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The third degree Moment-based Hermite model, which expresses a random variable as a cubic 
transformation of a standard normal variable, offers versatility in engineering applications. 
While its probability density function is not directly tractable, it is more complex to compute 
than the Gram-Charlier series, which, despite its simplicity, suffers from limitations such as 
positivity and unimodality issues, restricting its range of applicability. This paper presents two 
asymptotic analyses of the cubic Moment-based Hermite model for slight non-Gaussianity (i.e. 
small skewness and excess coefficients, ``small'' being understood in the sense of perturbation 
methods), showing that it asymptotically converges to the fourth cumulant Gram-Charlier model, 
while offering a slightly broader domain of applicability with minimal additional computational 
cost. Additionally, the paper derives, mathematically, a non empirical expression for the monotone 
limit of the original cubic translation model, and validates the theoretical findings through 
numerical simulations.

1. Introduction

Accurately modeling the probability density function (PDF) of a random variable using its moments is a cornerstone in both 
theoretical and applied statistics, with wide-reaching implications in fields such as structural engineering, finance, and meteorology.

Traditional approaches like the Gram-Charlier and Edgeworth series expansions have long been employed for this purpose [1]. 
These series expand the PDF around a Gaussian core, incorporating higher-order moments to account for skewness, kurtosis, and 
other non-Gaussian features [2]. However, despite their theoretical appeal, these expansions often suffer from significant practical 
limitations, particularly when applied to strongly non-Gaussian data or when truncated at higher orders [3]. These series expan
sions have found numerous applications in wind engineering [4], ocean engineering [5], meteorology [6], queueing theory [7], and 
financial sciences [8,9].

Alternative solutions exist to model non-Gaussian variables, such as the cubic translation model [10]. This model, originally 
developed to address the challenges of non-Gaussian modeling in fields such as wind engineering [11] and offshore mechanics [12], 
provides a more flexible framework that can accurately capture the tails and extreme values of a distribution [13,14]. Unlike the 
Gram-Charlier series, the cubic translation model does not rely on a series expansion around a Gaussian core but instead transforms 
a Gaussian variable into a non-Gaussian one using a cubic polynomial. It is therefore a four-parameter model. This transformation 
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allows for the modeling of asymmetry and kurtosis quite naturally, making it particularly useful in applications where extreme events 
play a critical role, such as in the assessment of structural reliability under random loads [15,16].

The Gram-Charlier and cubic translation models can be seen as two extremes, each with its own set of limitations. The Gram
Charlier model struggles with ensuring the positivity of the probability density function (PDF), while the cubic translation model 
is constrained by the monotonicity of the cubic transformation, which is generally less restrictive than the positivity issue in the 
Gram-Charlier model. However, we also argue that the cubic translation model is more time-consuming, particularly when fitting it 
to experimental data. This is because the moments are related to the model parameters through nonlinear algebraic equations that 
must be solved numerically [17]. While this might not be a significant concern when only a single fitting is needed, this additional 
computational burden becomes problematic in several scenarios, as detailed next.

First, simulating samples from non-Gaussian processes can be time-consuming. Early simulation methods (e.g. [18]) are suitable 
to generate small samples sizes. The use in the context of large non-Gaussian fields [19] may take up to several hours of computation. 
This challenge is further amplfied when long samples are required to analyze fatigue damage and extreme values [20]. Second, 
modern applications, with a typically much higher space resolution than used some decades ago, demand far more fittings than in 
the past. Repeating fittings across entire fields, especially in marginal or extended bivariate cases of the bicubic model [21,22], also 
results in significant data processing delays. Lastly, this issue is exacerbated when learning methods are integrated into the process 
[23], as high-quality training sets typically require thousands of independent simulations.

A significant portion of the research focuses on rfining and applying Gram-Charlier (also called Hermite polynomial) models. 
Recent advancements, such as the use of proper parametrized probability distribution model [24], quartic Hermite models [25] 
and probability-weighted moment-based Hermite models [26], have demonstrated improvements in the modeling performance of 
methods bases on the Hermite polynomial. Additionally, a simplfied analytical formula for the coefficient of the third-order Hermite 
moment model has been developed [27].

Variables with large skewness and excess can be effectively modeled using mixtures of less non-Gaussian variables [22]. This is 
easy to understand, as, for example, significantly skewed variables can be generated by mixing two (symmetric) Gaussian variables 
[28]. In extreme cases with strongly skewed distributions, an enhanced expression of the fourth-order moment method can also be 
applied [29].

The range of possible applications is therefore quite broad and multiple techniques have been developed recently to improve the 
Gram-Charlier model in the significantly non-Gaussian domain. In this work, we explore another area where improvements can be 
made: specifically, at the opposite end of the spectrum, where the modeled variable is only slightly non-Gaussian, i.e. with small 
skewness and excess. This area, apparently less appealing, has been relatively less explored as the current models provide interesting 
modeling options. In such cases, a simple moment-based approach like the Gram-Charlier models proves to be more computationally 
efficient than the cubic translation model, which requires the solution of nonlinear algebraic equations. However its domain of 
positivity might still remain restrictive, even in the small non-Gaussian domain, and this is where this contribution stands.

Building on these observations, this paper specializes the cubic translation model in the domain of small non-Gaussianity, by 
developing its asymptotic version with a tractable PDF (without any nonlinear algebraic equation to be solved), albeit with a reduced 
range of applicability in terms of the high skewness and kurtosis offered by the original model. We pursue two main objectives: 
first, to conduct a comparative analysis between the Gram-Charlier series and the cubic translation model, identifying the conditions 
under which each method yields the most accurate and physically meaningful results; second, to develop a new asymptotic model for 
the cubic translation model in the degenerate case, where non-Gaussianity is weak but still significant. Specifically, we investigate 
the potential for deriving simple analytical expressions for the PDF that depend on only a few moments, preserving the benfits of 
moment-based methods while addressing their limitations. Although Hermite polynomial models are available for both softening and 
hardening processes [30], this paper focuses exclusively on softening models, for which the cubic translation model was first derived.

After outlining the key features of the Gram-Charlier series and the cubic translation process in Sections 2 and 3 respectively, 
the asymptotic version of the cubic translation model is derived in Section 4. Comparative illustrations are given in Section 5. The 
potential improvements offered by the proposed method are also demonstrated through an example of wind load on the roof of a 
low-rise building.

2. The Gram-Schmidt expansion model

It is not uncommon in probability theory to encounter situations where the moments of a random variable can be determined, 
but the PDF itself remains elusive. The Gram-Charlier series expansion provides an approximate representation of the PDF based on 
the first few moments. In experimental practice, a large amount of data is required to infer moments beyond the fourth order with 
sufficient cofidence. In this work, it is therefore supposed that the skewness coefficient 𝛾3 and the excess coefficient 𝛾𝑒 = 𝛾4 − 3 are 
known. Furthermore, in probabilistic modeling, a four-parameter model is typically versatile enough to accommodate various types 
of data.

More specifically, the Gram-Charlier series expansion expresses the PDF of a non-Gaussian variable as

𝑝GC (𝑥) =
1 
𝜎

[
1 +

𝛾3
3! 
3

(
𝑥− 𝜇

𝜎

)
+

𝛾𝑒

4!
4

(
𝑥− 𝜇

𝜎

)]
𝜙

(
𝑥− 𝜇

𝜎

)
(2.1)

where 𝜇 and 𝜎 are the average and standard deviation, 𝛾3 and 𝛾𝑒 are the skewness and excess coefficients, 𝜙 (⋅) is the normalized 
Gaussian PDF, and 3 (𝜉) = 𝜉3 −3𝜉 and 4 (𝜉) = 𝜉4 −6𝜉2 +3 are Hermite polynomials. This model offers a simple analytical expression 
for the PDF. However, it has notable limitations: for certain values of skewness and excess, the resulting PDF may become negative over 
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Fig. 2.1. (Top) Limits of the 4th-cumulant Gram-Charlier series expansion model (GC) and of the cubic translation model (CT); (Bottom) examples of PDFs for various 
values of (𝛾3, 𝛾𝑒) in linear and log scales. Selected values: 𝜇 = 0, 𝜎 = 1, and (𝛾3, 𝛾𝑒) changing from case A to case E.

some range or exhibit multiple modes, reducing its physical validity [3,31]. Furthermore, the series’ convergence is not guaranteed, 
and in some cases, it may fail to provide a meaningful approximation, particularly for distributions with heavy tails or sharp peaks 
[32]. Despite these challenges, the Gram-Charlier series remains a widely used tool, primarily due to its straightforward connection 
to the moments and its ease of computation, especially when truncated at low order, on when the effective domain of interest is on 
a finite interval [33,34].

A challenge, therefore, lies in identifying the regions of the parameter space where the Gram-Charlier series remains both positive 
definite and unimodal [31]. Although this task could appear difficult with the computational means available in 1950, some correc
tions of early results have been provided later [3,35], and reported in Fig. 2.1 where the thick solid and dashed lines represent the 
respective boundaries of the domain where the PDF is positive and unimodal. This figure also shows some illustrations of 𝑝GC (𝑥) for 
various sets of pairs 

(
𝛾3, 𝛾𝑒

)
and 𝜇 = 0, and 𝜎 = 1.

3. The cubic translation model

The cubic translation model [12] expresses the process to be modeled as a cubic transformation of a normalized Gaussian process 
𝑢(𝑡),

𝑥(𝑢) = 𝜇 + 𝛼𝑢+ 𝛼

𝑏 

(
𝑢3

3 
+ 𝑎𝑢2 − 𝑢− 𝑎

)
(3.1)

parameterized by the four parameters (𝜇,𝛼, 𝑎, 𝑏). The centered moments of the resulting random variable are

𝔼
[
(𝑥− 𝜇)2

]
= 𝛼2

𝑏2

(
2𝑎2 + 𝑏2 + 2

3

)
= 𝜎2

𝔼
[
(𝑥− 𝜇)3

]
= 𝛼3

𝑏3
2𝑎

(
4𝑎2 + 3𝑏2 + 6𝑏+ 6

)
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Fig. 3.1. Illustration of the relations 𝛾3 (𝑎, 𝑏) and 𝛾𝑒 (𝑎, 𝑏), as given by Equations (3.3) and (3.4), with 𝛼 ≥ 0. 

𝔼
[
(𝑥− 𝜇)4

]
= 𝛼4

𝑏4

(
60𝑎4 + 4𝑎2

(
15𝑏2 + 48𝑏+ 62

)
+ 3𝑏4 + 8𝑏3 + 28𝑏2 + 48𝑏+ 124

3 

)
(3.2)

with 𝔼 [𝑥] = 𝜇, the expectation of variable 𝑥. Following the definition of the skewness and kurtosis coefficients, 𝛾𝑛 = 𝔼
[
(𝑥− 𝜇)𝑛

]
∕𝜎𝑛

for 𝑛 ∈ {3,4}, it is found that they are expressed as a function of 𝑎 and 𝑏 only, 𝛼 being simplfied out:

𝛾3 =
2𝑎

(
4𝑎2 + 3𝑏2 + 6𝑏+ 6

)(
2𝑎2 + 𝑏2 + 2

3

)3∕2 sign𝛼 (3.3)

𝛾4 = 𝛾𝑒 + 3 =
60𝑎4 + 4𝑎2

(
15𝑏2 + 48𝑏+ 62

)
+ 3𝑏4 + 8𝑏3 + 28𝑏2 + 48𝑏+ 124

3 (
2𝑎2 + 𝑏2 + 2

3

)2 (3.4)

Therefore, the skewness 𝛾3 and excess 𝛾𝑒 = 𝛾4 − 3 can be used to determine the values of parameters 𝑎 and 𝑏, while the average 
provides 𝜇, and 𝛼 is determined from the second moment. The set of equations mapping 

(
𝛾3, 𝛾𝑒

)
onto (𝑎, 𝑏) is illustrated in Fig. 3.1. 

It is significantly nonlinear and can only be solved numerically. Several formulas provide closed-form but approximate solutions to 
that set of equations [13,36]. This figure also shows that the Gaussian case, obtained in the limiting case for vanishing 𝛾3 and 𝛾𝑒, 
corresponds to 𝑏→ +∞, which is also cofirmed by Equation (3.1). 

Using the principles of transformation of random variables [37], the probability density function (PDF) of process 𝑥(𝑡) is then 
given by

𝑝CT (𝑥) = 𝑢′(𝑥)𝜙 [𝑢 (𝑥)] = 𝑏 
𝛼

𝜙 [𝑢 (𝑥)]
𝑢2 (𝑥) + 2𝑎𝑢 (𝑥) + 𝑏− 1

(3.5)

where the reverse mapping

𝑢 (𝑥) =
3
√

𝜁 +
√
𝑐 + 𝜁2 +

3
√

𝜁 −
√
𝑐 + 𝜁2 − 𝑎 (3.6)

is expressed as a function of 𝑐 =
(
𝑏− 1 − 𝑎2

)3
and

𝜁 (𝑥) = 3𝑏
2 

(
𝑎+ 𝑥− 𝜇

𝛼

)
− 𝑎3. (3.7)

This result requires the cubic transformation (3.1) to be monotonic, a condition that is satified provided 𝑏−1−𝑎2 ≥ 0 [12]. Fig. 2.1b 
illustrates the versatility of this model, as shown by the domain of validity in the 

(
𝛾3, 𝛾𝑒

)
plane, significantly larger than for the fourth 

cumulant Gram-Charlier model. A clear advantage of this approach is that 𝑝CT(𝑥) does not suffer from positivity issues, as a result of 
the process of its definition. As soon as the monotonicity condition is met (all but case ‘B’), the cubic translation model apparently 
provides smoother PDFs, as illustrated in the lower panels of Fig. 2.1.

4. The slightly non-Gaussian cubic translation model

The Gram-Charlier series and the cubic translation model are two powerful tools in probabilistic modeling. While the Gram
Charlier series offers a simple analytical expression for the PDF, its applicability is limited by a narrow domain of validity. In contrast, 
the cubic translation model features a broader domain of validity, though its PDF is more complex, making certain operations—such 
as the addition of two such random variables—challenging to manage. Motivated by this and the observation that many practical 
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problems can be effectively modeled with variables exhibiting slight deviations from Gaussianity, we develop in this Section the 
asymptotic behavior of the cubic translation model in these scenarios. Two particularly significant distinguished limits are detailed 
in this section, along with their associated scaling.

4.1. Generalities common to the two scaling options

In the asymptotic limit where the skewness and excess coefficients are small, the process only slightly deviates from Gaussianity 
(𝛼 → 𝜎, 𝑏 → ∞), and the cubic transformation (3.1) and its inverse (3.6) tend to the linear transformations 𝑥 = 𝜇 + 𝜎 𝑢 and 𝑢 =
(𝑥− 𝜇) ∕𝜎, respectively. Therefore, instead of the complicated relation (3.6), we will use the asymptotic series

𝑢 (𝑥) = 𝑢0 (𝑥) + 𝜀𝑢1 (𝑥) + 𝜀2𝑢2 (𝑥) +
(
𝜀3
)
⋯ (4.1)

where 0 < 𝜀≪ 1 is a small number explicitly introduced in the mathematical derivation to sort out the terms with various orders of 
magnitude, and where 𝑢0 (𝑥), 𝑢1 (𝑥), ⋯ are obtained by solving (3.1) for 𝑢 with standard perturbation techniques, see e.g. [38]. As 
seen in the following, this results in 𝑢𝑖 ’s being expressed as polynomials of 𝑥, instead of cubic roots. In particular, the unperturbed 
case (𝛾3 = 0, 𝛾𝑒 = 0) corresponds to 𝑢0 = (𝑥− 𝜇) ∕𝜎.

To obtain the asymptotic expression for 𝑝CT (𝑥), the derivative 𝑢′(𝑥) is computed from (4.1), and 𝜙 [𝑢 (𝑥)] is expanded as

𝜙 (𝑢) ∼ 𝜙
(
𝑢0
)
+
(
𝑢− 𝑢0

)
𝜕𝑢𝜙

(
𝑢0
)
+ 1

2
(
𝑢− 𝑢0

)2
𝜕2
𝑢
𝜙
(
𝑢0
)
+

(
𝜀3
)

(4.2)

= 𝜙
(
𝑢0
)
+ 𝜀

(
𝑢1 + 𝜀𝑢2

)
𝜕𝑢𝜙

(
𝑢0
)
+ 1

2
𝜀2𝑢21𝜕

2
𝑢
𝜙
(
𝑢0
)
+

(
𝜀3
)
. (4.3)

Noticing that 𝜕𝑢𝜙
(
𝑢0
)
= −𝑢0𝜙

(
𝑢0
)

and 𝜕2
𝑢
𝜙
(
𝑢0
)
= −𝜙

(
𝑢0
)
+ 𝑢20𝜙

(
𝑢0
)

as 𝜙 is the normalized Gaussian PDF, we also have

𝜙 (𝑢) =
[
1 − 𝜀𝑢0𝑢1 −

1
2
𝜀2

(
𝑢21 − 𝑢20𝑢

2
1 + 2𝑢0𝑢2

)]
𝜙
(
𝑢0
)
+

(
𝜀3
)
. (4.4)

Combining (4.1) and (4.4), the asymptotic expansion of 𝑝CT (𝑥) is

𝑝CT (𝑥) =
(
𝑢′0 + 𝜀

(
𝑢′1 − 𝑢0𝑢

′
0𝑢1

)
+ 𝜀2

(
𝑢′2 +

1
2
𝑢20𝑢

′
0𝑢

2
1 −

1
2
𝑢′0𝑢

2
1 − 𝑢0𝑢

′
0𝑢2 − 𝑢0𝑢1𝑢

′
1

))
𝜙
(
𝑢0
)
+

(
𝜀3
)
. (4.5)

Interestingly when 𝑢𝑖 ’s are indeed polynomials, this formulation is similar (but not identical to) to the general Gram-Charlier formu
lation: a polynomial multiplying the standard Gaussian distribution.

Two scaling options are considered in the following. They are supported by the fact that, in the asymptotic Gaussian case, 𝑏→∞, 
while there is no strict condition on 𝑎, except the monotonicity condition, 𝑎 ≤

√
𝑏− 1. Therefore, two zones of the acceptable (𝑎, 𝑏)

region are analyzed, see hatched areas in Fig. 3.1. The first is near the monotone limit, where 𝑏 ∼ 𝑎2 ∼ 𝜀−1. The second is near the 
central part of this region where only 𝑏 is large and 𝑎 remain of order 1.

4.2. Scaling 1

A first distinguished limit is achieved by considering the scaling

𝑎 = 𝑎̄

𝜀 
; 𝑏 = 𝑏̄

𝜀2
(4.6)

where 𝑎̄ ∼ 1 and 𝑏̄ ∼ 1 are both of order 1 at most. Substitution of these expressions in the moments (3.2) provides the following 
asymptotic expansions for the skewness and excess coefficients

𝛾3 = 6 𝑎̄
𝑏̄
𝜀+

(
𝜀3
)

; 𝛾𝑒 =
8
(
6𝑎̄2 + 𝑏̄

)
𝑏̄2

𝜀2 +
(
𝜀4
)
. (4.7)

Under the scaling (4.6), the skewness is therefore of order 𝜀 and the excess, much smaller, of order 𝜀2. This formulation is ideal 
to study the area near to the boundary of the monotonic region, for small non-Gaussianity. Indeed, as seen in Fig. 2.1, the excess 
is much smaller than the skewness on the boundary of the monotone region. After truncation of the previous equations to leading 
order, and elimination of 𝜀 in favor of 𝑎 and 𝑏, solving the two previous equations for 𝑎 and 𝑏 yields

𝑎 =
4𝛾3

3𝛾𝑒 − 4𝛾23
; 𝑏 = 24 

3𝛾𝑒 − 4𝛾23
, (4.8)

so that substitution into the equation for the boundary of the monotonic region, 𝑏− 1 − 𝑎2 = 0, and solving for 𝛾𝑒 gives

𝛾𝑒 =
4
3

(
𝛾23 −

√
9 − 𝛾23 + 3

)
= 14

9 
𝛾23 +

[
𝛾33
]
. (4.9)

Now the approached expression for the PDF is developed following the general method presented in Section 4.1. With the con
sidered scaling, the cubic transformation (3.1) becomes
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𝑥 = 𝜇 + 𝛼𝑢0 + 𝛼𝜀

(
𝑎̄
(
𝑢20 − 1

)
𝑏̄

+ 𝑢1

)
+ 𝛼𝜀2

(
6𝑎̄𝑢1 + 𝑢20 − 3

3𝑏̄
𝑢0 + 𝑢2

)
+

(
𝜀3
)
. (4.10)

Balancing and canceling the similar powers in 𝜀, as in standard perturbation methods, the reverse mapping 𝑢(𝑥) is

𝑢(𝑥) = 𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 +⋯ = 𝜉 + 𝜀
𝑎̄

𝑏̄

(
1 − 𝜉2

)
+ 𝜀2

(
𝜉3

3 
6𝑎̄2 − 𝑏̄

𝑏̄2
− 𝜉

2𝑎̄2 − 𝑏̄

𝑏̄2

)
+

(
𝜀3
)

(4.11)

where 𝜉 = (𝑥− 𝜇) ∕𝛼. Finally, substitution of these expressions for 𝑢0 , 𝑢1 and 𝑢2 into (4.5), elimination of 𝜀, and replacement of (𝑎, 𝑏)
by 

(
𝛾3, 𝛾𝑒

)
through (4.8), the general solution (4.5) specializes into

𝑝
(1)
CT (𝑥) =

[
𝑝
(Ref)
CT (𝜉 (𝑥)) +

𝛾23
72𝛼

(
𝜉6 − 15𝜉4 + 47𝜉2 − 17

)]
𝜙 (𝜉 (𝑥)) (4.12)

where 𝜉 needs to be understood as 𝜉 (𝑥), and

𝑝
(Ref)
CT (𝜉) = 1 +

𝛾3
3! 
𝜉
(
𝜉2 − 3

)
+

𝛾𝑒

4!
(
𝜉4 − 6𝜉2 + 3

)
. (4.13)

In these expressions, 𝛼 is similar to the standard deviation 𝜎 of the process to be modeled, but is estimated from (3.2), with the values 
of 𝑎 and 𝑏 obtained from (4.8).

4.3. Scaling 2

A second interesting scaling consists in assuming

𝑎 ∼ 1 ; 𝑏 = 𝑏̃

𝜀
(4.14)

in which case the skewness and excess coefficients now read

𝛾3 =
6𝑎
𝑏̃
𝜀+ 12𝑎

𝑏̃2
𝜀2 +

(
𝜀3
)

; 𝛾𝑒 =
8
𝑏̃
𝜀+

24
(
1 + 2𝑎2

)
𝑏̃2

𝜀2 +
(
𝜀3
)
. (4.15)

In this formulation, both 𝛾3 and 𝛾𝑒 have the same order of magnitude. Unfortunately, truncating these series after the second term 
and solving for 𝑎 and 𝑏̃ does not lead to a simple expression. The only option to express them in a consistent manner is to truncate 
after leading term, which leads

𝑎 =
4𝛾3
3𝛾𝑒

; 𝑏 = 8 
𝛾𝑒
. (4.16)

Substitution into 𝑏− 1 − 𝑎2 = 0 yields

8 
𝛾𝑒

− 1 −
16𝛾23
9𝛾2

𝑒

= 0 (4.17)

whose solution is 𝛾𝑒 =
4
3

(
3 −

√
9 − 𝛾23

)
∼ 2

9 𝛾
2
3 . Although it appears quite similar to (4.9), the final expression of the limit is funda

mentally different. This is explained by the fact that, in this second scaling, 𝛾3 and 𝛾𝑒 do not have the appropriate order of magnitude 
(both of order 𝜀) to capture the trend 𝛾3 ∼ ±

√
𝛾𝑒 of the boundary of the monotonic region.

However, this scaling is meant to be appropriate inside the domain of validity of the cubic translation model, where both the 
skewness and the excess coefficients are small and of the same order of magnitude. So instead of focusing on the limit of the monotonic 
region, we rather seek to develop a second approximation 𝑝(2)

CT (𝑥). To do this the reverse of the mapping is first obtained as in the 
previous case, by introducing the ansatz 𝑢(𝑥) = 𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 +⋯ into the definition of the mapping, and considering the re-scaling 
of 𝑏, which yields

𝑥 = 𝜇 + 𝛼𝑢0 + 𝛼𝜀

⎛⎜⎜⎜⎝
𝑎
(
𝑢20 − 1

)
+

𝑢30
3 − 𝑢0

𝑏̃
+ 𝑢1

⎞⎟⎟⎟⎠+ 𝛼𝜀2

(
2𝑎𝑢0 + 𝑢20 − 1

𝑏̃
𝑢1 + 𝑢2

)
+

(
𝜀3
)
= 0. (4.18)

Again, cancellation of each and every power of 𝜀 yields, successively,

𝑢0 =
𝑥− 𝜇

𝛼
= 𝜉; 𝑢1 =

1
𝑏̃

(
𝜉 − 𝜉3

3 
+ 𝑎

(
1 − 𝜉2

))
; 𝑢2 =

1 
3𝑏̃2

((
𝜉2 + 2𝑎𝜉 − 1

)(
3𝑎

(
𝜉2 − 1

)
+ 𝜉

(
𝜉2 − 3

)))
. (4.19)

These quantities can be substituted into (4.5) to obtain, after some simplfications, the second sought expansion of the PDF of the 
slightly non Gaussian cubic translation process
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𝑝
(2)
CT (𝑥) =

[
𝑝
(Ref)
CT (𝜉 (𝑥)) +

𝛾23
72𝛼

(
𝜉6 − 11𝜉4 + 23𝜉2 − 5

)
+

𝛾3𝛾𝑒
144𝛼

𝜉
(
𝜉6 − 15𝜉4 + 51𝜉2 − 33

)
+

𝛾𝑒

1152𝛼
(
𝜉8 − 19𝜉6 + 93𝜉4 − 117𝜉2 + 18

)]
𝜙 (𝜉 (𝑥)) . (4.20)

Since the first two corrections to leading have been considered in the expansions, this approached PDF is quadratic in 𝛾3 and 𝛾𝑒, a 
distinctive feature of this model.

5. Discussion

The primary objective of this study was to explore the feasibility of deriving simple analytical expressions for the probability 
density function (PDF) of a non-Gaussian random variable, characterized by its first few moments. This exploration began with the 
cubic translation model, recognized for its broad domain of validity in the (𝛾3, 𝛾𝑒)-plane.

The first asymptotic analysis of the cubic translation model yielded results where the skewness 𝛾3 and excess 𝛾𝑒 were of orders 
𝜀 and 𝜀2, respectively, and resulted in the simple expression 𝛾3 = 3

√
𝛾𝑒∕14 for the boundary of the monotonic region, for small 

non-Gaussianity. This expression is accurate in a significantly wide domain of the (𝛾3 , 𝛾4)-plane, since the subsequent terms in (4.7) 
are two orders of magnitude smaller. This expression is cofirmed by Fig. 2.1, where the dashed dotted line on the right indicates a 
strong agreement between this analytical expression and the numerical results represented by the solid green line. To the author’s 
knowledge, it is the first time that an expression for the boundary of the monotonic region is obtained from analytical derivations. 
Interestingly, when rewritten as 𝛾𝑒 =

14
9 𝛾

2
3 , it is very close to the empirical fitting 𝛾𝑒 =

(
1.25𝛾3

)2
provided by Winterstein and McKenzie 

[14], as 1.252 ≃ 1.5625 while 14∕9 ≃ 1.5556 in the current equation.
The derived PDF for the slightly non-Gaussian variable 𝑝(1)

CT (𝑥), expressed as a sixth-degree polynomial multiplied by the standard 
Gaussian PDF 𝜙 (⋅), shares some similarities with the Gram-Charlier series.

In contrast, the second asymptotic analysis did not exhibit the same convergence properties, as the first correction to the leading 
term was only one order of magnitude smaller, see (4.15). This discrepancy limits the accuracy of this approach in capturing the 
boundary of the monotonic region, despite the apparent similarity between the formulations (4.9) and (4.17). Nevertheless, the slower 
convergence of the sequence in 𝜀 does not preclude the derivation of a more precise PDF for the slightly non-Gaussian cubic translation 
process. Indeed, the resulting PDF, 𝑝(2)

CT (𝑥), represented as an eighth-degree polynomial multiplied by the standard Gaussian PDF 𝜙 (⋅), 
effectively extends the applicability of the Gram-Charlier approach within the (𝛾3 , 𝛾4)-plane. This is demonstrated in the following 
section by means of numerical simulations. For symmetry reasons, the upper half of the 

(
𝛾3, 𝛾𝑒

)
plane only is studied, for 𝛾3 > 0; the 

lower half can be obtained by replacing 𝛾3 by −𝛾3.

Both asymptotic expressions converge to 𝑝CT (𝑥) ∼ 𝑝
(Ref)
CT

[𝜉 (𝑥)]𝜙 (𝜉 (𝑥)) as (𝛾3, 𝛾𝑒)→ 0+, which coincides with the Gram-Charlier 
PDF 𝑝GC (𝑥). In this limit, coefficients of powers of 𝑥 greater than 4 vanish, and the parameter 𝛼 approaches 𝜎, rendering the cubic 
translation model asymptotic to the fourth-degree truncated Gram-Charlier series.

The Gram-Charlier series employs an 𝑛-degree polynomial strictly expressed as a function of the first 𝑛 statistical moments. 
However, our approach results in an eighth-degree polynomial dependent on moments up to the fourth, with the additional four 
degrees of freedom derived from lower moments. As seen in 𝑝(1)

CT (𝑥) and 𝑝(2)
CT (𝑥), these coefficients are not proportional to the cumulants 

as in the Gram-Charlier model but can also be expressed as higher powers of lower cumulants. Indeed, by incorporating the first two 
corrections to the leading term, the resulting PDF is quadratic in 𝛾3 and 𝛾𝑒. This approach offers two key advantages: (1) it circumvents 
the need to measure higher-order moments to obtain higher degree polynomials, which are often impractical, and (2) it reduces the 
dimensionality of the parameter space, making the derived expression more tractable and applicable.

6. Illustrations

6.1. Positivity and unimodality

For expressions like the Gram-Charlier series, the limits of validity (positivity of the PDF, and to a lesser extent, the unimodality) 
can be conveniently obtained by means of numerical simulations. Indeed for given 𝜇 and 𝜎, and for a chosen pair of parameters 
(𝛾3, 𝛾4), the PDF 𝑝GC (𝑥) can be computed with (2.1). To limit chances of missing a zero-crossing located far away from the bulk of 
the density, we computed 𝑝GC (𝑥) for 5,000 uniformly spaced values of 𝑥 in the interval [𝜇 − 35𝜎;𝜇 + 35𝜎]. Positivity was checked 
by comparing the values to zero. Unimodality was checked by computing the 1-step finite difference of this PDF and detecting the 
number of sign changes. Unimodality was concluded if one and only one sign change had been observed. By repeating this operation 
for 600×600 values of 𝛾3 and 𝛾𝑒 uniformly spaced between 0 and 1.2, and 0 and 4.5, the plots of Figs. 2.1 and 6.1 could be established. 
Indeed with such a fine mesh on 𝛾3 and 𝛾𝑒, the limits of the positivity region (solid lines) and unimodality region (dashed lines) can 
just be obtained with standard contouring features of scientific softwares. The same operation was repeated for 𝑝(1)

CT (𝑥) and 𝑝(2)
CT (𝑥), 

with (4.13) and (4.20).
While the bottom of Fig. 6.1 shows some examples of the PDF of the fourth degree Gram-Charlier model, and the two proposed 

asymptotic expansions, the top part of the Figure summarizes the major findings of this study, both in linear and log scales. The 
grayed area recalls the positivity boundary of the fourth degree Gram-Charlier model, for comparison.

The first asymptotic model suffers positivity issues as soon as 𝛾3 > 0.7, whereas the Gram-Charlier model can manage skewness 
coefficients slightly larger than 1, provided the excess lies between 2 and 3. This might be seen as a weakness of the proposed model 
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Fig. 6.1. Limits of the 4th-degree Gram-Charlier series expansion model and of the two proposed asymptotic models. Represented in terms of positivity (solid lines) 
and unimodality (dashed lines). Bottom: some selected illustrations of the corresponding PDFs. White dots in the upper right plot locate these selected combinations 
of (𝛾3, 𝛾𝑒). Shown for 𝜇 = 0, 𝜎 = 1.

expressed as the product of a 6-th degree polynomial and the standard Gaussian PDF. However, it is noticed that the first asymptotic 
model is valid for zero excess, up to a skewness coefficient as large as 𝛾3 = 0.2, while the Gram-Charlier model would not allow 
𝛾3 ≠ 0 if 𝛾𝑒 = 0. The dots represented on the uniform mesh on the top left plot locate the various combinations (𝛾3 , 𝛾4) illustrated 
at the bottom. The logarithmic scale on the y-axis makes it easier to identify positivity and unimodality issues. For instance, for 
(𝛾3, 𝛾4) = (.4, .4), all three compared models result in positive PDF, 𝑝(1)

CT (𝑥) is not unimodal. In general, 𝑝(1)
CT (𝑥) is more bumpy than 
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Fig. 6.2. Illustration of the fitting of the different types of models to wind pressure data: (top) time series, (middle) PDFs, (bottom) cumulative density functions 
(CDFs).

𝑝GC (𝑥) and does not bring much added value, except perhaps in the small area where 𝛾𝑒 is very small and 𝛾3 can reach values up to 
𝛾3 = 0.2.

Our second asymptotic model performs actually much better. The hatched area indicates the zone where the Gram-Charlier model 
is extended. For 𝛾𝑒 < 1.5, it roughly shows a shift of the boundary of the positivity region, of about 0.25 units on the 𝛾3-axis. This 
difference could seem marginal but is appreciable since (i) again, zero excess does not require zero skewness, (ii) we can now offer 
skewness coefficients as large as 1, when 𝛾𝑒 lies between 1 and 1.6, a great complementary to the Gram-Charlier model. Furthermore, 
in the numerous cases where 𝑝(2)

CT (𝑥) is positive while 𝑝GC (𝑥) is not, see e.g. (𝛾3, 𝛾4) ∈ {(.6, .6) , (.8, .8) , (.8,1.)}, the shape of 𝑝(2)
CT (𝑥) is 

rather smooth and could therefore be appealing for modeling purposes. Last but not least, for 𝛾3 = 0.4, the second asymptotic model 
𝑝
(2)
CT (𝑥) and the Gram-Charlier model 𝑝GC (𝑥) are virtually superimposed.

6.2. Illustration with wind pressure time series

Fig. 6.2 shows the time series of wind pressure measured on the roof of a low-rise building (from [39]). This time series is 
selected to illustrate that pressure coefficients on buildings can exhibit slight non-Gaussian behavior. In other areas of the roof and/or 
building, the skewness may be more pronounced, and clearer signs of bimodality may appear in the data. These features would 
require a different statistical treatment than the one proposed in this paper. The mixed nature of the data is also partly evident here, 
with a noticeable bump in the experimental probability density function �-the histogram of the pressure coe˙icient�- near 𝑐𝑝 = −1. 
This feature cannot be captured by the model discussed in this paper, which explains why pressure coefficients near zero are not 
appropriately captured by the models compared here. On the other tail, however, the proposed model performs well. It accurately 
models the bulk of the distribution, which is the primary goal of a moment-based approach, and the versatility provided by using 
moments up to the fourth order ensures that this good agreement extends fairly far into the tail. This is further cofirmed by the 
close-up view of both the tails of the PDFs and the cumulative density functions (CDFs). The log-scale representation of the PDFs 
(right panel in the middle) shows that the second asymptotic distribution (CM2) provides an excellent match with the experimental 
PDF down to probability densities as small as 10−4, more than three orders of magnitude smaller than the density in the bulk of the 
distribution. Nevertheless the quality of the match is poorer near 𝑐𝑝 = 4.5 and shown on the CDFs.

The skewness and excess of this time series are 𝛾3 = −0.3194 and 𝛾𝑒 = 0.1823, which form a combination where the second 
asymptotic distribution (CM2) meets the positivity criterion, while the Gram-Charlier (GC) and first asymptotic distribution (CM1) 
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Table 1
Near tail 𝛼-fractiles computed with the experimental CDF, and the CDF of the Gram
Charlier (GC) model, and the two proposed asymptotic models (CM1, CM2).

𝛼 Exp. GC CM1 CM2 
0.1000 -3.0765 -3.0713 (-0.17%) -3.0727 (-0.13%) -3.0680 (-0.28%) 
0.0500 -3.4230 -3.4343 (0.33) -3.4215 (-0.04) -3.4214 (-0.05) 
0.0200 -3.8390 -3.8558 (0.44) -3.8338 (-0.14) -3.8469 (0.21) 
0.0100 -4.1353 -4.1342 (-0.03) -4.1195 (-0.38) -4.1521 (0.41) 
0.0050 -4.4034 -4.3830 (-0.46) -4.3852 (-0.41) -4.4442 (0.92) 
0.0010 -5.0383 -4.8749 (-3.24) -4.9263 (-2.22) -5.0399 (0.03) 
0.0005 -5.2930 -5.0591 (-4.42) -5.1291 (-3.10) -5.2558 (-0.70) 
0.0002 -5.6471 -5.2830 (-6.45) -5.3722 (-4.87) -5.5063 (-2.49) 

do not. In this case, both distributions become negative for some 𝑐𝑝 > 0. In this example this does not impact the modeling of large 
extreme negative values, which are in the other tail.

One way to quantify the appropriateness of the model in reproducing the statistics of large negative wind pressures is by comparing 
the fractiles associated with non-exceedance probabilities for certain thresholds with small probability 𝛼. Some of these fractiles are 
provided in Table 1, along with the errors computed by referencing the experimental data. Once again, the second asymptotic 
distribution is shown to perform overall pretty well, except near 𝑐𝑝 = 4.5 (around 1%-discrepancy) and in the tail, where 𝛼 ∼ 10−4
and where experimental data may suffer from sampling issues.

7. Conclusions

This study investigated the cubic translation model as a robust alternative to the Gram-Charlier series for modeling non-Gaussian 
random variables, particularly in engineering applications with small skewness and kurtosis.

The first asymptotic expansion of the cubic translation model focused on solutions near the boundary of the monotonic region, 
providing a simple yet effective analytical expression for the PDF of slightly non-Gaussian variables. This model is especially useful 
in cases of near-zero excess, extending the range of skewness coefficients where the PDF remains valid. However, for larger skewness 
values, the first asymptotic model begins to lose its advantage, struggling to maintain unimodality and positivity, which the Gram
Charlier series handles more effectively. Nonetheless, a key strength of this approach is its ability to accurately estimate the limit of 
the monotone region in the original cubic translation model, which was expressed as 𝛾3 = ±3

√
𝛾𝑒∕14, an expression that is very close 

to commonly used formula derived from fitting.
The second asymptotic expansion offered significant improvements over both the Gram-Charlier series and the first expansion. It 

extended the positivity region and produced smoother PDF shapes, making it a more practical and versatile tool for modeling slight 
non-Gaussianity. Notably, the second model was able to handle skewness coefficients as large as 1, particularly in regions where 
the Gram-Charlier series fails. However, for 𝛾3 = 1, the proposed model breaks down, and the Gram-Charlier expansion becomes 
more suitable for 𝛾3 ∈ [2; 3]. Therefore, the cubic translation model provides a complementary approach, expanding the range of 
skewness-excess combinations that can be effectively modeled.

The derived PDFs are expressed as the product of a polynomial and the standard Gaussian PDF. The degree of the polynomial 
(six or eight) is higher than that of the truncated fourth-cumulant Gram-Charlier series (four), and its coefficients are no longer 
proportional to cumulants. This opens the door for further exploration of other variants with similar structures. Although the domain 
of applicability in the 

(
𝛾3, 𝛾𝑒

)
-plane is significantly reduced compared to original cubic translation model, the slightly non Gaussian 

cubic translation model enters in the family of distributions having a ``polynomial times Gaussian PDF'' format. Since it is tractable 
and allows for simpler computations, the model derived in this paper can benfit from fast estimation, since the PDF is expressed by 
means of statistics moments. Any subsequent quantity such as a likelihood or posterior distribution in a Bayesian inference context 
is therefore much easier to obtain than for the original cubic translation model.
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