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Abstract

We have introduced a q-deformation, i.e., a polynomial in q with natural coefficients, of the
binomial coefficient of two finite words 1 and v counting the number of occurrences of v as a
subword of u. In this paper, we examine the q-deformation of Parikh matrices as introduced
by Egecioglu in 2004.

Many classical results concerning Parikh matrices generalize to this new framework: Our
first important observation is that the elements of such a matrix are in fact q-deformations of
binomial coefficients of words. We also study their inverses and we obtain new identities about
g-binomials.

For a finite word z and for the sequence (pn)n>o0 of prefixes of an infinite word, we show
that the polynomial sequence (P )q converges to a formal series. We present links with additive
number theory and k-regular sequences. In the case of a periodic word u®, we generalize a
result of Salomaa: the sequence (uzn )q satisfies a linear recurrence relation with polynomial
coefficients. Related to the theory of integer partition, we describe the growth and the zero set
of the coefficients of the series associated with u®.

Finally, we show that the minors of a q-Parikh matrix are polynomials with natural coeffi-
cients and consider a generalization of Cauchy’s inequality. We also compare q-Parikh matrices
associated with an arbitrary word with those associated with a canonical word 12 - - - k made of
pairwise distinct symbols.

Keywords: Gaussian binomial coefficients, binomial coefficients of words, Parikh matrices, linear
recurrence sequences, formal power series.
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1 Introduction

In a recent paper [22], we have introduced g-deformations of binomial coefficients of words.

Definition 1.1. The q-binomial coefficient of two words over a finite alphabet A is a polynomial of
N[q] recursively defined as follows. For all words u, v € A* and letters a,b € A, we consider a
q-deformation of Pascal’s identity:

u) AN ua) _ fu) u
<€>q1, (v>q01fv7é£, and <vb>q<vb>q q —Hsa’b(v)q' @)
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As usual when dealing with q-deformations of a combinatorial quantity, letting q tend to 1
gives back the classical binomial coefficient (%) € N of the words u and v counting the number
of occurrences of v as a subword of u. See, for instance, [17] for a survey. As an example, for
u=1u ---Ug = abaaba over the alphabet {a, b}, we have

wy 6, 5 3 uy
(ba>qq +q9°+q +1and(ba>4

because u,u3 = uxuy = Urug = Usug = ba and there are no other occurrence of ba. It is quite
evident that the polynomial q° + q° + g3 + 1 contains more information about the occurrences
of ba in u than its evaluation at 1, which tells us only about the appearance of four subwords ba.
Indeed, for example the constant term 1 implies that ba is a suffix of u.

1.1 Parikh matrices

Let k be the size of the alphabet A. For convenience (in particular, for indexing matrix entries),
we identify A with {1,...,k}. When considering binomial coefficients of words, it is a quite
natural question to look at the so-called Parikh matrices introduced more than twenty years ago
by Mateescu et al. [18]. Associated with a finite word u € A*, it is an upper triangular matrix
M(u) of size (k+ 1) x (k + 1) whose elements are binomial coefficients (t) for words v of the
formi(i+1)---(j—1),1 <i<j<k+ 1. (The case i = j is understood as the empty word). In
particular, on the second diagonal (M;,i+1), one finds the k coefficients (‘5) for the letters d in
the alphabet A. So the second diagonal encodes what is called the Parikh vector or abelianization
of u. Since the second diagonal contains exactly k elements, this explains why the matrix has
dimensions (k+ 1) x (k+1).

There is a vast literature on Parikh matrices. See, for instance, [18] 20, 24]. A particular
question that has attracted a lot of attention is the M-ambiguity problem or, injectivity problem,
thatis: characterize words with the same Parikh matrix [13}26,29]. It can be related to the famous
reconstruction problem: does the knowledge of binomial coefficients (%) for some words v permit
to uniquely determine the word u? See, for instance, [12} 23]

Serbanuta has generalized Parikh matrices to matrices induced by a word z = z; -+ -z, [7].
These matrices have size (|z|+ 1) x (|z| + 1) and they contain elements of the form (%!) for words v
of the form z; zi 11 ---2zj—1, 1 <1 <j < [z] + 1. Taking z = 12-- -k leads back to the definition
given by Mateescu et al.

1.2 g-Parikh matrices

Having at our disposal our own variation [(1)]of binomial coefficients of words, we then wanted to
define the corresponding q-deformation of Parikh matrices. Several authors have already tackled
this question by immediately considering a convenient q-deformation of Parikh matrices. This
approach has led to a g-analogue of the M-ambiguity problem. However it was not linked nor
aimed to provide any g-analogue to the binomial coefficients of words. See, for instance, [4} [10]
On the other hand, prior to [10], Egecioglu has introduced, ford € A ={1,...,k}andn > 0,
an infinite family of (k + 1) x (k + 1) matrices My r, with 1’s on the diagonal and the only other
non-zero element is q™ in position (d,d + 1) on the second diagonal [9]. Multiplying together
these matrices gives what we consider to be the appropriate way of introducing g-deformations
of Parikh matrices. For instance, with A = {1, 2, 3}, the matrices Mj ,,, M2 and M3 ,, are in
Indeed, with his definition which differs from the one found in [10]], the entries of the upper

triangular matrices are g-binomial coefficients (i__.(lj*_”)q up to multiplication by some well-

understood powers of q depending on the position within the matrix, for 1 <i <j <k + 1. They
can therefore be linked to and our combinatorial object of interest.

The present paper is thus the occasion to shed some new light on Egecioglu’s work [9]. We
believe that a reason why the latter research work has not been much explored could be that, with



1 q° 0 0 10 0 100 0
01 00 01 q* 0 01 0 0
oo 1o0o)]loo 1 o] |loo 1 g
0 0 0 1 00 0 1 00 0 1

Table 1: Three Egecioglu matrices for A ={1, 2, 3}.

such a definition, the problem of M-ambiguity does not arise. Indeed, Egecioglu has already
noticed that two distinct words have different associated matrices: it is an immediate result on
q-binomials that the knowledge of (g)q provides the exact positions of the letter d within u (see
[Theorem 2.4). Consequently, such a g-deformation does not provide any hint to the classical
injectivity problem of Parikh matrices. Our aim is thus to explore the connections with our
g-deformation of binomial coefficients of words.

1.3 Ouwur contributions

In similarly to Serbdnutd we extend Egecioglu’s definition to matrices induced by a
word z. We first use basic linear algebra techniques to obtain direct analogues of classical results
on Parikh matrices: we discuss the significance of the entries of these matrices and their inverse
with respect to g-binomial coefficients of words. Up to a multiplication by a convenient power
of g, the elements in the upper part of such a matrix are of the form (Zi"‘LZij B )q for1 <i<j<|z|+T1.

We obtain some new relations on those g-binomials. For instance, we obtain identities such as

(D), 7 ane), = (2, o), 7 ey

where u is a word and a, b, ¢ are letters such that a # b and b # c. |Proposition 2.10|generalizes
this relation for more than three letters with the restriction that adjacent letters are distinct.

For results about inverses, we work under the assumption that the fixed word z has no factor
aa made of two identical letters. With the proof of [Proposition 2.10|and with we
see why the inverse has a more intricate form when z does not fulfill this assumption. We also
get that the inverse of a q-Parikh matrix associated with z is directly related (up to some reverse
operation and sign alternation) to the g-Parikh matrix associated with the reversal z.

takes a different perspective, this time introducing new objects of an algebraic
nature. It is quite evident that with any left-infinite word x, if p is the prefix of length n of x,
then the sequence n — (Pr )q converges to a formal power series sy, in N[[q]]. If the infinite
word x is k-automatic, then sy , is shown to be k-regular. In particular, our considerations make
it possible to express certain sequences (A133009 from OEIS) encountered in additive number
theory, respectively, on the number of representations of an integer n as the sum of two odious or
evil numbers [2} 6,8 [11], in the framework of q-binomial coefficients.

Let u,z be finite words. Salomaa has shown that the integer sequence n +— (“Z“) satisfies
a linear recurrence relation with constant integer coefficients [25]. For this specific case, it is

therefore natural to ask what more can be said about the sequence of polynomials n — (un)q.

z
As a generalization of Salomaa’s result, we show that it satisfies a linear recurrence relation over

Niq].

Finally for a periodic infinite word u = - - - uuu, we have a precise description of the growth
order of the coefficients of the series s, ,(q). It will be observed by classical arguments that
these coefficients also satisfy a linear recurrence relation with integer coefficients. We show that
n — [q"]s,,, vanishes periodically and those conditions are prescribed by a well understood
arithmetic relation. If it does not vanish then it is in ©(n/?/="). Interestingly, this study also makes
connection with the extensively studied problems of partition of integers into distinct parts [15].

In the last section, with|Corollary 4.9|we express a q-Parikh matrix associated with an arbitrary
word z as a q-Parikh matrix (of the same dimension) associated with a canonical word of the form



12-..|z|. To that end, we introduce a morphism o, encoding the positions of a letter occurring
in z. In particular, such a word 12 - - |z| satisfies the assumption of [Theorem 2.13|which permits
us to also provide an expression for the inverse. Then we consider minors of g-Parikh matrices.
Interestingly, they are polynomials with non-negative integer coefficients. This is an alternative
explanation of the fact that the inverse of a q-deformed Parikh matrix has entries in +N[q]. Finally,
we discuss a g-analogue of what Salomaa calls the Cauchy inequality [24]: for all words x,y, z, w,

the polynomial
xy\ (yz\  (xyz\ (y
W/q\W/q W /g \W/q

has non-negative integer coefficients.
All these results tend to show that our definition of a g-deformation of Parikh matrices is the
right one, since we generalize results from several different papers [7, 18, 24, 25].

2 g-deformation of Parikh matrices

We generalize Egecioglu’s definition using Serbanutd’s approach as described in the introduction.
We get matrices associated with a word z and whose entries are polynomials in g.

Definition 2.1. Let A be an alphabet and z = z; - - - z; be a word over A. For d € A and n > 0, we
let Mg » denote the upper triangular matrix having 1’s on the diagonal and the only non-zero
elements above the diagonal are (Mg n)i,i+1 = q™ for all i such that z; = d. In particular, M4 n
is the identity matrix when d does not occur in z. We now define the map

P A" = (N[g) =D Dy g owgwg Myt Mg 0.

To avoid cumbersome notation, we do not refer to z when it is clear from the context. For a
word w, we say that P, (w) is the q-Parikh matrix of w induced by z.

Example 2.2. With A ={1,2, 3}, z = 12231, the matrices M1 n, M and M3 ,, are

1 g~ 0 0 0 0 1 0 0 0 0 0 10 0 0 0 O
o 1 0 0 0 O 01 q¢~ 0 0 O 0O 1 0 0 0 O
0O 0 1T 0 0 O 0 0 1 g~ 0 0 O 01 0 0 O©
o 0 0 1T 0 O ’ 0 0 O 1 0 0 |’ 0 0 01 g o0
o 0 0 0 1 gq" 0 0 O o 1 0 0O 0 0 0 1 O©
o 0 0 0 0 1 0 0 O 0 0 1 0O 0 0 0 0 1
Lettingw = 12]2312, we find 'PZ(W) = M1,6M2,5M1,4./\/12‘3./\/13,2./\/11,1./\/12,0 as

1 q6+q4+q q”+q9+q7+q6+q4+q q14+q11+q9+q7 q16 q17

0 1 q5+q3+] q8+q5+q3 q10 q]]

0 0 1 q5+q3+1 q7+q5 q8+q6

0 0 0 1 q? q

0 0 0 0 1 q°+q*+q

0 0 0 0 0 1

The q-deformation version of [7, Thm. 13] is given below.

Theorem 2.3. Let z,w € A* such that z is a word of length { > 1. The corresponding ({ +1) x (£+1)
q-Parikh matrix is such that

o (P.(W))ij=0forall1 <j<i<li+],
o (PoW))i,i=1,foralll <i<({+1.

r

o Lettc{l,...,L}. Forall]gigﬁ—r—i—],(?’z(w))i,iﬂ:q(z)( w ).

Zi Zi41 " Zigr—1



Before proceeding with the proof, we consider an example to illustrate this statement. The

matrix obtained in is indeed

1 (Vlv)q q(r\;)q qS(lvzvz)q q6(12w23)q qw(uvzvsl)q
U ¢ » q (;)z)q 9’ (zvzva)q q° (zzél)q
o o 1 ), aGs), @G5,
o o 0 1 (5), a3y,

o 0 0 0 i (7),

0 0 0 0 0 1

We will often make use of the following combinatorial interpretation of the q-binomials (and
in particular in the proof of [Theorem 2.3), we recall the following statement for the sake of
completeness.

Theorem 2.4 ([22] Thm. 3.1]). Let u be a word over A, k > 0,and aq,...,ax € A. Then

u — ):?:71 uil
(m . ak)q 2

*
U0, U Ty UK EA
U=uodj--Ug-1aruUg

It is often convenient to express the above result as follows. Any specific occurrence of
v = aj ---ax as a subword of u contributes to (t)q with a term q%, where « is the sum of the

number of letters at the right of each a; not being part of that specific occurrence of the subword v.

Example 2.5. Since the argument will be repeated many times, we give an example. Consider the
word u = 122112121 = 122x1y2z and the subword v = 212. For the highlighted occurrence of v
in u, we get a term q* with « = [xyz| + |yz| + |z| = x| + 2[y| + 3|z| = 8. Indeed, to the right of the
leftmost 2 of v, we see xyz in u (not taking into account the suffix 12 of v). To the right of 1inv, we
see yz. Finally, to the right of the rightmost 2 of v, we see z. Another way of obtaining the same
counting is to notice that x| will be counted once because of the prefix 2 of v to its left. Then [y|
will be counted twice because of the prefix 21 of v to its left, and finally |z| will be counted three
times because v is entirely to its left.

Proof of| Proceed by induction on the length of w. The result trivially holdsif jw| = 0, 1.
Now assume that the result holds for words of length at most n and consider the word dw of
length n + 1 where d € A and [w| = n. We have that

M = Pz(dw) = Md,\wlpz(w)-
Letre{l,...,f}and 1 <i<{—r+1. Ifz; #d, then My 14+ = (P.(W))i,i+r and we may apply
the induction hypothesis.
Now, if z; = d, then

Mi,i+r = (PZ(W))i,i+r + qlw‘ (PZ(W))1+1,1+T-

By the induction hypothesis, we get

T w w r—1 w
Mi‘m:q(z)( ) +qig(a )( )
ZiZigl o Zigr-1/q Zigl o Zigr—1/g

The conclusion follows from the fact that

dw _ w fwi—(r=1) w
= +q ’
dzis1 - Zigro1/g dziyr - zigro1/g Zigl Zivr-1/g

which can be deduced using O

We recall the following definition.



Definition 2.6. The Hadamard product of two m x p matrices A and B is the matrix A ©® B whose
elements are defined by

(A®B)ij =Aij-Bij, 1<i<m1<j<p.

Otherwise stated, the Hadamard product of two matrices corresponds to the element-wise prod-
uct of these matrices.

Theorem 2.3|permits us to see that P, (w) can be expressed as the Hadamard product of two

upper triangular matrices, one made of g-binomials ( ...;.: 1 ). and one containing powers of q.
1 1+r— q

Remark 2.7. In the context of (classical) Parikh matrices, Mateescu’s original definition is a special
case of Serbanutd’s one. The situation is similar in our context. With the word z = 12-- -k made
of all letters of an alphabet, the matrices Mg . of [Definition 2.1 are the ones introduced by

Egecioglu [9]]. See, for instance, [Table 1

Definition 2.8. In the special case described in the above remark, we get back to Egecioglu’s
considerations. It deserves a particular notation. We let & : A* — (N[q])(k+1)*(k+1) denote the
map P, whenz =12---k.

Remark 2.9. The function P, is not a morphism from A* to N[q](Z#1)x(z+1) " For instance,
P12(12).P12(2) # P12(1).P12(22). But as already observed in [9], for all z, P, is injective on A}

(where A, is the alphabet of z): if w = wy---wo € A} then (Z‘l’)q has a non-zero term ¢’ if and

only if w; = d. So the second diagonal of P, (w) completely determines w.

2.1 A relation on g-binomials

The next result will be used in the following section.

Proposition 2.10. Let z =z - - - z, be a word over A where z; # zi41 forall 1 < i < n. For all words u,

we have
1l (§)+(%)<u) (‘j) 0
> (—1)Vg x).\5),

z=xy
X,yEA™

g (e >( u ) o
;( R <Z1"'Zi q \Fn """ Zit1 /g °

Proof. Proceed by induction on the length of the word u. The relation holds true for u| = 0.
Assume that it holds for all words of length at most ¢ and consider a word wa where [u| =n and

or equivalently,



a is a letter. We have

(i) (e >( ua )
Z( ]) q <Z1"'Ziq Zn"'Zi+1 q
oy g (0w ) u
g( " ((Zr%)qq +6a,zi<m...zﬂ)q>
(( u ) qn—i_'_éamﬂ( u ))
Zn *c Zit] q Zn " Zit2 q
R R e A u
e et ()
(1 n—t GO+ u
+Z( D™ 60280201, 9 (74 )q( )q

CrrZi Zn 1 Zit2

(1) q( ) g N "
+Z( Nnigle)+ <q da,zi i <Z1-'-Zi>q(ln"'zi+2>q

; u u
nd® (ot (e e,
21 Zi1 /g \Zn "t Zikl /g

In the last expression, the first term vanishes by induction hypothesis. The second term also
vanishes because aa does not occur in z. Finally, the third term can be written as
Z((_])nfiwtl q(i;1)+("7§+])qif1 (= )nfiq(;)—k(”;i)qnfi)éa . ( u ) ( u )
. TI\zZ1Zie1 Jo \Znc Zi
i=1 q q
. i—1 n—i+1 . . i n—i .
which is equal to zero because (—1)n—t+1¢q( 2 )+ (" 2 gi=1 4 (n-ig G gt = 0 for
all i. O

The above formula has some interesting consequences. Let ube a word and a, b be two distinct
letters. In this case, [Proposition 2.10|leads to the relation:

(), ()= (9.0,

Specializing |[Proposition 2.10|to a 3-letter word gives:

Corollary 2.11. Let a, b, c be letters such that a # b and b # c. We have

(D), 7o), = (), (&), e,

2.2 Inverse of g-Parikh matrices

In the case where z = 12 - - - k, there is a link between the inverse of a Parikh matrix of a word uand
the Parikh matrix of its reversal u, see [18, Thm. 3.2]. This relationship still holds for (classical)
Parikh matrices induced by a word z = z; - - - 2o, where z; # zi;1 foralli € {1,...,{ — 1}, see [7]
Thm. 16]. For g-Parikh matrices, we obtain a similar result. As a special case, note that the word
z =12 -k trivially satisfies the assumption of not containing a factor aa.

For the sake of completeness, we recall a result from [22, Cor. 4.6] which we will often use.
As usual, for a polynomial P € Clq] or a formal power series P € C[[q]], we let [q'] P denote the
coefficient of the term in q*.



Proposition 2.12. Let u,v be words. We have, for all i € {0, ..., I(ju] — v[)},

(WY ity [
() o1 )

Il =vl) | E‘) _ <u> _

) (" 1/q V/q

Theorem 2.13. Let u,z € A* be words. Assume that z = z1 - - - z¢ is a word such that z; # zi 1, for all
1 < i< L The matrix P,(u) is invertible and its inverse is given by

o (Po(w) Nij=0forall1<j<i<e+],
o (Po(w) Nii=1foralll <i<e+1,

Otherwise stated,

© With 1 <5< < CH1, (Pa(w) ™y = (F1)Tiqid g (0 50

Proof. The statement provides a matrix candidate N for the inverse of P, (u). Since we are dealing
with triangular matrices, we just have to check that (P.(u).N);;; = 0 whenever j > i. Thanks to
[Proposition 2.12} for 1 <k < j < {+ 1, we have

( u > _qukmkmn( u )
Zk .. .Zj_-l ]/q Zj_] .. .Zk q

M= Y.
q

Zj*] ...Zk
For1 <i<j<{+1,by[Theorem 2.3| we get

j
- (21 u _1y—kq(2") b
(P=(uw).N)s kZ:iq (Zi“_Zk])q( 17 (Zj1...zk)q

which is zero by |[Proposition 2.10 O

and thus

Remark 2.14. The reader may wonder why the previous result is not extended to matrices induced
by an arbitrary word. This can be seen when analyzing the proof of [Proposition 2.10| where a
factor 84,,,0q,2,,, being zero gives a simpler expression. We can also provide some intuition. If
z contains a block of consecutive identical letters d, then the inverse of M4 ; which contains a
diagonal block of the form (for instance with a factor ddd)

1 g 0 0

01 ¢ o

0 0 q

0 0 0 1

has a diagonal block

1 —q q¢¥ —g¥
o 1 —¢ g¥
0 0 1T -
0 0 0 1

and therefore, the expression of the inverse is more involved. However, when a block contains a
single ¢’ entry above the diagonal, its inverse contains a single —q’ in the same position.

Remark 2.15. One could also prove [Theorem 2.13| by following the approach typically used in
the classical framework of Parikh matrices [[18]. [Proposition 2.10|then becomes a consequence of
Theorem 2.13] However, the referee of this paper rightly pointed out the different approach that
we have ultimately adopted.




2.3 Computing inverse using reversal

For a square matrix A € Z™*™, let A“ denote its antitranspose obtained by mirroring the elements
along the antidiagonal; Afj = An_jn—i. In the literature on Parikh matrices, the antitranspose
operation on square matrices appears naturally. is an adaptation of [7, Thm. 17].

Proposition 2.16. Let u,z € A* where z is a word of length {. We have for all i,j € {1,...,0+ 1}

(P.(W))i,; = qU D=1 (Pz(u))uzfj,uz—i(]a)-

Proof. From |Proposition 2.12} forj > i+ 1,

( u > _ g =) ( u ) ,
Zi"'2j71 q ij] ...Zi -l/q

(29 u _ gU-Du=++205Y) [ 402Y v I
ql'2 zizia), q 2 q+ 2 zj_1 -z, (q)

Now observe that

Hence,

G-l +0+2(’ 3 ") = G- G- 1225 )

and (j —1)2 =2(,") +j —i. O

As an example, with u = 23112311 and z = 123, we have

1 q7+q6+q3+q2 qH +q10+q7+q6+q3+q2 q12+q11
-~ | o 1 q'+1 q°
Plw) =1 0 1 @ +q
0 0 0 1
and
1 q6+q2 9 10+q9
_ 0 1 q7+q3 q12+q1]+q8+q7+q4+q3
P’i(u)— 5 4
0 0 1 q°+q +q+1
0 0 0 1

On the three parallels above the diagonal, the exponent of the convenient power of q is given by
1.(0ul—1)=7,2.(jJu/—1) =14 and 3.(Jlu| — 1) = 21.

Theorem 2.17. Let z =z - - - z¢ be a word whose alphabet is A and such that z; # zi4q, forall 1 <i < (.
Letuw € A*. Let N = (P,(u)) " be the inverse of the q-Parikh matrix of wand T = Pz (u) be the q-Parikh
matrix of u but associated with the reversal of z, for all 1 <i,j < {41,

Nij = (=" Tey2 50024

In other words, P,(u)~! = ((—1)");; © Pz(w)“.

Proof. This follows directly from [Theorem 2.13|and [Proposition 2.16} forj > i+ 1,

Nyj = (=1 qU- = (q(jfimulfn : (Pz(u))HZ—j,uzfi(%)) (%)




3 Convergence to a formal power series

We first observe that with any left-infinite word x = - - - x2%1%o, if pn = Xn_1 - - X0 is the prefix
of length n of this word, then the polynomial sequence n — (Pr )q converges to a formal power
series sy . If the infinite word is moreover k-automatic, then by classical arguments the limit
series is shown to be k-regular.

To make a connection with what is known in the classical setting, Salomaa has shown that
the integer sequence n — (uzn) satisfies a linear recurrence relation [25]. It is therefore natural to
ask what more can be said about the sequence of polynomials n (uzn )q. As a generalization of
Salomaa’s result, we show that it satisfies a linear recurrence with polynomial coefficients. Finally
for a periodic infinite word u = - - - uuu, we have a precise description of the growth order of the
coefficients of the series sy, ..

3.1 Convergence and automaticity
Due to |Definition 1.1| and relation where the focus is on the rightmost letter, it is more

convenient to consider a left-infinite word - - - XpnXn—1---x0 = x. We say that x{_1 ---x¢ is the
prefix of length t of x.

Proposition 3.1. Let - - - XnXn_1 -+ X0 = X be a left-infinite word and z be a finite word. For all v > 0,
there exists N such that the coefficient of q" in the q-binomials (* 'Z""O)q is the same for all n > N.

Otherwise stated, the sequence ([qr] ("“ 'Z“"O)q) . is eventually constant.
n>

Proof. If z occurs as a subword of some prefix of length N of x, then it will occur within all longer
prefixes of x. Let n > N — 1. Take a specific occurrence of z = z; - - - z¢ such that

Xn X0 = Z1Y122Y2 * * - Ze¢Yy,

where yy, ..., y¢ € A*. By[Theorem 2.4{it provides (X“'Z"X")q with some monomial q" where

£
r=) iyl >y yd =n+ 1.

i=1

Roughly speaking, the further to the left occurs the first letter of z (i.e., the larger n is such that
Xn = z1), the larger the corresponding exponent is.

Instead of focusing on a specific occurrence of z, let us focus on a specific exponent of the
g-binomial. From the above discussion, for each given r and for large enough n, the coefficient
of q" in (X“'Z"X")q is completely determined by a suffix of x whose length is bounded by r + |z|.

Xn- X0
z

Hence, for alln > r + |z| — 1, the polynomials ( )q have the same coefficient for q". O
This result legitimates the next definition.

Definition 3.2. Let x be a left-infinite word and z be a finite word. For all r > 0, we let ¢, denote
the coefficient of " in the g-binomials (X“'Z”X")q foralln > r+|z| —1. Welet s, , denote the formal

series defined by 3 ., ¢ q".

As an example, consider the (left) Thue-Morse sequence ---110010110 = t and the word
z = 00. We obtain the (right-infinite) sequence of coefficients whose first terms are

00101101211211412313324323525505635534844655764765957847 - - -

ie.,
sto0=0q"+q'+q°+q"+2q*+q" +- -

10



For instance, this means that, for large enough n, in every g-binomial (t"(')'dt")q the monomial of

least degree with a non-zero coefficient is q2. This is (up to a shift) the sequence A133009 from
OEIS counting the number c(n) of pairs (x,y) of integers such as their base-2 expansions contain
an odd number of ones (the Thue-Morse word is the characteristic sequence of the set of integers
with this property), x <y and x +y = n. For instance, c(3) = 1 because there is only one pair
(1,2) such that 1+2 = 3. This sequence was introduced in [11] and the connection with automatic
sequences was studied in [2].

We assume the reader familiar with k-automatic and k-regular sequences [1}27]. For instance,

the Thue-Morse sequence is 2-automatic. When the infinite word considered in [Proposition 3.1
is k-automatic, we obtain a k-regular sequence of coefficients.

Proposition 3.3. Lef - --x2x1Xo = X be a (left-infinite) k-automatic sequence over an alphabet A and z
be a word. The sequence of coefficients of the series sy , is k-regular.

Proof. Since x is k-automatic, for all a € A, there is a first-order formula ¢ (i) in (N, +, Vi) which
holds true if and only if x; = a. Let z = z¢ - - - z7. The next formula permits to detect occurrences
of z as a subword of x:

Y (e, i) =g > > A @z (L) ANz, (i)

Since z is given, note that ( g) is a constant. For all n > 0, the set

4
T, :={m,...,m 1 Waligyer ey i) AT = fg e 4y — (2)}

is definable in (N, 4, Vi). By|[Theorem 2.4|the number of {-tuples in T, gives the coefficient of q™
in the series
#Tn = [qn]sx‘z-

By classical enumeration arguments about k-automatic formulas (for a proof, see [5] ; for details,
see [27, Chap. 9] or [2} Sec. 2]), the sequence n — #T,, is k-regular. O

Corollary 3.4 ([27, Thm. 9.7.1]). Let x be a (left-infinite) k-automatic sequence and z be a word. There
exists a real number o > 0 such that [q™]sx . is in O(n%).

3.2 A fine analysis of the periodic case

Let u, z be finite non-empty words. The left-infinite periodic word u = - - - uuu is k-automatic for
all k > 2, hence the series sy, is k-regular for all k > 2. A generalization of Cobham’s theorem
implies that the sequence of coefficients of s . satisfies a linear recurrence relation [3]].

Our aim in this section is to get a precise description of the polynomial (uzn )q not reducing
ourselves to the limit case given by s, .. From this, we obtain a generalization of Salomaa’s
result with |Corollary 3.13; The sequence of g-binomials ((uzn )q Jn>0 satisfies a linear recurrence

relation over Z[q]. In particular, our developments are here independent of the general theory of
automatic and regular sequences.

Definition 3.5. Let d,k > 0 be two integers. Let us first define the square matrix Pow4 (k) of
dimension d + 1 as follows:

1 g% g** ... q%
0 ifi>j o 1
(Powg(k))ij =41 ifi=j ie, Powa(k)=|: -~ . . gx
qU=vk ifi <, : L1 g
0 v .. 0 1

Given two words u,z € A* and a non-negative integer k, we let H, i (u) denote the Hadamard
product P, (u) ® Pow,, (k).

11



The following result allows us to express the Parikh matrix of u™ induced by z using the
matrices H, i (1) we just defined.

Lemma 3.6. Let k € N, and let us write w = uy - - - up with w; € A forall i € {0,...,£}. We have
Hz,k(u) = Mu@,kJr@ . Mug,1 Jk4+€—1 " Mu1 k410 Muo,k-

Proof. Letr €{1,...,8}and i € {1,...,f — 1+ 1}. By definition of H, «(u) and using[Theorem 2.3]
we have

(Hec(W)iir = 4 (P2 (W)iir = 47q(2) (Z. o ) :
t q

C Zigr—1

Consider a letter b that does not occur in z. By we get

k
Zitr Zigr—1/q Zitr Zigr—1/q

ubk

© Zigr—1

(Hze(W)iisr = q2) (Z. ) = (P2(ub*))i,ir
t q

and we conclude by definition of P,. O

Corollary 3.7. For any positive integer n and w € A*, we have

Po(u™) = H, (n—1yjug (W) - Hy 2y (u) - - Hy g (u) - Hz o (u).
Proof This is an immediate consequence of the definition of P.(u™) and [Lemma 3.6 Let u =
Uug - - - up. Indeed, by definition we have
Pz(un) = (Mu(,nlu\ 1°°° Muo, (mn—1 \ul) ( we,2|ul—1 """ 'Muo,\u\)(Mu.g,\u\—1 o Muo,O)
=Hz o1y (W) - Hy gy (W) - Hz o (u).

O

Theorem 3.8. Let {,d > 1 beintegers. Let M = (My j)1<ij<a+1 bea (d+1) x (d+1) upper triangular
matrix whose entries are polynomials in q and having ones on the diagonal. Let n > 1. The jth element
Pn,j Of the rightmost column of the matrix

n—1
H (M ® Powgq (i)
i=0

can be expressed as
] . qckne

pn,] - Z Rk — ckl

where m and cy are positive integers and Ry are rational functions (all depending on j) whose denominators
only have factors of the form (1 — q'%) for some integer t. Moreover, these quantities cy and Ry can be
effectively computed.

Proof. Note that M; = M. For alln > 1, we let p_n’ denote the last column of M,,, i.e.,

Pn,1

Pn,2

— .

Pn = :
Pn,d

Pn,d+1

12



In particular, p_]) is the last column of M and, for convenience, we set p—o> to be the column vector
made of zeroes with only a 1 in last position. For alln > 0,

Prii = (M ® Powg(nt)) - pn. (3)

Since M ® Pow 4 (1 {) is upper triangular, we determine the elements of p 1 from bottom to top.
First, we have pp q41 = 1 for all n. Next, from|(3)|

¢
Pn+1,d =Pn,a +Md,a+19™ Pn,a+1

and we deduce from the above recurrence that

n " 1— q(n+1)€
— 1w __
Pn+1,d = Maa+ Z 9" =Maar——7— P
i=0
Let us produce one extra element, again from
Prnitd1 = Pnd1+Ma1,a9™Pna+Ma 14019 Pras

1
= Pn,da—1 +Ma_1,aMg,a+1 w(qne - anZ) +Ma-1,a+19*™

We deduce that
2(n+1)¢

=

1— q(n+1)€ 1— qZ(n+1)€
Pntt,d—1 =Ma-1,aMa,a+1 ( g7 (—qU0 -

To get a better grasp of the statement, let us rewrite the polynomial as

)> +Ma-1,da+1

1— q(n+1)€ 1_ qzmﬂ)e

Pn+1,a-1 = Ra-1,1(q) T—qf + Ra-1,2(q) T—q2

with the rational functions

Mg_1, de d+1 —Ma_1,aMq,a+1 + Md 1,a+1(1—¢ )
1—q 1—¢
Let 1 <j < d, we prove by induction on j (already shown for j = d, d — 1) that

Ra—1,1(q) = y Ra—12(q) =

]7qc] k(n+1)¢

pﬂ+1;] - Z R]» _ qc) kE

where m; and c; i are positive mtegers and R; i are rational functions whose denominators only
have factors of the form (1 — q¢) for some integer t. We have usmg.

d—j
Pr+1,j =Pnjt+ Z M; 5k q ™ Pk + My a1 M D
k=1
by the induction hypothesis, we have already expressed pn j41,...,Pn,a and pn,a+1 =150
d-j ml*" ]_qc,+k int it T
Pn+1,j =Pn,j + Z Mj,j+kq Z Rjx,i( w +Mj a1 gld-ithmt,
k=1
Hence pn41,; is equal to
d—j Ttk Riik,ilq 1— qk(n+1)z 1- q(cj+k,i+k)(n+1)e (d=j+1)(n+1)¢
Z MJ’]+k Z 1— qei+e il ( 1— qke N 1— q(Cj+k,t+k)€ >+Mj‘d+1 1— q(d*]'+1](’,

4)
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which has the desired form as we now explain.

d—j mj4x k(n+1)¢ (d—j+1)(n+1)¢
Hkl(q) T—q 1—q
Prt1, Z Z itk ORI 1— q-t + M; a1 T—qlai+e
k=1 i=1
d—j my4x

1— q(Cj+k,i+k)(Tl+1 )¢

Rjix,i(q)
+1; Z1 —Mj kg ol 1 gkt
1

where the braced factors are d —j +m; 1 + - - - + mgq rational functions R; . having, by induction
hypothesis, the right form. O

Corollary 3.9. The q-binomial (uzn)q can be expressed as

ckn\ul

m —
g m

where m and cy are positive integers and Ry are rational functions whose denominators only have factors
of the form (1— q*™") for some integer t. Moreover, these quantities ¢\ and Ry, can be effectively computed.

In particular, the sequence ((”Zn )q Jn>o0 converges in N[[q]] to the formal power series sy, (q) expressed by
the rational function

m

] — qulU-\

. . . n . . |z| um
Proof. We are interested in the upper-right element of P,(u™) which is equal to q( 2) (" )q. By

Corollary 3.7, P,(u™) = ]_[?;01 (P.(u) ® Pow, (ilul)). We conclude with [Theorem 3.8 where

{=ul,d=|zland M = P,(u). O

Example 3.10. Letu = 0110 and z = 01. We have

1T ¢*+1 ¢°+4q* q®+q*
Hzo =P (u)= 1|0 1 g’ +q andp_f: q’+q |.
0 0 1 1

n—+1

: )q as

w\ 1— q4(n+1) ) 1— q4(n+1)
Pn+1,2—< ) —— =@ +q)——7F
), 1—q* 1—q*

Hence, with the notation of the proof of [Theorem 3.8 we can express (*

and ,
] —q " u 8n
Prti,1 = pn1+< )q(q +4q)q*™ q4+q(01>qq )
So, we have an expression for q(* b )q as
_ q4(n+1) 1— q8(n+1) 8(n+1)

o , 1 B wl=—qm
Prnt1,1 =(q>+1)(q +q)< (1_q4)2 (1_q4)(1_q8)>+(q5+q ) 1_q8

which can be rewritten as

3+] 2+ 1— 4(n+1) 3_,'_] 2+ 1— 8(n+1)
_(@+1)(q°+q)T—q +<(q 1)(q q)+(q5+q4)) q

pn+1,1 - 1_ q4 1_ q4 — q4 1 _ qs (5)

14



Now consider the corresponding series (obtained by discarding the term q*("*1) and ¢8(+1)
appearing on the numerators)

(q3+1)(q2+q)(q4—q8)+q5+q4 _ q’ q’
(1—q*)2(1—q®)

1-4¢%  (q-12(q2+D*(q*+1) Dla)
If we first divide by g, the series expansion } -, c,q" is of the form

C+20*+9°+9"+26%+q7+2q" +4q"2 +2q"3 +2q"0 +4q"° +2q"7 +3q"7 +6q*° + 3¢ + - --

un+1

and those coefficients match exactly those of (* )q for large enough n. By taking the reciprocal
(or reflected polynomial as called in [14]) q'°D(1/q) of the denominator

D(q) =q'°—2q” +3q® —4q” +4q° —4q° +4q* — 49> +3q* —2q + 1,
it is a routine technique to see that c,, satisfies the order-10 recurrence relation
Cn = zcn—1 - 3Cn—2 + 4Cn—3 - 4Cn—4 + 4Cn—5 - 4Cn—6 + 4Cn—7 - 3Cn—8 + 2Cn—9 —Cn—10-

The fact that the coefficient of q***™ is vanishing will be explained by [Example 3.17,

Since the limit formal power series s, . is a rational function, as we have shown in the above
example, it is not surprising that its coefficients satisfy a linear recurrence relation with constant
coefficients. We now turn to the polynomial sequence ((uzn )q )n and show that it too satisfies a

recurrence relation, but this time with (constant) polynomial coefficients. We make use of classical
arguments about linear recurrences. See, for instance [14], for a general reference.

Lemma 3.11. Let R;(q) be given rational functions and c; be pairwise distinct non-negative integers. The
sequence (Pn)n>0

ZR]‘(Q) qon
=1

satisfies a linear recurrence relation of order s whose characteristic polynomial is

n>0

S

[TX—=q%).

j=1

Proof. The linear recurrent sequences (q“™), -, and (Rj(q)q®™), -, have both a characteristic
polynomial of the form X — qi. It is a well-known result that the characteristic polynomial of
the sum of linear recurrent sequences (with distinct roots) is the product of the corresponding
characteristic polynomials. O

If we want to highlight the recurrence relation mentioned in the previous lemma, it is enough
to expand the product:

S

H(X —q9) =X + i (—1)k! Z gen e | Xk,
k=1

j=1 1<iy <o <ir<s

Z:’}Dk

The sequence (pn)n>0 satisfies the recurrence relation with polynomial coefficients

s
Pn+s = Z Dy Pnts—k-
k=1

15



Corollary 3.12. Let R;j(q) be given rational functions and c; be pairwise distinct non-negative integers.
The sequence (Pn)n>o0

S

Y Ri(a) Y qot
i=0

j=1 i

S ]7qc]~(n+1)
= E Ri(q) —————
=1 1=a®

n>0 n>0

satisfies the following linear recurrence relation of order s + 1 with polynomial coefficients

s+1

Prist+l = Z(gk —D1—1) Ptk
k=1

setting Do = —1and D51 = 0.

Proof. This follows from the classical result that if f(t) is the rational function equal to the series
> >0 Un t™ where u, satisfies a linear recurrence relation, then ﬁ.f (t) encodes the series of
the partial sums and one can get a linear relation from the denominator of the series. O

Letting q = 1 we recover Salomaa’s result [25, Thm. 3] as a special case of our results.

umn
z

Corollary 3.13. The sequence of q-binomials (( )q Jn>o satisfies a linear recurrence relation with poly-

. . . . . . n . . . .
nomial coefficients. In particular, the sequence of binomials ((*, ) )n>o satisfies a linear recurrence relation
with constant coefficients.

Example 3.14. Let us continue [Example 3.10} With the notation of[Lemma 3.11|looking at[(5)} we
Corollary 3.1

havec; =4and c, = 8,91 = q% + q° and D, = —q'2. Hence, with 2| the sequence
(((01 10)") ) satisfies the relation
01 9/ n>0
prniz=0+q"+a®)pni2—(a* + 4+ q")pni1 + q"pn.
Now the integer sequence ((”‘0‘10)”)) _ whose firstterms are 0, 2,8, 18, 32,50, 72,98, 128, 162, 200
nz
satisfies the relation
Pn+3 = 3pn+2 - 3pn+1 +Pn.

3.3 Growth of the coefficients of the series in the periodic case

Letu = - - - uuu. Consider again the series s, .(q) = Y ;- ¢i q* which is the limit of the sequence

of g-binomials (”Zn )q considered in ‘Corollary 3.9, We have already observed with |Corollary 3.4
that ¢; has a polynomial growth. In this section, we obtain some more information about the
growth order and the indices for which c; vanishes.

Lemma 3.15. Let 5u,z(q) = Zizo Ci qi. Then c; is in O(i‘z‘fl )

Proof. Proceeding as in the proof of[Iheorem 3.8, we can express
Z/q

- [T, (1 = gishayss

|zl

where Pj’s are polynomials and for all i, } ;~; «;, < |z|. Indeed, in the expression |(4)|to get pn ;
1

from pn,;—1 in the induction step, a multiplication by 1475 R OCCur. So, at each stage,

we create a factor 1/(1 — qii‘u‘ ), and some of these factors may be equal and collected together

thanks to the exponent «; ;. One concludes by considering the partial fraction decomposition
1

and recalling that the nth coefficient in the series expansion of T=qr isin O(nt=1). O
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Theorem 3.16. Let s4.(q) = Zizo ciqt. Let v €{0,...,[ul — 1} Either c, i is zero for all large

enough i, or c, iy is in O(ilZI=1). Moreover, the two kinds of behavior are completely determined by the
words u and z.

Proof sketch. The previous lemma already gives the upper bound, so it suffices to give the lower
bound of correct order. Let z = z; - - - 21 with £ = |z|. Forj € {1,...,{}, we let

u=rpjzjs; and |[sj| =tj. (6)

(Here we assume that each letter of z appears in u, as otherwise (‘;k)q =0 forall k > 0.) These
¢ factorizations of u are not necessarily unique. Let us consider one such {-tuple (te,...,t1) of
non-negative integers. We will discuss later on the possible choices: each such tuple will provide
a periodic sequence of indices of period [u| for which the corresponding coefficients growth
polynomially.

Claim 1. For all large enough n, if [q™] (”T;H)q # 0, then there exists an occurrence of z in u™ such
that the letters of z appear in distinct copies of u.

Proof of claim: Let t be the maximal over all possible t;s as in (), and assume that n > €t + (ju| —
1)@. Let us write u™*% = u,,¢---u;. Since the coefficient is assumed positive, there is an
occurrence of z in u™*! contributing the monomial q™. Let m; indicate the copy 1y, in which
the letter z; of this particular occurrence of z appears in, and let (t, ..., t1) be the corresponding

set of factorizations as in (6). Then we have that

[4

- Y (mi—1). (7)

i=1

¢
n:Zti—i—(lul—])e(ez_”
i=1

Indeed, for each i = 1, ..., {, the number of letters to the right of z; no appearing in this
occurrence of z equals t; + (m; — 1)[ul — (1 — 1). Summing over all 1 and rearranging yields the
claimed form of n. Since n > {t + (ju| — 1)@, we deduce that ZL] (my —1) > 0. Therefore,
T = Zf:] my > {(£+ 1)/2. There thus exist integers ¢ > 1¢—1 > --- > 11 > 1 such that
T= Z$:1 Ti. If we consider the occurrence of z in u™*! such that the letter z; appears in the copy
u,,, we get a contribution of ™ as in (7). This suffices for the claim. |

Assume that [q"] (un;e )q # 0O withn solarge that the above claim holds. Then there exist tuples
(te,...,t1) and (my, ..., my), with the m; distinct, such thatnisasin (7). Letm =3, _;(m; —1)

and let oy, denote the coefficient [q™] (™, E)q . Now @, is the number of index-tuples (my, ..., my)

such that Y"!_, m; —i = m. For { fixed, we have &, ~ % +0(m!'2) = Q(n'~1) by [28,
Thm. 2.4] (since the t; are bounded and |u/ is constant). By (7), the o, index tuples (mg, ..., m;)
give distinct occurrences of z in (u“;l)q, each of which contribute q™ to the g-binomial coefficient.
We have thus showed that [q"] (un;e)q > o = Q(nk ).

Let us now discuss which term q™ of the series appear with a non-zero coefficient. Consider

an arbitrary occurrence of z as a subword of u™ providing a non-zero coefficient for some q™ with
associated factorizations as in (6). By reducing (7) modulo |u/, we conclude that

‘ (e—1
n= J; 1 5 (mod [ul)
for some admissible {-tuple (t1,...,t¢). If this is not the case, then the corresponding coefficient
in the series is vanishing.
As a conclusion, we have thus shown that the coefficient of every large enough power q™ is
non-zero if and only if there exists a {-tuple associated with some factorization of the form

such that n is congruent to Zf:1 t; —{(£ —1)/2 modulo [u]. O
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Example 3.17. In[Example 3.10} with z = 01 and u = 0110, we have two choices for t; € {1, 2} (the
positions of z; = 1 in u) and also two choices for t, € {0, 3} (the positions of z, = 0 in u). So the
pairs (t1,t2) are (1,0), (1,3), (2,0) and (2, 3). Modulo 4, the sum t; + t; — 1 may take the values
0,1,3 and we see that the coefficient (s(o110)« 01, q>"*™) = 0 for all n.

4 Extra properties of g-Parikh matrices

In this section we consider some other properties of q-Parikh matrices, as well as some inequalities
that follow.

4.1 Properties of minors and other relations

A minor of a matrix is the determinant of a square submatrix obtained by removing one (or more)
of its rows and columns. The value of each minor of an arbitrary Parikh matrix is a non-negative
integer [19, Thm. 6] and it still holds true for Parikh matrix induced by a word [7, Cor. 21]. This
is an easy application in linear algebra. We have a similar result in the q-deformed case and we
provide the proof for the sake of completeness.

Proposition 4.1. Any minor of P, (u) is a polynomial with non-negative integer coefficients.

Proof. Proceed by induction on the length of u. The result trivially holds if [u| = 0, 1. Now assume
that the result holds for words of length at most n and consider the word dw of length n + 1
where d is a letter and |[w| = n. We have that

P.(dw) = Md,\wlpz(w)-

Assume that d occurs in z in positions i1, ...,1s. This means that the row of index i; in P, (dw),
forj € {1,...,s}is equal to the sum of the i;th row of P,(w) and q™! times the (ij + 1)st row of
P.(w). By linearity of the determinant, any minor of P,(dw) can thus be expressed as a linear
combination of minors of P, (w) with coefficients 1 or g"’l. By induction hypothesis, minors of
P, (w) are polynomials with non-negative integer coefficients. O

The following corollary is an immediate consequence.

Corollary 4.2. Let M = (P.(u)) ' and 1 < i < j < |z + 1, (=1)'*PMy; is a polynomial with
non-negative integer coefficients.

Let us focus on 2 x 2 minors occurring above the main diagonal. They are of the form

g (o), g% (o () ( u ) ( u )
o q q

q(‘é“‘)(vlt)q q(‘wf‘)(wx)q ww/ \wx

_q(v;'mv;*)(u) ( u ) _
w q VWX q

for some factors v, w, x of z such that z = pvwxs, p,s € A*.

(8)

Remark 4.3. We observe that in the context of q-deformed rational numbers, it is shown in [21,
Thm. 2] that if r(q)/s(q) and r'(q)/s’(q) are two g-rationals, then rs’ — r’s is a polynomial in q
with positive integer coefficients.

The fact that[(8)|belongs to Nlq] is the g-analogue of what Salomaa calls the Cauchy inequality

(o) ()= G o)

It would be interesting to see if such a polynomial has a combinatorial interpretation, or
corresponds to (the product of) other g-deformed binomial coefficients. The following example
shows that this is at least not the product of some Gaussian binomial coefficients
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Example 4.4. Take u = ababba and z = bba, v =w = b and x = a. One can verify that the
minor associated to those factors is q'3 + q'2 + q'°. Since the power q'! is missing, this cannot
be a product of Gaussian coefficients (if it were the case, we would have consecutive powers of q
in the polynomial because of the unimodality of Gaussian binomials).

In [24], a “dual” of the Cauchy inequality is considered. In our setting, we get the following.

Proposition 4.5. For all words x,y, z, w, the polynomial
(), )~ (), G
W/qg\W/q W /g \W/q

Proof. We list all pairs of occurrences of w as a subword of both xyz and y and injectively match
these pairs of occurrences with distinct occurrences in xy and yz. So every contribution to the
second term is always compensated by a contribution to the first term. There are three cases.

If we focus on an occurrence of w in xyz where all the selected letters appear in yz, then
the same occurrence appears in yz and they contribute equally to (X;Jvz)q and respectively (%\f)q.
Similarly, any occurrence of w iny appears in the same position in xy. They contribute equally to
(;Jv)q and respectively (’;“f)q.

If we focus on an occurrence of w in xyz where all the selected letters appear in xy (and at
least a letter of x is selected, because the case where w is a subword of y has been treated above),
then the same occurrence appears in xy. The contribution of the first to (*Y Z)q has an extra factor

w

has non-negative integer coefficients.

q™!zl compared with the contribution of the second to (XY )q. Similarly, any occurrence of w in
y appears in yz. They contribute to (“;’v)q and respectively (?Nz)q and the second one has an extra
factor q"I17l,

Finally, the remaining occurrences of w in xyz are such that at least one letter is selected in

both x and z. We use the same notation as Salomaa. Let xyz = x;,, - XoYe * - - Yozk - - - 2o. Let us
consider the occurrence given by

W =Xiw " XipigriYipig " Yip i Fiyp * 0 2y
wherep > 1, p+q+1 < wland k > i, > - > 11 >0, > i,0q > - > ipp1 20,
m > i, > - > ip1q41 > 0. We also consider any occurrence yj - - - yj, of w withiny, £ >
jwl > >j1 = 0. Letypin = min(iernaijrn) and dpin = max(iern»ijrn) forn=1,...,q.
Now w occurs in xy as

Xijw " Xipaqe1 Yvpaqrr ~ Yvpr1Yip Y
and w occurs in yz as

yj\wl .. .y].p+q+]y6p+q+1 .. .y5p+lzip . Zi] .

As in the previous case a common power q("=P) appears. To conclude with the proof, the
reader may observe that the considered pairs of occurrences of w within xy and yz and pairwise
distinct. O

4.2 On expressing generalized g-Parikh matrices with Egecioglu’s

Recall the notation & from in which we consider the specific word 12---k. As
pointed out by Serbanuta [7], elements of a Parikh matrix P,(u) associated with a word z can
be related to elements of a classica Parikh matrix &,|(o,(u)) for which the author considers
a particular morphism that we recall below. Hence algebraic properties of Parikh matrices

Iclassical in the sense that it is a matrix like those studied initially in [18]. Note here that this is achieved by adopting
a larger alphabet to avoid the redundancies that can appear in z.
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can be transferred to matrices associated with a word. We investigate this question for our
q-deformations.

As a preliminary comment, for an arbitrary non-erasing morphism ¢ : A* — B* and words

w € A*, u € B*, there is a formula to compute (“’(L‘L’V))q as

o (a1) ()
SX oy () e (PR) g e,
0—1 W /g We /g

= +W=wWpopaQiwi---QegWwy
Ui,...,u€EB
U=17 -1y (11,...(le€A*
Wi,...,WeEA

In particular, if the morphism is r-uniform, then the exponent can be rewritten as

¢
D hul(r(€— 1) 4 v - wel = g ).
i=1

This is the g-analogue of [16, Thm. 24] and it can be deduced from [Theorem 2.4, The idea is
to highlight subwords u; forming an occurrence of u within blocks of the form ¢(a;) for some
of the letters a; constituting w. The information about the exponent corresponding to such an

occurrence of u; in @(a;) is encoded by (‘pi‘ti ))q. It still needs to be corrected by the number of

letters to the right of the block @(ay), ie., [@(wiaiy1 - - - apwy)| and different from the last letters
of u that still needs to be taken into account.

Definition 4.6. Let z = z7---z; be a word of length { over A. For all a € A, we define the
morphism o, : A* — {1,...,{}* by

o.(a)=ji1---j» wheneverz;, =---=2z;, =aq,
i.e., 0, maps a letter to the word encoding the positions of its occurrences within z.
As an example, with z = 121323, we have
0,:1—13,2— 25, 3 46.

Notice that o, (z;) always contains i. Conversely, every i € {1,..., {} appears in exactly one of the
images 0,(j), the one such that z; =j.

Lemma 4.7. Let z be a word such that zi # ziy1 forall 1 <i < |z|. Let 1 <1 <j < |z|, the q-binomial

<0z(zi"'zj)>
i1 a

is a monomial of the form q™ for some n. Otherwise stated, i- - -j appears exactly once in o,(z; - - - z;).

Proof. By assumption z, # zi4+1,1 < k < j. Hence the letters k and k+ 1 cannot both appear in the
image of a letter. To get an occurrence of i---jin 0,(z; - - - zj), we must have that the occurrence
of k is the occurrence of k in o,(zx). Since k appears only once in 0,(zy) by definition of the
morphism o, the claim follows.

O

Proposition 4.8. Let A be an alphabet of size k. Let z be a word of length k.r such that |z|, = 7 for all
a € Aand zy # zi41 forall T < i< k.r. We have

() () () o

i/, i o \zz g

<Gz(u)R> B <Uz(zi"‘zj)k> < u ) (10)
’L...) q J...’L q Zi...zj qT

forall 1 <1i<j < k.r. Here we have x® = X for the sake of readability.
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Proof. We first prove first (9). There is a one-to-one correspondence between the occurrences of
zi---zjinuandi---jin 0, (u). Consider one such occurrence and write uw = x{_1ziX{ - - Xj_1ZjXj

where x; are words. From [Theorem 2.4} the contribution of this occurrence to (24 uz) is
1 ] q

qE s (Mot
This particular occurrence corresponds to an occurrence of i- - - j within o, (u) as factorized below

oz(u) = oz (xi—1)o iBioz(xi) - - 0z (x5-1) 5 j Bjo(x5)

where we have highlighted the occurrence of k € {i, ..., j} within o, (zx) = axkBx. The contribu-
tion of this occurrence to (7)) is
G
S M=+ D)Bmoz (xm)ma | — 4T (m—it D xm] 3 (M=) B dm 1 |
q q -q )

where we set ;1 = ¢ and we used the fact that o is an r-uniform morphism. To conclude with
the proof, observe that the second factor on the r.h.s. is the contribution to (‘TZ(;‘,:;ZJ‘ ))q of the
occurrence of i---j within o; ¢+ o j Bj.

We then prove . There is a one-to-one correspondence between the occurrences of z; - - - z;

inuand z;---z; in U (and occurrences of i---j in 0, (u)®). Consider one such occurrence and
write U = X;zjXj_1 - - - XiZiXi—1 Where the x;. are words. We thus have

ﬁ=§171li§i“'§j,1lj;€j and

o (WR = 0. (xi1)R02(z)Roa (xR - - 0. (x5-1) R 02 (z5) Roa ()R,

From [Theorem 2.4} the contribution of the occurrence of z; - - - zj to ( ?zj) is qzjm:i (m—i+1) X
©Z/g

For each k € {i,...,j}, write o(zx)? = oxkBx. Then the corresponding occurrence of i---j in
o, (u)R contributes

qzin:i(mfm>|Bmcz(xm)*‘am+1| _ qrzi“:i(mfm)\xm\.qzi“:i(mfm)\ramcxnm|

to (GZ (u) R)q. (Again we set «j 1 = € and we have used the fact that o, is r-uniform.) We thus find

i
R bt .
(Gz(u) ) :( u ) g (DB et
i ), zi )

It remains to show that

qZ e (M DB | (G"(Zf"ﬂzj)v : (11)
] P ‘L q
Notice that 0, (z; - - - z)® = a5jBj - - - a4iB1, so that the right-hand-side of is

qEm— =M Bt 1l

Here we set o1 = ¢.
On the other hand, we observe that the term on the left-hand-side of is also equal to

((02((21. o '%j)R))R) _ q(r—1j(j+1—i)2 (02((1‘1 o '.Zj)R)>
q 1/4

_ q(M)(j+17i>zfz:’“:.l<jfm+1J\amﬁmq |
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where we let 3;_1 = € and the first equality comes from |Proposition 2.12| Now to show that
is true, it is enough to show that

j

m=i

Indeed, joining the sums on the left-hand-side, we simplify to

j j
D> G=—m+DlamPmom 1Bmil=(=NG—i+D)+20r=1) > (G-—m+1)
m=i m=i+1
j—i
=(r=N—-i+)+20—-1)) k
k=1

=r=D{—i+1+(-V—i+1))=r-1G+1-1)>
Thus the proof is complete. O

In the next statement if M is a matrix whose entries are polynomials in g, an expression of the
form M(q") means that we have substituted q by q" in every entry.

Corollary 4.9. Let z be as in[Proposition 4.8} Let further Z (resp. C) be the upper triangular matrix whose
above-diagonal entries Z i1 (resp., Cyj41), 1 <j < |z|+1, are of the form (‘TZ(Z‘ % ) (resp. q( iz+1)).
Then

Clq" ") @&z (0=(w) = ZOP.(u)(q")

and
Cla™") @ &0z (w) " =Z o (Pw)(q) .

Proof. We inspect the element at position i, j + 1, the right-hand-side of the first equality is

Uz(li"'zj)> T_'(jiz+1)< u ) _ 1)) (j;+1)(GZ(U))

where we used
For the second equality, inspecting the element at position i, j + 1, and using [Theorem 2.13]
the equality is equivalent to

q(rq).("*;*‘) (1) q(j+1—i)(r|u\—1)qf(i*‘;‘) (Otz(u).R>
‘L .. .J ]/q

:<GZ(;i--:Zj)> (Umﬂqr(mimu1)qr~("‘z*‘)( u )
] q Z_i-o--

1. Z]— ]/qr

Rearranging gives

<Gz(u)R> _q(r1)(i+1i)z<cz(li"'lj)) ( u )
1...] _l/q 1...] q Zi...zj ‘I/q]‘
_ ((Uz(li"'lj))R> . ( u )
i Ve \zzi e

by [Proposition 2.12| This is equivalent to by replacing 1/q with q in the argument. O
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With z = 121323, u = 1121323, we have 0,(z) = 132513462546 and o, (u) = 02021402351435.
Verifying the above theorem, we have r = 2,

1qa’a’a’a’’al’ 11aq*q?q'®q”
01qqqzr14q7 011 qq a) a.
_ 001 1 qg° q° ¢ _ 0011 q q° ¢q
Z=100014q ¢ q* | and C=1 501 i q q°
000 0 1 1 ¢ 0000 1 1 q
000 0 0 1 1 0000 0 1 1
000 0 0 0 1 0000 0 0 1
Further,
-|q6+q5+q3 q10+q9tq7+q6+q4 qIS_‘_?qIZ q15+q1:+q;3+q12 q16Té:|15 q16Té:|15
0 ! q +q 6 q‘i 3 8 7q ng 5 3 9 q8 6 9 q8 6
0 0 1 4°+4°+q” 4°+q°+q°+29°+9” 9" +9°+9° 9" +q°+q
P(uw) = | o 0 0 1 q2+1 q° q° ,
0 0 0 0 1 q*+q q°+q*+q
0 0 0 0 0 1 q*+1
0 0 0 0 0 0 1
and finally (0, (u)) is computed as
1 q13+ql]+q7 q22+q20+q16+ql4+q10 q28+q26 q33+q3]+q29+q27 q35+q33 q35+q33
0 1 q9+q3 15 +q 22 22
0 0 1 q12+q10+q6 q17+q15+c113+2q11+q7 q19+q17+q13 q1‘7+q17+q13
0 0 0 1 q’+q q’ 7
0 0 0 0 1 q8+q2 q]2+q8+q2
0 0 0 0 0 1 q*+1
0 0 0 0 0 1

One can then verify that C(q) ® (0. (1)) = Z® P, (u)(q?).
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