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Abstract

The cubic translation model, which expresses a random variable as a cubic transformation of a standard
normal variable, offers versatility in engineering applications, particularly for non-Gaussian variables
since it is a four-parameter model. While its probability density function is not tractable, it is more
complex to compute than the Gram-Charlier series, which, despite its simplicity, suffers from limitations
such as positivity and unimodality issues, restricting its range of applicability. This paper presents
two asymptotic analyses of the cubic translation model for slight non-Gaussianity (i.e. small skewness
and excess coefficients, “small” being understood in the sense of perturbation methods), showing that it
asymptotically converges to the fourth cumulant Gram-Charlier model and offers a broader domain of
applicability with minimal additional computational cost. Additionally, the paper derives, mathematically,
a non empirical expression for the monotone limit of the original cubic translation model, and validates
the theoretical findings through numerical simulations.

Keywords: Gram-Charlier series expansion, Edgeworth expansion, monotonic region, wind
pressure, reliability , fatigue analysis. []Last update: March 12, 2025.

1 Introduction

Accurately modeling the probability density function (PDF) of a random variable using its moments
is a cornerstone in both theoretical and applied statistics, with wide-reaching implications in fields
such as structural engineering, finance, and meteorology.

Traditional approaches like the Gram-Charlier and Edgeworth series expansions have long been
employed for this purpose [1]. These series expand the PDF around a Gaussian core, incorporating
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1 Introduction 2

higher-order moments to account for skewness, kurtosis, and other non-Gaussian features [2].
However, despite their theoretical appeal, these expansions often suffer from significant practical
limitations, particularly when applied to strongly non-Gaussian data or when truncated at higher
orders [3]. These series expansions have found numerous applications in wind engineering [4], ocean
engineering [5], meteorology [6], queueing theory [7], and financial sciences [8], 9.

Alternative solutions exist to model non-Gaussian variables, such as the cubic translation model
[10]. This model, originally developed to address the challenges of non-Gaussian modeling in fields
such as wind engineering [I1] and offshore mechanics [12], provides a more flexible framework that
can accurately capture the tails and extreme values of a distribution [I3], [14]. Unlike the Gram-
Charlier series, the cubic translation model does not rely on a series expansion around a Gaussian
core but instead transforms a Gaussian variable into a non-Gaussian one using a cubic polynomial.
It is therefore a four-parameter model. This transformation allows for the modeling of asymmetry
and kurtosis quite naturally, making it particularly useful in applications where extreme events
play a critical role, such as in the assessment of structural reliability under random loads [15], [16].

The Gram-Charlier and cubic translation models can be seen as two extremes, each with its
own set of limitations. The Gram-Charlier model struggles with ensuring the positivity of the
probability density function (PDF), while the cubic translation model is constrained by the mono-
tonicity of the cubic transformation, which is generally less restrictive than the positivity issue
in the Gram-Charlier model. However, we also argue that the cubic translation model is more
time-consuming, particularly when fitting it to experimental data. This is because the moments
are related to the model parameters through nonlinear algebraic equations that must be solved
numerically [I7]. While this might not be a significant concern when only a single fitting is needed,
this additional computational burden becomes problematic in several scenarios, as detailed next.

First, simulating samples from non-Gaussian processes can be time-consuming. Early simula-
tion methods (e.g. [18]) are suitable to generate small samples sizes. The use in the context of large
non-Gaussian fields [19] may take up to several hours of computation. This challenge is further
amplified when long samples are required to analyze fatigue damage and extreme values [20]. Sec-
ond, modern applications, with a typically much higher space resolution than used some decades
ago, demand far more fittings than in the past. Repeating fittings across entire fields, especially in
marginal or extended bivariate cases of the bicubic model [21], 22], also results in significant data
processing delays. Lastly, this issue is exacerbated when learning methods are integrated into the
process [23], as high-quality training sets typically require thousands of independent simulations.

A significant portion of the research focuses on refining and applying Gram-Charlier (also
called Hermite polynomial) models. Recent advancements, such as the use of proper parametrized
probability distribution model [24], quartic Hermite models [25] and probability-weighted moment-
based Hermite models [26], have demonstrated improvements in the modeling performance of
methods bases on the Hermite polynomial. Additionally, a simplified analytical formula for the
coefficient of the third-order Hermite moment model has been developed [27].

Variables with large skewness and excess can be effectively modeled using mixtures of less
non-Gaussian variables [22]. This is easy to understand, as, for example, significantly skewed
variables can be generated by mixing two (symmetric) Gaussian variables [28]. In extreme cases
with strongly skewed distributions, an enhanced expression of the fourth-order moment method
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2 The Gram-Schmidt expansion model 3

can also be applied [29)].

The range of possible applications is therefore quite broad and multiple techniques have been
developed recently to improve the Gram-Charlier model in the significantly non-Gaussian domain.
In this work, we explore another area where improvements can be made: specifically, at the
opposite end of the spectrum, where the modeled variable is only slightly non-Gaussian, i.e. with
small skewness and excess. This area, apparently less appealing, has been relatively less explored
as the current models provide interesting modeling options. In such cases, a simple moment-based
approach like the Gram-Charlier models proves to be more computationally efficient than the
cubic translation model, which requires the solution of nonlinear algebraic equations. However its
domain of positivity might still remain restrictive, even in the small non-Gaussian domain, and
this is where this contribution stands.

Building on these observations, this paper specializes the cubic translation model in the domain
of small non-Gaussianity, by developing its asymptotic version with a tractable PDF (without any
nonlinear algebraic equation to be solved), albeit with a reduced range of applicability in terms
of the high skewness and kurtosis offered by the original model. We pursue two main objectives:
first, to conduct a comparative analysis between the Gram-Charlier series and the cubic translation
model, identifying the conditions under which each method yields the most accurate and physically
meaningful results; second, to develop a new asymptotic model for the cubic translation model in
the degenerate case, where non-Gaussianity is weak but still significant. Specifically, we investigate
the potential for deriving simple analytical expressions for the PDF that depend on only a few
moments, preserving the benefits of moment-based methods while addressing their limitations.
Although Hermite polynomial models are available for both softening and hardening processes
[30], this paper focuses exclusively on softening models, for which the cubic translation model as
first derived.

After outlining the key features of the Gram-Charlier series and the cubic translation process
in Sections 2 and 3 respectively, the asymptotic version of the cubic translation model is derived
in Section 4. Comparative illustrations are given in Section 5. The potential improvements offered
by the proposed method are also demonstrated through an example of wind load on the roof of a
low-rise building.

2 The Gram-Schmidt expansion model

It is not uncommon in probability theory to encounter situations where the moments of a ran-
dom variable can be determined, but the PDF itself remains elusive. The Gram-Charlier series
expansion provides an approximate representation of the PDF based on the first few moments.
In experimental practice, a large amount of data is required to infer moments beyond the fourth
order with sufficient confidence. In this work, it is therefore supposed that the skewness coefficient
v3 and the excess coefficient 7, = 4 — 3 are known. Furthermore, in probabilistic modeling, a
four-parameter model is typically versatile enough to accommodate various types of data.

More specifically, the Gram-Charlier series expansion expresses the PDF of a non-Gaussian

pGC(x)zéll—l—g/Hg (x;“)+%7¢4 (‘”;”)}qs(x;“) (2.1)

variable as
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3 The cubic translation model 4

where p and o are the average and standard deviation, 3 and 7. are the skewness and excess
coefficients, ¢ (-) is the normalized Gaussian PDF, and H3 (£) = &3 — 3¢ and H, (§) = €1 — 662+ 3
are Hermite polynomials. This model offers a simple analytical expression for the PDF. However,
it has notable limitations: for certain values of skewness and excess, the resulting PDF may
become negative over some range or exhibit multiple modes, reducing its physical validity [3], 31].
Furthermore, the series’ convergence is not guaranteed, and in some cases, it may fail to provide
a meaningful approximation, particularly for distributions with heavy tails or sharp peaks [32].
Despite these challenges, the Gram-Charlier series remains a widely used tool, primarily due to its
straightforward connection to the moments and its ease of computation, especially when truncated
at low order, on when the effective domain of interest is on a finite interval [33, [34].

A challenge, therefore, lies in identifying the regions of the parameter space where the Gram-
Charlier series remains both positive definite and unimodal [31]. Although this task could appear
difficult with the computational means available in 1950, some corrections of early results have
been provided later [3, B5], and reported in Figure where the thick solid and dashed lines
represents the respective boundaries of the domain where the PDF is positive and unimodal. This
figure also shows some illustrations of pgc (z) for various sets of pairs (v3,7.) and p = 0, and
oc=1.

3 The cubic translation model

The cubic translation model [12] expresses the process to be modeled as a cubic transformation of
a normalized Gaussian process u(t),

3
x(u):u—l—au—l—%(%—kau?—u—a) (3.1)

parameterized by the four parameters (i, a, a,b). The centered moments of the resulting random
variable are

3
E [(x — 1)°] = 5520 (40> 4 35° + 6b +6)
4 a’ 4 2 2 4 3 2 124
E[(z—p)'] = 57 | 60a" + 4a (15b° + 48b + 62) + 3b" + 8b” 4 28b +48b + —= (3.2)

with E [x] = u, the expectation of variable z. Following the definition of the skewness and kurtosis
coefficients, v, = E[(x — u)"] /o™ for n € {3,4}, it is found that they are expressed as a function
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(top) Limits of the 4th-cumulant Gram-Charlier series expansion model (GC) and of the
cubic translation model (CT); (bottom) examples of PDFs for various values of (73, 7e)
in linear and log scales. Selected values: ;1 =0, 0 = 1, and (73, 7.) changing from case A
to case E.
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Scaling 1
I Scaling2

Fig. 3.1: Illustration of the relations 3 (a,b) and 7. (a,b), as given by Equations (3.3]) and (3.4)),
with o > 0.

of a and b only, a being simplified out:

2a (4a® + 3b + 6b
= a(da” +30"+6 +6)signa (3.3)
9 5 2\3/2
(2a% + b2 + 2)
_ 60a* + 4a? (150 + 48 + 62) + 3b + 8b° + 28b + 48 4 124

V4 =Y+ 3= 5 (3.4)
(202 + 12 +3)

73

Therefore, the skewness v3 and excess 7. = 74 —3 can be used to determine the values of parameters
a and b, while the average provides u, and « is determined from the second moment. The set of
equations mapping (73, 7.) onto (a,b) is illustrated in Figure .1} It is significantly nonlinear and
can only be solved numerically. Several formula provide closed-form but approximate solutions
to that set of equations [13, 36]. This figure also shows that the Gaussian case, obtained in the
limiting case for vanishing 73 and ~., corresponds to b — +00, which is also confirmed by Equation
).

Using the principles of transformation of random variables [37], the probability density function
(PDF) of process x(t) is then given by

por () = v/ (2)¢ [u(x)] = b ¢ [u(z)]

T au?(2) 4 2au(z) +b—1 (8:5)

where the reverse mapping

u@) = Ver 4 /e er E—a (36)

is expressed as a function of ¢ = (b— 1 — a2)® and

g(a;):3—b(a+x_“)—a3. (3.7)

This result requires the cubic transformation (3.1)) to be monotonic, a condition that is satisfied
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4 The slightly non-Gaussian cubic translation model 7

provided b — 1 —a? > 0 [12]. Figure b illustrates the versatility of this model, as shown by the
domain of validity in the (vs,7.) plane, significantly larger than for the fourth cumulant Gram-
Charlier model. A clear advantage of this approach is that pcr(z) does not suffer from positivity
issues, as a result of the process of its definition. As soon as the monotonicity condition is met
(all but case 'B’), the cubic translation model apparently provides smoother PDFs; as illustrated
in the lower panels of Figure 2.1]

4 The slightly non-Gaussian cubic translation model

The Gram-Charlier series and the cubic translation model are two powerful tools in probabilistic
modeling. While the Gram-Charlier series offers a simple analytical expression for the PDF, its
applicability is limited by a narrow domain of validity. In contrast, the cubic translation model
features a broader domain of validity, though its PDF is more complex, making certain operations—
such as the addition of two such random variables—challenging to manage. Motivated by this and
the observation that many practical problems can be effectively modeled with variables exhibiting
slight deviations from Gaussianity, we develop in this Section the asymptotic behavior of the cubic
translation model in these scenarios. Two particularly significant distinguished limits are detailed
in this section, along with their associated scaling.

4.1 Generalities common to the two scaling options

In the asymptotic limit where the skewness and excess coefficients are small, the process only
slightly deviates from Gaussianity (o« — o, b — 00), and the cubic transformation (3.1)) and its
inverse tend to the linear transformations © = u + ocw and v = (x — u) /o, respectively.
Therefore, instead of the complicated relation , we will use the asymptotic series

u(z) = ug () + cuy () + *uy (x) + O () - - (4.1)

where 0 < ¢ < 1 is a small number explicitly introduced in the mathematical derivation to sort
out the terms with various orders of magnitude, and where wug (), uy (x), -+ are obtained by
solving for u with standard perturbation techniques, see e.g. [38]. As seen in the following,
this results in u;’s being expressed as polynomials of x, instead of cubic roots. In particular, the
unperturbed case (3 = 0, 7. = 0) corresponds to uy = (z — p) /o.

To obtain the asymptotic expression for pcr (z), the derivative «/(x) is computed from ([{4.1)),
and ¢ [u (x)] is expanded as

¢ (u) ~ ¢ (uo) + (u — up) Ou (uo) + % (u—uo)” 07 (ug) + O (%) (4.2)
= ¢ (ug) + € (ug + eug) Ou (uo) + %821@81% (uo) + O (7). (4.3)

Noticing that 9,¢ (ug) = —ugd (up) and 92¢ (ug) = —é (ug) + uded (ug) as ¢ is the normalized
Gaussian PDF, we also have
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4 The slightly non-Gaussian cubic translation model 8

o (u) = {1 — EUguy — %52 (ui — ugui + 2ugus) | ¢ (ug) + O (7). (4.4)

Combining (4.1)) and (4.4)), the asymptotic expansion of pcr () is

per (z) = (u6 + & (U} — uoupuy) + €2 (u/2 + %uguguf — %uéu% — UpugyUy — uoulu/l)> ¢ (uo)+0 (€°).

(4.5)
Interestingly when u;’s are indeed polynomials, this formulation is similar (but not identical to) to
the general Gram-Charlier formulation: a polynomial multiplying the standard Gaussian distribu-
tion.

Two scaling options are considered in the following. They are supported by the fact that, in the
asymptotic Gaussian case, b — oo, while there is no strict condition on a, except the monotonicity
condition, a < v/b—1. Therefore, two zones of the acceptable (a,b)-region are analyzed, see
hatched areas in Figure . The first is near the monotone limit, where b ~ a? ~ e~!. The second
is near the central part of this region where only b is large and a remain of order 1.

4.2 Scaling 1

A first distinguished limit is achieved by considering the scaling

a= ; b=

(4.6)

™ | QI
0| =

where @ ~ 1 and b ~ 1 are both of order 1 at most. Substitution of these expressions in the moments
(3.2) provides the following asymptotic expansions for the skewness and excess coefficients

V3 = 6%8 + 0 (&%) ; Vo= ————2+ 0 (). (4.7)

Under the scaling , the skewness is therefore of order € and the excess, much smaller,
of order 2. This formulation is ideal to study the area near to the boundary of the monotonic
region, for small non-Gaussianity. Indeed, as seen in Figure [2.1], the excess is much smaller than
the skewness on the boundary of the monotone region. After truncation of the pervious equations
to leading order, and elimination of ¢ in favor of a and b, solving the two previous equations for a

and b yields

4 24
et N — (4.8)
37e — 473 3Ye — 473

so that substitution into the equation for the boundary of the monotonic region, b — 1 — a? = 0,

4 14
ve=§(7§—\/9—7§+3>=§7§+0h§}- (4.9)

Now the approached expression for the PDF is developed following the general method pre-

and solving for v, gives
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sented in Section 4.1 With the considered scaling, the cubic transformation (3.1)) becomes

a(u2 —1 6au, +ud — 3
Balancing and cancelling the similar powers in €, as in standard perturbation methods, the reverse

mapping u(x) is

3672 _ 7 2 _ 7
(1-¢2) +¢ (%6a62 b_§2al_)2 b)_|_(9(53) (4.11)

u(z) =ug +eup +Feup + - =E+e

Sl

where £ = (z — u) /a. Finally, substitution of these expressions for wug, u; and wus into (4.5)),
elimination of ¢, and replacement of (a,b) by (7vs,7.) through (4.8)), the general solution (4.5
specializes into

2

W) = o7 (€ ) + 75 (€0 - 156+ a7 - 17)| € o) (4.12)

where £ needs to be understood as £ (z), and

Pl (€)= 1+ 316 (62 = 3) + i (6" — 667 +3). (4.13)

In these expressions, « is similar to the standard deviation o of the process to be modeled, but is
estimated from ((3.2), with the values of a and b obtained from (4.§)).

4.3 Scaling 2

A second interesting scaling consists in assuming

b
a~1 ; b= - (4.14)
€
in which case the skewness and excess coeflicients now read
6 12 8 24 (1 4 2a?
neFer 0 -per i Ee0@). )

In this formulation, both 3 and 7. have the same order of magnitude. Unfortunately, truncating
these series after the second term and solving for a and b does not lead to a simple expression. The
only option to express them in a consistent manner is to truncate after leading term, which leads
4’}/3 8
a =

3. o (4.16)

Substitution into b — 1 — a? = 0 yields

8, _ 163

— 0 4.17
Ye 9v2 (4.17)
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whose solution is v, = % (3 -9 - 7%) ~ gyg. Although it appears quite similar to , the
final expression of the limit is fundamentally different. This is explained by the fact that, in this
second scaling, v3 and 7. do not have the appropriate order of magnitude (both of order ¢) to
capture the trend 73 ~ £,/7. of the boundary of the monotonic region.

However, this scaling is meant to be appropriate inside the domain of validity of the cubic
translation model, where both the skewness and the excess coefficients are small and of the same
order of magnitude. So instead of focusing on the limit of the monotonic region, we rather seek to
develop a second approximation pg% (x). To do this the reverse of the mapping is first obtained as
in the previous case, by introducing the ansatz u(x) = ug + uy + €*us + - - - into the definition of

the mapping, and considering the re-scaling of b, which yields

2_ 1)+ 2 21
T = ptaugtae (a(uo )B 3 10 +uy | fag? (%m + uz) +0 (%) = 0. (4.18)

Again, cancellation of each and every power of ¢ yields, successively,

uozx;l‘:g; u1:%(£—§+a(1—§2));
ugzﬁ((f—i—mf—l) (3a (€2 1) +€(¢2—3))). (4.19)

These quantities can be substituted (4.5)) to obtained, after some simplifications, the second sought
expansion of the PDF of the slightly non Gaussian cubic translation process

2

pCr (2) = [pCF" (€ (@) + 2= (€0 — 116" + 23¢? - 5) + e (€ — 156" 4 51¢” - 33)
Je (8- 19¢5 +93¢* — 11762 + 18)} o (€ (1)) (4.20)

+1152a

Since the first two corrections to leading have been considered in the expansions, this approached
PDF is quadratic in 3 and 7., a distinctive feature of the this model.

5 Discussion

The primary objective of this study was to explore the feasibility of deriving simple analytical
expressions for the probability density function (PDF) of a non-Gaussian random variable, char-
acterized by its first few moments. This exploration began with the cubic translation model,
recognized for its broad domain of validity in the (73, 7. )-plane.

The first asymptotic analysis of the cubic translation model yielded results where the skewness
3 and excess 7, were of orders € and €2, respectively, and resulted in the simple expression v3 =
34/7e/14 for the boundary of the monotonic region, for small non-Gaussianity. This expression is
accurate in a significantly wide domain of the (vs,~4)-plane, since the subsequent terms in (4.7)
are two orders of magnitude smaller. This expression is confirmed by Figure 2.1 where the dashed
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6 lllustrations 11

dotted line on the right indicates a strong agreement between this analytical expression and the
numerical results represented by the solid green line. To the author’s knowledge, it is the first
time that an expression for the boundary of the monotonic region is obtained from analytical
derivations. Interestingly, when rewritten as v, = %7??, it is very close to the empirical fitting
Ye = (1.2573)” provided by Winterstein and McKenzie [14], as 1.25% ~ 1.5625 while 14/9 ~ 1.5556
in the current equation.

The derived PDF for the slightly non-Gaussian variable pg% (x), expressed as a sixth-degree
polynomial multiplied by the standard Gaussian PDF ¢ (-), shares some similarities with the Gram-
Charlier series.

In contrast, the second asymptotic analysis did not exhibit the same convergence properties, as
the first correction to the leading term was only one order of magnitude smaller, see (4.15)). This
discrepancy limits the accuracy of this approach in capturing the boundary of the monotonic region,
despite the apparent similarity between the formulations and (4.17). Nevertheless, the slower
convergence of the sequence in £ does not preclude the derivation of a more precise PDF for the
slightly non-Gaussian cubic translation process. Indeed, the resulting PDF, pg% (x), represented
as an eighth-degree polynomial multiplied by the standard Gaussian PDF ¢ (-), effectively extends
the applicability of the Gram-Charlier approach within the (vs,v4)-plane. This is demonstrated
in the following section by means of numerical simulations. For symmetry reasons, the upper half
of the (73, 7.) plane only is studied, for 3 > 0; the lower half can be obtained by replacing 3 by
—73-

Both asymptotic expressions converge to per () ~ pg}ef) [€(x)] ¢ (& (x)) as (v3,7.) — 0T, which
coincides with the Gram-Charlier PDF pgc (x). In this limit, coefficients of powers of x greater
than 4 vanish, and the parameter o approaches o, rendering the cubic translation model asymptotic
to the fourth-degree truncated Gram-Charlier series.

The Gram-Charlier series employs an n-degree polynomial strictly expressed as a function of
the first n statistical moments. However, our approach results in an eighth-degree polynomial
dependent on moments up to the fourth, with the additional four degrees of freedom derived from
lower moments. As seen in pg)r () and pg% (x), these coefficients are not proportional to the
cumulants as in the Gram-Charlier model but can also be expressed as higher powers of lower
cumulants. Indeed, by incorporating the first two corrections to the leading term, the resulting
PDF is quadratic in 73 and ~.. This approach offers two key advantages: (1) it circumvents
the need to measure higher-order moments to obtain higher degree polynomials, which are often
impractical, and (2) it reduces the dimensionality of the parameter space, making the derived
expression more tractable and applicable.

6 llustrations

6.1 Positivity and unimodality

For expressions like the Gram-Charlier series, the limits of validity (positivity of the PDF, and to
a lesser extent, the unimodality) can be conveniently obtained by means of numerical simulations.
Indeed for given p and o, and for a chosen pair of parameters (vs,74), the PDF pgc (x) can
be computed with (2.I)). To limit chances of missing a zero-crossing located far away from the
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Fig. 5.1: Limits of the 4th-degree Gram-Charlier series expansion model and of the two proposed
asymptotic models. Represented in terms of positivity (solid lines) and unimodality
(dashed lines). Bottom: some selected illustrations of the corresponding PDFs. White
dots in the upper right plot locates these selected combinations of (vs,7.). Shown for
uw=0o0=1
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bulk of the density, we computed pgc (z) for 5,000 uniformly spaced values of x in the interval
[t — 350; 1w+ 350]. Positivity was checked by comparing the values to zero. Unimodality was
checked by computing the 1-step finite difference of this PDF and detecting the number of sign
changes. Unimodality was concluded if one and only one sign change had been observed. By
repeating this operation for 600 x 600 values of v3 and 7, uniformly spaced between 0 and 1.2,
and 0 and 4.5, the plots of Figures and could be established. Indeed with such a fine mesh
on 73 and 7., the limits of the positivity region (solid lines) and unimodality region (dashed lines)

can just be obtained with standard contouring features of scientific softwares. The same operation
1)

was repeated for péT (x) and p(CQ% (x), with and .

While the bottom of Figure shows some examples of the PDF of the fourth degree Gram-
Charlier model, and the two proposed asymptotic expansions, the top part of the Figure summarizes
the major findings of this study, both in linear and log scales. The grayed area recalls the positivity
boundary of the fourth degree Gram-Charlier model, for comparison.

The first asymptotic model suffers positivity issues as soon as v3 > 0.7, whereas the Gram-
Charlier model can manage skewness coefficients slightly larger than 1, provided the excess lies
between 2 and 3. This might be seen as a weakness of the proposed model expressed as the product
of a 6-th degree polynomial and the standard Gaussian PDF. However, it is noticed that the first
asymptotic model is valid for zero excess, up to a skewness coefficient as larger as v3 =0.2, while
the Gram-Charlier model would not allow 73 # 0 if 7. = 0. The dots represented on the uniform
mesh on the top left plot locate the various combinations (3,7,) illustrated at the bottom. The
logarithmic scale on the y-axis makes it easier to identify positivity and unimodality issues. For
instance, for (v3,7v4) = (.4,.4), all three compared models result in positive PDF, pg% (x) is not
unimodal. In general, p(cl% (x) is more bumpy than pgc () and does not bring much added value,
except perhaps in the small area where ~, is very small and 3 can reach values up to v3 =0.2.

Our second asymptotic model performs actually much better. The hatched area indicates the
zone where the Gram-Charlier model is extended. For 7. < 1.5, it roughy shows a shift of the
boundary of the positivity region, of about 0.25 units on the ~3-axis. This difference could seem
marginal but is appreciable since (i) again, zero excess does not require zero skewness, (ii) we can
now offer skewness coefficients as large as 1, when ~, lies between 1 and 1.6, a great complementary
to the Gram-Charlier model. Furthermore, in the numerous cases where pg% (x) is positive while
pac () is not, see e.g. (73,74) € {(.6,.6),(.8,.8),(.8,1.)}, the shape of pg% (x) is rather smooth
and could therefore be appealing for modeling purposes. Last but not least, for v3 = 0.4, the second
asymptotic model p(cg% (z) and the Gram-Charlier model pgc (x) are virtually superimposed.

6.2 lllustration with wind pressure time series

Figure shows the time series of wind pressure measured on the roof of a low-rise building (from
[39]). This time series is selected to illustrate that pressure coefficients on buildings can exhibit
slight non-Gaussian behavior. In other areas of the roof and/or building, the skewness may be
more pronounced, and clearer signs of bimodality may appear in the data. These features would
require a different statistical treatment than the one proposed in this paper. The mixed nature
of the data is also partly evident here, with a noticeable bump in the experimental probability
density function —the histogram of the pressure coefficient— near ¢, = —1. This feature cannot
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« Exp. ‘ GC ‘ CM1 ‘ CM2 ‘
0.1000 | -3.0765 | -3.0713 (-0.17%) | -3.0727 (-0.13%) | -3.0680 (-0.28%)
0.0500 | -3.4230 | -3.4343 (0.33) -3.4215 (-0.04) -3.4214 (-0.05)
0.0200 | -3.8390 | -3.8558 (0.44) -3.8338 (-0.14) -3.8469 (0.21)
0.0100 | -4.1353 | -4.1342 (-0.03) -4.1195 (-0.38) -4.1521 (0.41)
0.0050 | -4.4034 | -4.3830 (-0.46) -4.3852 (-0.41) -4.4442 (0.92)
0.0010 | -5.0383 | -4.8749 (-3.24) -4.9263 (-2.22) -5.0399 (0.03)
0.0005 | -5.2930 | -5.0591 (-4.42) -5.1291 (-3.10) -5.2558 (-0.70)
0.0002 | -5.6471 | -5.2830 (-6.45) -5.3722 (-4.87) -5.5063 (-2.49)

Tab. 1. Near tail a—fractiles computed with the experimental CDF, and the CDF of the Gram-
Charlier (GC) model, and the two proposed asymptotic models (CM1, CM2).

be captured by the model discussed in this paper, which explains why pressure coefficients near
zero are not appropriately captured by the models compared here. On the other tail, however,
the proposed model performs well. It accurately models the bulk of the distribution, which is the
primary goal of a moment-based approach, and the versatility provided by using moments up to
the fourth order ensures that this good agreement extends fairly far into the tail. This is further
confirmed by the close-up view of both the tails of the PDFs and the cumulative density functions
(CDFs). The log-scale representation of the PDFs (right panel in the middle) shows that the
second asymptotic distribution (CM2) provides an excellent match with the experimental PDF
down to probability densities as small as 10~*, more than three orders of magnitude smaller than
the density in the bulk of the distribution. Nevertheless the quality of the match is poorer near
¢, = 4.5 and shown on the CDFs.

The skewness and excess of this time series are y3 = —0.3194 and 7. = 0.1823, which form
a combination where the second asymptotic distribution (CM2) meets the positivity criterion,
while the Gram-Charlier (GC) and first asymptotic distribution (CM1) do not. In this case, both
distributions become negative for some ¢, > 0. In this example this does not impact the modeling
of large extreme negative values, which are in the other tail.

One way to quantify the appropriateness of the model in reproducing the statistics of large
negative wind pressures is by comparing the fractiles associated with non-exceedance probabilities
for certain thresholds with small probability a.. Some of these fractiles are provided in Table [T}
along with the errors computed by referencing the experimental data. Once again, the second
asymptotic distribution is shown to perform overall pretty well, except near ¢, = 4.5 (around
1%-discrepancy) and in the tail, where a ~ 107* and where experimental data may suffer from
sampling issues.

7 Conclusions

This study investigated the cubic translation model as a robust alternative to the Gram-Charlier
series for modeling non-Gaussian random variables, particularly in engineering applications with
small skewness and kurtosis.

The first asymptotic expansion of the cubic translation model focused on solutions near the
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Fig. 6.1: Illustration of the fitting of the different types of models to wind pressure data: (top)
time series, (middle) PDFs, (bottom) cumulative density functions (CDFs).
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boundary of the monotonic region, providing a simple yet effective analytical expression for the
PDF of slightly non-Gaussian variables. This model is especially useful in cases of near-zero excess,
extending the range of skewness coefficients where the PDF remains valid. However, for larger
skewness values, the first asymptotic model begins to lose its advantage, struggling to maintain
unimodality and positivity, which the Gram-Charlier series handles more effectively. Nonetheless,
a key strength of this approach is its ability to accurately estimate the limit of the monotone region
in the original cubic translation model, which was expressed as v3 = £31/7./14, an expression
that is very close to commonly used formula derived from fitting.

The second asymptotic expansion offered significant improvements over both the Gram-Charlier
series and the first expansion. It extended the positivity region and produced smoother PDF
shapes, making it a more practical and versatile tool for modeling slight non-Gaussianity. Notably,
the second model was able to handle skewness coefficients as large as 1, particularly in regions
where the Gram-Charlier series fails. However, for 73 = 1, the proposed model breaks down, and
the Gram-Charlier expansion becomes more suitable for 73 € [2; 3]. Therefore, the cubic translation
model provides a complementary approach, expanding the range of skewness-excess combinations
that can be effectively modeled.

The derived PDFs are expressed as the product of a polynomial and the standard Gaussian
PDF. The degree of the polynomial (six or eight) is higher than that of the truncated fourth-
cumulant Gram-Charlier series (four), and its coefficients are no longer proportional to cumulants.
This opens the door for further exploration of other variants with similar structures. Although
the domain of applicability in the (v3,7.) —plane is significantly reduced compared to original
cubic translation model, the slightly non Gaussian cubic translation model enters in the family of
distributions having a "polynomial times Gaussian PDF” format. Since it is tractable and allows
for simpler computations, the model derived in this paper can benefit from fast estimation, since
the PDF is expressed by means of statistics moments. Any subsequent quantity such as a likelihood
or posterior distribution in a Bayesian inference context are therefore much easier to obtain than
for the original cubic translation model.
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