

Dissertation presented by
Thomas Lamby
for the degree of Doctor in
Mathematical Sciences

May 7, 2025

Weights

A function $\phi:(0,\infty)\to(0,\infty)$ is a Boyd function if it is continuous, $\phi(1)=1$ and

$$\bar{\phi}(t) := \sup_{s>0} \frac{\phi(st)}{\phi(s)} < \infty,$$

for all $t \in (0, \infty)$. The set of Boyd functions is denoted by \mathcal{B} . The lower and upper Boyd indices of a Boyd function ϕ are defined by

$$\underline{b}(\phi) := \sup_{t < 1} \frac{\log \bar{\phi}(t)}{\log t} = \lim_{t \to 0} \frac{\log \bar{\phi}(t)}{\log t}$$

and

$$\overline{b}(\phi) := \inf_{t>1} \frac{\log \overline{\phi}(t)}{\log t} = \lim_{t\to\infty} \frac{\log \overline{\phi}(t)}{\log t},$$

respectively.

Examples

Let ψ be a continuous slowly varying function on $(0, \infty)$:

$$\lim_{t o 0} rac{\psi(t\mathsf{s})}{\psi(t)} = \mathsf{1} \quad \mathsf{and} \quad \lim_{t o \infty} rac{\psi(t\mathsf{s})}{\psi(t)} = \mathsf{1}$$

for any s>0. For $\theta\in\mathbb{R}$, the function $t\mapsto t^\theta\psi(t)/\psi(1)$ is a Boyd function such that $\underline{b}(\phi)=\overline{b}(\phi)=\theta$. A standard choice for the slowly varying function is $\psi=(|\ln|+1)^\gamma$, for $\gamma>0$. One can deal with even more iterated logarithms: set

$$L_0(t) = t$$
, $L_1(t) = 1 + |\log t|$ and $L_m(t) = 1 + |\log(L_{m-1}(t))|$ for $m > 1$.

Then, if $\alpha = (\alpha_0, ..., \alpha_n) \in \mathbb{R}^{n+1}$, $\phi_\alpha : (0, \infty) \to (0, \infty)$, defined by

$$\phi_{\alpha}(t) = \prod_{j=0}^{n} L_{j}(t)^{\alpha_{j}},$$

is a Boyd function such that $\underline{b}(\phi) = \overline{b}(\phi) = \alpha_0$.

Admissible Sequences

A sequence $\sigma=(\sigma_j)_{j\in\mathbb{N}}$ of positive real numbers is admissible if there exists a constant C>0 such that $C^{-1}\sigma_j\leq\sigma_{j+1}\leq C\sigma_j$ for all j. One also associates Boyd indices to such a sequence. Let $\underline{\sigma}_j:=\inf_{k\geq 1}\sigma_{j+k}/\sigma_k$ and $\overline{\sigma}_j:=\sup_{k\geq 1}\sigma_{j+k}/\sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \sup_{j \in \mathbb{N}} \frac{\log \underline{\sigma_j}}{\log 2^j} = \lim_{j} \frac{\log \underline{\sigma_j}}{\log 2^j}$$

and

$$\overline{s}(\sigma) := \inf_{j \in \mathbb{N}} \frac{\log \overline{\sigma}_j}{\log 2^j} = \lim_j \frac{\log \overline{\sigma}_j}{\log 2^j}.$$

• Let $\phi \in \mathcal{B}$,

Proposition

Let $\sigma_i = \phi(2^j)$ and $\theta_i = 1/\phi(2^{-j})$, then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma),\underline{s}(\theta)\} \quad \text{and} \quad \overline{b}(\phi) = \max\{\overline{s}(\sigma),\overline{s}(\theta)\}.$$

 \bullet Let σ be an admissible sequence,

$$\phi_\sigma(t) := \left\{egin{array}{ll} rac{\sigma_{j+1}-\sigma_j}{2^j}(t-2^j)+\sigma_j & ext{if } t\in[2^j,2^{j+1}), j\in\mathbb{N}_0,\ 1 & ext{if } t\in(0,1). \end{array}
ight.$$

• Let $\phi \in \mathcal{B}$,

Proposition

Let $\sigma_i = \phi(2^j)$ and $\theta_i = 1/\phi(2^{-j})$, then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma),\underline{s}(\theta)\} \quad \text{and} \quad \overline{b}(\phi) = \max\{\overline{s}(\sigma),\overline{s}(\theta)\}.$$

 \bullet Let σ be an admissible sequence,

$$\phi_{\sigma}(t) := \begin{cases} \frac{\sigma_{j+1} - \sigma_j}{2^j} (t - 2^j) + \sigma_j & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0, \\ 1 & \text{if } t \in (0, 1). \end{cases}$$

• Let $\phi \in \mathcal{B}$.

Proposition

Let $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$, then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text{and} \quad \overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$$

ullet Let σ be an admissible sequence,

$$\phi_{\sigma}(t) = \left\{ egin{array}{ll} rac{\sigma_{j+1} - \sigma_{j}}{2^{j}} (t-2^{j}) + \sigma_{j} & ext{if } t \in [2^{j}, 2^{j+1}), j \in \mathbb{N}_{0}, \ rac{1/\sigma_{j} - 1/\sigma_{j+1}}{2^{j}} (t-2^{-j-1}) + 1/\sigma_{j+1} & ext{if } t \in (2^{-j-1}, 2^{-j}], j \in \mathbb{N}_{0}. \end{array}
ight.$$

• Let $\phi \in \mathcal{B}$,

Proposition

Let $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$, then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text{and} \quad \overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$$

 \bullet Let σ be an admissible sequence,

$$\phi_{\sigma}(t)=\left\{egin{array}{ll} rac{\sigma_{j+1}-\sigma_{j}}{2^{j}}(t-2^{j})+\sigma_{j} & ext{if } t\in[2^{j},2^{j+1}), j\in\mathbb{N}_{0},\ \ rac{1}{\phi(1/t)} & ext{if } t\in(0,1). \end{array}
ight.$$

• Let $\phi \in \mathcal{B}$,

Proposition

Let $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$, then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text{and} \quad \overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$$

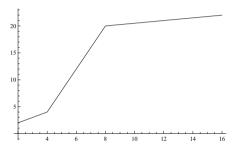
 \bullet Let σ be an admissible sequence,

$$\phi_{\sigma}(t) = \left\{egin{array}{ll} rac{\sigma_{j+1} - \sigma_j}{2^j}(t-2^j) + \sigma_j & ext{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0, \ t^s & ext{if } t \in (0,1), \end{array}
ight.$$

where $\underline{s}(\sigma) \leq s \leq \overline{s}(\sigma)$.

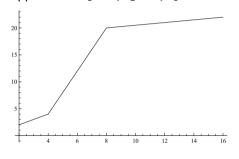
Construction of a smooth ϕ_{σ}

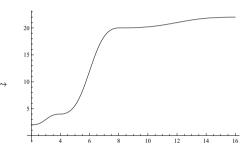
Suppose that $\sigma_1 = 2$, $\sigma_2 = 4$, $\sigma_3 = 20$ and $\sigma_4 = 22$.



Construction of a smooth ϕ_{σ}

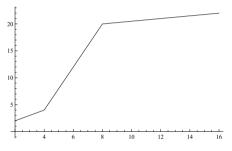
Suppose that $\sigma_1 = 2$, $\sigma_2 = 4$, $\sigma_3 = 20$ and $\sigma_4 = 22$.

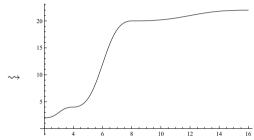




Construction of a smooth ϕ_{σ}

Suppose that $\sigma_1 = 2$, $\sigma_2 = 4$, $\sigma_3 = 20$ and $\sigma_4 = 22$.





Theorem

If σ is an admissible sequence such that either $\underline{s}(\sigma)>0$ or $\overline{s}(\sigma)<0$, then there exists $\xi\in C^\infty(I)$ such that $(\xi(2^j))_j\asymp \sigma$ and $0<\inf_{t>0}t\frac{|D\xi(t)|}{\xi(t)}\leq \sup_{t>0}t\frac{|D\xi(t)|}{\xi(t)}<\infty$.

Generalized Interpolation Spaces

Setting for real interpolation

Let \mathscr{N} denotes the category of all normed vector spaces. A_0 and A_1 in \mathscr{N} are *compatible* if they are both subspaces of a Hausdorff topological vector space. We set

$$\|a\|_{A_0\cap A_1} := \max\{\|a\|_{A_0}, \|a\|_{A_1}\}$$

and

$$||a||_{A_0+A_1}:=\inf_{a=a_0+a_1}\{||a_0||_{A_0},||a_1||_{A_1}\}.$$

Let $\mathscr C$ be a sub-category of $\mathscr N$ and denote by $\mathscr C_c$ a category of compatible couples $\mathbf A=(A_0,A_1)$ (such that $A_0\cap A_1$ and A_0+A_1 are in $\mathscr C$). The morphisms $T:(A_0,A_1)\to (B_0,B_1)$ in $\mathscr C_c$ are bounded linear mappings from A_0+A_1 to B_0+B_1 such that both $T:A_0\to B_0$ and $T:A_1\to B_1$ are morphisms in $\mathscr C$. The two basic functors Δ and Σ from $\mathscr C_c$ to $\mathscr C$ are defined as follows: $\Delta(T)=\Sigma(T)=T$ and

$$\Delta(\mathbf{A}) = A_0 \cap A_1$$
 and $\Sigma(\mathbf{A}) = A_0 + A_1$.

Interpolation spaces and functors

Given a couple $\mathbf{A} = (A_0, A_1)$ in \mathscr{C}_c , a space $A \in \mathscr{C}$ is an *intermediate space* between A_0 and A_1 (or with respect to \mathbf{A}) if

$$\Delta(\mathbf{A}) \hookrightarrow A \hookrightarrow \Sigma(\mathbf{A}).$$

Such a space A is called an *interpolation space* between A_0 and A_1 (or with respect to **A**) if in addition $T : \mathbf{A} \to \mathbf{A}$ implies $T : A \to A$.

If **B** is another couple in \mathscr{C}_c , two spaces A and B in \mathscr{C} are interpolation spaces with respect to **A** and **B** if A and B are interpolation spaces with respect to **A** and **B** respectively and if $T: \mathbf{A} \to \mathbf{B}$ implies $T: A \to B$.

An *interpolation functor* on \mathscr{C} is a functor F from \mathscr{C}_c into \mathscr{C} such that if **A** and **B** are couples in \mathscr{C}_c , then $F(\mathbf{A})$ and $F(\mathbf{B})$ are interpolation spaces with respect to **A** and **B** and

$$F(T) = T$$
 for all $T : \mathbf{A} \to \mathbf{B}$.

General case

Given $\phi \in \mathcal{B}$, we will denote by ϕ_* the function explicitly defined by $\phi_*(t) = t/\phi(t)$ for t > 0. Let $\mathbf{A} = (A_0, A_1)$ and $\mathbf{B} = (B_0, B_1)$ be two couples in \mathscr{C}_c ; two interpolation spaces A and B with respect to A and B respectively are of exponent $\phi \in \mathcal{B}$ if, for any $T : A \to B$,

$$||T||_{A,B} \le C\bar{\phi}_*(||T||_{A_0,B_0})\bar{\phi}(||T||_{A_1,B_1}) \tag{1}$$

always holds for some constant C > 0.

F is an interpolation functor of exponent $\phi \in \mathcal{B}$ if $F(\mathbf{A})$ and $F(\mathbf{B})$ are of exponent ϕ for any couples \mathbf{A} , \mathbf{B} in \mathscr{C}_c .

K-method

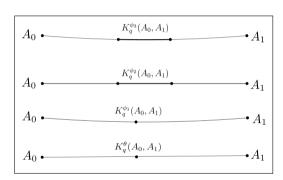
Given a couple **A**, t > 0 and $a \in \Sigma(\mathbf{A})$,

$$K(t,a) := \inf_{a=a_0+a_1} (\|a_0\|_{A_0} + t\|a_1\|_{A_1}),$$

For $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, let $\mathcal{K}_q^{\phi}(\mathbf{A})$ be the space of all $a \in \Sigma(\mathbf{A})$ such that

$$\|a\|_{\mathsf{K}^\phi_q(\mathbf{A})} := (\int_0^\infty \left(rac{1}{\phi(t)}\,\mathsf{K}(t,a)
ight)^q rac{dt}{t})^{1/q} < \infty,$$

with the usual modification when $q=\infty$.



K-method

Given a couple **A**, t > 0 and $a \in \Sigma(\mathbf{A})$,

$$K(t,a) := \inf_{a=a_0+a_1} (\|a_0\|_{A_0} + t\|a_1\|_{A_1}),$$

For $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, let $\mathcal{K}_q^{\phi}(\mathbf{A})$ be the space of all $a \in \Sigma(\mathbf{A})$ such that

$$\|a\|_{\mathsf{K}^\phi_q(\mathbf{A})} := (\int_0^\infty \big(\frac{1}{\phi(t)}\,\mathsf{K}(t,a)\big)^q\,\frac{dt}{t})^{1/q} < \infty,$$

with the usual modification when $q=\infty$.

$$A_0 ext{-} ext{} ext{-} ext{} ext{-} e$$

 \mathcal{K}^{ϕ}_q is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathscr{N} .

J-method

Given a couple **A**, t > 0 and $a \in \Delta(\mathbf{A})$,

$$J(t,a) := \max\{(\|a\|_{A_0}, t\|a\|_{A_1}),$$

For $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, let $J_q^{\phi}(\mathbf{A})$ be the space of all $a \in \Sigma(\mathbf{A})$ which can be represented by $a = \int_0^\infty b(t) \, dt/t$, with convergence in $\Sigma(\mathbf{A})$, where b is measurable, takes its values in $\Delta(\mathbf{A})$ for t > 0 and

$$t\mapsto rac{J(t,b(t))}{\phi(t)}\in L^q_*.$$

This space is equipped with the norm

$$\|a\|_{J^{\phi}_q(\mathbf{A})} := \inf_b \| rac{J(t,b(t))}{\phi(t)} \|_{L^q_*}.$$

the infimum being taken on all $b:(0,\infty)\to\Delta(\mathbf{A})$ measurable such that $a=\int_0^\infty b(t)\,dt/t$.

J-method

Given a couple **A**, t > 0 and $a \in \Delta(\mathbf{A})$,

$$J(t,a) := \max\{(\|a\|_{A_0}, t\|a\|_{A_1}),$$

For $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, let $J_q^{\phi}(\mathbf{A})$ be the space of all $a \in \Sigma(\mathbf{A})$ which can be represented by $a = \int_0^\infty b(t) \, dt/t$, with convergence in $\Sigma(\mathbf{A})$, where b is measurable, takes its values in $\Delta(\mathbf{A})$ for t > 0 and

$$t\mapsto rac{J(t,b(t))}{\phi(t)}\in L^q_*.$$

This space is equipped with the norm

$$||a||_{J_q^{\phi}(\mathbf{A})} := \inf_b ||\frac{J(t,b(t))}{\phi(t)}||_{L_x^q}.$$

the infimum being taken on all $b:(0,\infty)\to\Delta(\mathbf{A})$ measurable such that $a=\int_0^\infty b(t)\,dt/t$.

Equivalence Theorem

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi)$, $\overline{b}(\phi) < 1$ and $q \in [1, \infty]$, we have $J_q^{\phi}(\mathbf{A}) = \mathcal{K}_q^{\phi}(\mathbf{A})$.

Reiteration

X is of class $C(\phi; \mathbf{A})$ if it is an intermediate spaces with respect to **A** such that, for all $a \in X$, $K(t, a) \le C\phi(t)\|a\|_X$ and, for all $a \in \Delta(\mathbf{A})$, $\phi(t)\|a\|_X \le CJ(t, a)$.

Reiteration

X is of class $C(\phi; \mathbf{A})$ if it is an intermediate spaces with respect to **A** such that, for all $a \in X$, $K(t, a) \leq C\phi(t)\|a\|_X$ and, for all $a \in \Delta(\mathbf{A})$, $\phi(t)\|a\|_X \leq CJ(t, a)$.

Theorem

If for $j \in \{0,1\}$, X_j is of class $\mathcal{C}(\phi_j; \mathbf{A})$ with $\underline{b}(\phi_j) \geq 0$ and $\overline{b}(\phi_j) \leq 1$, let $\phi \in \mathcal{B}$ be such that $\underline{b}(\phi) > 0$ and $\overline{b}(\phi) < 1$ and set $\theta = \phi_1/\phi_0$, $\psi = (\phi \circ \theta)\phi_0$; if $\underline{b}(\theta) > 0$ or $\overline{b}(\theta) < 0$ then

$$\mathit{K}^{\phi}_{q}(\mathbf{X}) = \mathit{K}^{\psi}_{q}(\mathbf{A}).$$

In particular, for $\underline{b}(\phi_j)>0$ and $\overline{b}(\phi_j)<1$, the spaces $K_{q_j}^{\phi_j}(\mathbf{A})$ are complete $(j\in\{0,1\})$, then

$$\mathsf{K}^\phi_q(\mathsf{K}^{\phi_0}_{q_0}(\mathsf{A}),\mathsf{K}^{\phi_1}_{q_1}(\mathsf{A}))=\mathsf{K}^\psi_q(\mathsf{A}).$$

Examples: Hölder spaces

For $\phi \in \mathcal{B}$ with $0 < \underline{b}(\phi)$, $\overline{b}(\phi) < 1$, let $C_b^{\phi}(\mathbb{R}^d)$ is the space of the so-called bounded and uniformly ϕ -Hölder continuous functions, equipped with the norm

$$||f||_{C_b^{\phi}(\mathbb{R}^d)} := ||f||_{\infty} + |f|_{C^{\phi}} = ||f||_{\infty} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{\phi(|x - y|)}.$$

Theorem

Let $\phi \in \mathcal{B}$ with $0 < \underline{b}(\phi), \overline{b}(\phi) < 1$,

$$K^{\phi}_{\infty}(C_b(\mathbb{R}^d), C^1_b(\mathbb{R}^d)) = C^{\phi}_b(\mathbb{R}^d).$$

Let $\gamma, \phi_0, \phi_1 \in \mathcal{B}$ to set $f = \phi_0/\phi_1$ and $\psi = \phi_0/(\gamma \circ f)$. If $0 < \underline{b}(\gamma), \overline{b}(\gamma) < 1$ and if $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$ then

$$\mathcal{K}^{\gamma}_{\infty}(C^{\phi_0}_b(\mathbb{R}^d),C^{\phi_1}_b(\mathbb{R}^d))=C^{\psi}_b(\mathbb{R}^d).$$

Examples: Lebesgue spaces

Let $q\in [1,\infty]$ and $\phi\in \mathcal{B}$; if X is a Banach space, the space $\ell^q_\phi(X)$ consists of all sequences $(a_j)_j$ of X such that

$$(\phi(2^j)||a_j||_X)_j\in\ell^q.$$

Theorem

Let $q_0, q_1, q \in [1, \infty]$ and $\gamma, \phi_0, \phi_1 \in \mathcal{B}$ to set $f = \phi_0/\phi_1$ and $\psi = \phi_0/(\gamma \circ f)$. If $0 < \underline{b}(\gamma), \overline{b}(\gamma) < 1$ and if $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$, then

$$K_q^{\gamma}(\ell_{\phi_0}^{q_0}(X), \ell_{\phi_1}^{q_1}(X)) = \ell_{\psi}^{q}(X).$$

Examples: Besov spaces

Let $\phi \in \mathcal{B}$ and $(\varphi_j)_j$ be a Paley-Littlewood system of test functions. For $p, q \in [1, \infty]$, we define the generalized Besov Space by

$$\mathcal{B}^\phi_{p,q} := \{f \in \mathcal{S}' : (\|arphi_j * f\|_{L^p})_j \in \ell^q_\phi\}.$$

Theorem

Given $\gamma, \phi_0, \phi_1 \in \mathcal{B}$, define $f = \phi_0/\phi_1$ and $\psi = \phi_0/(\gamma \circ f)$. If $0 < \underline{b}(\gamma)$, $\overline{b}(\gamma) < 1$ and if $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$, then

$$extstyle \mathcal{K}^{\gamma}_q(\mathcal{B}^{\phi_0}_{p,q_0},\mathcal{B}^{\phi_1}_{p,q_1}) = \mathcal{B}^{\psi}_{p,q} \quad ext{for} \quad p,q,q_0,q_1 \in [1,\infty]$$

and

$$K_q^{\gamma}(F_{p,q_0}^{\phi_0},F_{p,q_1}^{\phi_1})=B_{p,q}^{\psi}, \quad ext{for} \quad p,q_0,q_1\in (1,\infty), q\in [1,\infty].$$

Examples: Sobolev and Besov spaces

We denote by \mathcal{B}'' the set of functions $\phi \in \mathcal{B}$ which are C^{∞} on $[1, \infty)$ and such that for all $m \in \mathbb{N}$, $t^m |\phi^{(m)}(t)| \leq C_m \phi(t)$ is satisfied for all $t \in [1, \infty)$. Given $\phi \in \mathcal{B}''$, the generalized Bessel operator \mathcal{J}^{ϕ} is defined on \mathcal{S}' by

$$\mathcal{J}^{\phi}f = \mathcal{F}^{-1}(\phi(\sqrt{1+|\cdot|^2})\mathcal{F}f).$$

It is clear that \mathcal{J}^{ϕ} is a linear bijective operator from \mathcal{S}' to \mathcal{S}' such that $(\mathcal{J}^{\phi})^{-1} = \mathcal{J}^{1/\phi}$ and $\mathcal{J}^{\phi}(\mathcal{S}) = \mathcal{S}$. From there, the generalized (fractional) Sobolev space H_p^{ϕ} is defined by

$$H_p^\phi = \{f \in \mathcal{S}' : \|\mathcal{J}^\phi f\|_{L^p} < \infty\}.$$

Theorem

Let $\gamma \in \mathcal{B}$, $\phi_0, \phi_1 \in \mathcal{B}''$, $f = \phi_0/\phi_1$, $\psi = \phi_0/(\gamma \circ f)$ and $p, q \in [1, \infty]$. If $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$ and if $0 < b(\gamma), \overline{b}(\gamma) < 1$, then

$$\mathsf{K}^{\gamma}_q(\mathsf{H}^{\phi_0}_p,\mathsf{H}^{\phi_1}_p)=\mathsf{B}^{\psi}_{p,q}.$$

Continuous Interpolation Spaces and Limiting cases

Proposition

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi), \overline{b}(\phi) < 1$ and $q \in [1, \infty), \Delta(\mathbf{A})$ is dense in $\mathcal{K}^{\phi}_{a}(\mathbf{A})$.

When $q=\infty$, $\Delta(\mathbf{A})$ is not dense in $K^\phi_\infty(\mathbf{A})$.

Proposition

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi), \overline{b}(\phi) < 1$ and $q \in [1, \infty), \Delta(\mathbf{A})$ is dense in $K_q^{\phi}(\mathbf{A})$.

When $q=\infty$, $\Delta(\mathbf{A})$ is not dense in $K^\phi_\infty(\mathbf{A})$.

Let $\mathcal{K}^{0,\phi}_{\infty}(\mathbf{A})$ denote the space comprising all $a\in\Sigma(\mathbf{A})$ such that

$$\lim_{t\to 0}\frac{1}{\phi(t)}\mathsf{K}(t,a)=\lim_{t\to \infty}\frac{1}{\phi(t)}\mathsf{K}(t,a)=0.$$

We naturally equip $K_{\infty}^{0,\phi}(\mathbf{A})$ with the norm induced by $K_{\infty}^{\phi}(\mathbf{A})$. It is evident that $K_{\infty}^{0,\phi}(\mathbf{A})$ constitutes a closed subspace of $K_{\infty}^{\phi}(\mathbf{A})$.

Proposition

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi), \overline{b}(\phi) < 1$ and $q \in [1, \infty), \Delta(\mathbf{A})$ is dense in $K_q^{\phi}(\mathbf{A})$.

When $q=\infty$, $\Delta(\mathbf{A})$ is not dense in $K^\phi_\infty(\mathbf{A})$.

Let $\mathcal{K}^{0,\phi}_{\infty}(\mathbf{A})$ denote the space comprising all $a\in\Sigma(\mathbf{A})$ such that

$$\lim_{t\to 0}\frac{1}{\phi(t)}K(t,a)=\lim_{t\to \infty}\frac{1}{\phi(t)}K(t,a)=0.$$

We naturally equip $K_{\infty}^{0,\phi}(\mathbf{A})$ with the norm induced by $K_{\infty}^{\phi}(\mathbf{A})$. It is evident that $K_{\infty}^{0,\phi}(\mathbf{A})$ constitutes a closed subspace of $K_{\infty}^{\phi}(\mathbf{A})$.

 $\mathcal{K}^{0,\phi}_{\infty}$ is an exact interpolation functor of exponent ϕ on \mathscr{N} .

Proposition

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi), \overline{b}(\phi) < 1$ and $q \in [1, \infty), \Delta(\mathbf{A})$ is dense in $K_q^{\phi}(\mathbf{A})$.

When $q=\infty$, $\Delta(\mathbf{A})$ is not dense in $K^{\phi}_{\infty}(\mathbf{A})$.

Let $\mathcal{K}^{0,\phi}_{\infty}(\mathbf{A})$ denote the space comprising all $a\in\Sigma(\mathbf{A})$ such that

$$\lim_{t \to 0} \frac{1}{\phi(t)} \mathcal{K}(t, a) = \lim_{t \to \infty} \frac{1}{\phi(t)} \mathcal{K}(t, a) = 0.$$

We naturally equip $K_{\infty}^{0,\phi}(\mathbf{A})$ with the norm induced by $K_{\infty}^{\phi}(\mathbf{A})$. It is evident that $K_{\infty}^{0,\phi}(\mathbf{A})$ constitutes a closed subspace of $K_{\infty}^{\phi}(\mathbf{A})$.

 $\mathcal{K}_{\infty}^{0,\phi}$ is an exact interpolation functor of exponent ϕ on \mathscr{N} .

Theorem

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi)$ and $\overline{b}(\phi) < 1$, the closure of $\Delta(\mathbf{A})$ in $K_{\infty}^{\phi}(\mathbf{A})$ is $K_{\infty}^{0,\phi}(\mathbf{A})$.

Examples: little Hölder Spaces

Theorem

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi)$ and $\overline{b}(\phi) < 1$, we have

$$\mathcal{K}^{0,\phi}_{\infty}(C_b(\mathbb{R}^d),C^1_b(\mathbb{R}^d))=h^{\phi}(\mathbb{R}^d),$$

where $h^{\phi}(\mathbb{R}^d)$ is the space consisting of bounded functions f such that

$$\lim_{h\to 0}\sup_{x\in\mathbb{R}^d}\frac{|f(x+h)-f(x)|}{\phi(|h|)}=0.$$

Examples: little Hölder Spaces

Theorem

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi)$ and $\overline{b}(\phi) < 1$, we have

$$\mathcal{K}^{0,\phi}_{\infty}(C_b(\mathbb{R}^d),C^1_b(\mathbb{R}^d))=h^{\phi}(\mathbb{R}^d),$$

where $h^{\phi}(\mathbb{R}^d)$ is the space consisting of bounded functions f such that

$$\lim_{h\to 0}\sup_{x\in\mathbb{R}^d}\frac{|f(x+h)-f(x)|}{\phi(|h|)}=0.$$

Corollary

For $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi)$ and $\overline{b}(\phi) < 1$, the closure of $C_b^1(\mathbb{R}^d)$ in $K_\infty^\phi(C_b(\mathbb{R}^d), C_b^1(\mathbb{R}^d))$ is $h^\phi(\mathbb{R}^d)$.

Examples: Lebesgue and Besov Spaces

Theorem

Let $q_0, q_1 \in [1, \infty]$, $\gamma, \phi_0, \phi_1 \in \mathcal{B}$ and define $f = \phi_0/\phi_1$. If $0 < \underline{b}(\gamma)$, $\overline{b}(\gamma) < 1$ and if $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$, then

$$K^{0,\gamma}_{\infty}(\ell^{q_0}_{\phi_0}(X),\ell^{q_1}_{\phi_1}(X))=c_{0,\psi}(X),$$

with $\psi = \phi_0/(\gamma \circ f)$, where $c_{0,\psi}(X)$ is the subspace of $\ell_\psi^\infty(X)$ such that $\lim_j \psi(2^j) \|a_j\|_X = 0$.

$$\mathcal{K}^{0,\gamma}_{\infty}(\mathcal{H}^{\phi_0}_p,\mathcal{H}^{\phi_1}_p)=b^{\psi}_{p,\infty},$$

for $\psi = \phi_0/(\gamma \circ f)$, where $b_{p,\infty}^{\psi}$ is the subspace of the elements a of $B_{p,\infty}^{\psi}$ (equipped with the induced norm) such that $\lim_i \psi(2^i) \|\varphi_i * a\|_{L^p} = 0$.

Limiting cases

Proposition

Let $\phi \in \mathcal{B}$ such that $0 \le b(\phi)$, $\overline{b}(\phi) \le 1$ and $q \in [1, \infty]$.

(i) If

$$\int_0^1 \left(\frac{t}{\phi(t)}\right)^q \frac{dt}{t} = \infty \quad \text{or} \quad \int_1^\infty \left(\frac{1}{\phi(t)}\right)^q \frac{dt}{t} = \infty$$
 (2)

with the usual modification if $q = \infty$, then $K_q^{\phi}(\mathbf{A}) = \{0\}$.

(ii) If

$$\int_0^\infty (\frac{1}{\phi(t)}\min\{1,t\})^q \frac{dt}{t} < \infty, \tag{3}$$

with the usual modification if $q=\infty$, then K_q^ϕ is an exact interpolation functor of exponent ϕ on $\mathscr N$.

A word on the Interpolation with several spaces

Let $q \in [1, \infty]$, $\phi_1, \dots, \phi_n \in \mathcal{B}$ be such that $0 < \underline{b}(\phi_1) + \dots + \underline{b}(\phi_n)$ and $\overline{b}(\phi_1) + \dots + \overline{b}(\phi_n) < 1$ and f be a function from $(0, \infty)^n$ to $(0, \infty)$. Set

$$\Phi_q^{\phi_1,\ldots,\phi_n}(f) = \Big(\int_{(0,\infty)^n} \Big(\frac{1}{\phi_1(t_1)}\cdots\frac{1}{\phi_n(t_n)}f(t_1,\ldots,t_n)\Big)^q \frac{dt_1}{t_1}\cdots\frac{dt_n}{t_n}\Big)^{1/q},$$

with the usual modification in the case $q=\infty$. Given $a\in \mathbf{A}$ and $t\in (0,\infty)^n$, let

$$K(t,a) = \inf_{a} \|a_0\|_{A_0} + t_1 \|a_1\|_{A_1} + \cdots + t_n \|a_n\|_{A_n},$$

where the infimum is taken over all the decompositions $a = a_0 + \cdots + a_n$, $a_i \in A_i$.

A word on the Interpolation with several spaces

We define $K_a^{\phi_1,\dots,\phi_n}(\mathbf{A})$ as the set of $a \in \Sigma(\mathbf{A})$ such that

$$\|a\|_{\mathsf{K}^{\phi_1,\ldots,\phi_n}_q(\mathbf{A})}=\Phi^{\phi_1,\ldots,\phi_n}_qig(\mathsf{K}(t,a)ig)<\infty.$$

Let f be a function from $(0, \infty)^{n+1}$ to $(0, \infty)$; an interpolation functor F is of type f if there exists a constant $C \ge 1$ such that

$$||T||_{F(\mathbf{A}),F(\mathbf{B})} \leq C f(||T||_{A_0,B_0},\ldots,||T||_{A_n,B_n}),$$

for any morphism $T: \mathbf{A} \to \mathbf{B}$.

Proposition

The functor $K_q^{\phi_1,\dots,\phi_n}$ is an exact interpolation functor of type f where $f(t_0,\dots,t_n)=t_0\overline{\phi_1}(t_1/t_0)\cdots\overline{\phi_n}(t_n/t_0)$.

A word on the Interpolation with several spaces

Proposition

Let $q \in [1, \infty]$, $\phi_1, \ldots, \phi_n \in \mathcal{B}$ be such that $0 < \underline{b}(\phi_1) + \cdots + \underline{b}(\phi_n)$ and $\overline{b}(\phi_1) + \cdots + \overline{b}(\phi_n) < 1$; then $J_q^{\phi_1, \ldots, \phi_n}(\mathbf{A}) \hookrightarrow K_q^{\phi_1, \ldots, \phi_n}(\mathbf{A})$.

Let $\sigma(\mathbf{A})$ the subspace of all $a \in \Sigma(\mathbf{A})$ for which $\int \frac{K(t,a)}{\max t} \frac{dt_1}{t_1} \cdots \frac{dt_n}{t_n} < \infty$. The condition $\mathcal{F}(\mathbf{A})$ is satisfied if, for every $a \in \sigma(\mathbf{A})$, there exists a function $u : (0,\infty)^n \to \Delta(\mathbf{A})$ such that

$$a=\int u(t)rac{dt_1}{t_1}\cdotsrac{dt_n}{t_n} \quad ext{in } \Sigma(\mathbf{A}) \quad ext{and} \quad Jig(t,u(t)ig) \leq C(\mathbf{A})K(t,a).$$

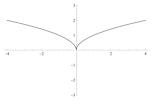
Theorem

Let $q \in [1, \infty]$, $\phi_1, \dots, \phi_n \in \mathcal{B}$ such that $0 < \underline{b}(\phi_1) + \dots + \underline{b}(\phi_n)$ and $\overline{b}(\phi_1) + \dots + \overline{b}(\phi_n) < 1$; if $\mathcal{F}(\mathbf{A})$ is satisfied, then

$$J_q^{\phi_1,\ldots,\phi_n}(\mathbf{A})=K_q^{\phi_1,\ldots,\phi_n}(\mathbf{A}).$$

Hölder

$$||f - P||_{L^{\infty}(B(x_0,r))} \le Cr^{\alpha}$$

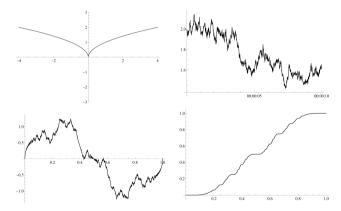


Hölder

Weighted Hölder

$$||f-P||_{L^{\infty}(B(x_0,r))} \leq Cr^{\alpha}$$

$$||f-P||_{L^{\infty}(\mathcal{B}(\mathsf{x}_0,r))} \leq Cr^{\alpha} \qquad ||f-P||_{L^{\infty}(\mathcal{B}(\mathsf{x}_0,r))} \leq C\phi(r)$$



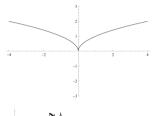
Weighted Hölder

Calderon-Zygmund

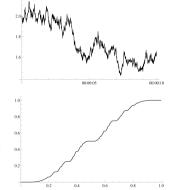
$$||f-P||_{L^{\infty}(B(x_0,r))} \leq Cr^{\alpha}$$

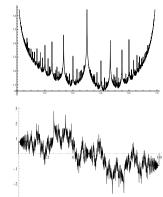
$$||f-P||_{L^{\infty}(B(x_0,r))} \leq C\phi(r)$$

$$r^{-d/p}\|f-P\|_{L^p(B(x_0,r))} \le Cr^{\alpha}$$



-1.0





Pointwise Regularity

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$, $\alpha > -d/p$, a function $f \in L^p_{loc}$ is in $T^p_{\alpha}(x_0)$ if there exist a constant C > 0 and a polynomial P of degree strictly smaller than α such that

$$r^{-d/p}\|f-P\|_{L^p(B(x_0,r))} \le Cr^{\alpha}$$

for sufficiently small r.

Pointwise Regularity

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$, $\alpha > -d/p$, a function $f \in L^p_{loc}$ is in $T^p_{\alpha}(x_0)$ if there exist a constant C > 0 and a polynomial P of degree strictly smaller than α such that

$$r^{-d/p} ||f - P||_{L^p(B(x_0,r))} \le Cr^{\alpha}$$

for sufficiently small r.

p-exponent

$$h_p(x_0) := \sup\{\alpha > -d/p : f \in T^p_\alpha(x_0)\}.$$

Pointwise Regularity

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$, $\alpha > -d/p$, a function $f \in L^p_{loc}$ is in $T^p_{\alpha}(x_0)$ if there exist a constant C > 0 and a polynomial P of degree strictly smaller than α such that

$$r^{-d/p} ||f - P||_{L^p(B(x_0,r))} \le Cr^{\alpha}$$

for sufficiently small r.

p-exponent

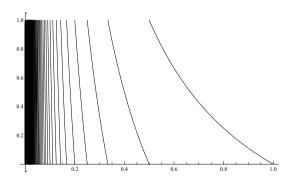
$$h_p(x_0) := \sup\{\alpha > -d/p : f \in T^p_\alpha(x_0)\}.$$

p-spectrum

$$d_p(h) = \dim_{\mathcal{H}}(\{x \in \mathbb{R}^d : h_p(x) = h\}).$$

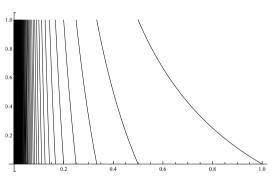
Regularity of functions defined through continued fractions

Brjuno function

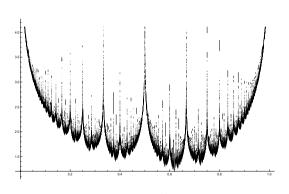


$$A: (0,1) \rightarrow [0,1] \quad x \mapsto |\frac{1}{x} - \lfloor \frac{1}{x} \rfloor|.$$

Brjuno function



 $A:(0,1)\to [0,1]\quad x\mapsto |\frac{1}{x}-\lfloor\frac{1}{x}\rfloor|.$



$$B: \mathbb{R} \setminus \mathbb{Q} \to \overline{\mathbb{R}} \quad x \mapsto -\sum_{n=0}^{\infty} x_0 x_1 ... x_{n-1} \log x_n,$$

where
$$x_0 = |x - \lfloor x \rfloor|$$
 and $x_{n+1} = A(x_n)$.

Regularity of B

Theorem (S. Jaffard, B. Martin)

Let $p \in [1, \infty)$; the p-exponents of B are given by

$$h_p^{(B)}(x) = \left\{ egin{array}{ll} 0 & ext{if } x \in \mathbb{Q}, \ 1/ au(x) & ext{otherwise,} \end{array}
ight.$$

where

$$au(x) = \sup \left\{ u : \exists \text{ an infinity of coprime pairs } (p,q) \in \mathbb{Z} \times \mathbb{N} : \left| x - \frac{p}{q} \right| < \frac{1}{q^u}
ight\}.$$

Regularity of B

Theorem (S. Jaffard, B. Martin)

Let $p \in [1, \infty)$; the p-exponents of B are given by

$$h_p^{(B)}(x) = \left\{ egin{array}{ll} 0 & ext{if } x \in \mathbb{Q}, \ 1/ au(x) & ext{otherwise,} \end{array}
ight.$$

where

$$au(x)=\sup\left\{u:\exists ext{ an infinity of coprime pairs } (p,q)\in\mathbb{Z} imes\mathbb{N}:\left|x-rac{p}{q}
ight|<rac{1}{q^u}
ight\}.$$

Moreover, the p-spectrum is given by

$$d_p(h) = \left\{ egin{array}{ll} 2h & ext{si } h \in [0, 1/2], \ -\infty & ext{sinon.} \end{array}
ight.$$

α -continued fractions

Given $\alpha \in [1/2, 1]$ and $x \in \mathbb{R}$, define

$$[x]_{\alpha} = \min\{p \in \mathbb{Z} : x$$

We introduce the (generalized) Gauss map:

$$A_{\alpha}:(0,\alpha)\to[0,\alpha]:x\mapsto |\frac{1}{x}-[\frac{1}{x}]_{\alpha}|.$$

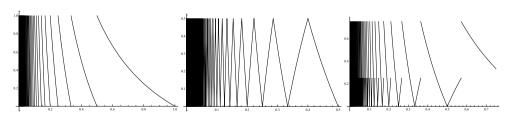


Figure 1: $A_{\alpha}:(0,\alpha)\to[0,\alpha]$ with resp. $\alpha=1$, $\alpha=1/2$ and $\alpha=3/4$.

α -continued fractions

Set $x_0 = |x - [x]_{\alpha}|$ and $a_0 = [x]_{\alpha}$. Consequently, $x_0 = a_0 + \varepsilon_0 x_0$, where

$$\varepsilon_0 =
\begin{cases}
1 & \text{if } x \ge a_0, \\
-1 & \text{otherwise.}
\end{cases}$$

This initialization defines $x_{n+1} = A_{\alpha}(x_n)$ and

$$a_{n+1}=[\frac{1}{x_n}]_{\alpha}\geq 1,$$

for $n \in \mathbb{N}_0$ if it is meaningful. Subsequently, $x_n^{-1} = a_{n+1} + \varepsilon_{n+1} x_{n+1}$, where

$$\varepsilon_{n+1} =
\begin{cases}
1 & \text{if } x_n^{-1} \ge a_{n+1}, \\
-1 & \text{otherwise.}
\end{cases}$$

α -continued fractions

The *n*-th α -convergent of *x* is given by

The invergent of
$$x$$
 is given by
$$\frac{p_n}{q_n} = [(a_0, \varepsilon_0), \dots, (a_{n-1}, \varepsilon_{n-1}), a_n] = a_0 + \frac{\varepsilon_0}{a_1 + \frac{\varepsilon_1}{\ddots + a_{n-1} + \frac{\varepsilon_{n-1}}{a_n}}}$$

Let $x \in \mathbb{R} \setminus \mathbb{Q}$, we introduce the α -irrationality exponent of x as $\tau^{(\alpha)}(x) = \limsup_{n \to \infty} \frac{\log |x - \frac{\rho_n}{q_n}|}{\log \frac{1}{q_n}}$.

Theorem

For all
$$\alpha \in [1/2, 1], x \in \mathbb{R} \setminus \mathbb{Q}$$
,

$$\tau^{(\alpha)}(x)=\tau(x).$$

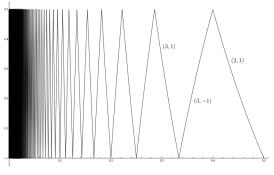
α -cells

We set

$$\mathfrak{c}(a,arepsilon) = egin{cases} \left(rac{1}{a+lpha},rac{1}{a}
ight)\cap (\mathfrak{0},lpha) ext{ if } arepsilon = 1, \ \left(rac{1}{a},rac{1}{a+lpha-1}
ight)\cap (\mathfrak{0},lpha) ext{ if } arepsilon = -1. \end{cases}$$

and

$$\mathfrak{c}[(a_1,\varepsilon_1)...(a_n,\varepsilon_n)]=\bigcap_{j=1}^nA_{\alpha}^{-(j-1)}(\mathfrak{c}(a_j,\varepsilon_j)).$$



If $\mathfrak{c}[(a_1, \varepsilon_1)...(a_n, \varepsilon_n)]$ is non empty, we say that $\mathfrak{c}[(a_1, \varepsilon_1)...(a_n, \varepsilon_n)]$ is an α -cell of depth n and $(a_1, \varepsilon_1)...(a_n, \varepsilon_n)$ is called admissible.

Möbius Transformations

The image of $\mathfrak{c}(a,\varepsilon)$ under A_{α} ,

$$J(a,\varepsilon)=A_{\alpha}(\mathfrak{c}(a,\varepsilon)),$$

is an open interval, and the inverse of A_{α} on $\mathfrak{c}(a, \varepsilon)$ is given by

$$\psi_{(a,\varepsilon)} \colon J(a,\varepsilon) o \mathfrak{c}(a,\varepsilon)
onumber \ t \mapsto rac{1}{a+\varepsilon t}.$$

We set

$$\psi_{(a_1,\varepsilon_1)...(a_n,\varepsilon_n)}=\psi_{(a_1,\varepsilon_1)}\circ\psi_{(a_2,\varepsilon_2)}\circ\cdots\circ\psi_{(a_n,\varepsilon_n)},$$

so that

$$\psi_{(a_1,\varepsilon_1),...,(a_n,\varepsilon_n)}(t)=\frac{p_n+t\varepsilon_np_{n-1}}{q_n+t\varepsilon_nq_{n-1}}.$$

Advantageous numbers

Let $n \geq 1$, $(a_1, \varepsilon_1)...(a_n, \varepsilon_n) \in \mathcal{A}^*$. We have

$$\mathfrak{c}[(a_1,\varepsilon_1)...(a_n,\varepsilon_n)] = \bigcap_{j=1}^n \psi_{(a_1,\varepsilon_1)...(a_j,\varepsilon_j)}(J(a_j,\varepsilon_j))$$
(4)

A number $\alpha \in [1/2, 1]$ is called *advantageous* if for all $n \ge 1$ and for all $(a_1, \varepsilon_1)...(a_n, \varepsilon_n) \in \mathcal{L}_n(\alpha)$,

$$\mathfrak{c}\big[(a_1,\varepsilon_1)...(a_n,\varepsilon_n)\big]=\psi_{(a_1,\varepsilon_1)...(a_n,\varepsilon_n)}\big(J(a_n,\varepsilon_n)\big).$$

Proposition

A number $\alpha \in [1/2, 1]$ is advantageous if and only if

$$\alpha \in \{1/2, g, 1\} \cup \left\{1 - \frac{1}{k}, k \ge 3\right\} \cup \left\{\frac{-k + \sqrt{k^2 + 4k}}{2}, k \ge 2\right\}.$$

Brjuno functions

$$B_{\alpha}: \mathbb{R} \setminus \mathbb{Q} \to \overline{\mathbb{R}} \quad x \mapsto -\sum_{n=0}^{\infty} x_0 x_1 ... x_{n-1} \log x_n.$$

Theorem

Let $p \in [1, \infty)$; the p-exponents of $B_{1/2}$ are given by $h_p(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}, \\ 1/\tau(x) & \text{otherwise.} \end{cases}$

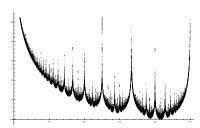


Figure 2: Brjuno function $B_{1/2}$.

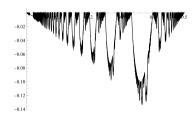


Figure 3: Difference $B - B_{1/2}$.

Thomae's function

$$T_{ heta}(x) = \left\{ egin{array}{ll} 1 & ext{if } x = 0, \ q^{- heta} & ext{if } x ext{ is rational with } x = p/q, \ 0 & ext{if } x ext{ is irrational,} \end{array}
ight.$$

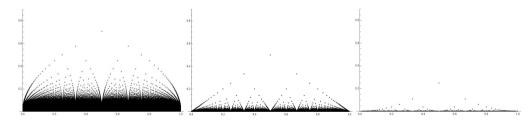


Figure 4: Representation of the function T_{θ} on (0,1) for $\theta=1/2$, 1 and 2.

Thomae's function

$$T_{ heta}(x) = \left\{ egin{array}{ll} 1 & ext{if } x = 0, \ q^{- heta} & ext{if } x ext{ is rational with } x = p/q, \ 0 & ext{if } x ext{ is irrational,} \end{array}
ight.$$

Proposition

For
$$\theta \in (0, 2]$$
,

$$h_{T_{\theta}}^{(\infty)}(x) = \left\{ egin{array}{ll} 0 & ext{if } x ext{ is rational,} \\ heta/ au(x) & ext{if } x ext{ is irrational.} \end{array}
ight.$$

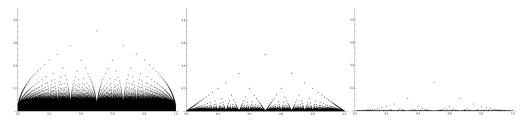


Figure 4: Representation of the function T_{θ} on (0,1) for $\theta=1/2,1$ and 2.

