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Abstract

Verbal Working Memory (WM) is supported by semantic knowledge. One manifestation 

of this is the rich pattern of semantic similarity effects found in immediate serial recall tasks. 

These effects differ from the effects of similarity on other dimensions (e.g., phonological 

similarity), which renders them difficult to explain. We propose a comprehensive mechanistic 

explanation of semantic similarity effects by extending a standard connectionist architecture for 

modeling immediate serial recall to incorporate semantic representations. Central to our proposal 

is the selective encoding of categorical features shared among multiple list items. The selective 

encoding of shared semantic features is made possible via a tagging mechanism that enables the 

model to encode shared feature retrospectively. Through this mechanism, our model accounts for 

the majority of semantic similarity effects. Our results imply that working memory represents 

semantic information in a more restricted way than phonological information. 

Keywords: Working Memory; Serial Recall; Semantics; Semantic similarity; Computational 

modeling
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Introduction

Working memory (WM) is supported by semantic knowledge (Patterson et al., 1994; 

Poirier & Saint-Aubin, 1995; Romani et al., 2008). This influence has been mostly observed in 

immediate serial recall, requiring people to recall short lists of words in their presentation order. 

One of the most robust and replicated phenomena showing the influence of semantic knowledge 

is the semantic similarity effect (Poirier & Saint-Aubin, 1995): Performance is higher for lists 

composed of semantically similar vs. dissimilar words. This semantic similarity effect has been 

observed in a rich variety of experimental conditions, implying that WM uses semantic 

knowledge in some way. Therefore, it is important to understand how WM interacts with 

meaning.

The present study presents a connectionist architecture of WM to account for semantic 

similarity effects observed across a diverse range of experimental paradigms. The core WM 

architecture uses generic principles shared by many successful models of serial recall. We 

assume that memory sets are encoded into WM through bindings between items and positional 

contexts, a general principle shared by many WM models (Burgess & Hitch, 1999, 2006; 

Henson, 1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012; Oberauer & Lewandowsky, 

2011). The novelty of our approach is to integrate meaning in this architecture. We start this 

study by a literature review introducing the way semantic similarity impacts WM performance in 

different experimental conditions, focusing on well-replicated phenomena that will be used as 

benchmarks for our simulation work. Next, we describe the core principles of the WM 

architecture and the way it is implemented. We then present the results of the simulations.
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Dissociating Item and Order Recall

In typical WM experiments, participants are required to recall items as well as their 

presentation order. Throughout this manuscript, we will continuously draw the distinction 

between people’s ability to remember items, and their ability to remember the order in which 

they appeared, independently of each other. We will refer to these different ways of measuring 

memory performance as item recall and order recall. We intend these terms to be descriptive, 

without any commitment to a theoretical distinction of memory mechanisms underlying item and 

order recall. Failures to recall the items and failures to recall their presentation order merely 

reflect different kinds of errors. This distinction is important, as semantic similarity improves 

item recall, and leaves order recall unaffected (cf. sections below). We therefore need to 

understand how item and order errors can be measured separately. In immediate serial recall, 

item recall is assessed using the proportion of list items recalled, regardless of where the items 

have been recalled. For instance, given the input sequence ABCDEF and the output sequence 

A*DC*Z (where the character “*” represents an omission), item recall is equal to 3/6. Order 

recall is computed by dividing the number of items recalled in their correct position by the total 

number of items recalled regardless of their output position (Saint-Aubin & Poirier, 1999b). 

Using the previous example, order recall is equal to 1/3. Proportionalizing by the number of 

items recalled is important, as it provides an estimate of the conditional probability of 

committing an order error for an item, given that the item’s identity is recalled. As people 

remember more similar than dissimilar items, they are expected to recall more items in the 

correct order and incorrect order in absolute terms, even if the probability to recall each item in 

its correct position is equivalent. This way of computing order recall implies that items not 

recalled at all are treated as missing data as they are not diagnostic for order recall.
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Another way to estimate order recall separately from item recall is by using an order 

reconstruction task, in which the memoranda are made available at retrieval, and participants are 

asked to reconstruct the original order of the sequence. As all items are available during both 

encoding and retrieval, item errors are impossible in order reconstruction. As a further way to 

estimate order recall, researchers often sample items of memory lists from a closed pool of 

stimuli repeatedly, so that participants soon know all items in the pool perfectly (Neath & 

Surprenant, 2019; Saint-Aubin & Poirier, 1999a).

Category Membership as a Semantic Similarity Metric

A simple way to manipulate semantic similarity involves the use of taxonomic categories 

(e.g., fruits, animals, shapes, birds…). The similar lists are constructed by using words from the 

same category. The dissimilar lists are constructed by using words from different categories. The 

rationale behind this idea is that similarity between members of the same category is higher than 

with members of different categories. For instance, “leopard”, “cheetah” and “puma” have in 

common the features that they are dangerous animals, big wild cats, have a tail, a fur, are 

carnivores, etc. This way of constructing the material is powerful because each word is used 

equally often in the similar and dissimilar lists. This implies that all individual items’ linguistic 

properties, which are known to impact WM performance, are controlled for, such as word length, 

lexical frequency, or word concreteness (Cowan et al., 1992; Hulme et al., 1991; Walker & 

Hulme, 1999), among others. 

Several lines of evidence have shown that category membership is a valid measure of 

semantic similarity. First, people generate more shared features for members of the same 

category than for items from different categories (Binder et al., 2016; Devereux et al., 2014). 
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Second, functional neuroimaging studies using representational similarity analyses have shown 

that members of the same semantic category elicit more similar patterns of neural activation than 

members of different categories (Xu et al., 2018). These observations have been made 

specifically in core regions of semantic processing, such as the anterior temporal lobe (Lambon-

Ralph et al., 2017). A third line of evidence comes from studies on proactive interference (Craik 

& Birtwistle, 1971; Wickens, 1970). When subjects are tested in a delayed recall paradigm, their 

memory typically decreases over trials. This proactive interference effect can be released by 

switching the category of the to-be-remembered items (e.g., from digits to letters), suggesting 

that the shared features of memoranda from trials N-X interfered with those of trial N. A change 

of semantic category is known to successfully release proactive interference. If items from the 

same category weren’t similar to each other in memory, release from proactive interference 

wouldn’t be observed upon a change of category. Taken together, these observations imply that 

members of the same taxonomic category are indeed semantically more similar than members of 

different taxonomic categories.

Benchmark #1: Semantic Similarity Benefits Item Recall

The main impact of semantic similarity occurs at the item level. As can be seen in Figure 

1, left panel, item recall increases for similar vs. dissimilar items in immediate serial recall tasks 

(Goh & Goh, 2006; Guérard & Saint-Aubin, 2012; Kowialiewski, Gorin, et al., 2021; 

Kowialiewski, Lemaire, & Portrat, 2021; Kowialiewski & Majerus, 2020; Nairne & Kelley, 

2004; Neale & Tehan, 2007; Poirier & Saint-Aubin, 1995; Saint-Aubin et al., 2005; Saint-Aubin 

& Poirier, 1999a; Tse, 2009). This is also observed if semantic similarity is manipulated by using 

thematic relationships (e.g., “dog”, “bones”), or values derived from latent semantic analysis 
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(Landauer & Dumais, 1997), and results are indistinguishable from those observed using 

taxonomic categories (Rosselet-Jordan et al., 2022; Tse, 2009). The recall advantage for lists 

composed of semantically similar vs. dissimilar items has been observed in other procedures, 

such as running span (Kowialiewski & Majerus, 2018), backward recall (Guérard & Saint-

Aubin, 2012), Brown-Peterson paradigms (Kowialiewski & Majerus, 2020; Neale & Tehan, 

2007), complex span tasks (Rosselet-Jordan et al., 2022), and under concurrent articulatory 

suppression (Neale & Tehan, 2007; Poirier & Saint-Aubin, 1995; Saint-Aubin et al., 2005; Saint-

Aubin & Poirier, 1999a). The beneficial effect of semantic similarity is also observed in children 

(Monnier & Bonthoux, 2011).

The recall advantage for similar vs. dissimilar lists at the item level can be decomposed 

into omission errors and extra-list intrusions. Omission errors refer to participants not recalling 

any item at all for a given list position.1 Extra-list intrusions refer to participants recalling an item 

that was not part of the to-be-remembered list. As can be seen in Figure 1, middle panel, 

semantic similarity mostly impacts performance by reducing the rate of omissions. Although 

extra-list intrusions are rare, they also slightly decrease for similar vs. dissimilar lists (Poirier & 

Saint-Aubin, 1995), as can be seen in Figure 1, right panel.

Figure 1

The Effect of Semantic Similarity on Item Recall

1 When not recalling an item at all, participants are usually instructed to say the word “blank”, or to leave an empty 

answer in case of written recall.
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Note. Item recall (left panel) can be decomposed into two broad categories of errors. The failure 

to recall an item at all is characterized by both omission errors (middle panel) and extra-list 

intrusions (right panel). Semantic similarity reduces the occurrence of both types of errors. The 

figure has been adapted from Kowialiewski et al. (2023). 

Benchmark #2: Semantic Similarity Does Not Decrease Order Recall

Semantic similarity does not impair order recall, when the scoring procedure used is corrected 

for the number of items recalled. This null effect is in striking contrast with the phonological 

similarity effect: Phonological similarity is known to decrease order recall (Baddeley, 1966; 

Fallon et al., 2005; Gupta et al., 2005; Nimmo & Roodenrys, 2004). Saint-Aubin & Poirier 

(1999a) were the first authors to consistently show an absence of detrimental effect of semantic 

similarity on order recall in immediate serial recall. Saint-Aubin and Poirier replicated the null 

effect on order recall under articulatory suppression with visually presented items. They further 

replicated it using a small pool of stimuli and an order reconstruction task, thus minimizing the 

involvement of item recall. Since then, the null effect of semantic similarity on order recall has 

been replicated several times (Monnier & Bonthoux, 2011; Nairne & Kelley, 2004; Neale & 

Tehan, 2007; Tehan, 2010), including in recent studies in which this was tested in different 
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manners and using different semantic similarity metrics (Ishiguro & Saito, 2024; Kowialiewski 

et al., 2023; Neath et al., 2022), with one exception (Guitard et al., 2025) that we will discuss in 

the General Discussion. The results of our study are displayed in Figure 2, upper panel. In our 

study, we also manipulated phonological similarity for comparison purposes. As shown in 

Figure 2, lower panel, phonological similarity decreased order recall, whereas semantic 

similarity did not. As we will see, this has important implications regarding how semantic 

knowledge affects working memory for words. 

Figure 2

The Effect of Semantic and Phonological Similarity on Order Recall
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Note. Upper panels: Semantic similarity. Lower panels: Phonological similarity, manipulated 

using rhyming vs. non-rhyming items. Left panels: Order recall, as quantified in an immediate 

serial recall task. Right panels: Order recall, as quantified in an order reconstruction task. The 

figure has been adapted from Kowialiewski et al. (2023).

Benchmark #3: Semantically Similar Retrieval Cues do not Lead to Increased Interference

Similarity effects are typically tested in tasks in which the items are the targets of 

retrieval: The correct item needs to be retrieved for a given list position (see Benchmark #2). A 

complementary way of testing the effect of inter-item similarity – which has received less 

attention in the WM literature so far – is to use the items as retrieval cues and ask participants to 

retrieve their list positions as targets. This reversed direction of retrieval is of interest because it 

leverages the well-established cue-similarity principle of memory: The more similar two retrieval 

cues are to each other, the more likely the targets associated to them are confused with each other 

(Guérard et al., 2009; Mueller & Watkins, 1977; Schneegans & Bays, 2017; Watkins & Watkins, 

1976). Hence, to the degree that two lists of words are similar to each other, participants should 

confuse their list positions when the words are given as cues, and the positions need to be 

recalled.

Kowialiewski et al. (2023) used this approach to investigate effects of phonological and of 

semantic similarity. The phonological manipulation involved rhyming vs. non-rhyming lists of 

items, which is known to have strong and robust detrimental effects on order recall (Roodenrys 

et al., 2022), and a beneficial effect on item recall (Fallon et al., 2005; Gupta et al., 2005; Lian & 

Karlsen, 2004; Nimmo & Roodenrys, 2004; Roodenrys et al., 2022). In the study of 

Kowialiewski et al. (2023), participants studied lists of six words. On half the trials, they were 
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cued with the positions in a random order (e.g., starting with “position 5”, and then “position 2”, 

and so forth) and were required to retrieve the items associated to them. On the other half of the 

trials, participants were given the items one by one in a random order, and retrieved the positions 

associated to them. The results are displayed in Figure 3. When the positions were given, and the 

items were the retrieval targets, semantic (upper panels) and phonological (lower panels) 

similarity led to increased item recall (left panels), as classically observed. The critical result was 

to show that only phonological similarity led to increased confusion errors, and this was true for 

both retrieval directions (middle and right panels). The null effect of semantic similarity in the 

condition in which the items served as retrieval cues for the positions constitutes a violation of 

the cue-similarity principle. As the cue-similarity principle has been originally established 

through variations of the semantic similarity of words in tests of episodic memory (Mueller & 

Watkins, 1977; Watkins & Watkins, 1976), this cannot mean that the cue-similarity principle 

does not hold for semantic similarity. Rather, it probably means that word meaning is not 

represented, or not used, in WM in the same way as in episodic memory. 

Figure 3

Semantic and Phonological Similarity Effect on Item Recall, Order Recall, and Memory for 

Positions
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Note. Upper panels: Semantic similarity. Lower panels: Phonological (i.e., rhyming) similarity. 

Left and middle panels: Participants were cued with a position and were asked to report the item 

associated to it. Right panels: Participants were cued with a word and were asked to report the 

position associated to it. The figure has been adapted from Kowialiewski et al. (2023).

Benchmark #4: Semantically Similar Lists are More Resistant to Manipulations of Task 

Difficulty

When the semantic similarity effect is manipulated under conditions in which WM 

maintenance gets harder, the difference between similar and dissimilar lists gets larger. This 

interaction was first observed by Poirier & Saint-Aubin (1995), showing a stronger semantic 

similarity effect with than without articulatory suppression, which has been subsequently 

replicated (Saint-Aubin et al., 2005; Saint-Aubin & Poirier, 1999a). Stronger semantic similarity 
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effects have also been observed in a Brown-Peterson than in an immediate-recall paradigm. In 

the Brown-Peterson task, participants performed a backward-counting task between encoding 

and recall, which impairs memory (Kowialiewski & Majerus, 2020). Neale & Tehan (2007) offer 

a comprehensive demonstration of this phenomenon. They parametrically modulated the 

degradation of WM representations using different interfering tasks and list lengths. Figure 4 

illustrates the magnitude of the semantic similarity effect as a function of task difficulty 

(measured by the proportion of errors in the dissimilar condition) as observed in Neale and Tehan 

(2007). The magnitude of the semantic similarity effect linearly increased with task difficulty 

(Figure 4, left panel). The null effect on order recall, in contrast, remained unchanged (Figure 4, 

right panel).

Figure 4

Semantic Similarity as a Function of Task Difficulty

Note. In this study, task difficulty was defined as 1.0 - p(correct) in the dissimilar condition. For 

instance, an item score of 0.8 was defined as less difficult (i.e., task difficulty equal to 0.2) than a 
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condition leading to an item score of 0.6 (i.e., task difficulty equal to 0.4). The figure has been 

reproduced using the values reported in Neale and Tehan (2007), Table A1.

Benchmark #5: Semantic Similarity Modulates the Type of Intrusion Errors

Tehan (2010) compared semantically dissimilar lists to lists of similar items constructed 

from Deese-Roediger-McDermott lists (McEvoy et al., 1999), in which all words have strong 

semantic associations to a critical lure that is itself not included. In the long-term memory 

literature, this manipulation typically induces so-called “false memories” (Deese, 1959; Roediger 

& McDermott, 1995), in which the critical lure is recalled more often in the similar than the 

dissimilar list. The same phenomenon was observed in Tehan (2010): The critical lures were 

recalled more often in semantically similar (6%) than in dissimilar (0%) lists. This effect shows 

that the composition of a list affects the type of intrusion errors occurring in immediate serial 

recall.

Another way to look at this phenomenon is via a detailed analysis of extra-list intrusions. 

We reanalyzed data from six experiments (Kowialiewski et al., 2023; Neath et al., 2022) 

involving 330 participants who recalled lists of semantically similar and dissimilar items across 

various experimental conditions (i.e., serial and cued recall). For each trial, we calculated the 

similarity between each extra-list intrusion and the target item (i.e., the item they were 

substituted for) using Google news word2vec semantic vectors 

(https://github.com/mmihaltz/word2vec-GoogleNews-vectors). The extra-list intrusions were 

then categorized into three bins based on their similarity with their target items: low, medium, 

and high. The bins were defined by dividing the interval between the minimum and maximum 
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similarity value2 into three equal ranges. Figure 5 shows the proportion of intrusion errors for 

each semantic similarity condition and bin, normalized by the total number of intrusion errors 

across all conditions. The data reveal that low-similarity intrusions are by far the most common 

type of error, accounting for approximately 70% of the sample. However, the distribution of 

intrusion errors varies depending on list composition. In semantically dissimilar lists, low-

similarity intrusions dominate, with very few high-similarity intrusions. In contrast, in 

semantically similar lists, the proportion of low-similarity intrusions decreases substantially, and 

high-similarity intrusions occur more frequently than in semantically dissimilar lists.

Figure 5

Distribution of extra-list intrusions

2 The minimum and maximum similarity values were taken from the all the similarity values 

between every word2vec vector and every target that has been replaced by an intrusion.
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Note. Proportion of intrusion errors as a function of semantic similarity (similar vs. dissimilar). 

Each extra-list intrusion was categorized into one of three bins based on its similarity to the 

target item (i.e., the item it replaced): low, medium, and high.

Benchmark #6: The Separation Effect

Saint-Aubin et al. (2014) explored how the positional distance separating two similar 

items affects serial recall. Their results showed weaker semantic similarity effects as the 

positional distance between similar items increased. This separation effect has recently been 

replicated by Kowialiewski, Gorin, et al. (2021) using a procedure in which participants were 

presented with lists composed of three items from each of two categories. In one condition, the 

similar items were presented at adjacent serial positions, in a grouped manner (i.e., AAABBB, 

where each letter refers to a semantic category). In another condition, the items were interleaved 

(i.e., ABABAB). Compared to a dissimilar condition, the grouped condition led to the largest 

benefit for item recall (i.e., strongest semantic similarity effect). The effect was only half as large 

in the interleaved condition. Results from a recent replication (Kowialiewski, Majerus, et al., 
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2023, Experiment 1) are illustrated in Figure 6. As can be seen, the separation effect has a 

beneficial effect on item recall (left panel). There is also a small beneficial effect on order recall 

(right panel), which is only observed when items are grouped. We recently showed that the 

separation effect is specifically due to the separation between the similar items at presentation 

and is not modulated by the order in which they are recalled (Kowialiewski, Krasnoff, et al.,

 2022), suggesting that the effect originates at encoding. In the same study, we showed that when 

more than one item separates every two similar items, the semantic similarity effect almost 

disappears.

Figure 6

The Separation Effect

Note. In the grouped condition, two categories composed each of three similar words were 

presented in sub-groups at encoding (i.e., AAABBB). In the interleaved condition, the similar 

words were presented in an interleaved fashion (i.e., ABABAB). In the dissimilar condition, all 

words were drawn from distinct semantic categories (i.e., ABCDEF).

Item recall Order recall

1 2 3 4 5 6 1 2 3 4 5 6

0.00

0.25

0.50

0.75

1.00

Serial position

p
(c

o
rr

e
c
t) Condition

Grouped

Interleaved

Dissimilar

19

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305



WM SEMANTIC MODEL

18

Benchmark #7: Semantic Similarity Constrains Order Errors

Although semantic similarity does not impair order recall, it can constrain the pattern of 

order errors. Poirier et al. (2015) presented participants with lists in which the three first items 

were semantically similar. In a control condition, the three last items remained dissimilar (e.g., 

“officer, badge, siren, music, tourist, yellow”). In an experimental condition, the fifth item was 

semantically similar to the triplet in the first half of the list (e.g., “officer, badge, siren, fence, 

police, tractor”). They observed an increase of order errors of the fifth item in the experimental 

conditions, compared to the fifth item in the control condition. Specifically, participants more 

often recalled “police” erroneously in the list positions of “officer”, “badge” or “siren”. For 

simplicity, we will refer to this phenomenon as an increase of within-category transpositions. 

Similar results have been found in Kowialiewski, Gorin, et al. (2021), who presented two 

categories of semantically similar items in a grouped (AAABBB) or interleaved (ABABAB) 

manner (i.e., see also previous section on the separation effect). Dissimilar lists (ABCDEF) 

served as a control condition. Semantic similarity changed the pattern of transposition errors: In 

semantically similar lists, there were more within-category transpositions compared to matched 

positions in dissimilar lists, and fewer between-category transpositions (i.e., a transposition 

involving the migration of an item toward the position of a semantically dissimilar item) 

compared to dissimilar lists. The full pattern of transposition errors is illustrated in Figure 7. The 

figure plots the number of transposition errors out of the total number of items recalled as a 

function of semantic condition (left panel: grouped vs. dissimilar, right panel: interleaved vs. 

dissimilar) and transposition type (i.e., within-category, between-category). What this graph 

shows is that, in a list such as “leopard – puma – tiger – Denmark – Belgium – Switzerland”, 
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people rarely produce confusion errors such as “leopard – puma – Denmark – tiger – Belgium – 

Switzerland”. Instead, when any confusion error occurred, it involved mostly items from the 

same semantic category. In contrast, items in the dissimilar condition moved throughout the list 

more freely.

Because the effect was larger in the study of Kowialiewski and colleagues (Cohen’s d = 

1.244) than the one of Poirier et al. (2015), we decided to focus on results from the two-category 

design of Kowialiewski et al. as benchmark. A recent work of our own (Kowialiewski, Majerus, 

et al., 2024) showed that the effect replicates regardless of presentation modality (i.e., auditory, 

written), and test method (i.e., serial recall, order reconstruction). Furthermore, the increase of 

within-category transpositions is not due to participants developing long-term memory 

knowledge or expectations about the semantic list structure during the experimental setup, as the 

effect persists when participants cannot predict the lists’ semantic structures, suggesting a non-

strategic origin.

Figure 7

Transpositions as a Function of Semantic Similarity Structure and Transposition Type 
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Note. In the study reported by Kowialiewski et al. (2023), participants were presented with lists 

composed of two semantic categories represented in groups (i.e., pattern AAABBB) or 

interleaved (i.e., ABABAB). As compared to items presented at identical positions in a dissimilar 

condition, items in the semantically similar lists, when migrating, tended to be transposed more 

often toward semantically similar, and less toward other dissimilar items of the list. The y-axis 

represents the number of transposition errors of a certain type (i.e., within-category or between-

category) out of the total number of items recalled in a particular condition. The dissimilar 

condition represents a control to see what would normally happen in conditions where no 

semantic structure was given.

Benchmark #8: Semantic Similarity Proactively Impacts Working Memory Performance

The last benchmark focuses on a phenomenon first reported by Brooks and Watkins 

(1990) and recently replicated by Kowialiewski, Lemaire, et al. (2021). Kowialiewski and 

colleagues tested serial recall of six-word lists in which three successive words were 
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semantically similar. In one condition (S1), the similar items were presented at the beginning of 

the list (e.g., flute, guitar, piano, wall, sky, tomato). In another condition (S2), the similar items 

were presented at the end of the list (e.g., leopard, bike, table, Mars, Jupiter, Venus). As 

compared to a dissimilar condition, the similar items themselves were better recalled at the item 

level, thus replicating the general beneficial effect of semantic similarity. The novel finding is 

that when the similar items were presented at the beginning of the list, the subsequent items were 

better recalled compared to the same items in the dissimilar condition. Hence, semantic 

similarity among the early list items had a beneficial proactive effect on subsequent, dissimilar 

items. However, when the similar items were presented at the end of the list, recall performance 

for the preceding items was not affected. There was therefore no retroactive effect. An analogous 

phenomenon has been reported by Miller & Roodenrys (2012) using high and low frequency 

items. The results are illustrated in Figure 8, showing a proactive benefit for both item and order 

recall.

Figure 8

Proactive Beneficial Effect of Semantic Similarity
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Note. In the S1 condition, items were semantically similar only in the first half of the list (i.e., 

positions 1, 2 and 3). In the S2 condition, items were semantically similar in the second half of 

the list (i.e., positions 4, 5 and 6). The remaining items were all semantically dissimilar. As can 

be seen, the presence of similar items in the S1 condition proactive enhanced memory 

performance for the subsequent dissimilar items, despite these dissimilar items having the same 

linguistic status as the items in the dissimilar condition. In contrast, no retroactive impact 

occurred. 

Empirical Section: Summary

To sum up, semantic similarity is characterized by a rich pattern of effects. It mostly 

impacts WM performance by increasing item recall, with semantically similar items leading to 

reduced omission errors and extra-list intrusions. Current evidence indicates a lack of semantic 

similarity effect on order recall when manipulated with pure lists. The absence of a semantic 

similarity effect on confusion errors occurs regardless of the retrieval direction tested and stands 

in contrast to the robust effect of phonological similarity on confusion errors. The semantic 
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similarity effect is stronger under difficult maintenance conditions. It is sensitive to the positional 

distance that separates similar items at encoding. Semantic similarity can constrain serial order 

errors in mixed lists, and it proactively improves WM performance for dissimilar items. In the 

next section, we describe a connectionist architecture modeling the interactions occurring 

between WM and the semantic long-term memory system, which explains most of these 

phenomena.

Model Description: General Principles

In this section, we first describe the general cognitive principles of the architecture we 

used to simulate semantic similarity effects. We start by describing the WM architecture itself, 

followed by the principles specific to the representation of semantic information in WM. We will 

test the ability of this mechanism to qualitatively capture the benchmarks presented above.

The Working Memory Architecture

In this section, we present a verbal description of the model we used to integrate meaning. 

The various approaches we will introduce to represent meaning in WM exhibit consistent 

behavior regardless of the specificity of the architecture. Nonetheless, choosing an architecture 

involves committing to assumptions. We chose to use a WM architecture using general principles 

shared by various models (Burgess & Hitch, 1999; Henson, 1998; Lewandowsky & Farrell, 

2008; Oberauer et al., 2012; Oberauer & Lewandowsky, 2011).

Encoding into WM is done by associating items to contexts. For instance, when presented 

with the sequence “flower – pancake – leopard”, the model associates “flower” to position 1, 

“pancake” to position 2, and so on. The core WM representation is stored in these associations 
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between items (i.e., the words) and contexts (i.e., the positions). In addition to item-context 

bindings, encoding an item into WM automatically activates its representation in long-term 

memory, and this activation persists for some time. This is a general idea taken from embedded 

processes models of WM (Cowan, 1999; Nee & Jonides, 2008; Oberauer, 2002, 2009). Basically, 

each word has a pre-existing lexical representation (i.e., equivalent to vocabulary) in long-term 

memory, coded by a localist unit. Every time a word is recognized as such, its lexical unit gets 

activated. This activation lies outside of the core item-context binding system. The architecture 

also includes an output layer, which contains a localist unit for each item in the lexicon. Features 

in the item layer are connected to each localist unit in the output layer through connection 

weights that represent the person’s long-term learning about words. Specifically, the vector of 

connection weights between the item layer and the localist unit of a word in the output layer is 

identical to the vector of features by which that word is represented in the item layer. Thus, the 

more the pattern of activation in the item layer approximates the original feature vector of a 

word, the more the localist unit representing that word in the output layer is activated. In 

addition, each node in the output layer has one connection with its corresponding lexical 

representation. The structure of the architecture is reported in Figure 9.

Figure 9

Illustration of the Working Memory Model
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Note. The architecture consists of a context layer (Y ), an item layer, split into phonological and 

semantic parts (X , Z, and H), an output layer (O), and a lexical layer (L). Both the items and the 

contexts are represented in a distributed fashion. Both layers are fully inter-connected through 

the weight matrix W . In addition to the core temporary representations stored in W , items have 

an activation value using localist representations stored in the lexical layer L in long-term 

memory. The output layer O is used to select items based on their activation levels, and contains 

items’ localist representations. The way the model retrieves items is illustrated in Figure 10.

Following Oberauer and Lin (2024), the strength of encoding through item-context 

binding is modulated in two ways. First, encoding into WM follows a primacy gradient of 

activation (Page & Norris, 1998), such that encoding strength is maximal for the first presented 

item, and progressively decreases for each newly encoded item. Second, each newly encoded 

item decreases the strength of previously encoded representations, a mechanism called automatic 

updating. The rationale behind this idea is that each new event encoded into WM is prioritized, 
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which has the consequence of de-prioritizing previous representations through weakening their 

item-context associations by a constant proportion (Oberauer & Lin, 2024). This mechanism 

produces a recency gradient. Jointly, the primacy gradient and automatic updating generate the 

U-shaped serial position curve that is typically observed in immediate memory for lists 

(Oberauer et al., 2018). 

In most WM tests, participants recall each item in a given list position. Figure 10 

illustrates this retrieval process in the model. Recall starts by cueing the to-be-remembered item 

with its context (e.g., cueing the first item with “position 1”), which leads to the reproduction of 

a distorted version of the original item in the item layer. This distortion occurs because the 

context Yi serving as a cue shares a proportion of features with other contexts. The items 

associated to those other contexts are therefore also partially retrieved. As a consequence, it is 

not the original item that is retrieved, but a blend of all items bound to any context Yk through 

the weight matrix W , weighted by how much context Yk overlaps with Yi. 

The distorted representation of the to-be-recalled item cannot be produced as response 

directly. Instead, an item must be produced by selecting among a set of retrieval candidates 

(Schweickert, 1993). In immediate serial recall of words, the retrieval candidates are the words 

stored in long-term memory, that is, people’s vocabulary. In order reconstruction tasks where the 

list items are provided at retrieval, the retrieval candidates are just the given list items. Selection 

of a candidate in the model is based on the activation of items’ localist units in the output layer. 

Basically, when a distorted vector is retrieved following the cueing process, its activation is 

forwarded from the item layer to the localist representations of retrieval candidates in the output 

layer. In the output layer, the candidates matching the retrieved representation more strongly 

have a higher activation level, and therefore a higher probability of being selected. For instance, 
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given the retrieved representation “C_T” and the recall candidates “CAT, COT, GEAR, MINE”, 

it is much more likely to select “CAT” or “COT” as the response than the other items, because 

they receive stronger activation from the retrieved features corresponding to “C_T”.

At this point, the persistent lexical activation plays a role: The candidate’s persistent 

activation in the lexical units is added to the degree of match of each candidate to the retrieved 

representation in the output layer through their one-to-one connections, resulting in the 

candidate’s activation level with which it enters the competition for being selected as the 

response. In this way, items with higher persistent activation are more likely to be recalled than 

weakly activated items. If “CAT” was part of the current memory list in the example above 

whereas “COT” was not, then “CAT” would be the most activated lexical unit because it 

combines activation from the comparison to the retrieved representation “C_T” with persistent 

activation in the lexical layer. Omissions in the model are implemented by a threshold on the 

activation level of candidates in the output layer. Modeled this way, items receiving stronger 

persistent activation in the lexical units – as well as items that are bound more strongly to their 

contexts – are less likely to be omitted, because they will have a higher chance of surpassing the 

omission threshold.

Figure 10

Working Memory Architecture – Retrieval Phase
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Note. Retrieval is performed by cueing the item with its context through the weight matrix W , 

which leads to the retrieval of a distorted version of the original item. This representation is then 

compared to all N items stored in long-term memory, leading to a degree of activation of each 

item in the output layer. The persistent activation in the lexical layer is added on top of the 

activation in the output layer. 

After recalling an item, two processes occur simultaneously. First, automatic updating 

reduces the strength of the whole WM representation stored in the weight matrix by a constant 

proportion. Supporting this assumption, studies have found clear evidence that retrieving and/or 

recalling an item leads to forgetting (Cowan et al., 2002; Oberauer, 2003), a phenomenon called 

output interference. Second, the activation of the just-encoded item is downgraded in the lexical 

layer, which prevents the model from repeating items it already recalled. Note that if no item has 

been recalled (i.e., omission error), the items’ activation is not downgraded. After each recall 
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attempt, activation in the output layer is reset to zero and a new retrieval attempt occurs. The 

recall phase finishes after the last recall attempt.

Semantic Encoding Mechanism

Each time an item is encoded, it triggers the activation of the items’ associated semantic 

features in different modality-specific regions across the neo-cortex (Binder et al., 2009; Binder 

& Desai, 2011; Lambon-Ralph et al., 2017). One important aspect of our implementation is the 

way semantic features are encoded (i.e., bound to their positional context). We assume that only 

semantic features shared among several items are encoded in this way. In a list in which items 

are drawn from the same taxonomic category, only the items’ features characteristic for that 

category will be encoded, which boils down to encoding the category itself. For instance, when 

encountering a list such as “knife – sword – dagger”, people maintain features common to all 

items, such as “hurts people”, “is dangerous”, “is a weapon”, etc. This mechanism implies that in 

a list containing semantically dissimilar items, only a negligible number of shared semantic 

features are retained due to the limited overlap between these items. 

Figure 11

Difference Between Phonological and Semantic Representations

31

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518



WM SEMANTIC MODEL

30

Note. This figure illustrates the way phonological and semantic information are represented in 

the model. White (1) and black (0) values represent active and inactive features, respectively. 

Left panel: In our model, we assume that all features of a phonological representation are always 

encoded. When that is the case, it is more difficult to discriminate between two vectors sharing a 

large proportion of features (lower part) than two vectors sharing little of their features (upper 

part). Right panel: Different from phonological representations, we assume that the semantic 

features of an item are encoded only when shared with other memoranda. When that is the case, 

two vectors will be impossible to discriminate based on their semantic components, regardless 

whether they are similar (lower part) or dissimilar (upper part).

This category-encoding assumption gives unique characteristics to the model’s behavior. 

Suppose two vectors, v1 and v2, representing the phonological and the semantic features of two 

items that are bound to their respective positional contexts, as illustrated in Figure 11. In a 

condition in which these two vectors are semantically dissimilar (upper panel), all semantic 

features of the two vectors will have zero values, because none of their features are shared. In 

this condition, it is impossible to discriminate the two vectors solely based on their semantics. 

0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0

1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0
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Only the phonological part of the vector is relevant to discriminate the items from one another. 

Now let’s consider two semantically similar items (lower panel). Both items are represented by 

their shared features. In this situation, the semantic part of the vectors is also useless to 

discriminate between the two items. Hence, as in the dissimilar condition, both items can be 

discriminated only via the phonological part of the vector. Thanks to this property, items in 

semantically similar lists will not be confused more often with each other than in lists of 

dissimilar items, although semantic information – including information about the respective 

positions of semantic categories within the list – is maintained in working memory. Although the 

supplementary semantic features encoded with semantically similar items have no effect on order 

recall, they do improve item recall, because they provide an additional source of activation that 

helps retrieved representations surpass the omission threshold.

There is one major problem when considering a model which encodes only items’ shared 

features. When first encountering the item “knife”, it cannot be known in advance which, if any, 

semantic features it will share with subsequently presented items. It is only when encountering 

the words “spoon” and “fork” that it is possible to identify the semantic features they share. At 

that point in time, these features should be encoded into WM by binding them to the positions in 

which the three items have been presented. By contrast, when people encode “knife”, “squirrel”, 

and “wall”, there are few, if any, semantic features shared among them, and hence, the model 

should not encode any semantic features in WM. We made this possible via the combination of 

two processes.

Figure 12

Illustration of the Tagging Mechanism
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Note. (A) At encoding, new associations are formed between phonological and contextual 

features. Associations between semantic features and contextual features are not yet formed, but 

tagged. (B) Based on the tagged associations, selective Hebbian learning may occur later, 

depending on the relevance of a semantic features in the current trial, based on the features’ 

activation. Note that to keep the figure readable, connections from the item layer are shown only 

for one unit in the context layer. In the model, item and context layers are fully interconnected 

such that each unit in the item layer has a connection to each unit in the contextual layer.

First, we implement a learning mechanism based on the creation of synaptic tags 

(Rombouts et al., 2015). In this mechanism, illustrated in Figure 12, associations between 

semantic features and positional contexts are not immediately encoded, but tagged. These tags 

are formed through Hebbian learning: Connections between currently active units in the context
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 layer and currently active semantic features in the item layer are tagged. This tagging process 

works with all semantic features of a word. These features’ activation is short-lived; it lasts only 

for as long as an item remains in the focus of attention.3 A tag marks a connection between item 

and context units as one that can be strengthened at a later point in time. A tagged connection is 

strengthened when the semantic feature that it connects to some context unit is activated in a 

more persistent manner than the fleeting activation that forms the tags. For that reason, the model 

represents each semantic feature in the item layer twice; once for the short-lived activation of 

these features through encoding, which drives tagging, and once for the longer-lived activation of 

these same features, which represents their longer-lasting relevance in the context of the current 

processing episode. A processing episode could involve reading a sentence, or encoding a list of 

items for immediate recall. This distinction between transient and long-lasting activation relates 

to the figure-ground distinction found in the text comprehension literature (Smith, 2012). The 

figure is what captures the immediate focus of attention and is directly available to one’s mind. 

The ground is the broader context which supports and enriches the current representation (i.e., 

the figure) that people process. Hence, we distinguish between a semantic-figure layer and a 

semantic-ground layer.

Depending on the relevance of a semantic feature over the course of the trial, a new 

association may be formed using the tags. This is where the second mechanism comes into play. 

Shared semantic information is kept active thanks to a threshold mechanism which controls the 

persistent activation of items’ semantic features in the semantic-ground layer. Longer-lasting 

activation of a semantic feature is initiated only if that feature is encoded multiple times in close 

3This short-lived semantic activation must not be confused with decay in WM: We assume that rapid decay occurs in 

the linguistic system, which is suggested by studies showing that semantic priming effects are short-lived 

(McNamara, 1992). This short-lived activation is unrelated to how WM representations are maintained.
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succession, as when several words from the same category are encoded closely together in a list. 

Once a semantic feature achieves longer-lasting activation, all tagged connections of that feature 

with context units are strengthened. This way of encoding semantics allows the model to 

selectively bind only those semantic features to their positional contexts that are shared among 

several items, without knowing ahead of time which features an item will share with 

subsequently presented items. Details of these mechanisms are presented in the computational 

implementation section.

Computational Implementation

In this section, we describe the mathematical details of the principles explained above.

The Working Memory Model

Encoding

When a list item i is presented, its content is activated as a distributed representation of 

features in the item layer. This includes phonological features as well as semantic features in the 

semantic-figure layer and the semantic-ground layer. At the same time, the item’s serial position 

in the list is activated in the context layer as a distributed representation. Mathematically, these 

distributed representations are vectors of activation values. 

The phonological part of the item feature vector is immediately bound to the context 

vector through rapid Hebbian learning:

ΔW xy=ηk X xY y Eq. 1
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In Eq. 1, X  and Y  are the activation vectors of the current item (i.e., its phonological part) 

and the current context, respectively; ΔW xy represents the change to the connection weight 

between unit x in the item layer and unit y in the context layer. The ηk term is the binding 

strength for the binding of an item to its context k, which depends on a primacy gradient of 

binding strength, and the automatic updating process: 

ηk=(1.0+β π k −1 )δn−k Eq. 2

Where β and π  are free parameters controlling the initial value of the binding strength of the first 

item, and the progressive decrease in binding strength across serial position k, respectively. The 

n term corresponds to the number of memoranda. Hence, we assume WM representations as 

being encoded across serial positions with decreasing strength, generating a primacy gradient 

(Page & Norris, 1998). This primacy gradient does not directly scale the binding strength but is 

added as a boost on top of a constant baseline strength (i.e., 1.0). Next, the δn−k term refers to an 

automatic WM updating process which weakens already encoded items after a new item enters 

WM. Every item has its binding strength proportionally reduced n−k  times during encoding of 

the subsequently presented items. By this mechanism, the binding strengths of earlier encoded 

items progressively decrease as more items are encoded, thereby producing a recency gradient. 

This recency gradient can help to explain the recency effect observed in many WM paradigms, 

such as running span procedures involving rapid presentation of long lists of items (Bunting et 

al., 2006; Hockey, 1973; Hockey & Hamilton, 1977; Pollack et al., 1959).

In addition to binding an item with its context, the presentation of an item automatically 

activates that item’s lexical localist unit, and that activation is sustained over time (Cowan, 1999; 

Oberauer, 2009):
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Li=a Eq. 3

where L is a vector of activation values of localist representations of all items, and the subscript i 

indexes the currently encoded item. The parameter a controls the strength of the persistent 

activation, and is a free parameter.

A core property of our model is the representation of item similarity. The basic WM model 

represents phonological similarity. The representation of semantic similarity will be explained in 

a detailed manner in the next section. Phonological similarity is defined in a similarity matrix 

M phon which stores the similarities between all pairs of items. The similarity value between two 

items can take any value between 0.0 and 1.0. which encompass the whole lexicon, which for 

computational reasons is limited to N=64 items. Extending item similarity beyond the 

memoranda allows modeling of extra-list intrusions, because non-list items sharing a proportion 

of phonological or semantic features with the list items will be partially cued during the retrieval 

process described below. Phonological similarity between memoranda is determined by the 

parameter S1. In simulations in which phonological similarity is not of main concern, the value 

of this parameter was fixed to 0.1. The phonological similarity between memoranda and all other 

items is controlled by a free parameter, S2. As items are maximally similar to themselves, they 

have a value of 1.0 in the similarity matrix.

Likewise, contexts also have similarity values, stored in the similarity matrix C . Similarity 

values for contexts are determined by a free parameter P. The similarity between any two 

contexts j and k decreases exponentially with their positional distance. Thus:

C jk=P| j−k| Eq. 4
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Retrieval

Figure 13 illustrates the flow of activation from one layer to the next in the network 

during retrieval. At retrieval, the serial position k of the to-be-retrieved target item is activated in 

the context layer. This activation is fed through the connection weight matrix W  to the item 

layer. This generates a pattern of activation in the item layer that is the weighted sum of the 

activation patterns of all items previously bound to any context j, each weighted by the similarity 

of their positional context to the currently activated context, C jk, and the binding strength of the 

item to its position, η j. The distributed item representations are added together in the item layer, 

but in Figure 13 we keep them separate for clarity. 

The item layer is linked to the output layer through a matrix of fixed connection weights, 

which associates each distributed representation of an item in the item layer to a corresponding 

localist representation in the output layer. Hence, each localist unit Oi in the output layer receives 

activation proportional to the weight with which the feature vector of item i is reactivated in the 

item layer, which is η jC jk for all items bound to any context j, and 0 for all others. In addition, 

the feature vector of each item i in the item layer also activates units in the output layer that 

represents other items to the extent that they are similar to item i. 

Figure 13

Flow of Activation During Positional Cueing

39

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673



WM SEMANTIC MODEL

38

Note. This figure summarizes the way activation flows from one layer to another, starting from 

the context layer from which an item is cued with the position it was initially bound to, finishing 

in the output layer that determines the response.

For instance, consider a memory set of two items h and i that have been encoded, so that 

the phonological features of items h and i are bound to contexts j and k, respectively. Now 

memory is cued by position context k. This generates a pattern of activation in the item layer 

consisting of the feature vector of item i with weight ηk * 1.0, and the feature vector of item h 

with weight η jC jk. Although the feature vectors of the two items are added in the item layer, we 

can consider their downstream effects separately. The feature vector of each item activates the 

output unit Oi with a strength corresponding to the similarity between the item’s feature vector 

and the connection weights from the item layer to the output unit. For output unit Oi, the feature 

vector of item i activates it with strength = 1.0 because that feature vector perfectly matches the 

Context

Item

Output O2 O3O1

X2 X3X1

Y2 Y3Y1
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connection weights leading to Oi. This activation is weighted by the weight of the feature vector 

in the item layer, which is ηk*1.0. The feature vector of item h activates Oi with strength = 

Mphonhi. This is weighted by the weight of feature vector h in the item layer, which is C jk. 

Conversely, output unit Oh is activated by the feature vector of item i with strength Mphonhi * ηk, 

and by the feature vector of item h with strength ηk * Cjk. Generally, Eq. 5 gives the activation 

accumulated in the output layer for any item i, given a context cue k:

Oi=Li+∑
j=1

n

η j MphonijC jk Eq. 5

In this equation, the sum operator runs over the n memoranda of the current trial, so that j 

indexes both the serial positions and the items bound to them. The sum collects the contributions 

of all feature vectors in the item layer to the activation of Oi, each weighted by their similarity to 

item i, and their strength of cueing by context k, which is determined by the similarity of k to the 

context j, and the strength η j with which the item is bound to that context. Through this process, 

retrieval candidates sharing a proportion of features with the retrieved vector will also receive 

activations in the output layer O. This includes candidates not in the list, and therefore leads to 

the occurrence of extra-list intrusions. In addition to this activation of output units through cue-

based retrieval, the persistent activation of all presented items in the lexical layer, L, is added to 

the activation of the corresponding units in the output layer.

To implement the omission threshold, we add a further element to the output vector O 

representing the strength of activation for an omission: 

ON+1=θ Eq. 6
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Here, θ is a free parameter, and the subscript N+1 indexes the element of the vector O following 

the N  localist representations. The probability pi to recall an item is then defined using the 

exponential version of Luce’s choice rule:

pi=
exp(Oi

σ )
∑
j=1

N+1

exp(O j

σ )
Eq. 7

The σ  term represents the standard deviation of noise added to each element in O.

After each recall attempt, the connection weights between item and context layers in the 

weight matrix W  are reduced by a proportional factor, which is mathematically equivalent to 

reducing all binding strengths in the strength vector η by the same factor, following this 

equation:

Δη=− ρδ η Eq. 8

Eq. 8 models output interference (Cowan et al., 1992, 2002; Oberauer, 2003), which occurs via 

the same automatic updating mechanism as described in Eq. 2. However, the extent to which this 

updating process occurs is assumed to differ from the encoding stage and is therefore estimated 

using a free parameter ρ. Finally, items which have already been recalled are discarded from the 

competition during subsequent retrieval attempts. This is implemented by downgrading this 

item’s activation in the lexical layer:

∆ Li=−Li ϵ Eq. 9

The strength of this downgrading mechanisms is controlled by the free parameter ϵ .

42

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725



WM SEMANTIC MODEL

41

Semantic Encoding Mechanisms

To define the similarity between semantically similar items, we extracted items’ semantic 

similarity values using Google news word2vec semantic vectors 

(https://github.com/mmihaltz/word2vec-GoogleNews-vectors).4 We did this for each participant 

and each trial across all experiments. Specifically, we constructed similarity matrices storing the 

cosine similarity between the vectors of all pair-wise combination of items in each list to be 

remembered. Hence, for each trial, we have a separate similarity matrix M sem which stores the 

similarity between item i and all other items j. 

Each time an item is encoded, it triggers the activation of its lexical localist unit using Eq. 

3. This lexical unit then spreads activation toward the item’s semantic features to which it is 

connected in the semantic portion of the item layer (i.e., the figure and the ground layers). 

Different from the phonological features, at first, these semantic features are not bound to their 

context through Hebbian learning. Rather, the connections between active semantic feature units 

and active context units are tagged. These tags are then subsequently used to guide changes to 

the connection weights. We describe this tagging mechanism in the next paragraphs.

Learning via Synaptic Tagging

In our implementation, semantic features are not directly encoded via item-context 

binding when first encountered. Instead, the item-context connections in the weight matrix W  are 

first tagged based on the activations in the semantic-figure layer, Z, and in the context layer, Y . 

4There is no transparent mapping between dimensions of word2vec vectors and the features we refer to in everyday 

language. For our model to work, it is not important that the vector dimensions – represented as units in the 

semantic layers of the neural network – correspond to everyday-language features.
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Tagging follows the same Hebbian learning rules as described in Eq. 1, except that instead of 

changing a connection weight directly, it attaches a tag to it with strength λzy:

λzy=ηk Z zY y Eq. 10

Hence, the strength of a tag depends on the binding strength ηk for the item in list position 

k, but also on the activation in the semantic-figure layer Z, determined by the strength of the 

persistent activation a in the lexical layer L. The purpose of this tagging mechanism is to 

indicate to the system the set of potential associations that could be formed based on what has 

just been seen. It is only when sufficient evidence has been accumulated that the tagged 

associations are transformed into actual item-context associations. This is where the activations 

in the semantic-ground layer come into play. Whereas the activation pattern in the semantic-

figure layer is erased instantly after an item has been encoded, to be replaced by the activation 

pattern of the next presented item, activation in the semantic-ground layer follows a slower 

dynamic, gradually accumulating activation across all list items. We describe this dynamic next. 

Time-Course of the Activation in the Semantic-Ground Layer

In the semantic-ground layer H , a semantic feature z for item i at serial position k receives 

activation following this equation:

ΔH z , ik=(1.0−H z , ik ) (1.0−T z ) I z Eq. 11

This equation ensures that the total activation of the semantic features does not exceed 1.0. The 

input I z is filtered by a threshold value T z such that the input adds to the feature activation to the 

degree that the threshold falls below 1.0. The input I z to a semantic feature corresponds to the 
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activation received by the word’s phonological representation. Input I z for item i is identical to 

the input received by the lexical unit Li, since they get their activation via the same source:

I z=a Eq. 12

Each semantic-feature unit z in the ground layer has its own threshold T z. At the beginning 

of a trial, all threshold values are set to a maximum (i.e., 1.0). From Eq. 11, this means that an 

item’s semantic features in the semantic-ground layer are never activated the first time they 

receive input. After receiving some input, the values of the thresholds are reduced:

ΔT z=−T z I z Eq. 13

This equation reduces the values of the thresholds proportionally to the input received. Due to 

this, units receiving stronger input are more likely to become activated by input from other 

semantically similar items during subsequent encoding steps.

During the presentation of a new item, the thresholds recover half of their value:

ΔT z=0.5 (1.0−T z ) Eq. 14

This recovery mechanism prevents the items’ semantic features from being activated in a context 

in which they are no longer relevant. 

Figure 14

Time-Course of the Dynamic Threshold Mechanism and its Consequences on Items’ Activation in 

the Semantic-Ground layer
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Note. The left and middle panels illustrate a list in which all items are semantically similar. We 

divide the shared (left panels) and unique (middle panels) features, because the dynamics of their 

activations differ. The right panel illustrates a list in which similar items are interleaved with 

dissimilar items. In each figure, the top rows indicate values of the thresholds which scale the 
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activation in the semantic-ground layer. The bottom rows indicate activations received by the 

features in the semantic-ground layer. Green dashed lines indicate moments where shared 

features between items in the same list receive activation. The red dotted lines indicate moments 

where (unique) features which are not shared by any other items in the list receive activation. As 

can be seen, features which are shared by several items in the list receive an increasing amount 

of activation throughout the trial. This activation does not increase as much in the interleaved 

condition. In contrast, features which uniquely characterize each item are never activated.

In the mechanism we just described, items’ shared semantic features will behave 

differently from the features uniquely characterizing each item. To visualize this, Figure 14 

illustrates the time-course of the semantic features’ thresholds and activations in the semantic-

ground layer for the shared (left panels) and unique (middle panels) features of all items in a 

semantically similar list. The top figure illustrates the time-course for the item encoded first. The 

bottom figure illustrates the time-course for the item encoded third. In each figure, each panel is 

divided into two parts: The upper part illustrates the value of the thresholds, and the lower part 

shows the values of the features’ activation. The green dashed lines indicate moments where the 

shared features receive input. The red dotted lines indicate moments where unique features 

receive input. Consider what happens to shared and unique features of the third item in a list of 

semantically similar items, depicted in the left and middle panels, respectively, of the lower 

figure. In the case of shared features, the presentation of the first item has lowered the third 

item’s threshold values. This occurs because the shared features of items 1 and 3 are, by 

definition, the same. Therefore, the third item’s features already gain activation from other 

similar items even before its actual presentation. These features continue to receive input 
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throughout the trial from other semantically similar items. Conversely, the unique features never 

receive any activation (middle panel). Despite the reduction in their threshold values following 

the item's encoding, subsequent items not sharing these features fail to activate them.

Now, consider the scenario where semantically similar items are interleaved with 

dissimilar ones, as illustrated in the right panels. For simplicity, we illustrate only the activation 

values for the shared features (i.e., features shared among the similar items that are presented in 

every second position), as the unique features are never activated. The presentation of the first 

item causes the drop of the shared feature’s threshold values. When encoding the second item, 

these features no longer receive input because the second item, belonging to a different category, 

does not share features with the first. This results in a partial recovery of the threshold values. 

Consequently, when the third item is encoded, the semantic features that it shares with the first 

receive reduced activation compared to a situation where the similar items follow each other at 

successive positions, because of the larger threshold recovery in the interleaved presentation 

scheme. Figure 14 also illustrates the time-course of activation of shared and unique features in 

the semantic-ground layer of item 1 (top figure). As can be seen, in situations where items are 

semantically similar (left and right panels), the first item still receives some activation through its 

features shared with other items, although this activation only starts to rise when the subsequent 

items are encoded.

In sum, unique semantic features are never activated in the semantic-ground layer. The 

activation of semantic features shared among at least two items is computed using Eq. 11 

through 14 after encoding of each new item. Activation in the semantic-ground layer causes 

changes to the connection weights that have been tagged: Each connection weight W zy is 
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modified according to the strength of its tag, λzy, multiplied with the activation of the semantic 

feature unit z in the semantic-ground layer H :

ΔW zy=H z λzy Eq. 15

With this equation, features having zero activation values in the semantic-ground layer 

will result in no item-context binding and will therefore not contribute to memory strength. Due 

to this property, coupled with the threshold mechanism, an item’s semantic features which are 

not shared by any other items in the list will not be encoded into WM via item-context binding, 

because these features fail to be activated in the semantic-ground layer. In a list in which items 

are all drawn from the same semantic category, this results in encoding the same semantic 

features across all items, resulting in the encoding of the category itself. This mechanism predicts 

better memory performance for semantically similar as compared to dissimilar items, because the 

additional semantic features encoded in semantically similar lists provide higher activation at 

retrieval.

Now that we computed the activation value for a particular item given a positional cue for 

both phonological and semantic information, we can compute the resulting activation of each 

item in the output layer:

Oi=Li+∑
j=1

n

η j (M phon ,ij+μHj M sem ,ij )C jk Eq. 16

with μHj for the mean activation level of features of item j in the semantic-ground layer H . This 

mean activation depends on the proportion of semantic features that item j shares with other 

items h, which is given by ∑ M sem ,ij and determines which proportion of semantic features of j 

have been activated in H  during encoding. It also depends on the number of other items sharing 

49

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856



WM SEMANTIC MODEL

48

these features, and the positional distance between them, which determines how strongly the 

shared features of j have been activated during encoding, and hence, the strength with which 

these features have been bound to the positional context j. 

Parameter Estimation

The WM architecture we used has free parameters, which need to be estimated to fit our 

experimental data. The list of fixed and free parameters is reported in Table 1. Model fitting was 

done for each participant using individual trials, which means that each participant had a 

different set of parameters. For each recall attempt, we computed the probability p to recall each 

of the recall candidates using Eq. 7. The log-likelihood was then computed using the recall 

probability of the observed response o in recall attempt r:

logLr=log ⁡( po ,r ) Eq. 17

We used the deviance as loss function:

D=−2.0∑ logLr Eq. 18

where the sum operator applies to all trials and retrieval attempts for a given participant.

For instance, suppose the model tries to retrieve the first item in a three-item list. The 

model might generate a pattern of activation in the output layer O which looks like this: [1.0 0.3 

0.09].5 Applying Eq. 7 using a noise parameter σ=0.5, the probability to retrieve each retrieval 

candidate is: [0.7099 0.1751 0.115]. If the participant recalled the second item for that particular 

retrieval attempt, we computed the log-likelihood as log (0.1751)=−1.7424. We then repeated 

5For this example, we ignore the extra-list retrieval candidates and the omission threshold, which are included as 

response options in the output layer and therefore also receive a likelihood through Eq. 7. 
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the process over all retrieval attempts of all trials. To compute the deviance, we summed the log-

likelihood over all trials and retrieval attempts for that participant and multiplied this sum by -2.

Parameter estimation was done using the Nelder-Mead algorithm implemented in the 

Optim package (https://julianlsolvers.github.io/Optim.jl/stable/) of the Julia programming 

language (https://julialang.org/benchmarks/). The starting points of the gradient descent methods 

were defined by drawing random values from a uniform distribution, bounded by the minimum 

and maximum parameter values. 

The purpose of the present modeling project is to capture qualitative patterns of results 

which have been consistently observed in the literature, not to provide a quantitative fit. The 

fitting procedure used here was applied to get a set of plausible parameter values which enables 

the model to reproduce important main effects, such as serial position curves, omission errors, 

extra-list intrusions and order recall performance. 

When fitting the data, we use the similarity matrix Msem defined for each trial. Each 

similarity matrix was built by extracting the cosine similarity between vectors representing each 

item studied for a particular trial using the word2vec GoogleNews corpus. Predictions from the 

model were obtained by using each matrix for each list participants studied, and then averaging 

these predictions across trials. Some experiments have been conducted with French-speaking 

individuals. In these cases, the stimuli were translated from French to English, and similarity 

values were extracted from this translation.

Our model has a substantial number of free parameters. Most of these parameters are 

necessary to accommodate the variation of participants’ memory performance across the 

different experimental designs presented in the empirical section.
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Table 1. List of Fixed and Free Parameters of the Model.

Symbol Role Value

S1
Phonological similarity between list-items (fixed to 0.1 in 
lists of phonologically dissimilar items)

0.1

S2
Phonological similarity between the list-items and all 
other items

[0.0 – 1.0]

β Initial value of the encoding strength [0.0 – 10.0]

π Progressive decrease in encoding strength [0.0 – 1.0]

δ Automatic updating process [0.0 – 1.0]

a Base activation of lexical units [0.0 – 3.0]

P Positional overlap [0.0 – 1.0]

θ Strength of activation for an omission [0.0 – 10.0]

σ Standard deviation of noise added at retrieval [0.0 – 1.0]

ρ Strength of output interference [0.0 – 1.0]

ϵ Strength of downgrading after each retrieval attempt [0.0 – 10.0]

Note. Fixed parameters are indicated by a single value. Free parameters are indicated by a range.

Model Results

Simulation #1 – The General Impact of Semantic Similarity

We first tested the model’s ability to simulate the standard semantic similarity effect in 

immediate serial recall. The model was fitted to the dataset reported in Kowialiewski, Krasnoff, 

et al. (2023), Experiment 1a. As can be seen in Figure 15, the model reproduces the classical 

pattern of performance characteristic to immediate recall tasks, including serial position curves 
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(primacy and recency) for order errors, omissions, and extra-list intrusions. Importantly, the 

model predicts the recall advantage for similar vs. dissimilar items (upper left panel). This 

contribution comes from a reduction of omission errors in the similar condition (lower left 

panel), but also a reduction of extra-list intrusions (lower right panel). Finally, the model predicts 

the absence of a semantic similarity effect on order recall (upper right panel).

Figure 15

Semantic Similarity in Immediate Serial Recall – Model Including a Tagging Mechanism

Note. The model reproduces the general semantic similarity effect, with (1) a reduction of 

omission for lists composed of semantically similar than dissimilar items, (2) a reduction of 
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extra-list intrusions for lists composed similar than dissimilar items, and (3) an absence of impact 

on order recall. Dashed lines indicate model predictions. The model was fitted to the data 

reported in Kowialiewski, Krasnoff, et al. (2023), Experiment 1a.

Figure 16 shows the correlation between the model’s predictions (x-axis) and the 

empirical data (y-axis) at the individual level. There is a close match between the model’s 

performance and participants’. This is made possible by fitting the model at the individual level: 

For participants with low recall performance, the minimization algorithm used for fitting 

converges toward smaller encoding-strength parameter values, and conversely for participants 

with high recall performance.

Figure 16

Individual Fits from Simulation #1

Note. Correlation between the model’s performance (x-axis) and the empirical data (y-axis). Left 

panel: Item recall criterion. Right panel: Order recall criterion.
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We extended these simulations by running the model on a reconstruction of order task. In 

order reconstruction, items are given at retrieval, and participants must reproduce the original 

sequence’s order. To simulate order reconstruction, we (1) restricted the set of recall candidates 

to the list items and (2) prevented the model from producing omissions (i.e., excluding θ from 

the set of recall candidates). The same set of parameters as the previous simulation was used. As 

can be seen in Figure 17, the model predicts the absence of a semantic similarity effect on order 

recall. Because all memoranda are available at retrieval and the model cannot produce omissions, 

the omission rate is zero. Likewise, as the only available candidates are the list items, the model 

doesn’t produce extra-list intrusions. 

Figure 17

Semantic Similarity in Reconstruction of Order – Model Including a Tagging Mechanism
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Note. When tested on reconstruction of order, the model successfully reproduces the absence of 

semantic similarity on order recall. There is no omission and no extra-list intrusion possible in 

reconstruction of order, because the only items available at retrieval are the memoranda. The 

model was run using the same parameter values which served to produce results illustrated in 

Figure 15, except that omission errors, repetitions, and extra-list intrusions were not allowed.

We explored whether the model could explain the semantic-similarity effects without the 

tagging mechanism by deactivating it and then re-fitting the model using the same procedure 

which served to produce the results in Figure 15. As can be seen in Figure 18, upper left panel, 

the model produced a substantial detrimental effect of semantic similarity on order recall. 

Therefore, it seems that the only way for the model to prevent an increase of order errors 

following semantic similarity is to include a mechanism which encodes only the semantic 

features shared by several items, which is precisely what the tagging mechanism does. In the 

next section, we explain in a more detailed manner the core reasons why such a property is 

required.

Figure 18

Semantic Similarity in Immediate Serial Recall – Model Without a Tagging Mechanism
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Note. Without the inclusion of the tagging mechanism which encodes only features shared 

between items, the architecture reproduces (1) a reduction of omission for similar lists relative to 

dissimilar lists, (2) a reduction of extra-list intrusions for similar lists. However, the model fails 

to account for the absence of a semantic similarity effect on order recall. Dashed lines indicate 

model predictions. The model was fitted using the dataset reported in Kowialiewski, Krasnoff, et 

al. (2023), Experiment 1a.

Simulation #2 – Understanding Similarity Effects: Comparison with Rhyming Similarity

The previous simulations show a null effect of semantic similarity on order recall, which 

means that semantic similarity did not increase confusions errors. To understand why, we need to 
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understand how confusion errors are produced in the model. We illustrate this by manipulating 

rhyming similarity for comparison. We took the phonological dimension as an example, because 

this is the best-known phenomenon in the literature. Other dimensions of similarity (for instance, 

visual similarity; Saito et al., 2008) show qualitatively the same effects on serial recall as 

phonological similarity.

In this simulation, we varied phonological instead of semantic similarity. To that end we 

set the value between phonologically similar items to 0.30, while keeping all other parameters 

from the previous simulations constant. This value is arbitrary and has been set manually. Our 

purpose was to increase similarity to simulate phonological-similarity effects qualitatively, not to 

quantitatively reproduce the empirical data. To keep the model’s behavior easy to track, we also 

deactivated the contribution from the semantic part of the items. As can be seen in Figure 19, left 

panel, the model correctly predicts the recall advantage for rhyming vs. non-rhyming items on 

item recall, a standard observation (Fallon et al., 2005; Gupta et al., 2005; Neale & Tehan, 2007; 

Nimmo & Roodenrys, 2004). At the same time, phonological similarity also impairs order recall 

(right panel).

Figure 19

Rhyming Similarity in Immediate Serial Recall – Model Predictions
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Note. When manipulating rhyming similarity, the model correctly captures the pattern found in 

humans: an item recall advantage for lists composed of rhyming vs. non-rhyming items, and a 

detrimental effect on order recall. These results were simulated by increasing the phonological 

similarity value between items to 0.3 in the similar condition, while keeping all the other 

parameters from Simulation #1 constant, and deactivating the contribution from the semantic 

part of the items.

To understand this discrepancy between semantic and phonological similarity, we 

computed the items’ activation at retrieval. Each time the model attempts to retrieve an item, the 

activation associated with the target item, non-target items, extra-list items, and the omission 

threshold were extracted. In the mathematical description presented above, this corresponds to 

Eq. 16. As can be seen in Figure 20, similar items have a higher activation level than dissimilar 

items. Thanks to this high activation level, similar items are more often selected than non-list 

items, and more often pass the omission threshold, compared to dissimilar items, thus producing 
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an item recall advantage. This happens both in the semantic and phonological domains, though 

for different reasons. Let’s start with the semantic domain.

Figure 20

Activation Values Produced by the Model at Retrieval

Note. Activation values for the target item, non-target items, extra-list items, and omission 

threshold. Values are averaged across all retrieval attempts. Upper panel: semantic similarity 

variation. Lower panel: phonological similarity variation. Due to their higher activation value, 

similar items can overcome the activation values of extra-list items and the omission threshold 
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more often than dissimilar items, thus producing a net benefit on item recall. Confusion errors 

between target and non-target items increase as the difference between their activation values 

decreases. This difference remains identical between semantically similar and dissimilar items, 

thus preventing an increase in confusion errors between semantically similar (relative to 

dissimilar) items. When phonological similarity is varied, this difference between target and non-

target items is smaller in the similar compared to the dissimilar condition, which increases 

confusion errors. 

When list items are semantically similar, they receive additional activation, which comes 

from the encoding of a categorical representation that is the same for all items of a similar list. 

This categorical representation adds a constant amount of activation to all memoranda at 

retrieval for semantically similar lists. Consequently, the difference in activation between the 

target and the non-target items remains constant. This can be seen in the upper panel of Figure 

20, where the relative activation level between target and non-target items is identical in the 

semantically similar (Mdiff = 3.1) and dissimilar (Mdiff = 3.1) conditions. In the choice rule that we 

use for response selection (Eq. 7), a constant difference in activation levels translates into a 

constant proportion of exponentiated activation levels. Let’s assume a vector v which contains 

activation values for n items. The probability to recall each item is given by:

pi=
exp ⁡(v i )

∑
j=1

n

exp ⁡(v j )
Eq. 19

Now let’s add a constant value c to each index in the vector v:
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pi=
exp ⁡(v i+c )

∑
j=1

n

exp ⁡(v j+c )
Eq. 20

We can factor out ec from both the numerator and denominator: 

pi=
ec .exp ⁡(v i )

ec .∑
j=1

n

exp ⁡(v j )
Eq. 21

In Eq. 21, both ec terms cancel each other, which brings us back to Eq. 19. Therefore, by adding 

a constant boost of activation to all semantically similar items, our semantic similarity 

mechanism based on the encoding of categorical information has no effect on the probability of 

confusing a target item with one of the non-target items in the list. This means that in this model, 

semantic similarity has no effect on order recall.

Psychologically speaking, this property of the exponential version of Luce’s choice rule 

makes sense: When a constant representation, such as a taxonomic category, is added uniformly 

to all items in a list (in the present model, this is achieved by keeping only the features shared 

between list items  active in the semantic ground layer), it results in equal discriminability 

between the items. In this scenario, semantic features are not informative to discriminate 

between the list items.6

6 As a metaphor, let’s consider a situation in which one is asked to identify a criminal among several suspects. To 

differentiate between the suspects, one can rely on distinguishing cues such as age, facial characteristics, or 

voice pitch. However, if all the suspects in question happen to be white, recalling that the criminal was white is 

uninformative. Similarly, knowing that the items were drawn from the category of fruit is uninformative to 

discriminate between apple, banana, and orange.
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The effects of phonological similarity on item and order recall are different from those of 

semantic similarity, because we assume that phonological features are activated directly by the 

input they receive at encoding, and therefore, all phonological features of an item are bound to 

that item’s context.

Phonological similarity increases items’ activation at retrieval through a different route: 

When the target item is cued by its positional cue, a pattern of activation is generated in the item 

layer that is a weighted blend of all list items, each weighted by the similarity of its position to 

the target position. This vector is then compared to all candidate items in long-term memory. 

When the item vectors are similar to each other, the target item in long-term memory is similar to 

some degree to all list items that contribute to the retrieved vector. Therefore, the target item 

receives higher activation in the output layer at retrieval when list items are phonologically 

similar. Mathematically, it can be seen from Eq. 16 that when values of Mphon get large, the sum 

of Mphonij∗C jk increases, too.

As an example, let’s assume for simplicity a two-item list, with a phonological similarity 

value of 0.1 and 0.35 for a dissimilar and similar condition, respectively. Retrieval of the first 

item is done by cueing the WM representation using cue 1, which has a similarity value of 0.5 

with cue 2. The current cue is maximally similar to itself (i.e., similarity value of 1.0). In this 

scenario, item 1 is maximally reactivated by the first cue, resulting in an activation value of 1.0 * 

1.0 in the output layer. In addition, item 2 is also cued to some extent (i.e., with a value of 0.5) by 

virtue of being partially associated to cue 1. Because item 2 is similar to item 1, this results in the 

partial activation of item 1 through its shared features. Hence, item 1 is reactivated by 0.1 * 0.5 

in the dissimilar condition, and 0.35 * 0.5 in the similar condition. The activation value of the 
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first item in the output layer is then the sum of the activation generated by cue 1. In the dissimilar 

condition, this gives:

O1=1.0∗ 1.0+0.1∗ 0.5=1.05

In the similar condition, this gives:

O1=1.0∗ 1.0+0.35∗ 0.5=1.175

Thus, this way of binding items to context results in higher activation values for lists of similar 

items. The same effect, however, also applies to non-targets: Their long-term memory 

representations are also similar to all list items, and therefore they receive activation from the 

contribution of all list items to the retrieved vector. Critically, the non-targets receive activation 

from the target item, which enters the retrieved vector with the highest weight, whereas the target 

receives activation only from the non-targets, which enter with a lower weight. Thereby, non-

targets receive a larger boost to their activation in the output layer from phonological similarity 

than targets do. Therefore, the activation difference between targets and non-targets decreases in 

phonologically similar lists. 

Let’s return to our 2-items list example. When the first item is cued using cue 1, item 2 

gets re-activated by the current cue proportionally to its similarity value with item 1. This gives 

0.1 * 1.0 in the dissimilar list, and 0.35 * 1.0 in the similar list. In addition, item 2 gets activation 

by virtue of being associated to cue 2. This gives 1.0 * 0.5 in both conditions. Thus, activation 

value in the output layer for the non-target item in the dissimilar condition becomes:

O2=0.1∗ 1.0+1.0∗ 0.5=0.60

In the similar condition:

O2=0.35∗ 1.0+1.0∗ 0.5=0.85
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In our simplistic scenarios, if we take the difference in activation value between the target and 

non-target items, we have Mdiff = 0.45 in the dissimilar condition, and Mdiff = 0.325 in the similar 

condition. This is also observed in our simulations: In the phonologically similar condition, the 

difference in activation level (see Figure 20) is smaller (Mdiff = 2.2) than in the phonologically 

dissimilar condition (Mdiff = 3.1). In this context, the property as described in Eq. 19 through 21 

no longer applies. This unequal difference in activation translates into reduced distinctiveness 

between target and non-target items in the phonologically similar condition. Therefore, the model 

produces more order errors in phonologically similar than dissimilar lists. 

Simulation #3 – Semantically Similar Retrieval Cues do not Lead to Increased Interference

When participants are cued with an item and must retrieve the position associated to it, 

phonological similarity increases the occurrence of confusion errors, but semantic similarity does 

not (Kowialiewski et al., 2023). In the study from Kowialiewski, Krasnoff and colleagues, 

participants retrieved items from their context on half the trials, and retrieved contexts from the 

items on the other half of the trials. We therefore simulated both retrieval directions. In addition, 

all items and positions were tested in random order, an aspect of the experimental procedure we 

also simulated. To retrieve items from their contexts, we used Eq. 16. For the opposite direction 

the item layer and the context layer switch roles: The given item is activated in the item layer 

(i.e., the phonological layer X  and the semantic figure layer Z), which re-activates a distributed 

representation of the position through the weight matrix W . The re-activated position 

representation is forwarded to an output layer Ω with localist representations of the positions. 

The combined phonological and semantic similarity matrices now play the role of similarities 
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between retrieval cues, and the cue-similarity matrix C takes the role of similarities between 

retrieval candidates. Hence, we adapted Eq. 16 as follow:

Ωk=∑
j=1

n

η jC jk (M phon ,ij+μHj M sem ,ij ) Eq. 22

When modeling the retrieval direction from a given item to its position, we restricted the 

set of retrieval candidates to the 6 positions and set the θ parameter to zero because in this task, 

what needs to be retrieved (i.e., the positions from 1 to 6) is always known to the participants, 

thus preventing omissions and extra-list intrusions. This also implies that items’ localist semantic 

units no longer play a role, which is why the Li term doesn’t appear in Eq. 22. We fitted the 

model’s parameters to the data reported by Kowialiewski et al. (2023), Experiment 2a & 2b. 

Results of these simulations are displayed in Figure 21.

Figure 21

Simulation Results from the Cue-Similarity Manipulation
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Note. Upper panels: Semantic similarity. Lower panels: Phonological similarity. Left and middle 

panels: Item and order recall, in the conditions involving the retrieval of items from contexts. 

Right panels: Positional recall, in the conditions involving the retrieval of positions from items. 

Dashed lines indicate model predictions. The model was fitted to the data reported by 

Kowialiewski et al. (2023), Experiment 2a & 2b.

In agreement with the experimental data, the model produces bow-shaped serial position 

curves instead of the strong primacy effect usually observed in serial recall7. The important 

7In serial recall, input position is fully confounded with output position: The last encoded items are also output last. 

A significant part of forgetting occurs in WM due to output interference (Cowan et al., 2002). Therefore, in 

serial recall, the last presented items also suffer most from output interference, which creates a strong primacy 

effect. In contrast, when items are cued in random order, the effect of output interference is equally spread over 

all positions. This causes more symmetrical recall performance across serial positions.
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results are those related to the similarity manipulations. As can be seen in Figure 21, left panels, 

the model predicts increased item recall for similar vs. dissimilar lists, for the same reasons as 

explained in simulations #1 and #2. When items are retrieved from contexts, phonological 

similarity increases confusion errors for the reasons explained in simulation #2. When contexts 

are retrieved from items, phonological similarity increases confusion errors for a different 

reason. If the presented cue is similar to other cues, this leads to a stronger activation of the other 

non-target contexts, increasing the probability to choose another context than the target one.

As can be seen, semantic similarity has no effect on confusion errors for this retrieval 

direction. In our model, the semantic part of the item that is activated in the item layer functions 

as a retrieval cue only insofar as it is bound to the item's position in the weight matrix W . This is 

the case only for semantic features that are shared among multiple items. In dissimilar lists, such 

shared features hardly exist; in similar lists, the shared features are  identical for all items, and 

therefore they are bound equally to all list positions. Hence, they cannot be used to discriminate 

one position from another. They add a constant amount of activation to all positions, without 

changing the difference between target and non-target positions, leading to no increase of 

confusion errors.

Simulation #4 – Semantic Similarity and Task Difficulty

Serial recall of semantically similar lists is more resistant to task difficulty manipulations 

than recall of semantically dissimilar lists (Kowialiewski & Majerus, 2020; Neale & Tehan, 

2007). We simulated Neale and Tehan’s results, who observed that the magnitude of the semantic 

similarity effect on item memory gradually increased as memory performance decreased. 

Interference by a secondary task (e.g., concurrent articulation) was implemented in the model by 
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scaling the encoding strength vector η with values ranging from 1.0 to 0.5. This variation of 

encoding strength affected only the binding of phonological features to their positional contexts. 

A value of 0.0 means that the content of WM was completely erased, and a value of 1.0 leaves 

the WM representations unaffected. We reduced the encoding strength specifically for the 

phonological representation, as the interfering tasks included by Neale and Tehan were 

phonological in nature (i.e., articulatory suppression, backward counting). Note that Neale and 

Tehan’s experimental setup included two set size conditions: 4 and 6. These conditions were also 

included in the current simulations. For each set size, we simulated 30 task difficulty conditions. 

Note that Neale and Tehan (2007)’s raw data were not made available. For this reason, we 

simulated these results by using the parameter values which served to generate those of 

simulation #1. As can be seen in Figure 22, the model predicts the increased similarity advantage 

on item recall as task difficulty increases. In contrast, the model doesn’t predict any similarity 

effect on order recall, and this absence is consistent across all task difficulty levels. 

The reason why the semantic-similarity benefit increases with higher task difficulty is 

rather trivial, and most likely not specific to our model: The poorer item recall becomes in the 

dissimilar condition, the more room there is for improvement through semantic similarity. For 

order recall this does not happen because semantic similarity has no influence on order recall. 

Figure 22

Simulations of the Task Difficulty Effect
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Note. Task difficulty was computed as the decrease in recall performance for a given score (item 

recall or order recall). Results were simulated by using the same parameter values as in 

Simulation #1.

Simulation #5 – Semantic Similarity Modulates the Type of Intrusion Errors

In lists composed of semantically similar items, participants frequently recall a critical 

lure that is highly similar to all list items but is not included in the list. This phenomenon is 

rarely observed in lists composed of dissimilar items (Tehan, 2010). To simulate this effect, we 

extracted the word2vec similarity values of 24 lists from the Stadler et al. (1999) norms, which 

Tehan (2010) based his study on. The 6 strongest associates to the critical lure were chosen. We 

extracted the similarity values between these list items and the critical lures, and included these 

values in the similarity matrix Msem. We used the same parameter values as Simulation #1. 

Results from this simulation, reported in Figure 23, show that the model accounts reasonably 

well for this phenomenon: The critical lure is recalled much more often in the similar than the 

dissimilar list. Whereas in the experiment the critical lure was practically never recalled in the 

dissimilar condition, the model still produced 2.6% critical-lure intrusions. This is probably due 
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to the fact that we gave the model a much smaller vocabulary than adult human participants 

have, so that the critical lure has a higher chance of being selected whenever an extra-list 

intrusion occurred.

Figure 23

Recall of Critical Lures as a function of Semantic Condition

Note. The y-axis shows the proportions of times critical lures were recalled, out of the total 

number of responses produced. The data were simulated by using the same parameter values as 

in Simulation #1, and using the word2vec similarity values from the Stadler et al. (1999) norms.

We also simulated the distribution of extra-list intrusions as a function of list composition 

(semantically similar and dissimilar lists) as shown in Figure 5. We started with the assumption 

that most retrieval candidates in one’s vocabulary are only weakly associated with their target 

items, meaning that the overall probability of producing a semantically dissimilar intrusion is 
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higher than that of producing a semantically similar intrusion. To model this, we first estimated 

the proportion of words in the language that have low, medium, and high similarity to target 

items in the memory list. We did this by computing the similarity between each target and the 

available items in word2vec. These similarity values were used to categorize words in the 

vocabulary into each bin, and the count in each bin was then divided by the sum of all counts. 

Given the large number of words available in word2vec (3 million), we drew 10 words at random 

for each target, and repeated the process for all list items in all experiments. The resulting 

proportions were then used as a weighting factor in Luce’s choice rule (Eq. 7) to simulate the 

probability of retrieving an intrusion from each similarity bin. Specifically, we decomposed the 

probability of retrieving a non-target item into non-targets with low, medium, and high similarity 

to the target, each weighted by the proportion of words in the vocabulary belonging to each of 

these three bins. Adapting Eq. 7 gives:

pi=
exp(Oi

σ )w i

∑
j=1

N+1

exp(O j

σ )w j

Eq. 23

Where w is a vector of weights whose values are fixed to 1.0, except for non-list items n+1:n+3 

for which the w was set to the proportion of words in each bin. For those retrieval candidates, we 

kept the original phonological similarity value S2 as used in previous simulations. By this 

method, the sum of pn+1:n+3 gives back the original probability to retrieve a non-list item as found 

in our previous simulations.  Additionally, the model was assigned distinct semantic similarity 

values between targets and non-target items for each bin. These semantic similarity values were 

determined using the median semantic similarity values between targets and intrusions observed 

in the empirical data reported in Figure 5. Results of these simulations are reported in Figure 24. 
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The model reproduces the observed decrease in low-similarity intrusions, and the corresponding 

increase in high-similarity intrusions, in semantically similar lists. The decrease in low-similarity 

intrusions reflects the overall reduction in extra-list intrusions in semantically similar lists: 

because list items receive a larger boost of activation in the output layer (O) in a semantically 

similar list, they are more likely to be recalled than non-list items.

Figure 24

Distribution of intrusion errors

Note. Proportion of intrusion errors as a function of semantic similarity (similar vs. dissimilar).

The reason why highly similar intrusions occur more often in similar than dissimilar lists 

can be better understood by looking at the activation values extracted at retrieval, which we 

report in Figure 25. For simplicity, the analysis focuses on the simulations from the Tehan 

(2010) data reported in Figure 23, but this theoretical explanation also applies to the simulations 

reported in Figure 24. We divided the activation values in different categories: Target items, non-
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target items, the critical lures, and the omission threshold. In a semantically dissimilar list (upper 

panel), the semantic part of the items is not encoded, because few features are shared between 

list items. This means that the semantic part of the representation has little contribution when it 

comes to select a recall candidate. Consequently, the lure item will receive very little activation 

in the output layer O and will therefore be rarely selected. In contrast, in a semantically similar 

list the semantic part of the representation contributes strongly to the selection process. When 

trying to retrieve an item, the semantic features of this item will match those of the lure items, 

which means that the lure will receive a substantial amount of activation in the output layer O. 

This leads the model to more often select extra-list items sharing features with the list items.

Figure 25

Activation Values Produced by the Model at Retrieval

Note. Activation values for the target item, non-target items, critical lures, and omission 

threshold. Values are averaged across all retrieval attempts. In the dissimilar condition, the 
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semantic part of the items has little contribution during the retrieval stage. As a consequence, 

critical lures (Lures-Sem) receive little activation and have a low probability to be recalled. In 

the similar condition, in contrast, critical lures receive high activation values due to their shared 

semantic features with the list items, which makes them more likely to be erroneously recalled.

Simulation #6 – The Separation Effect

In the separation effect, semantically similar items are better recalled if encoded at close 

vs. distant serial positions. We fitted the model to the data reported in Kowialiewski, Majerus, et 

al. (2023), Experiment 1. The experiment involved three conditions: grouped, interleaved, and 

dissimilar. In the grouped condition, items were presented in two sub-groups of three 

semantically similar items (i.e., AAABBB). Lists in the interleaved condition also consisted of 

two sets of three similar items, except that the similar items were presented in an interleaved 

fashion (ABABAB). The dissimilar condition involved lists composed of items drawn from six 

different categories (ABCDEF). We fitted the model to these data using the same procedure as 

described above. The semantic similarity value S3 was identical in the grouped and interleaved 

conditions, as the two conditions were constructed using the same semantic categories. As can be 

seen in Figure 26, the model predicts the decreased recall performance in the interleaved 

compared to the grouped condition. This pattern is made possible via the dynamic activation 

threshold as computed in Eq. 11 through 14: When several semantically similar items are 

presented one after the other, the thresholds of their semantic features become lower. Once these 

thresholds are lowered, the items’ semantic features receive more activation from similar items. 

When similar items are interleaved, the thresholds recover more strongly towards their initial 

value in between presentations of similar items. Therefore, when encoding the third and fourth 
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semantically similar item, the semantic features receive less activation than if the semantically 

similar items were presented close to each other. The model also predicts the order recall 

advantage (see Figure 26, right panel) in the grouped vs. dissimilar and interleaved condition. 

This result is deeply linked to a fundamental property of our model, which we analyze in greater 

details in the next section. 

Figure 26

Simulations of the Separation Effect

Note. Upper panels: Empirical data. Lower panels: Model predictions. The model was fit to the 

data reported in Kowialiewski, Majerus, et al. (2023), Experiment 1.
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Simulation #7 – Semantic Similarity Constrains Order Errors

When semantically similar items are presented in semantic subgroups (e.g., “piano, flute, 

guitar, leopard, cheetah, lion”), order errors tend to follow the semantic structure imposed by the 

experimental setup: People are more likely to transpose two semantically similar items than two 

semantically dissimilar ones. When the similar items are presented in an interleaved fashion 

(e.g., “piano, leopard, flute, cheetah, guitar, lion”), the effect is still observed, although only half 

as large as in the grouped condition. We report the same simulations as those in #5, as they 

involve the same experimental conditions. As can be seen in Figure 27, our model based on the 

encoding of categorical information captured the pattern of transposition errors induced by the 

lists’ semantic structure.

Our model can capture this benchmark, because it encodes items’ semantic features in the 

grouped and interleaved conditions. The semantic structure prevents transposition errors from 

one group to another, because the semantic features encoded for items from distinct categories 

mismatch. For instance, when attempting to retrieve “item 3” in a “AAABBB” list, the semantic 

features of category “A” of this item are reactivated. When comparing this representation to all 

representations stored in long-term memory, the semantic representation of “item 3” will 

strongly match with those of the same category, in this case items 1 through 3, thereby slightly 

increasing within-category transpositions. In contrast, the representation of this item will 

mismatch with those of items 4 through 6, which strongly reduces between-category 

transpositions. This reduction of between-category transpositions explains why order recall is 

better in the grouped compared to the dissimilar condition, as reported in Figure 26.
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Figure 27

Transpositions as a Function of Semantic Similarity Structure and Transposition Type

Note. Striped bars indicate model predictions. The model was fit to the data reported in 

Kowialiewski, Majerus, et al. (2023), Experiment 1.

To better understand what is happening in the model from a mathematical perspective, we 

can start from a basic example. Suppose a first scenario in which the model tries to retrieve the 

first item among a list of four dissimilar items to be remembered. Assuming a positional overlap 

of 0.333, items’ activation value for this retrieval step is: [1.0, 0.333, 0.111, 0.037]. Applying the 

choice rule we reported in Eq. 7 with σ=0.5, the probability to recall each item is: [0.634, 0.167, 

0.107, 0.092]. For this retrieval attempt, the proportion of within and between-category 

transposition among all transpositions is 0.801 and 0.199, respectively.

Now suppose a second scenario in which both items 1 and 2 receive a uniform boost of 

activation of 0.5, which is what typically occurs in the model when two items are semantically 
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similar (i.e., both items receive a constant boost). Items’ activation value is now: [1.5, 0.833, 

0.111, 0.037], and their probability to be retrieved is: [0.725, 0.191, 0.045, 0.039]. The 

proportion of within and between-category transposition is now: 0.916 and 0.084, respectively.

Hence, increasing the activation value of items 1 and 2 increases within-category 

transpositions, but also decreases the proportion of between-category transpositions. Due to this 

decrease of between-category transposition, the target item is recalled more often in the correct 

position, because it migrates less often towards positions 3 and 4. In addition, because of the 

property described in Eq. 19 through 21, confusion errors do not increase between semantically 

similar items. If we compute the odds of retrieving item 1 relatively to item 2 in the first 

scenario, we get: 0.634 / 0.167 = 3.796. In the second scenario, this gives: 0.725 / 0.191 = 3.796. 

These are the core reasons why the model reproduces the pattern of migration errors observed in 

the empirical data. 

Simulation #8 – Proactive and Retroactive Effects

Semantically similar items, when presented at the beginning of a to-be-remembered list, 

enhance WM performance for dissimilar items presented later in the list. When the similar items 

are presented at the end of the list, no such improvement is observed for the dissimilar items 

earlier in the list (Kowialiewski, Lemaire, & Portrat, 2021). This proactive benefit is observed 

both at the item and serial order levels. We fitted the model to the data reported by Kowialiewski, 

Lemaire, & Portrat (2021) using the same procedure as described above. Figure 28, lower left 

panel, shows the recall advantage for similar vs. dissimilar items predicted by the model, as 

classically observed. We will now provide a more detailed explanation of the results concerning 

the proactive and retroactive effects.
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Figure 28

Proactive and Retroactive Effects

Note. Upper panels: Empirical data. Lower panels: Model predictions. The model reproduces the 

overall beneficial effect of semantic similarity. However, it falls short at explaining the proactive 

benefit of semantic similarity (i.e., recall advantage for items 4, 5 and 6 in the “S1” condition). 

S1 = Semantically similar in the first half of the list. S2 = Semantically similar in the second half 

of the list. Dissimilar = All items are drawn from a different semantic category. The model was 

fit to the data reported by Kowialiewski, Lemaire, & Portrat (2021).
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The proactive benefit. The model does not predict the proactive benefit on item recall, 

because it includes no additional WM mechanism to enhance recall performance for the 

subsequent items. Our implementation increases item recall for semantically similar items, but 

this influence is specific to the similar items themselves. As there is nothing in the model to 

make the effect more global, the model is incapable of predicting the proactive benefit. 

The absence of retroactive impact. As can be seen in Figure 28, lower left panel, the 

model predicts no retroactive impact on item recall. This occurs for the same reason the model 

does not predict a proactive benefit: The semantic similarity effect is specific to the semantically 

similar items themselves. Note however that the model predicts a small, but noticeable 

retroactive impact in serial position 3 when order recall is considered (see Figure 28, right 

panel). This occurs because when the model tries to retrieve the third item, the semantic features 

of item 4 will be re-activated to some extent due to the similarity between positions 3 and 4 as 

retrieval cues. Item 4 will therefore have a slightly higher activation level and therefore a small 

advantage during the competition for retrieval, resulting in increased anticipation errors. 

Simulations: Summary

Results of the simulations for each benchmark are summarized in Table 2. As can be seen, 

the model can explain nearly all the benchmarks presented in the introduction. The only 

exception is the proactive benefit of semantic similarity.

Table 2. Summary of the Simulations

Benchmarks Description Qualitative fit

#1a: Item benefit and omissions
Semantic similarity reduces the 
production of omission errors

+

#1a: Item benefit and extra-list Semantic similarity reduces the +
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intrusions (item benefit) production of extra-list intrusions

#2: Order recall
Semantic similarity has a null effect on 
order recall

+

#3: Cue similarity
When positions are tested using items as 
cue, semantic similarity does not increase 
confusion errors

+

#4: Task difficulty
Semantic similarity increases with task 
difficulty

+

#5: Intrusion errors
Semantic similarity modulates the type of 
intrusion errors

+

#6a: Separation effect on item recall
Similar items presented adjacent to each 
other are better recalled than when 
presented at more distant serial positions

+

#6b: Separation effect on order 
recall

Similar items presented in groups 
(AAABBB) lead to increased order recall 
than when presented in an interleaved 
fashion (ABABAB) or in dissimilar lists 
(ABCDEF)

+

#7: List structure on transposition 
errors

The semantic structure of a list constrains 
the way items are transposed

+

#8a: Proactive benefit
Semantic similarity increases memory 
performance for subsequent, dissimilar 
items in the same list

-

#8b: Absence of retroactive impact
Semantic similarity does not retroactively 
impact memory performance for 
dissimilar items in the same list

(+)

Note. The different symbols indicate the qualitative fit of the models to the data. +: Predicted correctly; 
(+): Predicted largely correctly -: Not predicted correctly.

General Discussion

We propose a computational model that offers a comprehensive explanation for the effects 

of semantic similarity in WM for lists of words. We used a WM architecture in which items are 

encoded into WM by binding them to their contexts, that is, to their serial positions in the list. 

Whereas phonological features are bound to their positions instantly and nonselectively, semantic 

features are encoded in a more limited way: Only those features shared by several memoranda 

are bound to their contexts. This is made possible by a dynamic threshold of activation for 

semantic features by which the subset of shared features is selected, together with a tagging 

mechanism that enables the model to bind shared features to their list positions retrospectively. 
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Using these principles, the architecture can explain most of the empirical observations made so 

far on the semantic similarity effect.

Similarity and Confusion Errors

Phonological similarity impairs order recall for short lists of words (Baddeley, 1966; 

Fallon et al., 2005; Gupta et al., 2005; Nimmo & Roodenrys, 2005; Roodenrys et al., 2022). This 

effect has been taken as evidence that WM stores information in a phonological format. Whether 

semantic similarity also impairs order recall has been the object of debates. Early studies did not 

find a detrimental effect of semantic similarity on order recall (Neale & Tehan, 2007; Poirier & 

Saint-Aubin, 1995; Saint-Aubin & Poirier, 1999a). Sometimes, a detrimental effect was found 

(Saint-Aubin et al., 2005; Tse, 2010; Tse et al., 2011), and some have argued that these 

discrepancies might be explained by the metric used to manipulate semantic similarity (Ishiguro 

& Saito, 2020). Recent studies have shown multiple times that semantic similarity has no 

negative impact on order recall (Kowialiewski, Krasnoff, et al., 2023; Kowialiewski, Majerus, et 

al., 2023), even when different similarity metrics are used (Neath et al., 2022), including the 

metric recently proposed by Ishiguro and Saito (Ishiguro & Saito, 2024; Kowialiewski et al., 

2023). As similarity effects have been previously taken as evidence that WM relies on a 

particular kind of information, the null effect of semantic similarity on order recall could be 

taken to imply that WM does not encode semantics.

A recent study has shown that semantic similarity can, under some circumstances, lead to 

a slight detrimental effect on order recall (Guitard et al., 2025). To test whether the inability of 

earlier studies to detect this effect was due to a lack of statistical power, we combined results 

from five experiments using comparable methodologies (i.e., serial recall and order 
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reconstruction, set size 6), resulting in a dataset of 270 participants. The reanalysis of this 

dataset, reported in Appendix B, provides strong evidence against a semantic similarity effect in 

order reconstruction. In serial recall, the evidence is ambiguous, suggesting that the detrimental 

effect of semantic similarity on order recall is not a consistent phenomenon. One possible 

explanation for this small and inconsistent effect is that participants sometimes remember the 

shared category of the items in semantically similar lists and guess within that category when 

unable to recall an item. When list items are typical members of that category, they have a high 

chance of being produced through informed guessing. In this way, failures of item memory can 

look like failures of order memory. This interpretation can explain why a semantic-similarity 

effect on order memory has only ever been reported for the order scoring of serial recall, but not 

for reconstruction of order, as reported in Appendix B. Because extra-list intrusions are not 

possible in order reconstruction, this procedure prevents false classification of guesses as 

transposition errors.

Does Working Memory Encode Semantics?

To explain the null effect of semantic similarity on order recall, one could assume that 

WM does not encode semantics by binding semantic features to context. This idea has recently 

been proposed by Kowialiewski & Majerus (2020) in a model in which the beneficial effect of 

semantic similarity is explained via a spreading activation mechanism. Basically, the 

presentation of an item triggers the activation of its concept in a semantic network, and this 

activation lies outside of the core item-context binding representation – it plays out in what we 

refer to as the lexical layer L in the present model. Activation then spreads to other semantically 

similar concepts. For instance, when the concept “tiger” gets activated in the network, it 
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automatically activates neighbor concepts such as “puma” and “cheetah” through spreading 

activation. When several semantically similar items are presented in the same list, this results in 

higher activation levels for semantically similar compared to dissimilar concepts, because the 

similar concepts reinforce each other’s activation in the semantic network. Thanks to this 

property, such a model can capture the beneficial effect of semantic similarity on item recall 

(Kowialiewski, Lemaire, & Portrat, 2021; Kowialiewski & Majerus, 2020). In addition, it also 

predicts a null effect on order recall, because semantic features are not bound to context and are 

therefore not part of the representation of order, and cannot therefore be used to discriminate 

between the items.

We considered this spreading activation mechanism as an alternative to the model 

presented in this study. We report additional simulations involving the spreading activation 

model in Appendix A. To summarize the results, such a model assuming that semantic features 

are not bound to context performs surprisingly well at accounting for several benchmarks. 

However, simulation results in Appendix A reveal two major limitations that we detail below.

First, the spreading activation explanation holds if pure lists of semantically similar and 

dissimilar items are used. However, this model falls short at accounting for empirical data when 

experimental conditions involve several items drawn from different semantic categories, for 

instance in lists such as “lion – leopard – cheetah – piano – flute – violin”. When processing 

such lists, the spreading activation mechanism fails to account for the fact that items’ semantic 

categories constrain transposition errors. This is because the spreading activation model does not 

bind semantic features to context. Without a way to bind semantic information to context, the 

model has no knowledge regarding which category belongs to which position, and therefore fails 

at capturing this benchmark.
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Second, the spreading activation mechanism fails when similar items are presented at the 

end of a to-be-remembered list, such as “leopard – bike – table – Mars – Jupiter – Venus”. For 

these lists, the mechanism predicts the production of massive anticipation errors, leading to a 

deleterious retroactive impact on order recall, which conflicts with the empirical data. This result 

reflects a general problem in models in which items’ relative activation levels affect serial order 

errors (Kowialiewski, Lemaire, Majerus, et al., 2021). Basically, because semantically similar 

items in positions 4, 5 and 6 reinforce each other in the semantic network, they have a higher 

activation level than semantically dissimilar items in positions 1, 2, and 3. When trying to 

retrieve item 3 (for instance), the activations of items 4, 5 and 6 give them a large advantage in 

the competition for retrieval over the target item in position 3. Therefore, semantically similar 

items in later list positions have a higher probability to be recalled at position 3, and in general, 

to migrate toward earlier serial position, displacing the items in those positions (i.e., 

anticipations). The problem posed by these families of model is illustrated in Figure 29.

Figure 29

Illustration of the Increased Anticipation Errors Problem
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Note. This image illustrates the pattern of activation values generated in the spreading activation 

model when retrieving “item C” in dissimilar lists (Scenario 1) and in lists in which items D, E 

and F are semantically similar (Scenario 2). The black lines represent the pattern of activation 

generated by the cueing process. The blue lines represent values from the lexical layer L. In 

Scenario 1, the pattern of activation generated behaves as usual, with items B and D being 

equally likely to be retrieved in case of a transposition error. In Scenario 2, the higher activation 

values of items D, E, and F cause an increase of anticipation errors, because the selection process 

in our WM models is based on relative activation of recall candidates. This pattern of results is 

not observed in the data.

Category Encoding and Tagging

When semantically similar items are presented in semantic sub-groups (e.g., “lion – 

leopard – cheetah – piano – flute – violin”), transposition errors tend to follow the semantic 

structure imposed by the experimental lists: When items migrate, they are more likely to do so 

A B C D E F

A B C D E F

Scenario 1

Scenario 2
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towards the position of another semantically similar than a semantically dissimilar item. This 

result is difficult to explain without assuming that semantic features are bound in some way to 

their contexts. Results reported by Kowialiewski, Gorin, et al. (2021) constitute therefore the 

best evidence we have so far that semantics must be bound in some way to contexts. However, 

binding semantic features to context in the way same as phonological features necessarily leads 

to increased confusion errors for lists of semantically similar than dissimilar items. How can this 

contradiction be resolved? Here we provide a solution based on the idea that WM encodes only 

the semantic features shared by the items (Kowialiewski, Majerus, et al., 2024). By encoding 

only the features shared between memoranda, the model not only predicts an item recall 

advantage for semantically similar items, but also an absence of a detrimental effect on order 

recall, because the encoded features are common to all items. In that way, the semantic 

information isn’t a useful cue to discriminate between items in lists composed of pure 

semantically similar items. In lists of dissimilar items, the semantic information is not encoded 

and is therefore also useless to discriminate between items. However, in mixed lists involving 

different semantic categories, encoding a semantic category reduces transposition errors from 

one category to another, which explains the constraint that semantic similarity has on 

transposition errors.

When designing such a model, we faced an important problem. When encoding a list such 

as “knife – fork – spoon”, we need to assume that their shared semantic features are bound to the 

positional context of all three words. This is necessary because the semantic similarity effect can 

already be observed for the first encoded item when input position is deconfounded from output 

position (see also Figure 3). However, when the first word, “knife”, is presented, the person does 

not know yet what, if any, semantic features it will share with subsequent words. That becomes 
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clear only after at least one more item has been presented. Therefore, there must be a mechanism 

which updates the WM representations at input position N, based on what is encoded at input 

position N+X. To do this, we first considered a rehearsal mechanism which would go back 

through the preceding items and would re-encode them. However, we found this explanation 

implausible, because the semantic similarity effect is found even under concurrent articulatory 

suppression (Saint-Aubin & Poirier, 1999a). The only explanation we found uses a tagging 

mechanism in which associations are tagged instead of being directly formed (Rombouts et al., 

2015). We combined this with a mechanism that filters semantic features for their relevance in 

the context of the entire list: In the semantic-ground layer, features are activated to the extent that 

they are shared by several items presented in close succession, and as such, represent the 

semantic category or theme that several, or all, list items have in common. Once semantic 

features have been activated in the semantic-ground layer, and thereby have been identified as 

being shared by several items during the current trial, the tagged association is transformed into 

an actual association.

When incorporating semantic representations into the current architecture, we used 

similarity values from word2vec semantic vectors, which have been shown to account for human 

performance across various semantic paradigms (Mandera et al., 2017). A potential direction for 

future research would be to incorporate phonological similarity values based on such principled 

metrics. A recent study by Zhang and Osth (2024) compared the ability of various orthographic 

similarity metrics to account for episodic recognition performance within a global matching 

model and found support for open-bigram representations. Similarly constructed phonological 

similarity values could prove valuable for two reasons. First, they would enable predicting the 

identity of extra-list intrusions, as the majority of such errors are phonological (e.g., Romani et 
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al., 2008). Second, incorporating these metrics may help disentangling different ways of 

representing phonological information, for instance by implementing different theoretical 

assumptions and comparing their ability to predict transposition errors and extra-list intrusions, 

thereby advancing our understanding of the underlying structure of WM content.

The Proactive Benefit

Our model fails to capture the proactive benefit of semantic similarity due to the absence 

of a mechanism that operates globally on the items. There exist two explanations for the 

proactive benefit. However, both of these explanations have issues which prevent us from 

including them in our WM architecture.

Decay & Refreshing. One way to explain the proactive benefit is via a compression 

mechanism coupled with a decay and refreshing architecture, as previously proposed 

(Kowialiewski, Lemaire, et al., 2024; Kowialiewski, Lemaire, & Portrat, 2021). When 

encountering a list of semantically similar items, people could extract the common category 

shared by the similar items and use it to maintain the similar items more easily. Coupled with a 

decay and refreshing architecture, fewer refreshing attempts are required to maintain the similar 

items, thus leaving more time to refresh the subsequent items. This leads to a proactive benefit.

Simulations have shown the ability of decay and refreshing models to create a proactive 

benefit, and no retroactive effect. There are, however, problems posed by this explanation. First, 

in a list composed of completely similar items, better order recall for the similar items 

themselves is expected, because items will be more strongly encoded via item-context binding, 

thus violating benchmark #1 (see also Figure 30 and associated explanation in the next 

paragraphs).

90

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561



WM SEMANTIC MODEL

89

Second, there is compelling evidence against decay of verbal information in WM (Farrell 

et al., 2016; Lewandowsky et al., 2009). In addition, refreshing itself currently lacks direct 

empirical support (Oberauer & Souza, 2020), and studies have failed to find evidence that 

increasing refreshing rate increases memory performance (Souza & Oberauer, 2018). Therefore, 

attributing the proactive benefit to decay and refreshing mechanisms remains risky without 

robust empirical evidence supporting them. This issue reflects a more general problem: As long 

as the fundamental properties of WM are not established, making interpretation regarding 

potential interactions between WM and other cognitive functions becomes risky, because we are 

dealing with too many unknown mechanisms. 

Encoding Resource. Another way to explain the proactive benefit is by including an 

encoding-resource mechanism (Popov & Reder, 2020). In this mechanism, encoding an item 

depletes a proportion of a limited resource. Encoding strength, in turn, is proportional to the 

amount of resource available. One could assume that similar items deplete less of that resource, 

because they are easier to activate, for instance via spreading of activation in the semantic 

network (Kowialiewski, Lemaire, et al., 2022; Kowialiewski, Lemaire, & Portrat, 2021). This 

mechanism predicts a proactive benefit, because when encoding “leopard – lion – puma”, these 

items should deplete a smaller part of the encoding resource than three dissimilar items. The 

saved resource can subsequently be used to encode more strongly the following items. However, 

including this mechanism creates additional problems. First, for all-similar compared to all-

dissimilar lists, this mechanism predicts increased semantic similarity benefits across input 

position. This occurs because the savings in encoding resource should accumulate with each 

additional encoded item in the similar compared to the dissimilar condition. A growing similarity 

benefit is not observed when input position is deconfounded with output position, as shown in 

91

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584



WM SEMANTIC MODEL

90

Figure 3. Second, the encoding-resource mechanism predicts better order recall performance for 

lists of purely similar vs. dissimilar items: Stronger encoding into WM means increasing the 

item-context binding. The phenomenon is illustrated in Figure 30, which shows the probability 

to retrieve each item given a retrieval cue (i.e., in this case, positional marker 3), before and after 

multiplying encoding strength by 1.5. As can be seen, increasing item-context binding translates 

to increased probability to select the target item, and reduced probability to select other list-

items, leading to increased order recall. This prediction is in contradiction with the absence of 

semantic similarity effect on order recall performance.

Figure 30

Probability of Retrieving a Target Item Compared to a Non-Target Item as a Function of Binding 

Strength

Note. In this hypothetical scenario, the model tries to retrieve “item 3”. The third item therefore 

has the strongest probability to be retrieved. Because of positional overlap, other list items also 

have a non-zero probability to be retrieved. As can be seen, increasing encoding strength from 
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1.0 to 1.5 increases the probability to retrieve the target item, and decreases the probability to 

retrieve other list-items. Stronger item-context binding therefore leads to improved order recall.

The reason why semantic similarity proactively impacts WM performance remains to be 

explained. Without further empirical explorations regarding the boundary conditions of this 

phenomenon, it remains yet challenging to uphold a robust theoretical explanation. It must be 

noted that proactive benefits have been observed across a wide range of experimental 

manipulations, such as word frequency (Miller & Roodenrys, 2012), chunking (Thalmann et al., 

2019), Hebb learning (Mizrak & Oberauer, 2021b), and temporal gaps (Mizrak & Oberauer, 

2021a). Therefore, explaining why memory performance in one part of the list improves when 

the preceding part is easier to process is likely to be a general problem for models of memory, 

and goes beyond the assumptions we include to explain our semantic similarity effects.

Alternative Architectures

The principles we exposed in this work are not restricted to any particular kind of 

architecture. We chose to integrate semantic representations in an architecture using direct 

bindings between item and positional vectors, as in previous models (Lewandowsky & Farrell, 

2008; Oberauer et al., 2012; Oberauer & Lin, 2024). There is no reason to believe that other 

architectures wouldn’t be able to achieve the same results. An example is the feature model 

(Nairne, 1990) and its recently revised version (Saint-Aubin et al., 2021). One issue with the 

feature model relates to its feature-overwriting mechanism, according to which features of item 

N overwrite the features of previously encoded items with a certain probability if they are shared 

with item N. When an item has its features overwritten, it is weakened. This implies that this 
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mechanism predicts a detrimental (as opposed to beneficial) effect of semantic similarity on item 

recall, which contrasts with the empirical data. Further, as any other model of serial recall, it 

predicts a detrimental effect of semantic similarity on order recall. We assume that the feature 

model could account for the benchmarks reported in the present literature review by revising the 

way it represents semantics, just as we did in the present architecture. Such modifications could 

include dropping the feature-overwriting mechanism for the semantic features, and implementing 

a mechanism preventing confusion errors between semantically similar items, such as the 

tagging mechanism proposed in the current manuscript.

Conclusion

Semantic similarity behaves in a qualitatively different way than other similarity effects, 

such as phonological similarity, notably by not increasing confusion errors. This may suggest 

that semantic information plays no role in the WM representation. In contradiction to this, 

experiments using lists composed of multiple semantic subgroups revealed that people remember 

information about the position of categorical information. We resolved this apparent 

contradiction by proposing a mechanism wherein only semantic features shared by several items 

in a list are encoded by binding them to positional contexts. This process is made possible via 

two core mechanisms: A tagging mechanism which allows semantic features to be bound 

retroactively based on their relevance for a particular trial, and a threshold mechanism which 

filters activation of semantic features based on their frequency of appearance. These combined 

mechanisms can explain most of the semantic similarity effects which have been observed so far 

in the literature.
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Appendix A – The Spreading Activation Mechanism

This section presents a spreading activation mechanism as an alternative to the category-

encoding assumption used in the main text. In the spreading activation mechanism, the 

presentation of an item triggers the activation of its lexical unit, which spread activation towards 

the semantic features it connects to. Contrary to the category-encoding assumption, these 

semantic features are not encoded into WM by binding them to contexts. Instead, the semantic 

features spread activation back towards items’ lexical units. Due to this mechanism, semantically 

similar items reinforce each other via their shared features. For instance, when a list such as 

“leopard – lion” is presented, the features of the word “leopard” become activated. When 

activation spreads back to the lexical units, this will not only re-activate the concept “leopard”, 

but also the concept “lion”, because both concepts share features. Similarly, when encoding 

“lion”, this concept will activate “leopard” through their shared features. This results in higher 

activation level in the items’ localist units as compared to a situation where items are 

semantically dissimilar. These additional activations are then used to help the items surpass the 

omission threshold, resulting in higher item recall.

More formally, the dynamics of the activation for the semantic features is identical to 

those described in Eq. 11 through 14. We kept the threshold mechanism, because it ultimately 

allows the model to simulate the separation effect. Contrary to the category-encoding 

assumption, the activated semantic features are not directly used to create item-context 

associations. Instead, the semantic features send their activation back to the lexical units they 

connect to at the end of encoding:

Δ Li=μFj Eq. 24
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Figure A1 shows simulation results for immediate serial recall. The model predicts an 

item recall advantage for semantically similar vs. dissimilar items. As expected, the higher 

activation provided by the spreading activation mechanism allows the list-items to surpass the 

omission threshold more often in the similar than in the dissimilar condition. In addition, this 

boost of activation makes list-items recalled more often than non-list items in the similar than in 

the dissimilar condition, reducing the production of extra-list intrusions. Finally, the model does 

not predict any effect of semantic similarity on order recall, because it does not encode semantic 

features by binding them to contexts. Therefore, the model performs very well on these 

benchmarks.

Figure A1

Semantic Similarity in Immediate Serial Recall
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Next, Figure A2, left panel, shows that the spreading activation mechanism can predict 

the separation effect after fitting the model on the data reported by Kowialiewski, Majerus, and 

colleagues (2023). The fact that this mechanism produces a separation effect has nothing to do 

with the specificity of the spreading activation mechanism per se, but is due to the threshold 

mechanism we implement throughout all simulations. More importantly, the model does not 

predict better order recall performance for grouped vs. dissimilar lists, as can be seen in the right 

panel. This misprediction is an important one, because it shows one of the main limitations of the 

model that we explain in the next paragraphs.

Figure A2
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Simulations of the Separation Effect

Figure A3 shows the same simulations results as in Figure A2, except that we display this 

time the pattern of transposition errors. The spreading activation model does not predict an effect 

of list structure on transposition errors. The reason why this happens is trivial: Since the model 

does not bind semantic features to context, it has no information regarding which item belonged 

where based on that item’s semantic content. This also explains why the model does not predict 

better order recall performance in the grouped vs. dissimilar condition of Figure A2.

Figure A3
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Last, Figure A4 shows the model’s predictions on proactive and retroactive benefits. As 

can be seen, the spreading activation mechanism shows a substantial deleterious retroactive 

impact on order recall, contrary to experimental data. This problem is explained in further details 

in the General Discussion sections. Briefly, when items 4, 5 and 6 are semantically similar, they 

benefit from a boost of activation in the output layer O. Due to this boost of activation, these 

items will always have a competitive advantage for retrieval, regardless of the retrieval cue 

currently used. This means that they will often outcompete the correct items in earlier serial 

positions, leading to increased anticipation errors and a detrimental retroactive effect. This 
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problem also explains why the similarity benefit is so small in the spreading activation model: 

During model fitting, small parameter values for similarity are favored to prevent a high number 

of anticipation errors, which would lead to a strong deviation from the data. This is another 

important misprediction from the model.

Figure A4

Proactive and Retroactive Effects
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Appendix B – Reanalyzing semantic similarity data

In this section, we report a re-analysis of the following datasets:

 Kowialiewski et al. (2023), Experiment 1

 Kowialiewski et al. (2024), Experiment 3

 Neath et al. (2023), Experiments 1, 2 and 3

These datasets were chosen because they all used comparable experimental procedures. 

Specifically, all these studies involved a paradigm requiring participants to encode and serially 

recall lists of 6 items, tested in two ways: Serial recall and order reconstruction. Together, these 

data sets form a sample of 270 participants. Because it is possible that the two procedures for 

assessing memory for order lead to different outcomes, the figure below shows the data split as a 

function of test procedure: order reconstruction and serial recall (conditional order score) in the 

left and right panels, respectively.
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As can be seen, the order reconstruction tasks provide strong evidence for the absence of an 

effect of semantic similarity (Mdiff = 0.17%, d = 0.002), as supported by the Bayes factor in favor 

of the null hypothesis (BF01 = 14.66). In contrast, the serial recall data show a small difference 

(Mdiff = 1.39%, d = 0.136), which is not credibly supported (BF01 = 1.95).
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