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ABSTRACT

One of the most critical units of nulling interferometers is the Achromatic Phase Shifter. The concept we propose
here is based on optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not.
The total internal reflection induces a phase shift between the polarization components of the incident light.
We present the principles, the current status of the prototype manufacturing and testing operations, as well as
preliminary experiments on a ZnSe Fresnel rhomb in the visible that have led to a first error source assessment
study. Thanks to these first experimental results using a simple polarimeter arrangement, we have identified the
bulk scattering as being the main error source. Fortunately, we have experimentally verified that the scattering
can be mitigated using spatial filters and does not decrease the phase shifting capabilities of the ZnSe Fresnel
rhomb.

Keywords: Fresnel Rhomb, Achromatic Phase Shifters, nulling interferometry, subwavelength gratings, Zinc
Selenide, bulk scattering

1. INTRODUCTION

The detection of extrasolar planets and later on the presence of life on them is one of the most interesting and
ambitious astrophysical projects for the next decades. Up to now, despite our technological progresses, most
exoplanets have been detected using indirect methods. In this context, the next step would be their direct
detection and characterization. However, this is a very challenging goal because we have to face two major
problems. The first one is the very small angular distance between an exoplanet and its parent star. The second
is the large flux ratio between them. For example, an Earth-like exoplanet is typically ∼ 109 times fainter
than its parent star in the visible spectrum and ∼ 106 times in the thermal infrared. One of the solutions that
has been proposed by ESA and NASA is the concept of a space-based nulling interferometer.1 The principle
of nulling interferometry is to combine the coherent beams coming from various telescopes and to introduce a
phase shift (π in the simple two-telescope configuration, see Bracewell 19781) between them in order to produce
a destructive interference on the optical axis. Therefore, the light coming from the star is nulled and the signal
of the planet can be revealed and analysed.

One of the most critical units of such an interferometer is the phase shifter. Indeed the quality of the
destructive interference (the null depth) relies on the optical component ability to induce a very accurate phase
shift over the considered wavelength range. The problem is that in order to detect an exoplanet and to perform
spectroscopic analysis of its atmosphere, one needs to observe over large spectral bands in the infrared (typically
from 6 to 18 microns for the Darwin mission considered by ESA). Therefore, the main challenge consists in
conceiving a phase shifter which is able to perform well enough over the whole spectral range. The Achromatic
Phase Shifter (APS) concept which is studied in this paper is a vectorial APS proposed by Mawet et al. in
20052,3 based on improved Fresnel rhombs. In addition to this very precise application, it is to be emphasized
that these improved Fresnel rhombs can also be used as high performance components of a high precision infrared
polarimeter.
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Figure 1. In the incident angle range we use, the retardance depends linearly on ψ . Therefore, a double-rhomb geometry
allows incidence-angle variations δψ to be compensated by the angle complementarity between the two rhombs and the
linearity of the phase shift with respect to the rhomb angle. The linearity is present in the bare Fresnel rhomb or the TIR
modulated one.

2. PRINCIPLES

The total internal reflection (TIR) phenomenon comes with a phase shift between the vectorial s and p polar-
ization components. This vectorial phase shift takes the following general form4
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where ψ is the angle of incidence, greater or equal to ψc, the critical angle defined as sinψc = nti = nt/ni and
where ni and nt are the refractive indices of the incident and emergent media, respectively. This property is
exploited in the well-known Fresnel rhombs, which are retarders to be used alone as polarization optics.

3. MODULATED TOTAL INTERNAL REFLECTION APS

Classical Fresnel rhombs are limited by the intrinsic index dispersion of the rhomb bulk material.7 Engraving
a subwavelength grating (often called zero order grating, or ZOG) on the TIR interface or simply depositing a
single thin layer of a well chosen material leads to a significant improvement.2,5 Indeed, the electromagnetic field
evanescent interaction with the optimized micro-structure or thin film allows us to tune the index ratio of Eq.
1, nti.

4. MANUFACTURING

In this section, we will discuss some manufacturing details for the ZnSe double Fresnel rhomb APS prototype
proposed to be one of the selected APS for study, fabrication and test in the framework of the ESA’s Darwin
R&D preparatory Nulltimate6 activity, which is a project of infrared cryogenic (100K) nulling testbed. There are
different reasons why we have chosen a rhomb made of ZnSe. The first one is that in its polycrystalline state,
this material is a priori easy to source and convenient to handle and polish (surface qualities of λ/30 rms with
λ =632.8 nm are routinely obtained). The second one is that it is compatible with the thickness-adjustable beam
splitters of the Nulltimate test bench which are also planned to be in ZnSe. Last but not least, a theoretical
analysis3 has shown that the ZnSe bare Fresnel rhomb with ZOG is meeting the Darwin specification in the 6 -
14 µm range.
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Figure 2. This scheme shows the double-rhomb configuration. θ1 (resp. θ2) is the angle of incidence upon the TIR interfaces
of the first (resp. second) rhomb.

The drawback of single Fresnel rhombs is that they are known to be very sensitive to incidence angle variations
(at the arcmin level). This is a serious drawback in our application since the thermal infrared interferometric beam
is likely to slightly diverge because of diffraction while somewhat wandering around because of vibrations. For
this reason, we chose the double rhomb configuration for its known insensitivity to incidence angle variations.20

Indeed, the pairs of reflections in the two rhombs are complementary (see Fig. 2); an increase in the first two
TIR angles due to departure from nominal incidence leads to a decrease in the last two angles. Thus, as the
phase shift varies linearly with the TIR angle (see Fig. 1), the retardance changes are cancelled. Therefore, a
wider range of incidence angle variations can be tolerated: up to several degrees.2,5

As presented in the introduction the contrast between an Earth-like exoplanet and its parent star in the
thermal infrared is 10−6. To detect such kind of planets using nulling interferometry, studies have shown that,
thanks to clever modulation schemes, it is sufficient to reach a null depth (ND) of 10−5 at 7 µm.9 As our
component will be part of a complex instrument, if we want to meet this constraint on the ND, it implies a few
10−7 for our component. This can be expressed in terms of tolerance on the phase shift2 (N = σ2

4 , where σ2 is
the variance of the phase shift over the considered bandpass) which is about 0.1°.

4.1 ZnSe Rhomb cutting and polishing

We have conducted cutting and polishing trials of ZnSe rhombs with the appropriate global geometry and
dimensions. Results of ZYGO interferometric measurements in terms of surface quality fall comfortably in the
specifications, and beyond our expectations with surface figures of λ/100 rms (λ = 632.8 nm). Concerning the
roughness, WYKO profilometer measurements gave a rather good 3 nm rms.

4.2 TIR Grating manufacturing

The most appropriate method to manufacture the micro pattern into the rhomb material is based on holographic
lithography and dry etching processes. The first one is necessary for masking the parts of the substrates to
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Figure 3. Left: principle of holographic lithography (Lloyd mirror mounting). Right: Micro-pattern on photoresist to be
transferred by reactive plasma beam etching into the ZnSe substrate. The period and filling factors correspond to the
design specifications, i.e., Λ = 0.9 µm for the period and ∼ 250 nm for the feature line.



Figure 4. Design of the ZnSe double Fresnel rhomb APS mechanical mounts. Left and right images illustrate the practical
implementation of the components in the interferometer at 45◦ from the test bench table, rotated by 90◦ from each other.

be protected during the etching step (Fig. 3, right). Direct laser writing or mask exposure techniques are not
applicable onto the rhomb facets since those classical micro-lithography methods are designed for accommodating
thin and flat substrates only, such as wafers for micro electronics. The holographic recording (Lloyd mirror
mounting, Fig. 3, left) alternative allows us to imprint onto a thick substrate a photoresist mask originated by
a fringe pattern created by a two-wave interference. The grating period is inversely proportional to the angle
between the two interferometer beams. The typical fringe pattern produced by optical interferences naturally
possesses a sine profile. However, a good understanding and control of the recording and developing parameters
(as energy dose, development duration, resist thickness, resist optical contrast, etc.) have finally produced
reproducible rectangular binary profiles with a controlled filling factor (at the 10-nm level). After its processing,
the remaining photoresist pattern serves as a lithographic mask for the subsequent reactive plasma beam etching
(RPBE) process, which makes use of both the ballistic effect and chemical reactivity of a beam of reactive ions
to transfer structures into a substrate. The various parameters (gas mixtures, beam energy, beam incidence...)
characterizing the etching process are optimized for the transfer into various materials. The interest of such a
technique comes particularly from its high selectivity, the potential to efficiently etch one material and not another
coexisting one, used as a mask. The infrared material (ZnSe or CdTe) is engraved using a selective chemistry
(CH4/H2

10 or chlorine-based11 compounds), depending on the crystal phase of the material. Validation trials are
currently under progress. They aim at identifying the best process conditions ensuring the most efficient transfer
of the diffractive structure from the mask into the material. Highest selectivity, homogeneity and reproducibility
are the key factors under optimisation.

4.3 Mechanical mount

The two mechanical mounts (one per interferometer arm) of the ZnSe double rhomb must be thoroughly op-
timized to account for thermo-mechanical effects. Indeed, the component shall be measured at room (298 K)
and cryogenic (100 K) temperatures. It will thus be cooled down and the mount must allow for an efficient
heat transfer while compensating differential contractions. The alignment of the two rhombs must be controlled
around 3 axis with an arcmin precision. The double rhomb spacing difference between both arms, and thus be-
tween the two corresponding mechanical mounts must be below 0.1 mm. The mounts must also account for the
ZnSe sensitivity to stress birefringence. In order to quantify the latter to help the mount design, a finite element
analysis was conducted and resulted in the conclusion that the rhombs must lay freely at 45◦ in their mounts
(Fig. 4). Indeed, given the stress-optic coefficient of ZnSe, Cλ=10.6µm ≈ −12 brewsters,12 even its own weight
constraint σ can induce a substantial birefringence ∆n = Cλ=10.6µmσ which is just within the specifications.

5. MEASUREMENT OF A ZNSE FRESNEL RHOMB RETARDANCE AT 632.8 NM

As we have introduced in Sec. 4, a ZnSe Fresnel rhomb under manufacturing at the ”Centre Spatial de Liège”
(under ESA contract) will be tested on Nulltimate. However, as this infrared test bench is still under devel-
opment, we have conducted preliminary measurements of the performance of a ZnSe Fresnel rhomb (without
subwavelength gratings) at 632.8 nm with a simple polarimeter arrangement (see Fig. 5).
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Figure 5. Setup of the optical bench used to perform the ZnSe Fresnel rhomb retardance measurement. Linearly polarized
light (through P1) is incident upon the ZnSe rhomb retarder, and the light emerges with an elliptical polarization. The
intensities of the two orthogonal polarization states are measured by rotating the output polarizer (P2). s and p are
respectively the slow and fast rhomb axis.

5.1 Principle of the experiment
Let us compute the theoretical value of the phase-shift as a function of the angle of incidence at TIR surfaces. The
phase shift depends on the refractive index nZnSe, the wavelength, the temperature and the angle of incidence
θ. In our case, the experiment is done at a constant temperature of about 298 K and the wavelength is 632.8
nm. Therefore, nZnSe = 2.59715 and the phase shift is given by Eq. 1. The total phase shift at the output of a
single ZnSe Fresnel rhomb is twice the phase shift given by Eq. 1 because there are two total internal reflections
(TIR) inside the rhomb. Figure 1 illustrates how the retardance varies as a function of the rhomb angle. The
phase shift for an angle of 65° (rhomb angle of our prototype) is about 91.5° .

Once we have this theoretical retardance value, we can measure the experimental one at the output of the
rhomb and compare them. The technique used to measure this retardance is based on polarimetry and has been
described by C. Yang et al. in 1997.13 According to C. Yang13 we have

I0

I
π
2

=
sin2 2α sin4 θ sin2(Γ/2)

1− 4(1− sin2 α sin2 θ) sin2 α sin2 θ sin2(Γ/2)
(2)

where I
π
2 and I0 are respectively the intensity of the light at the output of the rhomb when the polarizer

and analyzer are rotated by π
2 (crossed) and 0° (parallel), where α is the angle between the polarizer and the

y axis, and θ the angle between the rhomb main optical axis (p) and the XZ plane. In our setup (see Fig. 5),
θ = 90° and we measure the above intensity ratio for different values of α around 45° where we have an equal
distribution in both polarizations.

Equation 2 gives us a direct relation between the phase shift and the flux ratio I0

I
π
2

. To get the induced
retardance with a good accuracy, we performed several measurements for different orientations of the polarizer
and fitted the theoretical curve given by Eq. 2 (where the phase shift Γ is the only unknown) on them.

5.2 Error budget

Unfortunately, in practice, we always have to deal with parasitic effects. We have therefore to discuss the different
sources of errors of this experiment and constrain their influences on the measured phase shift. The different
error sources that we have identified are:

• absorption,

• induced birefringence,

• positioning error on the incident angle,

• positioning error on both polarizer and analyzer (∆α),



• positioning error on θ,

• scattering,

• presence of ghosts due to spurious reflections at the ZnSe/air interfaces.

5.2.1 Absorption

ZnSe is highly transparent in the infrared window but starts to absorb in the visible (α = 0.037247 at 632.8
nm).14 Therefore, it is possible that our measurements are slightly perturbed by absorption ( I

I0
= e−αZ ' 99.5%

for Z = 0.1m).
What we have to carefully study is the influence of the complex refractive index on the retardance using Eq. 1.
The imaginary part of the refractive index ni being 0.5627, the impact on the retardance is about 0.4° (91.94°
instead of 91.54°).

5.2.2 Induced birefringence

We need as little as possible birefringence in our rhomb since the beam travels a long way inside it. Though
ZnSe has no inherent birefringence properties, it is subjected to stress-induced birefringence (proportionally to
the stress-optic coefficient). According to Goldstein et al.,15 the induced birefringence for ZnSe can be expressed
by

∆n1(y) = −1
2
(n0)3[σ1(y)π11 + σ2(y)π12] (3)

∆n2(y) = −1
2
(n0)3[σ1(y)π12 + σ2(y)π11] (4)

where ∆ni(y) is the variation of refractive index as a function of height along the sample (y) in the ith

polarization direction, n0 the refractive index of ZnSe at 632.8 nm and πmn are the stress-optic coefficients.

The experimental values15 for the stress-optic coefficients π11 and π12 are −1.48 10−12m2/N and 0.22 10−12

m2/N. If now, we assume that in the configuration of our experiment, only the main stress component σ1 is
significant, we have

∆n1(y) =
1
2
(2.58)3 1.48 10−12 σ = 12.7 10−12 σ (5)

∆n2(y) = −1
2
(2.58)3 0.22 10−12 σ = −1.9 10−12 σ (6)

If we consider a rhomb lying on a face under its proper weight (∼ 0.150 Kg), we find that the difference in
the phase shift between the two polarizations is 1° at the basis of the rhomb and 0.5° at mid height of the rhomb
(where the beam passes). Note that the influence of induced birefringence on the phase shift is proportional to the
stress-optic coefficients but inversely proportional to the wavelength. Therefore, as the stress-optic coefficients
do not change so much from the visible (632.8 nm) to the Darwin wavelength range ([6-18] µm), the birefringence
error is divided by ten at the wavelengths the rhomb has been designed for.

Figure 6. Left: Picture showing the setup of the bench. Right: Picture of the ZnSe rhomb prototype
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Figure 7. Left: plot of the phase shift as a function of the angle of polarization α. Right: intensity ratio as a function of θ

5.2.3 Precision on the incident angle

To compute the influence of the incident angle on the retardance, we can simply use Eq. 1. Therefore, if we look
at Fig. 1 which illustrates this equation, we can see that, for incident angles around 65°, the phase shift, linearly
depends on the incident angle (δΓ = γ δψ where γ is the slope of the curve). Unfortunately, as our experiment
is a first assessment, we only have a precision on this angle of 5’. The impact on the retardance is therefore
about 0.3°. As explained in Sec. 4, the precisions we would like to reach in order to validate the APS for the
specifications of Darwin is 0.1°. This will require a precision on the incident angle of 1’.7 . We are aware of this
critical point and we are currently developing a new bench that will satisfy this requirement.

5.2.4 Positioning of the polarizer and analyzer axis

Because the polarizers we use cannot reach a very good positioning accuracy (∆α ' 0.1°), we have to carefully
study the influence of the precision of both the polarizer and analyzer on the phase shift measurement. Thus we
want to study the variations of Γ around the position θ = π

2 and α = π
4 . For θ = π

2 , equation (2) becomes

Γ = 2 arcsin

√
1
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I
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The problem with this equation is that the ratio I0

I
π
2

is unknown. Therefore, we make the assumption that

Γ ' π
2 and α ' π

4 . Therefore, I0

I
π
2

= tan2(Γ/2) = 1. Using this simplification, Eq. 7 becomes

Γ = 2 arcsin

√
1

4(1− sin2 α) sin2 α + sin2 2α
(8)

Figure 7 (left) represents the phase shift Γ as a function of α. For polarizer positioning precision of 1° (around
45°), the variation on the phase shift is about 0.1° and vary as the square of the positioning accuracy. Therefore,
we conclude that this error source is not so critical, even at the precision level of our polarizers.

5.2.5 Influence of θ

The fifth error source that we consider is the influence of θ on our measurements. If we assume that α = 45°
and that Γ = 90° Eq. 2 can be re-written as follows
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This dependency on θ is plotted in figure 7 (right). We see that the variation of the ratio due to a misalignment
of the rhomb axis (θ) is below the accuracy that is possible to reach with our present measurements (∼ 10% on
I0

I
π
2

). Therefore, we conclude that the position of the rhomb along θ is not really relevant for the measurement
of the retardance. However, if we want to reach a very high rejection ratio, the positioning of the rhomb along
this axis becomes important. Indeed one can compute its influence on the ND as follows: ND = (1+sin∆θ)(1−
cos ∆θ)/2. Therefore, to fulfill the constraint on ND for Darwin, we must impose that ∆θ ≤ 2 arcmin.

5.2.6 Scattering

Two kinds of scattering are present in this experiment: surface and bulk scattering. The bulk scattering is
also called extrinsic absorption (by opposition to intrinsic absorbtion which is the classical absorbtion of a wave
by a material). Extrinsic absorbtion is the scattering due to impurities, structural defects, and deviation from
stoichiometry. It strongly depends on the material preparation procedure.16 This phenomenon is therefore
affected by a very high variability. We will, in this section, try to assess scattering thanks to the combination of
measurements and a simple model. In order to measure the amount of scattered light, we first have to assume
that the scattered light is depolarized17 and that the bulk scattering is linearly dependent on the thickness.
However, according to S. Schröder et al. 200618 this assumption is only strictly correct up to a thickness of 10
mm. After measuring the nominal extinction ratio (ER = Icrossed

Iparallel ) with our polarizers to be equal to 10−5, we can
compare it to the extinction ratio deterioration obtained by introducing ZnSe samples of different thicknesses
between the polarizers. The two samples we use have been manufactured from the same block of ZnSe and have
the same polishing properties (the roughness of the surfaces is 3 nm RMS) as the rhombs. The first sample has
a thickness of 20 mm, and we place its interfaces perpendicular to the beam (see Fig. 8, left). Therefore, we
observe surface scattering on two surfaces (roughness: 3 nm RMS) and bulk scattering over 20 mm. The second
sample has a thickness of 3 mm, thus we also have surface scattering on two surfaces (roughness: 3 nm RMS),
but we only have bulk scattering through 3 mm. Therefore, the difference between the two samples is only due
to 17 mm bulk scattering.

In practice, we only measure a fraction β of the total bulk-scattered light and γ of the surface-scattered light.
The measured ER are summarized in the following table.

Configuration Extinction ratio (ER)
Polarizers alone 10−5

Sample of 3 mm 2.5 10−3

Sample of 20 mm 10−2

Using this table, the situation can be modelled by the following simple equations

2 γ SS + 3 β BS = 0.0025 (10)
2 γ SS + 20 β BS = 0.01 (11)

where BS is the bulk scattering per mm. The value of SS is determined using the assumption of the Total
Integrated Scattering formula (TIS): SS = 0.355% / surface. There only remain two unknowns in this system: β
and BS so we have to find a way to characterize bulk-scattering in ZnSe. If we consider that bulk scattering is
induced by specular reflection at intergrain boundaries19 and that these interfaces are randomly oriented, we can
evaluate β by computing the reflectance as a function of the angle of incidence θ. This reflectance is obtained
by multiplying the Fresnel relation of both polarizations by a weighting coefficient cos θ (where θ is the local
incident angle at the grain interface) meaning that an interface ∆S has an effective cross-section ∆S cos(θ) for
the beam (see Figure 8). As we can see in Figure 9, the scattered beam is not so much diffused. Therefore, as



our detector has a field of view of about 2° (1° away from the optical axis) we measure about 2/3 of the total
bulk-scattered flux. If we use this value for β in equation 11, we get a total value for the bulk scattering of 6%
(for an usual use of the rhomb at 632.8 nm).

ZnSe exists in two different states: monocrystalline and polycrystalline. Our prototype has been manufac-
tured using polycrystalline ZnSe. Studies carried out at wavelengths of 1.1 µm and 10 µm have shown that the
grain boundary is an interlayer with a perturbed structure containing intergrain dislocations and impurities.19

According to A. N. Bryzgalov et al. 2003,19 the basic mechanism of scattering inside polycrystalline ZnSe can
be modelled by a set of chaotic grain orientations characterized by a variation of refractive index at the grain
boundaries (∆n ' 10−3 at 10 µm). Using this, the light transmission at a given wavelength is defined by the
coefficient µ of radiation-flux attenuation: µ = d−1R̄, where R̄ is the reflectance averaged over the angles of
incidence and d is the average grain size (50 µm for the sample we have). Therefore, the bulk scattering (see
Fig. 8) can be defined as

BS = 1− e−µL (12)

If now, we try to fit the above bulk scattering model on our experimental results letting ∆n as a free parameter,
we find that the 6% of bulk scattering correspond to ∆n = 5.10−4 which is consistent with the value given by
N. Bryzgalov et al.19 (see Fig. 9, right). Indeed, ∆n can vary from one piece of ZnSe to an other due to the
manufacturing process. As we can see on Fig. 9, ∆n = 10−3 would imply 12% of bulk scattering instead of 6%.
Note that the total amount of scattering has to be multiplied by two for the double rhomb configuration.

We can therefore reasonably think that a model based on the TIS formula and on bulk scattering induced
by specular reflection at the grain boundaries is consistent. For a use of the rhomb in the visible we have thus:
β = 66%, BS = 6% and SS = 0.355% / surface. Fortunately, this error source can be mitigated using spatial
filter (which will be the case on Nulltimate) and does not decrease the retardance capabilities of the ZnSe Fresnel
rhomb. Note that the use of monocrystalline ZnSe should also largely improve the bulk-scattering.

To conclude this scattering assessment study, let us extrapolate from the error values obtained in the visible,
the importance of the scattering in the Darwin wavelength range. This value strongly depends on the size of
the grains. If the size of the grains is well above the wavelength, the bulk scattering does not vary with the
wavelength. But if the size of the grains is similar to the wavelength, the bulk scattering proportionally varies to
λ−1 (Mie scattering). Concerning the surface scattering, it is proportionnal to λ−2. Therefore, in the [6-18µm]
Darwin wavelength range, the bulk scattering should be about the same (1 - 10%) but surface scattering error is
divided by 100 and becomes negligible. However, only 10 µm measurements would allow us to quantify exactly
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Figure 8. Left: Scheme showing the geometry optics model that we have used. In our case, d = 50µm and L = 10cm.
Right: Effective cross-section of the grains seen by the beam as a function of θ



Figure 9. Left: Reflectance as a function of θ. Right: Percentage of bulk scattering inside the rhomb as a function of ∆n
(the variation of refractive index at the intergrain boundaries).

the scattering in the thermal infrared. We are currently developing in Liège a new generation of polarimetric
bench that will allow us to perform this scattering study.

5.2.7 Ghosts

Another very critical point is the presence of ghosts induced by spurious reflections inside the rhomb. The
problem comes from the fact that we use a monochromatic coherent source for the experiment. Therefore, as
the length of the path at the output of the rhomb is different for the main beam and for the ghosts, the different
beams interfere together and strongly impact the retardance. Indeed, according to Rochford et al. (1997),20 for
a perfectly coherent source, the change in retardance resulting from spurious reflections ∆δ(R) can be found by
summing up the individual fields that contribute to the transmitted fields. For a reflectance R, we have

∆δ[R,φ(t)] = tan−1

{
R sin[φ(t)− δ0]

1−R cos[φ(t)− δ0]

}
− tan−1

{
R sin[φ(t)− δ0]

1−R cos[φ(t)− δ0]

}
(13)

where δ0 is the device TIR retardance, and φ(t) is the round-trip phase which typically varies with time and
temperature. If we assume a uniform distribution of φ(t) in the [0, 2π] interval, we find the probability density
function for ∆δ(R): P (∆δ).20 The mean error in this case is zero. In the case of δ0 = 90° and of small reflectance,
the standard deviation is about

√
2R. During our experiment, we have measured the influence of the ghosts on

the retardance to be above 10°.

5.2.8 Conclusions on the error budget

Let us summarize the impact of the different error sources in the following table.

Error source Impact on the retardance
Absorption ∼ 0.4°
Birefringence ∼ 0.5°
Incident angle ∼ 0.3°
Position of the polarizer and analyzer ∼ 0.1°
Precision on θ ∼ 0.1°
Scattering /
Ghosts > 10°
Total ∼ 1.4°

In this table, we have not taken into account the influence of scattering and ghost in the error budget because
both can be suppressed using respectively a spatial filter and a tilt of the rhomb.



5.3 Results

In order to keep a beam as free from optical defects as possible and to avoid the influence of ghosts in our
measurements, we have used a bench with two (input/output) spatial filters and tilted the rhomb by 1° from the
optical axis.

Inclination of the polarizer [deg]

I /I
0 /2p

Figure 10. ZnSe single rhomb retardance measurement. Dashed end dotted lines: upper and lower limits of the expected
retardance vs polarizer inclinations. Dashed line: fitted curve corresponding to a retardance of 88.8°±1.5°. The experi-
mental points are represented by asterix. The RMS error of the fit is 0.05616 and corresponds to a phase error of 1.5°,
which is fully compliant with our setup precision.

The rhomb TIR angle of 65°±0.1° theoretically should provide a 91°±0.5°phase shift at 632.8 nm. However,
tilting the rhomb of about 1° was necessary to get rid of the annoying ghost, in agreement with a ray-tracing
analysis that concluded to the necessity of wedging the final rhombs.3 We have then measured a phase shift
value of 88.8°±1.5°(see Fig. 10) (uncertainty of the optical setup) which is consistent with the tilt-corrected
theoretical value of 90.2°±0.5°(uncertainty of the measured rhomb angle). Given the respective uncertainties
in our experiment (systematics), we can extrapolate an upper boundary for the null depth, estimated at a few
10−4, which is very encouraging.

6. CONCLUSION

To summarize, we have presented some manufacturing key points as well as first preliminary measurements for
the ZnSe Fresnel rhomb prototype. This first error budget study performed in the visible shows very promising
results. Indeed, with a simple polarimeter setup, we have experimentally proven that this APS concept was able
to reach a null depth better than 10−4, a value limited only by the accuracy of our bench. The two major error
sources have been identified to be scattering and ghosts. However these errors can be mitigated respectively using
spatial filters and by tilting or wedging the rhomb. It is important to be very careful about the interpretation of
the bulk scattering analysis. Indeed, this is a very complex topic which can really vary from one sample of ZnSe
to another. What we have done here is a first experimental study of the performances of our Fresnel rhomb. It
cannot be interpreted as an average behavior of a standard sample of ZnSe. A new generation of polarimetric
bench is currently under development at the ”Institut d’Astrophysique et de Géophysique de l’Université de
Liège” (IAGL) in Belgium. This bench will provide us a much better accuracy and will allow us to perform a
deeper analysis of the ZnSe Fresnel rhomb before its final test in the thermal infrared on Nulltimate.
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