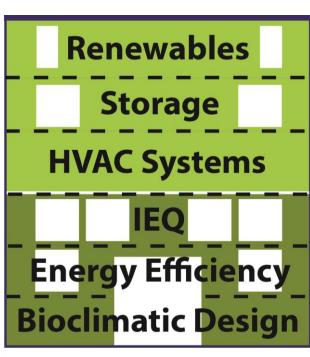


Zero Net Carbon Tall Buildings

HAUT, Arup, Amsterdam, The Netherlands

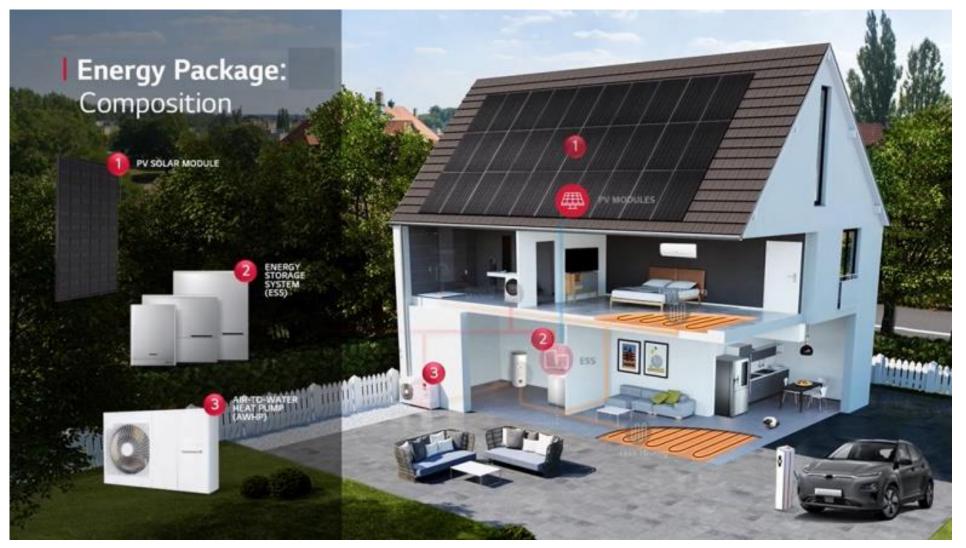
Zero Net Carbon Buildings

SBD Lab


Definition

An ZNC is a gridconnected, carbon-efficient building that balances its total annual carbon emissions by on-site generation.

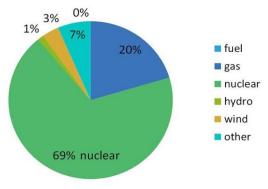
A ZNC building is a highly energy efficient building that produces onsite, or procures, enough carbon-free renewable energy to meet building operations energy consumption annually.





Source: Attia, S. (2025) **Net Zero Energy Buildings (NZEB)**, Elsevier, 2nd

Technology Portfolio in 2050



Carbon Neutral Buildings

AC unit with environmental Friendly refrigerant

PV with increase efficiency

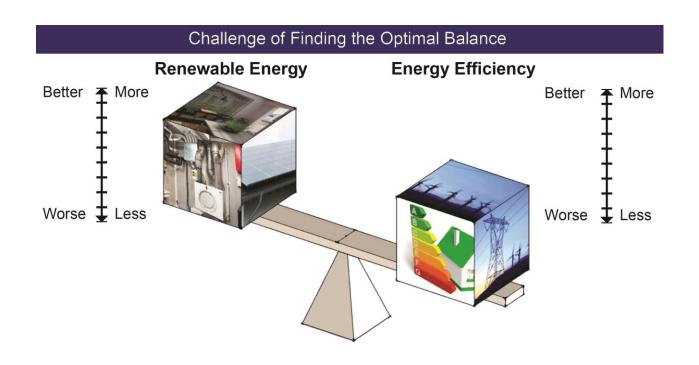
Belgian Energy Mix:
Current and Future Scenarios

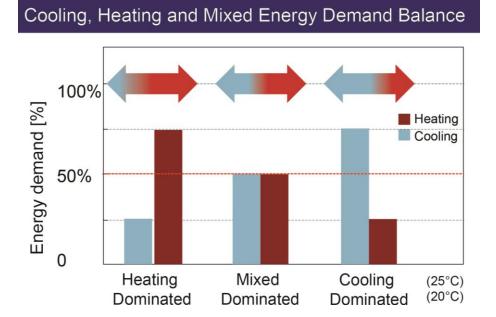
De Belgische energiemix van februari 2017 (bron : ELIA)

Electrification + Decarbonization

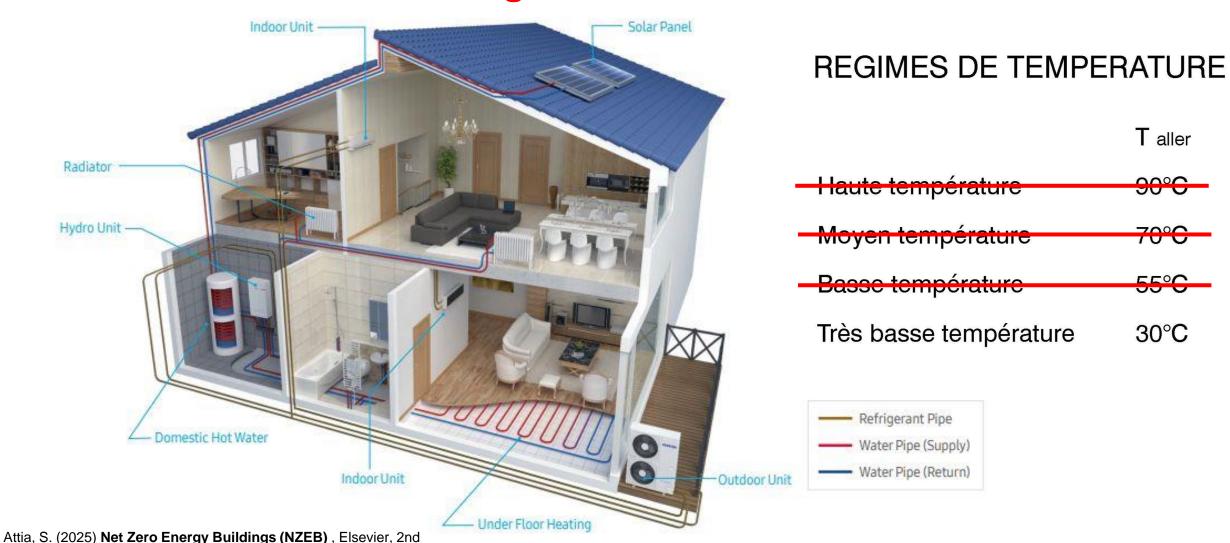
ASHRAE Standard 189.1, 2020

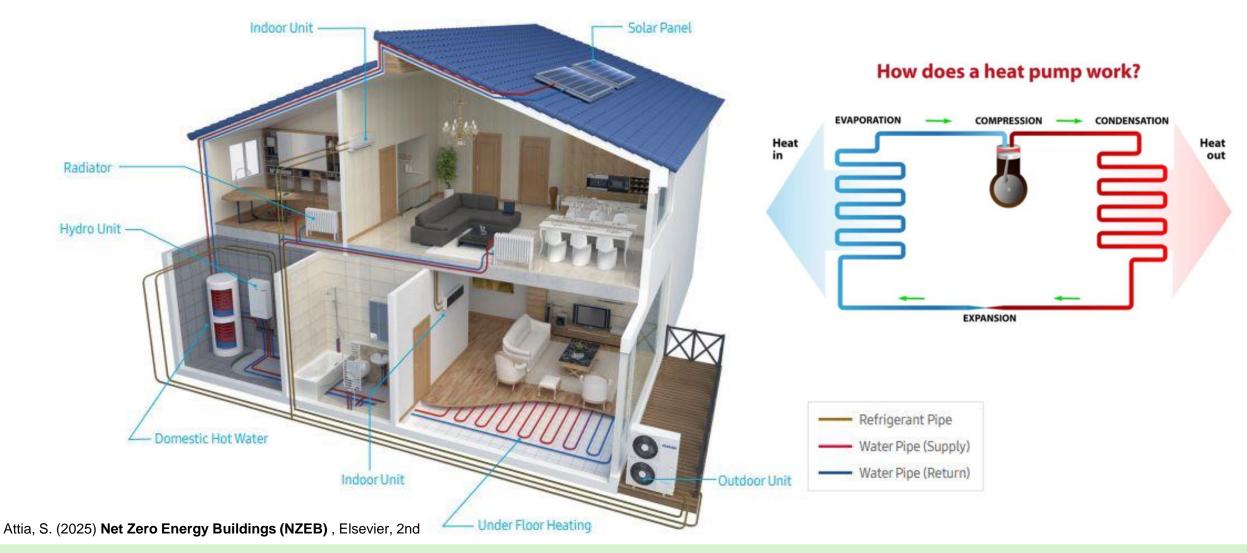
Electrification and efficiency key strategies for achieving zero carbon buildings




climateactiontracker.org

New report: Decarbonising Buildings - Feb 2022


IEQ, Energy Efficiency and RES Balance

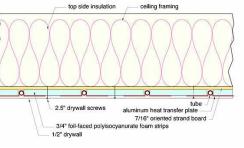


Decarbonization of Heating

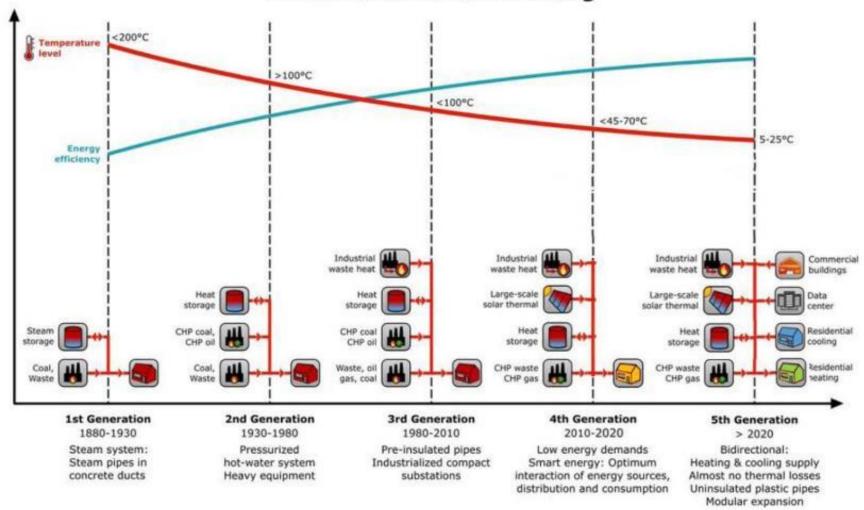
All Electric with Heat Pumps

Worlds largest heat pump to be installed in Helsinki, Finland.

- 1. Full heating production capacity ranges from 20-33 MW, depending on the air temperature,
- 2. Can help deliver heat up to 90 degrees Celsius (194 Fahrenheit) while operating at temperatures as low as -20 degrees Celsius (-4 Fahrenheit).
- 3. The heat pump will provide heat for 30,000 homes in Helsinki annually, roughly saving 26,000 tonnes of CO2 emissions.


Source: MAN Energy Solutions

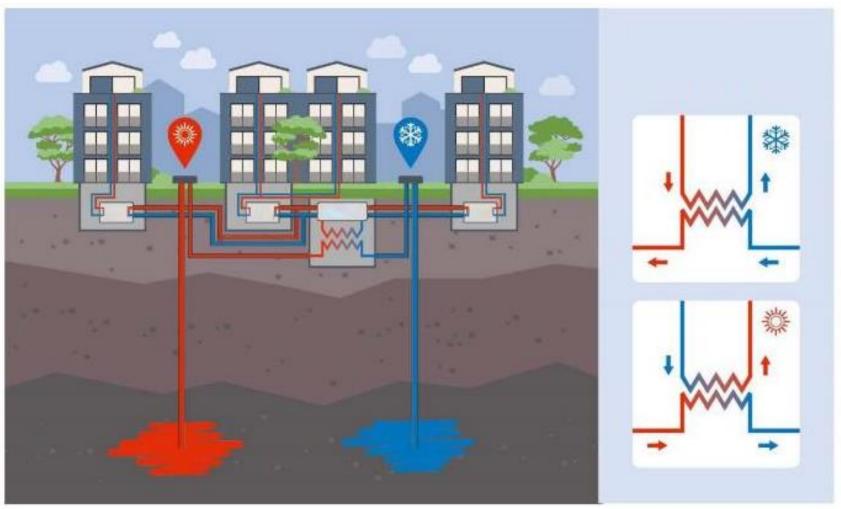
Floor Heating and Cooling Hydronic radiant ceiling cooling/heating



District Heating & Cooling

Evolution of District Heating

4th Generation:

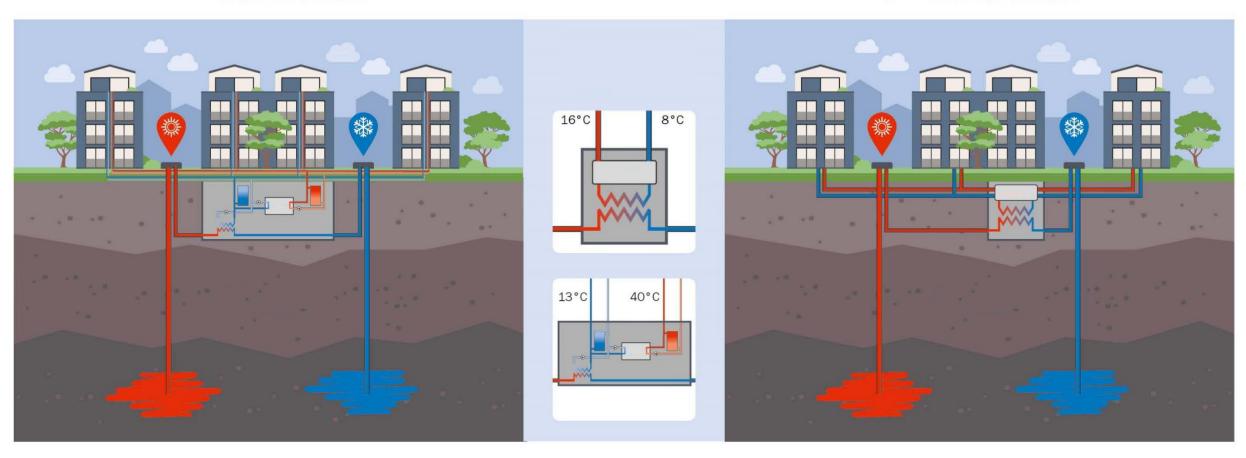

District heating grid with a collective source

5th Generation:

Thermal energy directly from the subsurface (T 5 – 25°C)

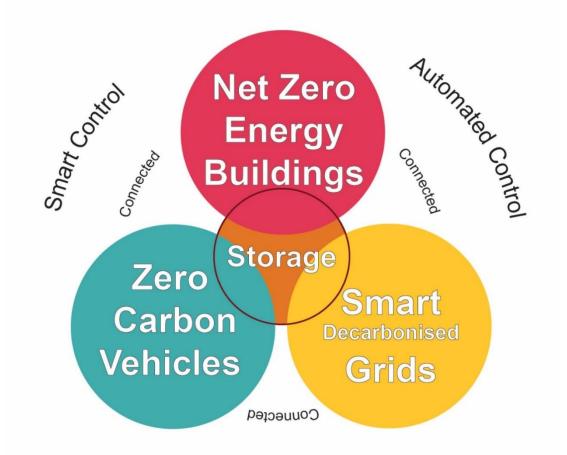
District Heating Grid: 5th Generation

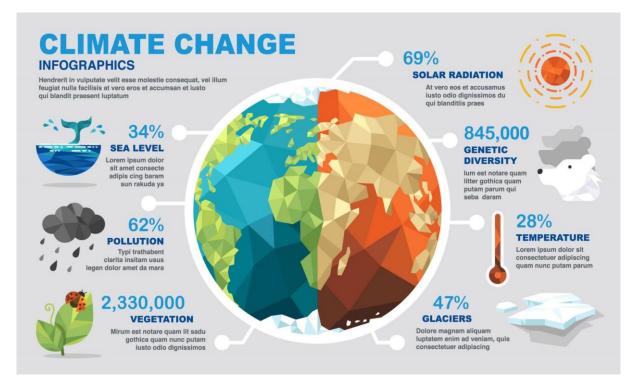
The Neutral Grid: Centralized Heat Pumps



4th Generation vs. 5th Generation

4th Generation

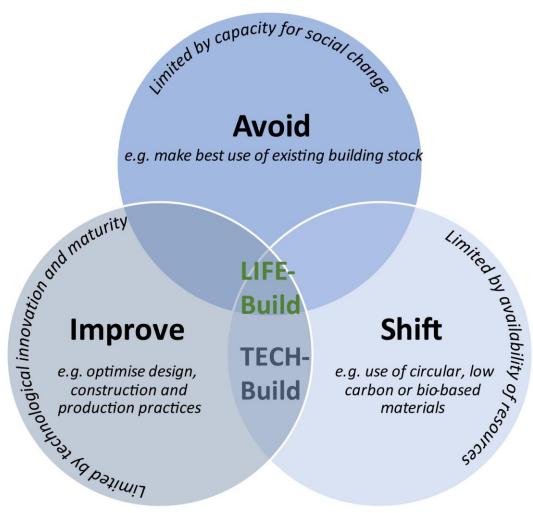

5th Generation



Carbon Neutral Communities

Storage & Scale the Core of Carbon Neutrality

Resilience

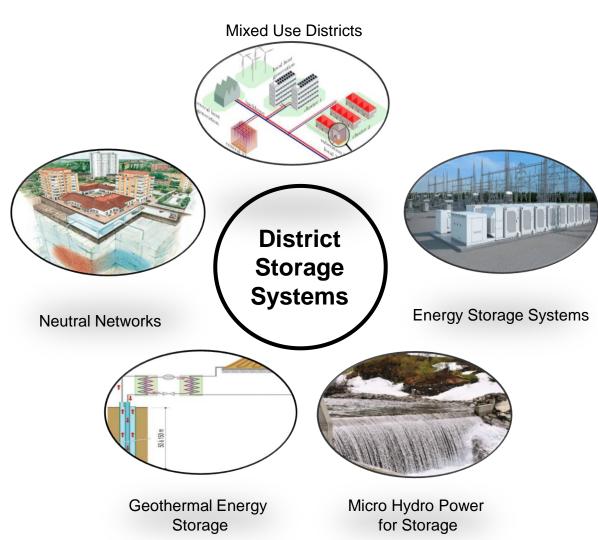

Micro Grids

Source: Attia, S. (2025) Net Zero Energy Buildings (NZEB), Elsevier, 2nd

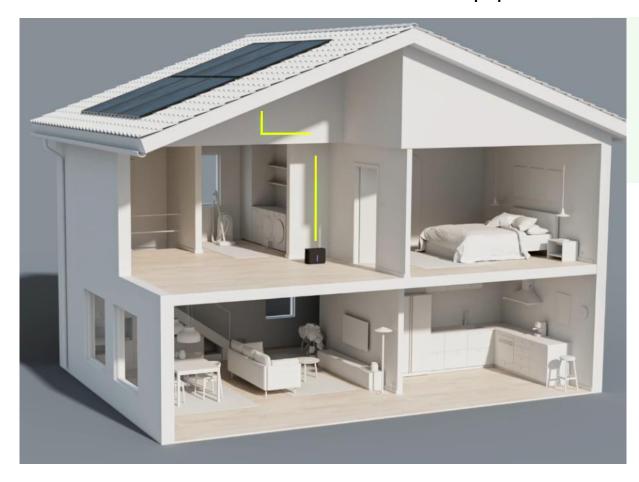
Carbon Neutral Communities

Storage & Scale the Core of Carbon Neutrality

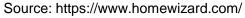
Resilience


Source: Le Den, X. et al. (2023). Towards an EU roadmap for reduction of whole life carbon in buildings. Brussels, Belgium.

Energy Storage Systems


The Core of Carbon Neutrality

Plug-In Battery


2 kWh and 5 kWh cover all households equipments and appliances

Regulations on Refrigerants

ISO 817

- 1. EU Directive introduced in 2006 on the direct impact of air conditioning systems
- 2. February 2024: EU set a steeper schedule for phasing down fluorinated gases
- 3. Prohibition of product categories: Chillers, Heat Pumps and Split Air Conditioning systems

Time period	Updated EU phase down adopted in February 2024
2021 - 2023	
2024 - 2026	23.6%
2027 - 2029	10.1%
2030	5%
2048	2.38%

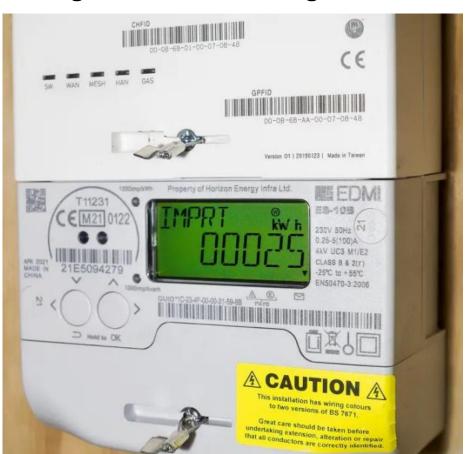
New refrigerants – new rules

ISO 817

Refrigerant	GWP
R718 (Water)	0
R744 (CO2)	1
R290 (Propane)	3
R1234yf	4
R1234ze	7
R454b	466
R513A	631
R32	675
R410A	2088

Safety class ISO 817; PED (EU)	
A1 (non-flammable)	
A1 (non-flammable)	
A3 (higher flammability)	
A2L (mildly flammable)	
A2L (mildly flammable)	
A2L (mildly flammable)	
A1 (non-flammable)	
A2L (mildly flammable)	
A1 (non-flammable)	

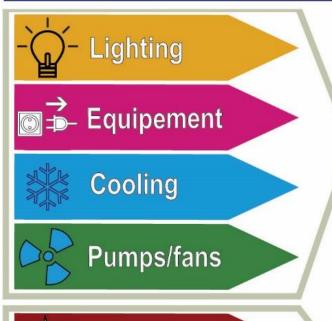
Future influences:


- Achieving low-carbon buildings
- Growth of hydronic technologies and low GWP- refrigerants
- Advanced control and monitoring systems
- Retrofit balance
- Balance what's possible and what's practical

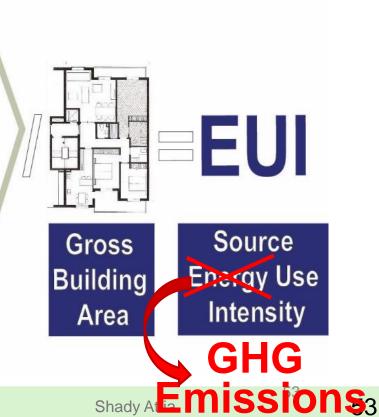
Smart Meters & Grid Mix Emission Factors

ISO 52000-3:2023

- Net-Zero Energy ≠ Net-Zero Carbon
- Belgium has a 15 min grid mix factor


 Annual operational emissions calculations based on dynamic factors and export/import fluctuations

	EMISSION FACTOR [g/kWh]												
20	23							NTH _			40	- 44	40
	1	411	2 517	3 487	484	5	6 543	580	8 544	9 512	10 470	11 480	12 383
	2	406	516	484	473	474	534	561	532	509	470	479	380
	3	402	516	478	467	474	534		529	506	472	479	379
	4	400	517	483	464	480	533		529	506	472	480	380
		400	517	485							476	483	383
	5				467	487	533		533	509			
	6	415	523	493	477	498	536			518	486	489	391
	7	429	529	500	487	502	535	568	542	527	492	499	402
	8	441	531	498	479	489	518	545	524	521	497	505	411
	9	447	522	483	454	463	487	508	493	494	486	498	415
_	10	446	501	462	422	426	451	467	457	461	462	486	414
HOUR of the day	11	440	481	441	389	390	421	434	421	425	439	476	408
f th	12	434	466	426	365	365	400	410	393	396	418	471	404
8	13	432	458	420	351		387	396	378	376	404	470	404
로	14	437	460	420	344	345	379	389	371	368	401	479	409
	15	447	473	430	344	348	379	391	372	372	411	495	420
	16	460	494	448		360	389	401	384	391	433	516	429
	17	468	521	473	381	383	408	420	408	424	466	520	430
	18	469		499	425	416	440	456	450	475	505	511	426
	19	464		513	478	459	481	498	498	526	521	502	421
	20	457	530	512	517	497	519	541			513	495	415
	21	448	523	505	522	518		572			502	491	407
	22	440	520	500	511	511					493	486	399
	23	434	520	500	500	499				529	487	486	396
	24	425	518	496	487	489	540	570	545	519	477	482	386


Converting the primary energy use intensity to GHG emissions

Measuring Energy Emissions

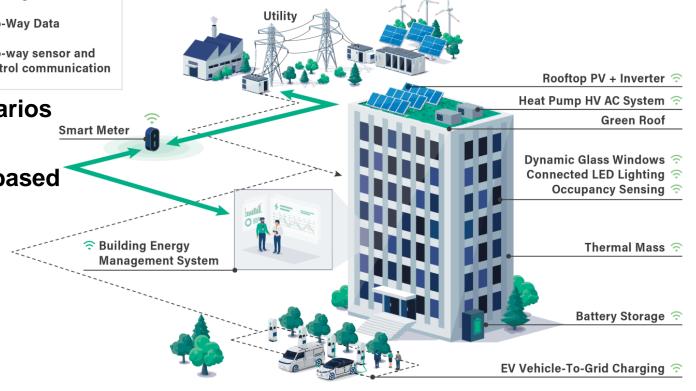
ISO 52000-1:2021

Carbon Neutral Communities

From Single Building to Community

Carbon Neutral Communities

From Single Building to Community


Two-Way Data

Two-way sensor and control communication

1. Either average or marginal grid mix scenarios are typically adopted

2. Environmental data sources are usually based on averages:

- Real-time Generation Mix Data
- Carbon Intensity of Each Source
- Power Demand and Grid Load
- External Data Sources
- Emissions Factor Calculation
- Updating the Signals through smart grids

Power Plants

Source: NREL.

Source: https://trellis.net/article/health-economic-and-community-benefits-zero-carbon-buildings/

The transition towards zero-emission buildings

PAST

TRANSITION

FUTURE

2021 nearly Zero-Energy low renovation rates

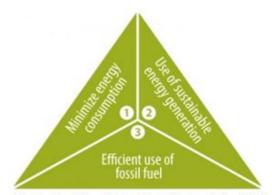


Figure 1a: Trias Energetica (Duijvestein, 2010)

2030 nearly Zero Emission massive deep renovation

Figure 1a: Trias Materia (Duijvestein, 2010)

2050 zero-emission built environment

The transition towards Zero-emission buildings

PAST

TRANSITION

FUTURE

LIFE-Build

1,060

Embodied

Carbon

Carbon

Operational

1,600

1.400

1,200

1,000

800

600

400

200

MtCO₂e

1.360

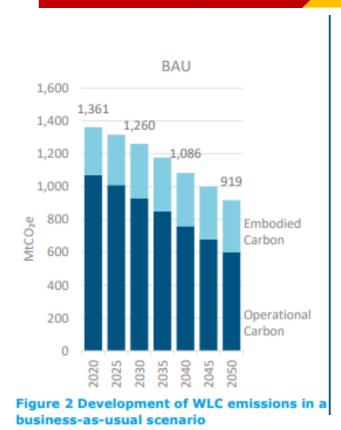
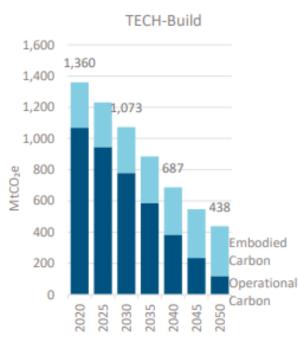
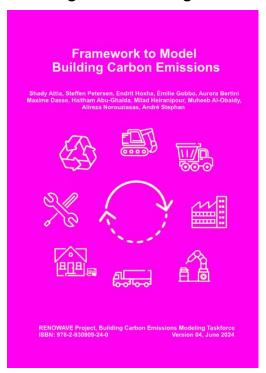



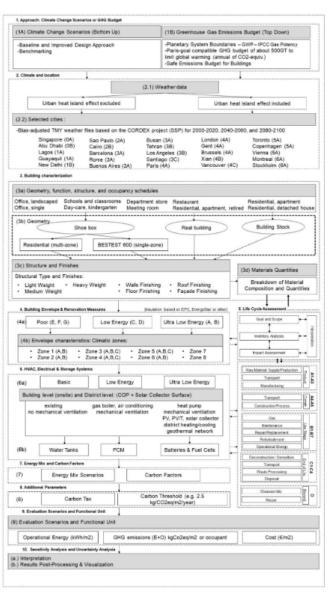
Figure 3 Development of WLC emissions in the TECH-Build scenario

Le Den, X. et al. (2023). Towards an EU roadmap for reduction of whole life carbon in buildings. Brussels, Belgium.

Framework for Building Modelling



For Zero Carbon Buildings


10 Modules

Paris-goal-compatible assessment method

 evaluate the assessment methods proposed or required by current climate policies, aiming to check their compatibility with meeting the science-based carbon targets and budgets

Attia, S., Petersen, S., Hoxha, E., Gobbo, E., Bertinit, A., Dasse, M., et al. (2024) Framework to Model Building Carbon Emissions, Report, Sustainable Building Design Lab, Liege University, Liege, Belgium. DOI: 10.13140/RG.2.2.15338.73925/3

Conclusion

What should be focused on:

- ➤ Adopt the new indicators of GWP and Module A-B-C + (D)
- Get experienced with carbon numbers through EPDs (databases)
- ➤ Use consistent methodology and software

Zero Carbon Emissions Buildings Ingredients:

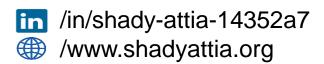
- > Reduced building area
- > Minimized car parking
- > High-Performance envelope
- > Electric heating & cooling
- > Biogenic materials
- > 40% window-to-wall ratio
- > Plug-in batteries
 - > Solar PV on roof and facades

Directions:

Begin by setting a decarbonization performance goal and limit for your project. Start by mixing the smallest building area with the minimal parking. Next, add a high-performance building envelope alongside an electric heating and cooling system. Add a pinch of solar PV and a large scoop of biogenic materials and run the energy and life cycle impact assessment simulations.

Category	Embodied carbon reduction solution				
Avoid	Optimize/reduce the use of space in offices and residential buildings				
Avoid	Use existing assets that are currently unused instead of new buildings.				
Avoid	Renovate instead of build new				
Improve	Design for adaptability, resilience and extended lifespan				
Improve	Design for disassembly				
Improve	Design based on light construction methods instea of massive construction				
Improve	Reduce concrete demand by use of void formers in concrete slabs				
Improve	Use carbon cured concrete				
Improve	Implement carbon capture in cement production				
Improve	Implement carbon capture in steel production				
Shift	Re-use existing building components and materials Use industry by-products instead of clinker in cement Use alternative cementitious materials instead of cement in concrete				
Shift					
Shift					
Shift	Use recycled concrete and other by-products for new concrete				
Shift	Full timber construction				
Shift	Hybrid (concrete + timber) structures in new construction				
Shift	Use other bio-based materials				
Shift	Use recycled steel in steel production				
Shift	Use recycled glass in glass production				
Shift	Use renewable energy in cement production				
Shift	Use renewable energy in steel production and other metals				
Shift	Use renewable energy in glass production				

Questions?


Notre Dame University (NDU) Shouf Campus Ramez G.Chagoury Faculty of Architecture, Art, and Design

Future Technologies for Achieving Net-Zero Carbon Buildings

Lebanon | April 09, 2025

Prof. Dr. Shady Attia
Sustainable Building Design Lab, UEE,
Applied Sciences, University of Liège, Belgium
shady.attia@uliege.be

References

- Attia, S., Petersen, S., Hoxha, et al. (2024). Framework to Model Building Carbon Emissions. (Version 5). Liege, Belgium: Sustainable Building Design Lab. doi:10.13140/RG.2.2.15338.73925/4;
- Attia, S. (2025) Net Zero Energy Buildings (NZEB), Elsevier, 2nd Edition, Camridge, UK
- Alaux, N., Saade, M. R. M., Hoxha, E., Truger, B., & Passer, A. (2023). Future trends in materials manufacturing for low carbon building stocks: A prospective macro-scale analysis at the provincial level. Journal of Cleaner Production, 382, 135278.
- An, J., Wu, Y., Gui, C., & Yan, D. (2023). Chinese prototype building models for simulating the energy performance of the nationwide building stock. Building Simulation, 16(8), 1559–1582. https://tinyurl.com/3z8kyzwu
- ASHRAE, S. (2021). Standard 189.1- Standard for the Design of High-performance Green Buildings. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 66.
- Attia, S. (2023). DynamicRenowave: Life Cycle Assessment and Energy Simulation of Building Renovation Strategies. https://www.sbd.uliege.be/dynamicrenowave
- Attia, S., & Petersen, S. (Directors). (2024, April 24). Building Carbon Emissions Modeling Framework (Webinar 1). https://www.youtube.com/watch?v=5OfzJ9yCAkA
- Bertini, A., & Dasse, M. (Directors). (2024, April 24). Building Carbon Emissions Modeling Framework (Webinar 2). https://www.youtube.com/watch?v=4B3Cs4ewIVc&t=1662s
- CEN (2019). 15804:2019+A2 sustainability of construction works—Environmental product declaration—Core rules for the product category of construction products. European Committee for Standardization, Brusssles, Belgium.
- CEN (2021). EN 15643:2021 Sustainability of construction works Framework for assessment of buildings and civil engineering works, European Committee for Standardization, Brussels, Belgium.
- Le Den, X. et al. (2023). Towards an EU roadmap for reduction of whole life carbon in buildings. Brussels, Belgium.