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Abstract

The cubic translation model, which expresses a random variable as a cubic transformation of a standard

normal variable, offers versatility in engineering applications, particularly for non-Gaussian variables

since it is a four-parameter model. While its probability density function is not tractable, it is more

complex to compute than the Gram-Charlier series, which, despite its simplicity, suffers from limitations

such as positivity and unimodality issues, restricting its range of applicability. This paper presents

two asymptotic analyses of the cubic translation model for slight non-Gaussianity (i.e. small skewness

and excess coefficients, “small” being understood in the sense of perturbation methods), showing that it

asymptotically converges to the fourth cumulant Gram-Charlier model and offers a broader domain of

applicability with minimal additional computational cost. Additionally, the paper derives, mathematically,

a non empirical expression for the monotone limit of the original cubic translation model, and validates

the theoretical findings through numerical simulations.

Keywords: Gram-Charlier series expansion, Edgeworth expansion, monotonic region, wind

pressure, reliability , fatigue analysis.□Last update: March 12, 2025.

1 Introduction

Accurately modeling the probability density function (PDF) of a random variable using its moments

is a cornerstone in both theoretical and applied statistics, with wide-reaching implications in fields

such as structural engineering, finance, and meteorology.

Traditional approaches like the Gram-Charlier and Edgeworth series expansions have long been5

employed for this purpose [1]. These series expand the PDF around a Gaussian core, incorporating
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higher-order moments to account for skewness, kurtosis, and other non-Gaussian features [2].

However, despite their theoretical appeal, these expansions often suffer from significant practical

limitations, particularly when applied to strongly non-Gaussian data or when truncated at higher

orders [3]. These series expansions have found numerous applications in wind engineering [4], ocean10

engineering [5], meteorology [6], queueing theory [7], and financial sciences [8, 9].

Alternative solutions exist to model non-Gaussian variables, such as the cubic translation model

[10]. This model, originally developed to address the challenges of non-Gaussian modeling in fields

such as wind engineering [11] and offshore mechanics [12], provides a more flexible framework that

can accurately capture the tails and extreme values of a distribution [13, 14]. Unlike the Gram-15

Charlier series, the cubic translation model does not rely on a series expansion around a Gaussian

core but instead transforms a Gaussian variable into a non-Gaussian one using a cubic polynomial.

It is therefore a four-parameter model. This transformation allows for the modeling of asymmetry

and kurtosis quite naturally, making it particularly useful in applications where extreme events

play a critical role, such as in the assessment of structural reliability under random loads [15, 16].20

The Gram-Charlier and cubic translation models can be seen as two extremes, each with its

own set of limitations. The Gram-Charlier model struggles with ensuring the positivity of the

probability density function (PDF), while the cubic translation model is constrained by the mono-

tonicity of the cubic transformation, which is generally less restrictive than the positivity issue

in the Gram-Charlier model. However, we also argue that the cubic translation model is more25

time-consuming, particularly when fitting it to experimental data. This is because the moments

are related to the model parameters through nonlinear algebraic equations that must be solved

numerically [17]. While this might not be a significant concern when only a single fitting is needed,

this additional computational burden becomes problematic in several scenarios, as detailed next.

First, simulating samples from non-Gaussian processes can be time-consuming. Early simula-30

tion methods (e.g. [18]) are suitable to generate small samples sizes. The use in the context of large

non-Gaussian fields [19] may take up to several hours of computation. This challenge is further

amplified when long samples are required to analyze fatigue damage and extreme values [20]. Sec-

ond, modern applications, with a typically much higher space resolution than used some decades

ago, demand far more fittings than in the past. Repeating fittings across entire fields, especially in35

marginal or extended bivariate cases of the bicubic model [21, 22], also results in significant data

processing delays. Lastly, this issue is exacerbated when learning methods are integrated into the

process [23], as high-quality training sets typically require thousands of independent simulations.

A significant portion of the research focuses on refining and applying Gram-Charlier (also

called Hermite polynomial) models. Recent advancements, such as the use of proper parametrized40

probability distribution model [24], quartic Hermite models [25] and probability-weighted moment-

based Hermite models [26], have demonstrated improvements in the modeling performance of

methods bases on the Hermite polynomial. Additionally, a simplified analytical formula for the

coefficient of the third-order Hermite moment model has been developed [27].

Variables with large skewness and excess can be effectively modeled using mixtures of less45

non-Gaussian variables [22]. This is easy to understand, as, for example, significantly skewed

variables can be generated by mixing two (symmetric) Gaussian variables [28]. In extreme cases

with strongly skewed distributions, an enhanced expression of the fourth-order moment method
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can also be applied [29].

The range of possible applications is therefore quite broad and multiple techniques have been50

developed recently to improve the Gram-Charlier model in the significantly non-Gaussian domain.

In this work, we explore another area where improvements can be made: specifically, at the

opposite end of the spectrum, where the modeled variable is only slightly non-Gaussian, i.e. with

small skewness and excess. This area, apparently less appealing, has been relatively less explored

as the current models provide interesting modeling options. In such cases, a simple moment-based55

approach like the Gram-Charlier models proves to be more computationally efficient than the

cubic translation model, which requires the solution of nonlinear algebraic equations. However its

domain of positivity might still remain restrictive, even in the small non-Gaussian domain, and

this is where this contribution stands.

Building on these observations, this paper specializes the cubic translation model in the domain60

of small non-Gaussianity, by developing its asymptotic version with a tractable PDF (without any

nonlinear algebraic equation to be solved), albeit with a reduced range of applicability in terms

of the high skewness and kurtosis offered by the original model. We pursue two main objectives:

first, to conduct a comparative analysis between the Gram-Charlier series and the cubic translation

model, identifying the conditions under which each method yields the most accurate and physically65

meaningful results; second, to develop a new asymptotic model for the cubic translation model in

the degenerate case, where non-Gaussianity is weak but still significant. Specifically, we investigate

the potential for deriving simple analytical expressions for the PDF that depend on only a few

moments, preserving the benefits of moment-based methods while addressing their limitations.

Although Hermite polynomial models are available for both softening and hardening processes70

[30], this paper focuses exclusively on softening models, for which the cubic translation model as

first derived.

After outlining the key features of the Gram-Charlier series and the cubic translation process

in Sections 2 and 3 respectively, the asymptotic version of the cubic translation model is derived

in Section 4. Comparative illustrations are given in Section 5. The potential improvements offered75

by the proposed method are also demonstrated through an example of wind load on the roof of a

low-rise building.

2 The Gram-Schmidt expansion model

It is not uncommon in probability theory to encounter situations where the moments of a ran-

dom variable can be determined, but the PDF itself remains elusive. The Gram-Charlier series80

expansion provides an approximate representation of the PDF based on the first few moments.

In experimental practice, a large amount of data is required to infer moments beyond the fourth

order with sufficient confidence. In this work, it is therefore supposed that the skewness coefficient

γ3 and the excess coefficient γe = γ4 − 3 are known. Furthermore, in probabilistic modeling, a

four-parameter model is typically versatile enough to accommodate various types of data.85

More specifically, the Gram-Charlier series expansion expresses the PDF of a non-Gaussian

variable as

pGC (x) =
1

σ

[
1 +

γ3
3!
H3

(
x− µ

σ

)
+

γe
4!
H4

(
x− µ

σ

)]
ϕ

(
x− µ

σ

)
(2.1)
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where µ and σ are the average and standard deviation, γ3 and γe are the skewness and excess

coefficients, ϕ (·) is the normalized Gaussian PDF, and H3 (ξ) = ξ3 − 3ξ and H4 (ξ) = ξ4 − 6ξ2 +3

are Hermite polynomials. This model offers a simple analytical expression for the PDF. However,90

it has notable limitations: for certain values of skewness and excess, the resulting PDF may

become negative over some range or exhibit multiple modes, reducing its physical validity [3, 31].

Furthermore, the series’ convergence is not guaranteed, and in some cases, it may fail to provide

a meaningful approximation, particularly for distributions with heavy tails or sharp peaks [32].

Despite these challenges, the Gram-Charlier series remains a widely used tool, primarily due to its95

straightforward connection to the moments and its ease of computation, especially when truncated

at low order, on when the effective domain of interest is on a finite interval [33, 34].

A challenge, therefore, lies in identifying the regions of the parameter space where the Gram-

Charlier series remains both positive definite and unimodal [31]. Although this task could appear

difficult with the computational means available in 1950, some corrections of early results have100

been provided later [3, 35], and reported in Figure 2.1 where the thick solid and dashed lines

represents the respective boundaries of the domain where the PDF is positive and unimodal. This

figure also shows some illustrations of pGC (x) for various sets of pairs (γ3, γe) and µ = 0, and

σ = 1.

3 The cubic translation model105

The cubic translation model [12] expresses the process to be modeled as a cubic transformation of

a normalized Gaussian process u(t),

x(u) = µ+ αu+
α

b

(
u3

3
+ au2 − u− a

)
(3.1)

parameterized by the four parameters (µ, α, a, b). The centered moments of the resulting random

variable are

E
[
(x− µ)2

]
=

α2

b2

(
2a2 + b2 +

2

3

)
= σ2

E
[
(x− µ)3

]
=

α3

b3
2a
(
4a2 + 3b2 + 6b+ 6

)
E
[
(x− µ)4

]
=

α4

b4

(
60a4 + 4a2

(
15b2 + 48b+ 62

)
+ 3b4 + 8b3 + 28b2 + 48b+

124

3

)
(3.2)

with E [x] = µ, the expectation of variable x. Following the definition of the skewness and kurtosis110

coefficients, γn = E [(x− µ)n] /σn for n ∈ {3, 4}, it is found that they are expressed as a function
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Fig. 2.1: (top) Limits of the 4th-cumulant Gram-Charlier series expansion model (GC) and of the
cubic translation model (CT); (bottom) examples of PDFs for various values of (γ3, γe)
in linear and log scales. Selected values: µ = 0, σ = 1, and (γ3, γe) changing from case A
to case E.



3 The cubic translation model 6

Fig. 3.1: Illustration of the relations γ3 (a, b) and γe (a, b), as given by Equations (3.3) and (3.4),
with α ≥ 0.

of a and b only, α being simplified out:

γ3 =
2a (4a2 + 3b2 + 6b+ 6)(

2a2 + b2 + 2
3

)3/2 signα (3.3)

γ4 = γe + 3 =
60a4 + 4a2 (15b2 + 48b+ 62) + 3b4 + 8b3 + 28b2 + 48b+ 124

3(
2a2 + b2 + 2

3

)2 (3.4)

Therefore, the skewness γ3 and excess γe = γ4−3 can be used to determine the values of parameters

a and b, while the average provides µ, and α is determined from the second moment. The set of

equations mapping (γ3, γe) onto (a, b) is illustrated in Figure 3.1. It is significantly nonlinear and115

can only be solved numerically. Several formula provide closed-form but approximate solutions

to that set of equations [13, 36]. This figure also shows that the Gaussian case, obtained in the

limiting case for vanishing γ3 and γe, corresponds to b → +∞, which is also confirmed by Equation

(3.1).

Using the principles of transformation of random variables [37], the probability density function120

(PDF) of process x(t) is then given by

pCT (x) = u′(x)ϕ [u (x)] =
b

α

ϕ [u (x)]

u2 (x) + 2au (x) + b− 1
(3.5)

where the reverse mapping

u (x) =
3

√
ζ +

√
c+ ζ2 +

3

√
ζ −

√
c+ ζ2 − a (3.6)

is expressed as a function of c = (b− 1− a2)
3
and

ζ (x) =
3b

2

(
a+

x− µ

α

)
− a3. (3.7)

This result requires the cubic transformation (3.1) to be monotonic, a condition that is satisfied
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provided b− 1− a2 ≥ 0 [12]. Figure 2.1-b illustrates the versatility of this model, as shown by the125

domain of validity in the (γ3, γe) plane, significantly larger than for the fourth cumulant Gram-

Charlier model. A clear advantage of this approach is that pCT(x) does not suffer from positivity

issues, as a result of the process of its definition. As soon as the monotonicity condition is met

(all but case ’B’), the cubic translation model apparently provides smoother PDFs, as illustrated

in the lower panels of Figure 2.1.130

4 The slightly non-Gaussian cubic translation model

The Gram-Charlier series and the cubic translation model are two powerful tools in probabilistic

modeling. While the Gram-Charlier series offers a simple analytical expression for the PDF, its

applicability is limited by a narrow domain of validity. In contrast, the cubic translation model

features a broader domain of validity, though its PDF is more complex, making certain operations—135

such as the addition of two such random variables—challenging to manage. Motivated by this and

the observation that many practical problems can be effectively modeled with variables exhibiting

slight deviations from Gaussianity, we develop in this Section the asymptotic behavior of the cubic

translation model in these scenarios. Two particularly significant distinguished limits are detailed

in this section, along with their associated scaling.140

4.1 Generalities common to the two scaling options

In the asymptotic limit where the skewness and excess coefficients are small, the process only

slightly deviates from Gaussianity (α → σ, b → ∞), and the cubic transformation (3.1) and its

inverse (3.6) tend to the linear transformations x = µ + σ u and u = (x− µ) /σ, respectively.

Therefore, instead of the complicated relation (3.6), we will use the asymptotic series145

u (x) = u0 (x) + εu1 (x) + ε2u2 (x) +O
(
ε3
)
· · · (4.1)

where 0 < ε ≪ 1 is a small number explicitly introduced in the mathematical derivation to sort

out the terms with various orders of magnitude, and where u0 (x), u1 (x), · · · are obtained by

solving (3.1) for u with standard perturbation techniques, see e.g. [38]. As seen in the following,

this results in ui’s being expressed as polynomials of x, instead of cubic roots. In particular, the

unperturbed case (γ3 = 0, γe = 0) corresponds to u0 = (x− µ) /σ.150

To obtain the asymptotic expression for pCT (x), the derivative u′(x) is computed from (4.1),

and ϕ [u (x)] is expanded as

ϕ (u) ∼ ϕ (u0) + (u− u0) ∂uϕ (u0) +
1

2
(u− u0)

2 ∂2
uϕ (u0) +O

(
ε3
)

(4.2)

= ϕ (u0) + ε (u1 + εu2) ∂uϕ (u0) +
1

2
ε2u2

1∂
2
uϕ (u0) +O

(
ε3
)
. (4.3)

Noticing that ∂uϕ (u0) = −u0ϕ (u0) and ∂2
uϕ (u0) = −ϕ (u0) + u2

0ϕ (u0) as ϕ is the normalized

Gaussian PDF, we also have
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ϕ (u) =

[
1− εu0u1 −

1

2
ε2
(
u2
1 − u2

0u
2
1 + 2u0u2

)]
ϕ (u0) +O

(
ε3
)
. (4.4)

Combining (4.1) and (4.4), the asymptotic expansion of pCT (x) is155

pCT (x) =

(
u′
0 + ε (u′

1 − u0u
′
0u1) + ε2

(
u′
2 +

1

2
u2
0u

′
0u

2
1 −

1

2
u′
0u

2
1 − u0u

′
0u2 − u0u1u

′
1

))
ϕ (u0)+O

(
ε3
)
.

(4.5)

Interestingly when ui’s are indeed polynomials, this formulation is similar (but not identical to) to

the general Gram-Charlier formulation: a polynomial multiplying the standard Gaussian distribu-

tion.

Two scaling options are considered in the following. They are supported by the fact that, in the

asymptotic Gaussian case, b → ∞, while there is no strict condition on a, except the monotonicity160

condition, a ≤
√
b− 1. Therefore, two zones of the acceptable (a, b)-region are analyzed, see

hatched areas in Figure 3.1. The first is near the monotone limit, where b ∼ a2 ∼ ε−1. The second

is near the central part of this region where only b is large and a remain of order 1.

4.2 Scaling 1

A first distinguished limit is achieved by considering the scaling165

a =
ā

ε
; b =

b̄

ε2
(4.6)

where ā ∼ 1 and b̄ ∼ 1 are both of order 1 at most. Substitution of these expressions in the moments

(3.2) provides the following asymptotic expansions for the skewness and excess coefficients

γ3 = 6
ā

b̄
ε+O

(
ε3
)

; γe =
8
(
6ā2 + b̄

)
b̄2

ε2 +O
(
ε4
)
. (4.7)

Under the scaling (4.6), the skewness is therefore of order ε and the excess, much smaller,

of order ε2. This formulation is ideal to study the area near to the boundary of the monotonic

region, for small non-Gaussianity. Indeed, as seen in Figure 2.1, the excess is much smaller than170

the skewness on the boundary of the monotone region. After truncation of the pervious equations

to leading order, and elimination of ε in favor of a and b, solving the two previous equations for a

and b yields

a =
4γ3

3γe − 4γ2
3

; b =
24

3γe − 4γ2
3

, (4.8)

so that substitution into the equation for the boundary of the monotonic region, b − 1 − a2 = 0,

and solving for γe gives175

γe =
4

3

(
γ2
3 −

√
9− γ2

3 + 3

)
=

14

9
γ2
3 +O

[
γ3
3

]
. (4.9)

Now the approached expression for the PDF is developed following the general method pre-
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sented in Section 4.1. With the considered scaling, the cubic transformation (3.1) becomes

x = µ+ αu0 + αε

(
ā (u2

0 − 1)

b̄
+ u1

)
+ αε2

(
6āu1 + u2

0 − 3

3b̄
u0 + u2

)
+O

(
ε3
)
. (4.10)

Balancing and cancelling the similar powers in ε, as in standard perturbation methods, the reverse

mapping u(x) is

u(x) = u0 + εu1 + ε2u2 + · · · = ξ + ε
ā

b̄

(
1− ξ2

)
+ ε2

(
ξ3

3

6ā2 − b̄

b̄2
− ξ

2ā2 − b̄

b̄2

)
+O

(
ε3
)

(4.11)

where ξ = (x− µ) /α. Finally, substitution of these expressions for u0, u1 and u2 into (4.5),180

elimination of ε, and replacement of (a, b) by (γ3, γe) through (4.8), the general solution (4.5)

specializes into

p
(1)
CT (x) =

[
p
(Ref)
CT (ξ (x)) +

γ2
3

72α

(
ξ6 − 15ξ4 + 47ξ2 − 17

)]
ϕ (ξ (x)) (4.12)

where ξ needs to be understood as ξ (x), and

p
(Ref)
CT (ξ) = 1 +

γ3
3!
ξ
(
ξ2 − 3

)
+

γe
4!

(
ξ4 − 6ξ2 + 3

)
. (4.13)

In these expressions, α is similar to the standard deviation σ of the process to be modeled, but is

estimated from (3.2), with the values of a and b obtained from (4.8).185

4.3 Scaling 2

A second interesting scaling consists in assuming

a ∼ 1 ; b =
b̃

ε
(4.14)

in which case the skewness and excess coefficients now read

γ3 =
6a

b̃
ε+

12a

b̃2
ε2 +O

(
ε3
)

; γe =
8

b̃
ε+

24 (1 + 2a2)

b̃2
ε2 +O

(
ε3
)
. (4.15)

In this formulation, both γ3 and γe have the same order of magnitude. Unfortunately, truncating

these series after the second term and solving for a and b̃ does not lead to a simple expression. The190

only option to express them in a consistent manner is to truncate after leading term, which leads

a =
4γ3
3γe

; b =
8

γe
. (4.16)

Substitution into b− 1− a2 = 0 yields

8

γe
− 1− 16γ2

3

9γ2
e

= 0 (4.17)
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whose solution is γe = 4
3

(
3−

√
9− γ2

3

)
∼ 2

9
γ2
3 . Although it appears quite similar to (4.9), the

final expression of the limit is fundamentally different. This is explained by the fact that, in this

second scaling, γ3 and γe do not have the appropriate order of magnitude (both of order ε) to195

capture the trend γ3 ∼ ±√
γe of the boundary of the monotonic region.

However, this scaling is meant to be appropriate inside the domain of validity of the cubic

translation model, where both the skewness and the excess coefficients are small and of the same

order of magnitude. So instead of focusing on the limit of the monotonic region, we rather seek to

develop a second approximation p
(2)
CT (x). To do this the reverse of the mapping is first obtained as200

in the previous case, by introducing the ansatz u(x) = u0 + εu1 + ε2u2 + · · · into the definition of

the mapping, and considering the re-scaling of b, which yields

x = µ+αu0+αε

(
a (u2

0 − 1) +
u3
0

3
− u0

b̃
+ u1

)
+αε2

(
2au0 + u2

0 − 1

b̃
u1 + u2

)
+O

(
ε3
)
= 0. (4.18)

Again, cancellation of each and every power of ε yields, successively,

u0 =
x− µ

α
= ξ; u1 =

1

b̃

(
ξ − ξ3

3
+ a

(
1− ξ2

))
;

u2 =
1

3b̃2

((
ξ2 + 2aξ − 1

) (
3a
(
ξ2 − 1

)
+ ξ

(
ξ2 − 3

)))
. (4.19)

These quantities can be substituted (4.5) to obtained, after some simplifications, the second sought

expansion of the PDF of the slightly non Gaussian cubic translation process205

p
(2)
CT (x) =

[
p
(Ref)
CT (ξ (x)) +

γ2
3

72α

(
ξ6 − 11ξ4 + 23ξ2 − 5

)
+

γ3γe
144α

ξ
(
ξ6 − 15ξ4 + 51ξ2 − 33

)
+

γe
1152α

(
ξ8 − 19ξ6 + 93ξ4 − 117ξ2 + 18

)]
ϕ (ξ (x)) . (4.20)

Since the first two corrections to leading have been considered in the expansions, this approached

PDF is quadratic in γ3 and γe, a distinctive feature of the this model.

5 Discussion

The primary objective of this study was to explore the feasibility of deriving simple analytical

expressions for the probability density function (PDF) of a non-Gaussian random variable, char-210

acterized by its first few moments. This exploration began with the cubic translation model,

recognized for its broad domain of validity in the (γ3, γe)-plane.

The first asymptotic analysis of the cubic translation model yielded results where the skewness

γ3 and excess γe were of orders ε and ε2, respectively, and resulted in the simple expression γ3 =

3
√
γe/14 for the boundary of the monotonic region, for small non-Gaussianity. This expression is215

accurate in a significantly wide domain of the (γ3, γ4)-plane, since the subsequent terms in (4.7)

are two orders of magnitude smaller. This expression is confirmed by Figure 2.1, where the dashed
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dotted line on the right indicates a strong agreement between this analytical expression and the

numerical results represented by the solid green line. To the author’s knowledge, it is the first

time that an expression for the boundary of the monotonic region is obtained from analytical220

derivations. Interestingly, when rewritten as γe = 14
9
γ2
3 , it is very close to the empirical fitting

γe = (1.25γ3)
2 provided by Winterstein and McKenzie [14], as 1.252 ≃ 1.5625 while 14/9 ≃ 1.5556

in the current equation.

The derived PDF for the slightly non-Gaussian variable p
(1)
CT (x), expressed as a sixth-degree

polynomial multiplied by the standard Gaussian PDF ϕ (·), shares some similarities with the Gram-225

Charlier series.

In contrast, the second asymptotic analysis did not exhibit the same convergence properties, as

the first correction to the leading term was only one order of magnitude smaller, see (4.15). This

discrepancy limits the accuracy of this approach in capturing the boundary of the monotonic region,

despite the apparent similarity between the formulations (4.9) and (4.17). Nevertheless, the slower230

convergence of the sequence in ε does not preclude the derivation of a more precise PDF for the

slightly non-Gaussian cubic translation process. Indeed, the resulting PDF, p
(2)
CT (x), represented

as an eighth-degree polynomial multiplied by the standard Gaussian PDF ϕ (·), effectively extends

the applicability of the Gram-Charlier approach within the (γ3, γ4)-plane. This is demonstrated

in the following section by means of numerical simulations. For symmetry reasons, the upper half235

of the (γ3, γe) plane only is studied, for γ3 > 0; the lower half can be obtained by replacing γ3 by

−γ3.

Both asymptotic expressions converge to pCT (x) ∼ p
(Ref)
CT [ξ (x)]ϕ (ξ (x)) as (γ3, γe) → 0+, which

coincides with the Gram-Charlier PDF pGC (x). In this limit, coefficients of powers of x greater

than 4 vanish, and the parameter α approaches σ, rendering the cubic translation model asymptotic240

to the fourth-degree truncated Gram-Charlier series.

The Gram-Charlier series employs an n-degree polynomial strictly expressed as a function of

the first n statistical moments. However, our approach results in an eighth-degree polynomial

dependent on moments up to the fourth, with the additional four degrees of freedom derived from

lower moments. As seen in p
(1)
CT (x) and p

(2)
CT (x), these coefficients are not proportional to the245

cumulants as in the Gram-Charlier model but can also be expressed as higher powers of lower

cumulants. Indeed, by incorporating the first two corrections to the leading term, the resulting

PDF is quadratic in γ3 and γe. This approach offers two key advantages: (1) it circumvents

the need to measure higher-order moments to obtain higher degree polynomials, which are often

impractical, and (2) it reduces the dimensionality of the parameter space, making the derived250

expression more tractable and applicable.

6 Illustrations

6.1 Positivity and unimodality

For expressions like the Gram-Charlier series, the limits of validity (positivity of the PDF, and to

a lesser extent, the unimodality) can be conveniently obtained by means of numerical simulations.255

Indeed for given µ and σ, and for a chosen pair of parameters (γ3, γ4), the PDF pGC (x) can

be computed with (2.1). To limit chances of missing a zero-crossing located far away from the



6 Illustrations 12

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

3

Gram-Charlier Expansion Scaling 1Slightly nonlinear Cubic: Scaling 2

-2 0 2
0

100

10-4

100

10-4

100

10-4

100

10-4

0.2

0.4
0

0.2

0.4
0

0.2

0.4
0

0.2

0.4

-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Gram-Charlier Expansion Scaling 1 Scaling 2

10-2 10-1 100
10-2

10-1

100

3

Positivity
Unimodality

Positivity
Unimodality

Fig. 5.1: Limits of the 4th-degree Gram-Charlier series expansion model and of the two proposed
asymptotic models. Represented in terms of positivity (solid lines) and unimodality
(dashed lines). Bottom: some selected illustrations of the corresponding PDFs. White
dots in the upper right plot locates these selected combinations of (γ3, γe). Shown for
µ = 0, σ = 1.



6 Illustrations 13

bulk of the density, we computed pGC (x) for 5, 000 uniformly spaced values of x in the interval

[µ− 35σ;µ+ 35σ]. Positivity was checked by comparing the values to zero. Unimodality was

checked by computing the 1-step finite difference of this PDF and detecting the number of sign260

changes. Unimodality was concluded if one and only one sign change had been observed. By

repeating this operation for 600 × 600 values of γ3 and γe uniformly spaced between 0 and 1.2,

and 0 and 4.5, the plots of Figures 2.1 and 5.1 could be established. Indeed with such a fine mesh

on γ3 and γe, the limits of the positivity region (solid lines) and unimodality region (dashed lines)

can just be obtained with standard contouring features of scientific softwares. The same operation265

was repeated for p
(1)
CT (x) and p

(2)
CT (x), with (4.13) and (4.20).

While the bottom of Figure 5.1 shows some examples of the PDF of the fourth degree Gram-

Charlier model, and the two proposed asymptotic expansions, the top part of the Figure summarizes

the major findings of this study, both in linear and log scales. The grayed area recalls the positivity

boundary of the fourth degree Gram-Charlier model, for comparison.270

The first asymptotic model suffers positivity issues as soon as γ3 > 0.7, whereas the Gram-

Charlier model can manage skewness coefficients slightly larger than 1, provided the excess lies

between 2 and 3. This might be seen as a weakness of the proposed model expressed as the product

of a 6-th degree polynomial and the standard Gaussian PDF. However, it is noticed that the first

asymptotic model is valid for zero excess, up to a skewness coefficient as larger as γ3 =0.2, while275

the Gram-Charlier model would not allow γ3 ̸= 0 if γe = 0. The dots represented on the uniform

mesh on the top left plot locate the various combinations (γ3, γ4) illustrated at the bottom. The

logarithmic scale on the y-axis makes it easier to identify positivity and unimodality issues. For

instance, for (γ3, γ4) = (.4, .4), all three compared models result in positive PDF, p
(1)
CT (x) is not

unimodal. In general, p
(1)
CT (x) is more bumpy than pGC (x) and does not bring much added value,280

except perhaps in the small area where γe is very small and γ3 can reach values up to γ3 =0.2.

Our second asymptotic model performs actually much better. The hatched area indicates the

zone where the Gram-Charlier model is extended. For γe < 1.5, it roughy shows a shift of the

boundary of the positivity region, of about 0.25 units on the γ3-axis. This difference could seem

marginal but is appreciable since (i) again, zero excess does not require zero skewness, (ii) we can285

now offer skewness coefficients as large as 1, when γe lies between 1 and 1.6, a great complementary

to the Gram-Charlier model. Furthermore, in the numerous cases where p
(2)
CT (x) is positive while

pGC (x) is not, see e.g. (γ3, γ4) ∈ {(.6, .6) , (.8, .8) , (.8, 1.)}, the shape of p
(2)
CT (x) is rather smooth

and could therefore be appealing for modeling purposes. Last but not least, for γ3 = 0.4, the second

asymptotic model p
(2)
CT (x) and the Gram-Charlier model pGC (x) are virtually superimposed.290

6.2 Illustration with wind pressure time series

Figure 6.1 shows the time series of wind pressure measured on the roof of a low-rise building (from

[39]). This time series is selected to illustrate that pressure coefficients on buildings can exhibit

slight non-Gaussian behavior. In other areas of the roof and/or building, the skewness may be

more pronounced, and clearer signs of bimodality may appear in the data. These features would295

require a different statistical treatment than the one proposed in this paper. The mixed nature

of the data is also partly evident here, with a noticeable bump in the experimental probability

density function —the histogram of the pressure coefficient— near cp = −1. This feature cannot
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α Exp. GC CM1 CM2

0.1000 -3.0765 -3.0713 (-0.17%) -3.0727 (-0.13%) -3.0680 (-0.28%)
0.0500 -3.4230 -3.4343 (0.33) -3.4215 (-0.04) -3.4214 (-0.05)
0.0200 -3.8390 -3.8558 (0.44) -3.8338 (-0.14) -3.8469 (0.21)
0.0100 -4.1353 -4.1342 (-0.03) -4.1195 (-0.38) -4.1521 (0.41)
0.0050 -4.4034 -4.3830 (-0.46) -4.3852 (-0.41) -4.4442 (0.92)
0.0010 -5.0383 -4.8749 (-3.24) -4.9263 (-2.22) -5.0399 (0.03)
0.0005 -5.2930 -5.0591 (-4.42) -5.1291 (-3.10) -5.2558 (-0.70)
0.0002 -5.6471 -5.2830 (-6.45) -5.3722 (-4.87) -5.5063 (-2.49)

Tab. 1: Near tail α−fractiles computed with the experimental CDF, and the CDF of the Gram-
Charlier (GC) model, and the two proposed asymptotic models (CM1, CM2).

be captured by the model discussed in this paper, which explains why pressure coefficients near

zero are not appropriately captured by the models compared here. On the other tail, however,300

the proposed model performs well. It accurately models the bulk of the distribution, which is the

primary goal of a moment-based approach, and the versatility provided by using moments up to

the fourth order ensures that this good agreement extends fairly far into the tail. This is further

confirmed by the close-up view of both the tails of the PDFs and the cumulative density functions

(CDFs). The log-scale representation of the PDFs (right panel in the middle) shows that the305

second asymptotic distribution (CM2) provides an excellent match with the experimental PDF

down to probability densities as small as 10−4, more than three orders of magnitude smaller than

the density in the bulk of the distribution. Nevertheless the quality of the match is poorer near

cp = 4.5 and shown on the CDFs.

The skewness and excess of this time series are γ3 = −0.3194 and γe = 0.1823, which form310

a combination where the second asymptotic distribution (CM2) meets the positivity criterion,

while the Gram-Charlier (GC) and first asymptotic distribution (CM1) do not. In this case, both

distributions become negative for some cp > 0. In this example this does not impact the modeling

of large extreme negative values, which are in the other tail.

One way to quantify the appropriateness of the model in reproducing the statistics of large315

negative wind pressures is by comparing the fractiles associated with non-exceedance probabilities

for certain thresholds with small probability α. Some of these fractiles are provided in Table 1,

along with the errors computed by referencing the experimental data. Once again, the second

asymptotic distribution is shown to perform overall pretty well, except near cp = 4.5 (around

1%-discrepancy) and in the tail, where α ∼ 10−4 and where experimental data may suffer from320

sampling issues.

7 Conclusions

This study investigated the cubic translation model as a robust alternative to the Gram-Charlier

series for modeling non-Gaussian random variables, particularly in engineering applications with

small skewness and kurtosis.325

The first asymptotic expansion of the cubic translation model focused on solutions near the
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boundary of the monotonic region, providing a simple yet effective analytical expression for the

PDF of slightly non-Gaussian variables. This model is especially useful in cases of near-zero excess,

extending the range of skewness coefficients where the PDF remains valid. However, for larger

skewness values, the first asymptotic model begins to lose its advantage, struggling to maintain330

unimodality and positivity, which the Gram-Charlier series handles more effectively. Nonetheless,

a key strength of this approach is its ability to accurately estimate the limit of the monotone region

in the original cubic translation model, which was expressed as γ3 = ±3
√
γe/14, an expression

that is very close to commonly used formula derived from fitting.

The second asymptotic expansion offered significant improvements over both the Gram-Charlier335

series and the first expansion. It extended the positivity region and produced smoother PDF

shapes, making it a more practical and versatile tool for modeling slight non-Gaussianity. Notably,

the second model was able to handle skewness coefficients as large as 1, particularly in regions

where the Gram-Charlier series fails. However, for γ3 = 1, the proposed model breaks down, and

the Gram-Charlier expansion becomes more suitable for γ3 ∈ [2; 3]. Therefore, the cubic translation340

model provides a complementary approach, expanding the range of skewness-excess combinations

that can be effectively modeled.

The derived PDFs are expressed as the product of a polynomial and the standard Gaussian

PDF. The degree of the polynomial (six or eight) is higher than that of the truncated fourth-

cumulant Gram-Charlier series (four), and its coefficients are no longer proportional to cumulants.345

This opens the door for further exploration of other variants with similar structures. Although

the domain of applicability in the (γ3, γe)−plane is significantly reduced compared to original

cubic translation model, the slightly non Gaussian cubic translation model enters in the family of

distributions having a ”polynomial times Gaussian PDF” format. Since it is tractable and allows

for simpler computations, the model derived in this paper can benefit from fast estimation, since350

the PDF is expressed by means of statistics moments. Any subsequent quantity such as a likelihood

or posterior distribution in a Bayesian inference context are therefore much easier to obtain than

for the original cubic translation model.
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