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While its probability density function is not directly tractable, it is more complex to compute
than the Gram-Charlier series, which, despite its simplicity, suffers from limitations such as
positivity and unimodality issues, restricting its range of applicability. This paper presents two
asymptotic analyses of the cubic Moment-based Hermite model for slight non-Gaussianity (i.e.
small skewness and excess coefficients, “small” being understood in the sense of perturbation
methods), showing that it asymptotically converges to the fourth cumulant Gram-Charlier model,
while offering a slightly broader domain of applicability with minimal additional computational
cost. Additionally, the paper derives, mathematically, a non empirical expression for the monotone
limit of the original cubic translation model, and validates the theoretical findings through
numerical simulations.

1. Introduction

Accurately modeling the probability density function (PDF) of a random variable using its moments is a cornerstone in both
theoretical and applied statistics, with wide-reaching implications in fields such as structural engineering, finance, and meteorology.

Traditional approaches like the Gram-Charlier and Edgeworth series expansions have long been employed for this purpose [1].
These series expand the PDF around a Gaussian core, incorporating higher-order moments to account for skewness, kurtosis, and
other non-Gaussian features [2]. However, despite their theoretical appeal, these expansions often suffer from significant practical
limitations, particularly when applied to strongly non-Gaussian data or when truncated at higher orders [3]. These series expan-
sions have found numerous applications in wind engineering [4], ocean engineering [5], meteorology [6], queueing theory [7], and
financial sciences [8,9].

Alternative solutions exist to model non-Gaussian variables, such as the cubic translation model [10]. This model, originally
developed to address the challenges of non-Gaussian modeling in fields such as wind engineering [11] and offshore mechanics [12],
provides a more flexible framework that can accurately capture the tails and extreme values of a distribution [13,14]. Unlike the
Gram-Charlier series, the cubic translation model does not rely on a series expansion around a Gaussian core but instead transforms
a Gaussian variable into a non-Gaussian one using a cubic polynomial. It is therefore a four-parameter model. This transformation
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allows for the modeling of asymmetry and kurtosis quite naturally, making it particularly useful in applications where extreme events
play a critical role, such as in the assessment of structural reliability under random loads [15,16].

The Gram-Charlier and cubic translation models can be seen as two extremes, each with its own set of limitations. The Gram-
Charlier model struggles with ensuring the positivity of the probability density function (PDF), while the cubic translation model
is constrained by the monotonicity of the cubic transformation, which is generally less restrictive than the positivity issue in the
Gram-Charlier model. However, we also argue that the cubic translation model is more time-consuming, particularly when fitting it
to experimental data. This is because the moments are related to the model parameters through nonlinear algebraic equations that
must be solved numerically [17]. While this might not be a significant concern when only a single fitting is needed, this additional
computational burden becomes problematic in several scenarios, as detailed next.

First, simulating samples from non-Gaussian processes can be time-consuming. Early simulation methods (e.g. [18]) are suitable
to generate small samples sizes. The use in the context of large non-Gaussian fields [19] may take up to several hours of computation.
This challenge is further amplified when long samples are required to analyze fatigue damage and extreme values [20]. Second,
modern applications, with a typically much higher space resolution than used some decades ago, demand far more fittings than in
the past. Repeating fittings across entire fields, especially in marginal or extended bivariate cases of the bicubic model [21,22], also
results in significant data processing delays. Lastly, this issue is exacerbated when learning methods are integrated into the process
[23], as high-quality training sets typically require thousands of independent simulations.

A significant portion of the research focuses on refining and applying Gram-Charlier (also called Hermite polynomial) models.
Recent advancements, such as the use of proper parametrized probability distribution model [24], quartic Hermite models [25]
and probability-weighted moment-based Hermite models [26], have demonstrated improvements in the modeling performance of
methods bases on the Hermite polynomial. Additionally, a simplified analytical formula for the coefficient of the third-order Hermite
moment model has been developed [27].

Variables with large skewness and excess can be effectively modeled using mixtures of less non-Gaussian variables [22]. This is
easy to understand, as, for example, significantly skewed variables can be generated by mixing two (symmetric) Gaussian variables
[28]. In extreme cases with strongly skewed distributions, an enhanced expression of the fourth-order moment method can also be
applied [29].

The range of possible applications is therefore quite broad and multiple techniques have been developed recently to improve the
Gram-Charlier model in the significantly non-Gaussian domain. In this work, we explore another area where improvements can be
made: specifically, at the opposite end of the spectrum, where the modeled variable is only slightly non-Gaussian, i.e. with small
skewness and excess. This area, apparently less appealing, has been relatively less explored as the current models provide interesting
modeling options. In such cases, a simple moment-based approach like the Gram-Charlier models proves to be more computationally
efficient than the cubic translation model, which requires the solution of nonlinear algebraic equations. However its domain of
positivity might still remain restrictive, even in the small non-Gaussian domain, and this is where this contribution stands.

Building on these observations, this paper specializes the cubic translation model in the domain of small non-Gaussianity, by
developing its asymptotic version with a tractable PDF (without any nonlinear algebraic equation to be solved), albeit with a reduced
range of applicability in terms of the high skewness and kurtosis offered by the original model. We pursue two main objectives:
first, to conduct a comparative analysis between the Gram-Charlier series and the cubic translation model, identifying the conditions
under which each method yields the most accurate and physically meaningful results; second, to develop a new asymptotic model for
the cubic translation model in the degenerate case, where non-Gaussianity is weak but still significant. Specifically, we investigate
the potential for deriving simple analytical expressions for the PDF that depend on only a few moments, preserving the benefits of
moment-based methods while addressing their limitations. Although Hermite polynomial models are available for both softening and
hardening processes [30], this paper focuses exclusively on softening models, for which the cubic translation model was first derived.

After outlining the key features of the Gram-Charlier series and the cubic translation process in Sections 2 and 3 respectively,
the asymptotic version of the cubic translation model is derived in Section 4. Comparative illustrations are given in Section 5. The
potential improvements offered by the proposed method are also demonstrated through an example of wind load on the roof of a
low-rise building.

2. The Gram-Schmidt expansion model

It is not uncommon in probability theory to encounter situations where the moments of a random variable can be determined,
but the PDF itself remains elusive. The Gram-Charlier series expansion provides an approximate representation of the PDF based on
the first few moments. In experimental practice, a large amount of data is required to infer moments beyond the fourth order with
sufficient confidence. In this work, it is therefore supposed that the skewness coefficient y; and the excess coefficient y, =y, — 3 are
known. Furthermore, in probabilistic modeling, a four-parameter model is typically versatile enough to accommodate various types
of data.

More specifically, the Gram-Charlier series expansion expresses the PDF of a non-Gaussian variable as

1 Y X — Y x— X -

pGC(X)=_[1+_3H3< M>+—6H4( #)]‘f’( ”) (2.1)
o 3! c 4! c c

where u and ¢ are the average and standard deviation, y; and y, are the skewness and excess coefficients, ¢ () is the normalized

Gaussian PDF, and H; (£) = £ — 3¢ and H, (£) = £* — 6£% + 3 are Hermite polynomials. This model offers a simple analytical expression
for the PDF. However, it has notable limitations: for certain values of skewness and excess, the resulting PDF may become negative over
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Fig. 2.1. (Top) Limits of the 4th-cumulant Gram-Charlier series expansion model (GC) and of the cubic translation model (CT); (Bottom) examples of PDFs for various
values of (73,7, ) in linear and log scales. Selected values: =0, o =1, and (y;,7,) changing from case A to case E.

some range or exhibit multiple modes, reducing its physical validity [3,31]. Furthermore, the series’ convergence is not guaranteed,
and in some cases, it may fail to provide a meaningful approximation, particularly for distributions with heavy tails or sharp peaks
[32]. Despite these challenges, the Gram-Charlier series remains a widely used tool, primarily due to its straightforward connection
to the moments and its ease of computation, especially when truncated at low order, on when the effective domain of interest is on
a finite interval [33,34].

A challenge, therefore, lies in identifying the regions of the parameter space where the Gram-Charlier series remains both positive
definite and unimodal [31]. Although this task could appear difficult with the computational means available in 1950, some correc-
tions of early results have been provided later [3,35], and reported in Fig. 2.1 where the thick solid and dashed lines represent the

respective boundaries of the domain where the PDF is positive and unimodal. This figure also shows some illustrations of pgc (x) for
various sets of pairs (y3,7,) and =0, and o = 1.

3. The cubic translation model

The cubic translation model [12] expresses the process to be modeled as a cubic transformation of a normalized Gaussian process

u(t),

3
x(u)=;4+ocu+g <u—+au2—u—a>

5 (3 (3.1

parameterized by the four parameters (u, a, a, b). The centered moments of the resulting random variable are
2
2 _ & 2,2, 2\ _ 2
Efer-n?] =% <2a + 5 3)—6

3
E[x-p] = Z—32a (4a® +3b% +6b +6)



V. Denoél
Applied Mathematical Modelling 144 (2025) 116061
5

| Scaling1-
Scaling 2 =

Fig. 3.1. Illustration of the relations y; (a,b) and y, (a, b), as given by Equations (3.3) and (3.4), with a > 0.

124) (3.2)

4
E[x-w' = ‘Z—4 (60a4 +4a” (15b* +48b+62) + 3b* + 86> +28b% +48b + 5
with E [x] = p, the expectation of variable x. Following the definition of the skewness and kurtosis coefficients, y, = E [(x - /4)"] /o"

for n € {3,4}, it is found that they are expressed as a function of a and b only, « being simplified out:
2a (4a* +3b> +6b+6)
7= 32 signa 3.3)

(Za2 + b2+ %)
124

60a* +4a* (15b% +48b + 62) + 3b* + 85> +28b” +48b + ==
Va=ve+3= (3.4

) 2
(202+b2+§>

Therefore, the skewness y; and excess y, =y, — 3 can be used to determine the values of parameters a and b, while the average
provides y, and « is determined from the second moment. The set of equations mapping (y3, ye) onto (a, b) is illustrated in Fig. 3.1.
It is significantly nonlinear and can only be solved numerically. Several formulas provide closed-form but approximate solutions to
that set of equations [13,36]. This figure also shows that the Gaussian case, obtained in the limiting case for vanishing y; and y,,
corresponds to b — +oco, which is also confirmed by Equation (3.1).

Using the principles of transformation of random variables [37], the probability density function (PDF) of process x(f) is then
given by

b @ [u(x)]
@ u? (x)+2au(x)+b—1

per () =u' ()P [u(x)] = (3.5)

where the reverse mapping

u(x)={/§+\/C+C2+i/é‘—\/c+§2—a (3.6)

is expressed as a function of ¢ = (b— 1 — a2)3 and

_3b XM\ _ 3
éj(x)—2<a+ — ) & 3.7)

This result requires the cubic transformation (3.1) to be monotonic, a condition that is satisfied provided b—1 — a’>01[12]. Fig. 2.1b
illustrates the versatility of this model, as shown by the domain of validity in the (y3, }’e) plane, significantly larger than for the fourth
cumulant Gram-Charlier model. A clear advantage of this approach is that pcr(x) does not suffer from positivity issues, as a result of
the process of its definition. As soon as the monotonicity condition is met (all but case ‘B’), the cubic translation model apparently
provides smoother PDFs, as illustrated in the lower panels of Fig. 2.1.

4. The slightly non-Gaussian cubic translation model

The Gram-Charlier series and the cubic translation model are two powerful tools in probabilistic modeling. While the Gram-
Charlier series offers a simple analytical expression for the PDF, its applicability is limited by a narrow domain of validity. In contrast,
the cubic translation model features a broader domain of validity, though its PDF is more complex, making certain operations—such
as the addition of two such random variables—challenging to manage. Motivated by this and the observation that many practical
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problems can be effectively modeled with variables exhibiting slight deviations from Gaussianity, we develop in this Section the
asymptotic behavior of the cubic translation model in these scenarios. Two particularly significant distinguished limits are detailed
in this section, along with their associated scaling.

4.1. Generalities common to the two scaling options

In the asymptotic limit where the skewness and excess coefficients are small, the process only slightly deviates from Gaussianity
(a = 0, b > ), and the cubic transformation (3.1) and its inverse (3.6) tend to the linear transformations x = y + cu and u =
(x — u) /o, respectively. Therefore, instead of the complicated relation (3.6), we will use the asymptotic series

u(x):uo(x)+6u1(x)+£2u2 (x)+(9(£3) 4.1)

where 0 < £ < 1 is a small number explicitly introduced in the mathematical derivation to sort out the terms with various orders of
magnitude, and where u (x), u; (x), -+ are obtained by solving (3.1) for u with standard perturbation techniques, see e.g. [38]. As
seen in the following, this results in u;’s being expressed as polynomials of x, instead of cubic roots. In particular, the unperturbed
case (y3 =0, y, =0) corresponds to ug = (x — p) /o.

To obtain the asymptotic expression for pcy (x), the derivative u’(x) is computed from (4.1), and ¢ [u(x)] is expanded as

B~ b (ug) + (u=11g) 0,8 (o) + 3 (u =) 026 (ug) +O (€ 4.2)
=¢ (ug) + (uy +euy) 0,9 (ug) + %e u202¢ (ug) +0O (7). (4.3

Noticing that d,¢ (uo) —uyp (u ( ) and 03().’) (”0) =—¢ (”0) + uggb (“0) as ¢ is the normalized Gaussian PDF, we also have

1
du) = [1 — EUgly — 562 (u% - u(z)u% + 2u0u2)] ¢ (“0) +0 (53) . (4.9
Combining (4.1) and (4.4), the asymptotic expansion of p¢r (x) is
per (X) = (u6+e( — Ul ul) +e ( u, + %uéu{)uf— %uéu?—uouf)uz—uoulu'l>>¢(u0) +(9(£3). (4.5)

Interestingly when u;’s are indeed polynomials, this formulation is similar (but not identical to) to the general Gram-Charlier formu-
lation: a polynomial multiplying the standard Gaussian distribution.

Two scaling options are considered in the following. They are supported by the fact that, in the asymptotic Gaussian case, b — oo,
while there is no strict condition on a, except the monotonicity condition, a < \/b — 1. Therefore, two zones of the acceptable (a, b)-
region are analyzed, see hatched areas in Fig. 3.1. The first is near the monotone limit, where b ~ a*> ~ 1. The second is near the
central part of this region where only b is large and a remain of order 1.

4.2. Scaling 1

A first distinguished limit is achieved by considering the scaling

; b= (4.6)

a=

(LI RST]
m,\,lb‘l

where @ ~ 1 and b ~ 1 are both of order 1 at most. Substitution of these expressions in the moments (3.2) provides the following
asymptotic expansions for the skewness and excess coefficients

8 (6% +)
B2

Under the scaling (4.6), the skewness is therefore of order £ and the excess, much smaller, of order €2. This formulation is ideal

to study the area near to the boundary of the monotonic region, for small non-Gaussianity. Indeed, as seen in Fig. 2.1, the excess

is much smaller than the skewness on the boundary of the monotone region. After truncation of the previous equations to leading
order, and elimination of ¢ in favor of a and b, solving the two previous equations for a and b yields
4r; 24

a=— e B (4.8)
3v.e— 43 3v.e—4y3

y3=6%_£+(9(£3) ; Ye= e2+0(e"). 4.7)

so that substitution into the equation for the boundary of the monotonic region, b — 1 — a*> = 0, and solving for y, gives

4 14
Ve=§<y32—\/9—y32+3>=—y32+(9[7/] (4.9)

Now the approached expression for the PDF is developed following the general method presented in Section 4.1. With the con-
sidered scaling, the cubic transformation (3.1) becomes
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é(ug—l) , 6éu1+u3—3
x=p+auy+ae T+u1 +ae Tuo+u2 +(9(£3). (4.10)
Balancing and canceling the similar powers in ¢, as in standard perturbation methods, the reverse mapping u(x) is
_ 3.0 7 2 _ 7
u(x) =ug + €uy +52u2 + .- =§+e% (1 —§2) +&2 <% 6“[32 b —rfzaBz b) +(9(53) (4.11)

where & = (x — ) /a. Finally, substitution of these expressions for u,, u; and u, into (4.5), elimination of €, and replacement of (a, b)
by (73.7.) through (4.8), the general solution (4.5) specializes into

2
Y.
Pt (0= | PG €GN+ 2 (&0~ 158" 4478 17)] b)) (4.12)

where & needs to be understood as & (x), and

p(clfreﬁ(g)=1+§§(§2—3)+£—j(54—6§2+3). (4.13)

In these expressions, « is similar to the standard deviation ¢ of the process to be modeled, but is estimated from (3.2), with the values
of a and b obtained from (4.8).

4.3. Scaling 2

A second interesting scaling consists in assuming

aml . b=l (4.14)
€
in which case the skewness and excess coefficients now read
2
6a 12a 2 3 8 24(1+2[1) 2 3
=—e+—¢e"+0 (¢ ; =+ ——"+0(€7). (4.15)
y3 b b2 ( ) yﬁ’ b b2 ( )

In this formulation, both y; and y, have the same order of magnitude. Unfortunately, truncating these series after the second term
and solving for a and b does not lead to a simple expression. The only option to express them in a consistent manner is to truncate
after leading term, which leads
4
a= o 58 (4.16)
37e Ye

Substitution into b — 1 — a®> = 0 yields
——=1-—==0 (4.17)

whose solution is y, = % 3—4/9- y32 ~ %yi. Although it appears quite similar to (4.9), the final expression of the limit is funda-

mentally different. This is explained by the fact that, in this second scaling, y; and y, do not have the appropriate order of magnitude
(both of order ¢) to capture the trend y; ~ +/7, of the boundary of the monotonic region.

However, this scaling is meant to be appropriate inside the domain of validity of the cubic translation model, where both the
skewness and the excess coefficients are small and of the same order of magnitude. So instead of focusing on the limit of the monotonic
region, we rather seek to develop a second approximation p(CZT) (x). To do this the reverse of the mapping is first obtained as in the
previous case, by introducing the ansatz u(x) = uy + eu; + £2u, + -+ into the definition of the mapping, and considering the re-scaling
of b, which yields

u,
a(uR—1)+ L —u, 2auy +u — 1
X =p+auy+ae %4‘”1 + ag? Toul+u2 +(9(e3)=0. (4.18)

Again, cancellation of each and every power of ¢ yields, successively,

a b 3 =ﬁ

These quantities can be substituted into (4.5) to obtain, after some simplifications, the second sought expansion of the PDF of the
slightly non Gaussian cubic translation process

— 3
b= "M g, u1=£<g_5_+a(1_52)>; Uy =~ (2 +2aE-1) (3a (2= 1) +£(£-3))). 4.19)
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2
€l y e
P 0 = P57 €00 + 2= (0 - 1184 +238 - 5) + Siﬁ(?— 156* +51£2 - 33)
Ye 8 _ 19£6 4_ 2
e (68— 1960 4938 — 11782 4 18) | € (). (4.20)

Since the first two corrections to leading have been considered in the expansions, this approached PDF is quadratic in y; and y,, a
distinctive feature of this model.

5. Discussion

The primary objective of this study was to explore the feasibility of deriving simple analytical expressions for the probability
density function (PDF) of a non-Gaussian random variable, characterized by its first few moments. This exploration began with the
cubic translation model, recognized for its broad domain of validity in the (y3,7,)-plane.

The first asymptotic analysis of the cubic translation model yielded results where the skewness y; and excess y, were of orders
€ and €2, respectively, and resulted in the simple expression 73 = 34/7./14 for the boundary of the monotonic region, for small
non-Gaussianity. This expression is accurate in a significantly wide domain of the (y3,y4)-plane, since the subsequent terms in (4.7)
are two orders of magnitude smaller. This expression is confirmed by Fig. 2.1, where the dashed dotted line on the right indicates a
strong agreement between this analytical expression and the numerical results represented by the solid green line. To the author’s
knowledge, it is the first time that an expression for the boundary of the monotonic region is obtained from analytical derivations.

Interestingly, when rewritten as y, = %y%, it is very close to the empirical fitting y, = (1 .25y3) provided by Winterstein and McKenzie

[14], as 1.25% ~ 1.5625 while 14/9 ~ 1.5556 in the current equation.

The derived PDF for the slightly non-Gaussian variable p(Cl_g (x), expressed as a sixth-degree polynomial multiplied by the standard
Gaussian PDF ¢ (-), shares some similarities with the Gram-Charlier series.

In contrast, the second asymptotic analysis did not exhibit the same convergence properties, as the first correction to the leading
term was only one order of magnitude smaller, see (4.15). This discrepancy limits the accuracy of this approach in capturing the
boundary of the monotonic region, despite the apparent similarity between the formulations (4.9) and (4.17). Nevertheless, the slower
convergence of the sequence in £ does not preclude the derivation of a more precise PDF for the slightly non-Gaussian cubic translation
process. Indeed, the resulting PDF, pézT) (x), represented as an eighth-degree polynomial multiplied by the standard Gaussian PDF ¢ (-),
effectively extends the applicability of the Gram-Charlier approach within the (y3,y,)-plane. This is demonstrated in the following
section by means of numerical simulations. For symmetry reasons, the upper half of the (y3, ye) plane only is studied, for y; > 0; the
lower half can be obtained by replacing y; by —y;.

Both asymptotic expressions converge to per (X) ~ p(crfref) [€ ()] ¢ (€ (x)) as (y3,7,) — 0T, which coincides with the Gram-Charlier
PDF pgc (x). In this limit, coefficients of powers of x greater than 4 vanish, and the parameter @ approaches ¢, rendering the cubic
translation model asymptotic to the fourth-degree truncated Gram-Charlier series.

The Gram-Charlier series employs an n-degree polynomial strictly expressed as a function of the first n statistical moments.
However, our approach results in an eighth-degree polynomial dependent on moments up to the fourth, with the additional four
degrees of freedom derived from lower moments. As seen in p(Cl_g (x) and pg_g (x), these coefficients are not proportional to the cumulants
as in the Gram-Charlier model but can also be expressed as higher powers of lower cumulants. Indeed, by incorporating the first two
corrections to the leading term, the resulting PDF is quadratic in y; and y,. This approach offers two key advantages: (1) it circumvents
the need to measure higher-order moments to obtain higher degree polynomials, which are often impractical, and (2) it reduces the
dimensionality of the parameter space, making the derived expression more tractable and applicable.

6. Illustrations
6.1. Positivity and unimodality

For expressions like the Gram-Charlier series, the limits of validity (positivity of the PDF, and to a lesser extent, the unimodality)
can be conveniently obtained by means of numerical simulations. Indeed for given yx and o, and for a chosen pair of parameters
(73,74), the PDF pgc (x) can be computed with (2.1). To limit chances of missing a zero-crossing located far away from the bulk of
the density, we computed pgc (x) for 5,000 uniformly spaced values of x in the interval [y — 35¢; y + 350]. Positivity was checked
by comparing the values to zero. Unimodality was checked by computing the 1-step finite difference of this PDF and detecting the
number of sign changes. Unimodality was concluded if one and only one sign change had been observed. By repeating this operation
for 600 % 600 values of y; and y, uniformly spaced between 0 and 1.2, and 0 and 4.5, the plots of Figs. 2.1 and 6.1 could be established.
Indeed with such a fine mesh on y; and y,, the limits of the positivity region (solid lines) and unimodality region (dashed lines) can
just be obtained with standard contouring features of scientific softwares. The same operation was repeated for p(C]T) (x) and p(CZT) (x),
with (4.13) and (4.20).

While the bottom of Fig. 6.1 shows some examples of the PDF of the fourth degree Gram-Charlier model, and the two proposed
asymptotic expansions, the top part of the Figure summarizes the major findings of this study, both in linear and log scales. The
grayed area recalls the positivity boundary of the fourth degree Gram-Charlier model, for comparison.

The first asymptotic model suffers positivity issues as soon as y; > 0.7, whereas the Gram-Charlier model can manage skewness
coefficients slightly larger than 1, provided the excess lies between 2 and 3. This might be seen as a weakness of the proposed model
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Fig. 6.1. Limits of the 4th-degree Gram-Charlier series expansion model and of the two proposed asymptotic models. Represented in terms of positivity (solid lines)
and unimodality (dashed lines). Bottom: some selected illustrations of the corresponding PDFs. White dots in the upper right plot locate these selected combinations
of (73.7.)- Shown for y=0,0=1.

expressed as the product of a 6-th degree polynomial and the standard Gaussian PDF. However, it is noticed that the first asymptotic
model is valid for zero excess, up to a skewness coefficient as large as y; = 0.2, while the Gram-Charlier model would not allow
y3 # 0 if y, = 0. The dots represented on the uniform mesh on the top left plot locate the various combinations (y3,y,) illustrated
at the bottom. The logarithmic scale on the y-axis makes it easier to identify positivity and unimodality issues. For instance, for

(73,74) = (4, 4), all three compared models result in positive PDF, p(Cl.; (x) is not unimodal. In general, pg_; (x) is more bumpy than
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Fig. 6.2. Illustration of the fitting of the different types of models to wind pressure data: (top) time series, (middle) PDFs, (bottom) cumulative density functions
(CDFs).

Pgc (x) and does not bring much added value, except perhaps in the small area where y, is very small and y; can reach values up to
y3 = 0.2.

Our second asymptotic model performs actually much better. The hatched area indicates the zone where the Gram-Charlier model
is extended. For y, < 1.5, it roughly shows a shift of the boundary of the positivity region, of about 0.25 units on the y;-axis. This
difference could seem marginal but is appreciable since (i) again, zero excess does not require zero skewness, (ii) we can now offer
skewness coefficients as large as 1, when y, lies between 1 and 1.6, a great complementary to the Gram-Charlier model. Furthermore,
in the numerous cases where pgT) (x) is positive while pgc (x) is not, see e.g. (y3,74) € {(.6,.6),(.8,.8),(.8,1.)}, the shape of p(CZT) (x) is
rather smooth and could therefore be appealing for modeling purposes. Last but not least, for y; = 0.4, the second asymptotic model
p(CZT) (x) and the Gram-Charlier model pg¢ (x) are virtually superimposed.

6.2. Illustration with wind pressure time series

Fig. 6.2 shows the time series of wind pressure measured on the roof of a low-rise building (from [39]). This time series is
selected to illustrate that pressure coefficients on buildings can exhibit slight non-Gaussian behavior. In other areas of the roof and/or
building, the skewness may be more pronounced, and clearer signs of bimodality may appear in the data. These features would
require a different statistical treatment than the one proposed in this paper. The mixed nature of the data is also partly evident here,
with a noticeable bump in the experimental probability density function —the histogram of the pressure coefficient— near c, = —1.
This feature cannot be captured by the model discussed in this paper, which explains why pressure coefficients near zero are not
appropriately captured by the models compared here. On the other tail, however, the proposed model performs well. It accurately
models the bulk of the distribution, which is the primary goal of a moment-based approach, and the versatility provided by using
moments up to the fourth order ensures that this good agreement extends fairly far into the tail. This is further confirmed by the
close-up view of both the tails of the PDFs and the cumulative density functions (CDFs). The log-scale representation of the PDFs
(right panel in the middle) shows that the second asymptotic distribution (CM2) provides an excellent match with the experimental
PDF down to probability densities as small as 10~#, more than three orders of magnitude smaller than the density in the bulk of the
distribution. Nevertheless the quality of the match is poorer near ¢, =4.5 and shown on the CDFs.

The skewness and excess of this time series are y; = —0.3194 and y, = 0.1823, which form a combination where the second
asymptotic distribution (CM2) meets the positivity criterion, while the Gram-Charlier (GC) and first asymptotic distribution (CM1)
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Table 1
Near tail a-fractiles computed with the experimental CDF, and the CDF of the Gram-
Charlier (GC) model, and the two proposed asymptotic models (CM1, CM2).

a Exp. GC CM1 CM2

0.1000 -3.0765 -3.0713 (-0.17%) -3.0727 (-0.13%) -3.0680 (-0.28%)
0.0500 -3.4230 -3.4343 (0.33) -3.4215 (-0.04) -3.4214 (-0.05)
0.0200 -3.8390 -3.8558 (0.44) -3.8338 (-0.14) -3.8469 (0.21)
0.0100 -4.1353 -4.1342 (-0.03) -4.1195 (-0.38) -4.1521 (0.41)
0.0050 -4.4034 -4.3830 (-0.46) -4.3852 (-0.41) -4.4442 (0.92)
0.0010 -5.0383 -4.8749 (-3.24) -4.9263 (-2.22) -5.0399 (0.03)
0.0005 -5.2930 -5.0591 (-4.42) -5.1291 (-3.10) -5.2558 (-0.70)
0.0002 -5.6471 -5.2830 (-6.45) -5.3722 (-4.87) -5.5063 (-2.49)

do not. In this case, both distributions become negative for some ¢, > 0. In this example this does not impact the modeling of large
extreme negative values, which are in the other tail.

One way to quantify the appropriateness of the model in reproducing the statistics of large negative wind pressures is by comparing
the fractiles associated with non-exceedance probabilities for certain thresholds with small probability a. Some of these fractiles are
provided in Table 1, along with the errors computed by referencing the experimental data. Once again, the second asymptotic
distribution is shown to perform overall pretty well, except near c, = 4.5 (around 1%-discrepancy) and in the tail, where a ~ 1074
and where experimental data may suffer from sampling issues.

7. Conclusions

This study investigated the cubic translation model as a robust alternative to the Gram-Charlier series for modeling non-Gaussian
random variables, particularly in engineering applications with small skewness and kurtosis.

The first asymptotic expansion of the cubic translation model focused on solutions near the boundary of the monotonic region,
providing a simple yet effective analytical expression for the PDF of slightly non-Gaussian variables. This model is especially useful
in cases of near-zero excess, extending the range of skewness coefficients where the PDF remains valid. However, for larger skewness
values, the first asymptotic model begins to lose its advantage, struggling to maintain unimodality and positivity, which the Gram-
Charlier series handles more effectively. Nonetheless, a key strength of this approach is its ability to accurately estimate the limit of
the monotone region in the original cubic translation model, which was expressed as y; = +34/7,/14, an expression that is very close
to commonly used formula derived from fitting.

The second asymptotic expansion offered significant improvements over both the Gram-Charlier series and the first expansion. It
extended the positivity region and produced smoother PDF shapes, making it a more practical and versatile tool for modeling slight
non-Gaussianity. Notably, the second model was able to handle skewness coefficients as large as 1, particularly in regions where
the Gram-Charlier series fails. However, for y; = 1, the proposed model breaks down, and the Gram-Charlier expansion becomes
more suitable for y; € [2;3]. Therefore, the cubic translation model provides a complementary approach, expanding the range of
skewness-excess combinations that can be effectively modeled.

The derived PDFs are expressed as the product of a polynomial and the standard Gaussian PDF. The degree of the polynomial
(six or eight) is higher than that of the truncated fourth-cumulant Gram-Charlier series (four), and its coefficients are no longer
proportional to cumulants. This opens the door for further exploration of other variants with similar structures. Although the domain
of applicability in the (y3, ye)-plane is significantly reduced compared to original cubic translation model, the slightly non Gaussian
cubic translation model enters in the family of distributions having a “polynomial times Gaussian PDF” format. Since it is tractable
and allows for simpler computations, the model derived in this paper can benefit from fast estimation, since the PDF is expressed by
means of statistics moments. Any subsequent quantity such as a likelihood or posterior distribution in a Bayesian inference context
is therefore much easier to obtain than for the original cubic translation model.
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