
Compositional Speci�cation of ODPBinding ObjectsArnaud Février, Elie Najm, Guy Leduc, Luc Léonard{fevrier,najm}@res.enst.fr {leduc,leonard}@monte�ore.ulg.ac.beENST Paris Université de LiègeDépartement Réseaux Systèmes et Automatique46, Rue Barrault Institut d'Électricité Monte�ore, B 28,75013 - Paris B-4000 LIÈGE 1FRANCE BELGIUMAbstractA building blocks approach for the formal speci�cation of binding objects in the ODPcomputational Model is presented. The formal notation that is used is based on LOTOSextended with two features - real time and gate passing. These features are among theextensions that are currently studied in the ISO standardisation Formal Description Tech-niques group. We apply our building blocks approach to the speci�cation of a multicast,multimedia binding object.1 INTRODUCTIONThe ODP reference model (ISO/ODP, Stefani 1990) provides for a multiple-viewpointspeci�cation of distributed applications and systems. Five viewpoints have been de�nedwithin ODP and are considered to encompass the di�erent areas of concerns that needto be covered when one develops a system or application. These �ve viewpoints are: en-terprise, information, computation, engineering and technology. For a given system orapplication, the enterprise viewpoint de�nes its requirements at a strategic level; the in-formation viewpoint describes the information needed to represent it; the computationalviewpoint provides an abstract implementation of it; the engineering viewpoint describeshow the computational description is supported in terms of generic system componentsand communication protocols; and the technological viewpoint maps the generic engineer-ing components onto existing pieces of hardware and software.In the present paper, we will concentrate on the computational viewpoint which is ofparticular relevance to application programmers. The computational viewpoint is alsointeresting for systems designers as they are concerned with mapping computational de-scriptions onto generic execution components in the engineering model.The Computational Model is the (abstract) language used to describe applications inthe computational viewpoint: in the Computational Model, an application is representedas a dynamic con�guration of interacting objects. Objects are the key concept in the Com-putational Model. A Computational object has a state that may be accessed externally



2 Compositional Speci�cation of ODP Binding Objectsonly through interactions at its interfaces (we will hereafter, when there is no confu-sion, refer to computational objects simply as objects). An Object may possess (possiblymany) interfaces which may be dynamically created and deleted. Interfaces are namesof locations of interactions between objects. Objects may change dynamically their com-municating partners by exchanging interface names. Objects may also create and deleteother objects.There are two kinds of objects in the Computational Model, namely, basic objects andbinding objects. Binding objects are used to convey interactions between interfaces (ofbasic objects or other binding objects). In fact, in the Computational Model, the pro-grammer may choose one of two ways for describing the interactions between interfaces:(i) either explicitly through a binding object, or (ii) implicitly without exhibiting a bind-ing object. When specifying an explicit binding object, the programmer may incorporatethe QoS requirements (order, timeliness, throughput, ...) on the transport of the interac-tions supported by that binding object. In contrast, in an implicit binding between twointerfaces, no speci�c requirements are made on the transport of interactions: interfacesinteract by message passing with no explicit ordering or delay required on the transportof these messages.There are three kinds of interfaces in computational objects: signal, operational andstream. Signal interfaces are the most primitive: operational and stream interfaces canbe modeled as special types of signal interfaces. A signal is an operation name and avector of values (references to interfaces). A signal interface is an interface that emitsand receives signals. An operational interface is an interface that can receive invocationsand possibly react with result messages. Invocations and result messages are signals. Anoperational interface has a type which is, roughly, de�ned to be the type of the operationsit can handle (where the type of an operation includes the types of its return messages).A subtyping system allows for the safe substitution of an interface of a given type byanother interface having a subtype of this type. A stream interface is an abstraction ofa signal interface: the type of a stream interface is simply a name and a role (sender orreceiver).The development of ODP is a new challenge for formal techniques (Stefani 1990, Vis-sers 90). Since July 94, the Formal Description Techniques (FDTs) group within ISOhas become part of the Open Distributed Processing (ODP) standardization commit-tee (SC21/WG7). Thus, supporting the formal design of open distributed systems is anew objective for this group. Indeed, the ISO-FDT team of experts is now working onthe standardization of an extension of LOTOS - temporarily called E-LOTOS (WD95),which is targeted, among other things, at providing support to the design of ODP sys-tems. This group has established a list of desirable features together with a list of re-quirements that E-LOTOS should aim to ful�ll. Aspects related to real-time, constructivedata representations and modularity are being actively studied. Dynamic recon�gurationof communication structures is also being tackled.The present paper is an exercise in the speci�cation of a binding object using a formaldescription technique. Binding objects are important for both application and systemdesigners and developers and they can be used in many di�erent ways. For instance,application designers may specify their transport requirements and let system designersdevelop new networks and protocols that match these requirements. On the other hand,application programmers may use the abstraction provided by existing binding objects todevelop and analyze their applications. A speci�cation of a binding object should cover the



A brief presentation of MT-LOTOS 3functional and QoS requirements. Functional requirements include: connection establish-ment, dynamic recon�guration, orderly transport of information, etc. QoS requirementsinvolve: connection establishment delay, jitter, throughput, error rate, inter and intra �owsynchronization, etc. Thus, the speci�cation language should be expressive and able toaddress real-time constraints and to capture dynamic recon�guration of communicatingcomponents.We use for our speci�cation exercise the LOTOS language (ISO88, Bolognesi 1989)extended with two features that are currently under study in the ISO/FDT group: realtime and gate (i.e. reference) passing à la p-calculus (Milner 1992). We call this languageMT-LOTOS. We show how the MT-LOTOS indeed allows for a modular construction ofour binding object. We introduce �rst a collection of generic building blocks speci�ed inMT-LOTOS. Each of these blocks has a self contained meaning and can be composedwith other building blocks. The genericity and reusability of these blocks is illustrated inthe construction of a multimedia, multicast binding object.The remainder of the document is structured as follows. Section two is a short pre-sentation of MT-LOTOS. In section three we introduce the collection of building blocksspeci�ed in MT-LOTOS. Section four is devoted to the speci�cation of the binding objectexample, which is �rst presented informally. In section �ve we conclude.2 A BRIEF PRESENTATION OF MT-LOTOSAs said earlier, MT-LOTOS is a combination of two extensions to LOTOS. These exten-sions are formally speci�ed and discussed in (Léonard 1994, Léonard 1995) and (Najm1995a, Najm 1995b). In this paper we give a short informal presentation, leaving aside thedata typing aspects. In order to make our presentation clear and self contained, we presentMT-LOTOS as a language on its own, without discussing its di�erences with LOTOS.It is however important to note that MT-LOTOS is an upward compatible extension ofLOTOS.The primitive concepts of MT-LOTOS are: actions, processes and agents. These can becomposed as follows: (i) actions can be composed to form processes, (ii) processes can becomposed to form processes and/or agents; (iii) agents can be composed to form agents.We brie�y introduce each of these concepts.2.1 ActionsActions can be internal, represented by the symbol i, or external. An external action isa gate and an ordered list of o�ers: goff1...offn; where an o�er is one of four possibleforms: (i) presenting a value: !E (resulting from the evaluation of expression E), (ii)accepting a value of some type ?x:t (and storing it in variable x), (iii) presenting a gatename: !g, (iv) accepting a gate name: ?h:gid (which is stored in h. Note the special typefor gates, gid). A typical feature of MT-LOTOS is that actions may be conditioned bya predicate and/or a time constraint, and may have a side e�ect of creating new agents.The syntax of actions is captured by the following table:



4 Compositional Speci�cation of ODP Binding Objectsa ::= iftime-constg new C j g o�1...o�n ftime-constg[pred] new Co� ::= !E j ?x:t j !g j ?h:gidtime-const ::= t in t1..t2 j t j t1..t2The general form of time-const is t in t1..t2 where t is a declared variable thatrecords the time elapsed between action o�ering and action occurrence. Two other formsare allowed, respectively when there is just a recording variable t without actual con-straint, or a constraint without time recording. Pred is a Boolean expression, possiblyreferring to variables used in the o�ers offi of the action or declared in time-const. Fi-nally, C is an agent that is created as a side-e�ect of the execution of the action (we willsee how agents are constructed in the sequel). An unconstrained action a, is equivalentto: a f0...infg [true]. Note that no predicate Pred can be associated with an internalaction i.2.2 ProcessesProcesses are obtained by composition of actions and/or other processes. Let us �rst in-troduce three simple process constructs, then we turn to more sophisticated ones: (i) stopis the simplest process, representing the do-nothing-while-letting-time-pass behaviour, (ii)if B is a process then: c; B is the process representing the behaviour: �perform action cand then enable (the actions) of process B�, (iii) wait t; B represents the behaviour �lett time units pass and then enable (the actions) of B�. Assuming B, B1 and B2 representgeneric processes, the general form of MT-LOTOS processes is givem in the followingtable (using a BNF grammar rule).B ::= stopj c ; Bj wait t; Bj B1[]B2j B1 j[g1, ..., gn]j B2j exitj B1 >> B2j B1 [> B2j hide g1, ..., gn in Bj P [h1, ..., hk](E1, ..., Em)A few words on each of the newly introduced constructs.B1[]B2 is a disjunctive choice between the actions of B1 and the actions of B2. Thechoice is resolved by the execution of the �rst action. For instance, the behaviour of (c1;B1) [] (c2; B2) is: �perform c1 then enable B1 (thus disabling c2;B2) or perform c2then enable B2 (thus disabling c1;B1).B1[>B2 is the disabling of the behaviour of B1 by the �rst action of B2. For instance,the behaviour of (c1; B1) [> (c2; B2) is: �perform c1 then enable B1[>(c2;B2) orperform c2 then enable B2 (thus disabling c1;B1)�.



A brief presentation of MT-LOTOS 5exit is the process which performs one special action, the successful termination action,and then stops. This termination action is used to enable a new process as explained inthe following construct.B1>>B2 is the enabling of the behaviour of B2 by the last action of B1. For instance,the behaviour of exit >> B2 is: �perform a (hidden) termination action and then enableB2�; and the behaviour of (c; B1)>>B2 is: �perform action c then enable B1>>B2�.B1j[g1, ..., gn]jB2 is: �run B1 and B2 in parallel enforcing the synchronisation onactions occurring at gates g1, ..., gn while letting the other actions free�. In order fortwo actions to be synchronisable, they must have the same gate, two matchable list ofo�ers (i.e., where the ith o�er of one list matches the itho�er of the other list), and thepredicates, if any, must evaluate to true. O�ers are matchable as follows: (i) two valuescan be matched if they are of the same type and they are equal, (ii) a value and a variablecan be matched if they have the same type; the matching, in this case, results in a transferof the value to the variable, (iii) two variables of the same type are always matchable.Note that if B1 and B2 synchronise on two actions, then they are said to perform jointly asynchronised action, and this action can be further synchronised with yet a third process,like e.g., in the expression: (B1j[g]jB2)j[g]jB3. Note that i is the action that can neversynchronise with any action.hide g1,...,gn in B hides (transforms into the internal action, i) the actions occur-ring on gates g1,..., gn. Thus, in an expression(hide g1,...,gn in B)j[g1]jB', theactions of B occurring on gate g1 are internal and thus cannot synchronize with actionsfrom B'. hide has also another function: it creates new gate names. For instance in theexpression, hide g in h!g ; B, a new gate, g, is created and sent on gate h.The speci�er may de�ne named processes by a set of equations of the form:Process P[g1,...,gk](x1:t1,...,xm:tn) := B Endproc where P is the name of theprocess, g1,...,gk is a list of gate name parameters and x1:t1,...,xn:tn a list ofvalue parameters (typed variables). Hence, the behaviour of P[h1,...,hk](E1,...,Em)is de�ned to be the same as B where each gi has been substituted with hi and each xihas been substituted with Ei.2.3 AgentsThe communicating architecture of processes is static and imposed by the parallel oper-ators. Agents have dynamic communicating structures: agents may discover new agentsand interact with them, agents may also forget about previously known agents. Agentsare made from processes using the embedding operator <_>: if B is a process, then <B> isan agent. <B> is the simplest form of an agent. The function of the embedding operator,<_>, is to put a boundary around a process, thus allowing it to interact with other agents.Agents can be put in parallel with other agents using the operator j. For instance <B1> j<B2> is the parallel composition of agents <B1> and <B2>. In contrast with processes,interaction between agents is binary and the synchronisation gates are not given explicitlyin the parallel operator. In <B1> j <B2>, <B1> and <B2> can perform actions freely(without synchronisation) and can also synchronise on matching actions. In this case, theresulting joint action is hidden. The behaviour of an agent can be restricted by disallowingactions occurring at a speci�ed list of gates. For instance, if C is an agent, then restrictg1,...,gn to C is an agent which has a behaviour similar to C except that it does notperform any action occurring on gates g1,...,gn.



6 Compositional Speci�cation of ODP Binding ObjectsOne last remark concerning the creation of agents. We have seen that new agents canbe spawn as a side e�ect of some actions. The following is an example of this feature.Take the agent < g!h new <B1> ; B2>. This agent performs action g!h (o�ering gateh on gate g) which enables then the agent: <B1> j <B2>, i.e., the parallel compositionof <B2> with the spawn agent <B1>.Finally, one can de�ne named agents in a way similar to that of named processes. Thesyntax of agents is given by the grammar rules:C ::= < B >j restrict g1, ..., gn to Cj C1 j C2j A [h1, ..., hk](E1, ..., Em)3 A COLLECTION OF BUILDING BLOCKSOne of the most important speci�cation styles of (MT-)LOTOS is the constraint orientedstyle. Thanks to this style, one can obtain speci�cations composed from generic moduleswhere each module represents a constraint that acts upon a designated part of the system.The constraints can be of di�erent forms, such as the order of actions on a given gate,the timeliness of actions, the structure of the data conveyed in the actions, etc.We have identi�ed a collection of generic components that are suitable for the speci�ca-tion of functional and QoS requirements of multimedia and multicast binding object. Wepresent them below, together with their MT-LOTOS speci�cation. In these speci�cations,dt represents a packet of a certain media (audio or video).Medium: This component describes a point to point transmission medium betweentwo points. Packets are received on gate ist (input stream), and are delivered on gateost. Medium is very general. The only constraint it expresses is that no packet is lost.On the other hand, the transmission delay of each packet is totally unconstrained and theordering of the packets is not preserved. After the reception of a packet on ist, if0..infgintroduces a nondeterministic delay before the delivery on ost (output stream). In parallela new occurrence of Medium handles the following packets.PROCESS Medium [ist, ost]: NOEXIT :=ist ? dt:data; ( if0..infg; ost ! dt; STOP jjj Medium [ist, ost])ENDPROC (* Medium *)FIFO_Const: This component also considers gates ist where packets are received,and ost where these packets are delivered. It enforces that the packets be delivered in thesame order as they are received. In process FIFO_Const, the ordering is handled withan appropriate data structure: q, that describes a FIFO queue. We will not enter hereinto the details of the datatypes de�nition. At any time, FIFO_Const can accept(ist?dt:data) a new packet that is added to q, or deliver (ost !first(q)) the �rst packetin q.



A collection of Building Blocks 7PROCESS FIFO_Const [ist, ost](q:�fo):NOEXIT :=ist ?dt:data; FIFO_Const [ist,ost](append(dt,q))[] [not(IsEmpty(q))] -> ost !�rst(q); FIFO_Const [ist,ost](rest(q))ENDPROC (* FIFO_Const *)Delay_Const: Here again, two gates are considered. Delay_Const enforces that atleast a minimal delay delmin elapses between the receiving of a packet on ist and itsdelivery on ost.PROCESS Delay_Const [ist, ost](delmin):NOEXIT :=ist ? dt:data ; (Wait delmin ; ost!dt; STOP jjj Delay_Const [ist, ost](delmin) )ENDPROC (* Delay_Const *)Delay_Obs: Delay_Obs expresses a requirement on the service provided by a trans-mission medium. It veri�es that the delay between the reception and the delivery neverexceeds a maximal value. If the packet is not delivered before this maximal delay, an errormessage is sent on the management gate m. After the reception of a packet, Delay_Constproposes ost!dt during a time delmax. On the other hand, m!error_delay!ost is delayedby delmax+epsilon. In other words, m!error_delay!ost is enabled when the deliverycannot occur anymore.PROCESS Delay_Obs [ist, ost, m](delmax):NOEXIT :=ist ? dt:data ; ( ( ost ! dt f0..delmaxg; STOP[]wait(delmax+epsilon); m!error_delay!ost ; STOP )jjj Delay_Const [ist, ost, m](delmax) )ENDPROC (* Delay_Obs *)Jitter_Const: Jitter_Const has an e�ect similar to Delay_Const, but on just onegate. It enforces that at least a minimal delay jmin elapses between any two successivedeliveries of packets at gate ost.PROCESS Jitter-Const [ost](jmin):NOEXIT :=ost ? dt:data; Jitter-Const2 [ost](jmin)wherePROCESS Jitter-Const2 [ost](jmin):NOEXIT :=wait jmin ; ost ? dt:data; Jitter-Const2 [ost](jmin)ENDPROC (* Jitter-Const2 *)ENDPROC (* Jitter-Const *)Jitter_Obs: Jitter_Obs has an e�ect similar to Delay_Obs, but on just one gate. Itveri�es that the delays between successive deliveries of packets on gate ost do not exceedjmax. Like Delay_Const, it signals an error if this happens.PROCESS Jitter-Obs [ost, m](jmax):NOEXIT :=ost ? dt:data; Jitter-Obs2 [ost, m](jmax)wherePROCESS Jitter-Obs2 [ost, m](jmax):NOEXIT :=ost ? dt:data f0..jmaxg; Jitter-Obs [ost, m](jmax)[] wait (jmax+epsilon); m!error_jitter!ost ; STOPENDPROC (* Jitter-Obs2 *)ENDPROC (* Jitter-Obs *)One_Ind_Flow: One_Ind_Flow gives a �rst example of the modularity allowed by



8 Compositional Speci�cation of ODP Binding ObjectsMT-LOTOS. It describes a �ow that combines the e�ects of the previous components. So,this �ow loses no packet and preserves their order; the transmission delay of each packetis undetermined, but it is at least of delmin, and it cannot exceed delmax, otherwisean error message is sent and the transmission is stopped; the delay between successivedeliveries of packets (the jitter) is at least of jmin and at most of jmax, if this maximalvalue is exceeded, an error message is also sent and the transmission is stopped.One_Ind_Flow is simply obtained by putting in parallel the various constraints (orprocesses) and by enforcing their synchronisation on the gates ist and ost. In this case,One_Ind_Flow integrates all the constraints, but any other combination of them wouldhave been possible too (For example with no lower bound on the transmission delayor with no preservation of the order) resulting in a less constraining �ow. Furthermore,One_Ind_Flow allows the handling of a disconnection through the management gate m:the occurrence of m !Dreq!ost interrupts the �ow and the whole process turns into stop.PROCESS One_Ind_Flow [ist, ost, m](q:�fo, delmin, delmax, jmin, jmax):NOEXIT :=( ( Medium [ist, ost]j[ist, ost]j FIFO_Const [ist, ost] (q)j[ist, ost]j Delay_Const [ist, ost] (delmin)j[ist, ost]j Delay_Obs [ist, ost, m] (delmax)) j[ost]j ( Jitter_Const [ost](jmin)j[ost]j Jitter_Obs [ost, m](jmax) )) [> m !Dreq!ost ; STOPENDPROC (* One_Ind_Flow *)Inter_Sync_Const: Until now, we have only presented constraints handling one�ow. Inter_Sync_Const controls the synchronisation between the packets delivered bytwo �ows. The complete synchronisation mechanism requires two brother instances ofprocess Inter_Sync_Const: one per �ow. Inter_Sync_Const controls the packets deliv-ered on ost by its local �ow and exchanges on gate s synchronisation information withthe Inter_Sync_Const responsible for its brother �ow. The way Inter_Sync_Const iscombined with a �ow is illustrated by the next component: One_Sync_Flow. The e�ectof Inter_Sync_Const is to ensure that the packets on its local �ow are not delivered toolate or too early with respect to the packets on the brother �ow. The local �ow (resp. thebrother �ow) may be ahead of the brother �ow (resp. the local �ow) of at most my (resp.ym) time units. If these constraints cannot be met, an error message is sent on gate m andthe �ow is interrupted. We will not enter here into more details about the synchronisationmechanism. The actual values for these parameters are given in the following section. Themeaning of the parameters used in this process is the following:� ml is the ideal time for my last packet� yl is the ideal time for your last packet� me is the time elapsed since my last packet� ye is the time elapsed since your last packet� my is the accepted advance of my stream over your stream� ym is the accepted advance of your stream over my stream� mm is the interval between two successive packets of my stream� yy is the interval between two successive packets of your stream



A collection of Building Blocks 9� ms is the name of my stream : takes one of two values a or v� ys is the name of your stream : takes one of two values v or aPROCESS Inter_Sync_Const [ost, s, m](ml, yl, me, ye, my, ym, mm, yy:time, ms, ys:streams):NOEXIT :=ost ? dt:data ftg [ my > ml+mm-(yl+ye+t) > 0-ym ] ;Notify_Other_Stream[ost, s, m](ml+mm, yl, 0, ye+t, my, ym, mm, yy, ms, ys)[] s!ys; Inter_Sync_Const [ost, s, m](ml, yl+yy, me+t, 0, my, ym, mm, yy, ms, ys)[] wait (ml+mm - (yl+ye)+ym+epsilon); m!inter_sync_error!ost ;STOPWHEREPROCESS Notify_Other_Stream [ost, s, m](ml, yl, me, ye, my, ym, mm, yy:time, ms, ys:streams): NOEXIT :=s!ms f0..0g; Inter_Sync_Const[ost, s, m](ml, yl, me, ye, my, ym, mm, yy, ms, ys)[] s!ys; Notify_Other_Stream[ost, s, m](ml, yl+yy, me+t, 0, my, ym, mm, yy, ms, ys)ENDPROC (* Notify_Other_Stream *)ENDPROC (* Inter_Sync_Const *)One_Sync_Flow: This component gives a new example of the modularity allowed byMT-LOTOS. One_Ind_Flow is already the composition of several features. One_Sync_Flowenhances it with Inter_Sync_Const, a synchronisation mechanism with another �ow.Again, the addition of a constraint is simply obtained by putting both processes in par-allel. Furthermore, this last inter�ow constraint may be removed if a request is made ongate m. The constraint is then replaced by the neutral process Sink.PROCESS One_Sync_Flow [ist, ost, m, s](q:�fo,delmin, delmax, jmin, jmax:time,ml, yl, me, ye, my, ym, mm, yy:time, ms, ys:streams): NOEXIT :=( One_Ind_Flow [ist, ost, m] (q, delmin, delmax,jmin, jmax)j[ost]j( Inter_Sync_Const [ost, s, m] (ml, yl, me, ye, my, ym, mm, yy, ms, ys)[> m!dis_other_stream!ost ;Sink[ost] ))[> m!Dreq!ost ; STOPENDPROC (* One_Sync_Flow *)Sink: This component enforces no constraint on the actions occurring on a gate. It isspeci�ed by a process with a single gate: st. In process sink no predicate or time constraintrestricts the acceptance of packets on st.PROCESS Sink [st] : NOEXIT := st ? dt:data ; Sink [st] ENDPROC (* Sink *)Multicast: This component is independent from the previous ones. It describes a mul-ticasting mechanism. Considering one �input� or source gate (src) and a collection of�output� gates (described by the generic gate variable cast), Multicast conveys mes-sages, without delay, between the �input� gate and every �output� gates. The commandto create a new output gate cast and an associated connection from src to the newcast is received on gate m. Remark that Multicast receives the new gate name in variablecast of type gid (which is the special type used for gate names). Figure 1 is a graphicalrepresentation of the multicast process, in two situations: one active connection (left) and



10 Compositional Speci�cation of ODP Binding Objectstwo active connections (right). Note that processes are represented by rectangular boxeswheras agents will be represented by rounded boxes.
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Figure 1 the muticast component, with one connection (left) and two connections (right)PROCESS Multicast [src, m]:NOEXIT :=src? dt: data ; Multicast [src, m][]m ! Creq ? cast : gid;( ( Connection [src, cast] [> m !Dreq ! cast ; Sink [src] )j[src]jMulticast [src, m])WHEREPROCESS Connection [src, cast]: NOEXIT :=src ? dt : data ; cast !dt f0g; Connection [src, cast]ENDPROC (* Connection *)ENDPROC (* Multicast *)4 A MULTICAST MULTIMEDIA BINDING OBJECTWe want to specify an ODP Binding Object that supports a video broadcast application.The binding object we aim at ful�ls the following functions:� it listens to a source emitting two synchronised �ows, an audio and a video, and mul-ticasts the two �ows to a dynamically changing set of clients,� at any time a client can request to join the audio or the video or both the audio andvideo streams by providing the reference of one (or two) receiving interface(s),� at any time a client may request to leave the audio, or the video or both audio andvideo �ows,� it tries to enforce the intra and inter synchronisation of �ows and noti�es failures todo so.The source �ows have these characteristics, inspired from (Stefani 1992):



A Multicast Multimedia Binding Object 11� there are 25 images per second, i.e., the video stream is constituted by packets deliveredevery 40 ms.� the sound is sampled every 30 ms, i.e., a sound packet is delivered every 30 ms.We suppose that the two source �ows do not deviate from the above �gures and thatboth �ows are fully synchronized. The Binding object accept these �ows and delivers themto any requiring customer. Since the binding object will encapsulate the behaviour of aconcrete network, it will have to deal with usual networks problems (jitter, packet loss,end to end delay, ...). Nevertheless the customers expect a minimal QoS. The QoS is twofold:� each �ow must respect a QoS,� the sound may su�er no jitter,� the video allows a jitter of 5ms, i.e. consecutive images may be seperated by 35 to45 ms.� both must be reasonably synchronous. This is known as lip synchronizationThe lip synchronization is considered correct if the sound is not too far (back or ahead)from the corresponding lip movement. The actual �gures are:� the sounds must not come more than 15 ms before the lip movement,� the sounds must not come later than 150 ms after the lip movement.We give the MT-LOTOS speci�cation below. The above �gures will be used in thespeci�cation as follows:� abv = 15 ms (allowed advance of the audio stream on the video stream)� vba = 150 ms (allowed advance of the video stream on the audio stream)� ar = 30 ms (audio packets rate)� vr = 40 ms (video packets rate)Figure 2 represents the initial con�guration of agents, i.e., when no clients have joined thecasts. Note that MT-LOTOS agents are represented by rounded rectangles. Figure 3, atthe end of the speci�cation, represents one client connected to the (synchronised) audioand video �ows.SPECIFICATION binding-object [srca, srcv, c](* gate c is the controlling gate of the binding object *)(* gates srca and srcv are the audio and video source gates respectively *)TYPE SORTS streamsOPNS a, v -> streamsENDTYPEBEHAVIOURRESTRICT mma, mmv TO< MGR[c, mma, mmv] > j < Multicast[srca, mma] > j < Multicast[srcv, mmv] >



12 Compositional Speci�cation of ODP Binding Objects
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Client3Figure 2 the binding object with no connected clientsAt the initial state, the binding object con�guration contains two Multicast objects,one for audio and one for video and a manager object, MGR. At this initial state, theMulticast objects only listen, each to its speci�c media source, and no destinations areactive, i.e. no client is being serviced.The manager of the binding object, MGR, is accessed by the clients at gate c, andmanages the audio and video Multicast objects through gates mma and mmv respectively.WHEREPROCESS MGR [c, mma, mmv]:NOEXIT :=MGR is a choice between three actions corresponding to three types of requests fromclients: a request to join the audio Multicast, a request to join the video Multicast, or arequest to join both the audio and video Multicast.HIDE isa, m, mgt_client INc !Creq-a ?r_client:gid ?osa:gid?delmin:time ?delmax:time ?jmin:time ?jmax:time5NEW( < One_Ind_Flow [isa, osa, m](empty, delmin, delmax,jmin, jmax) >j < Client_One_Flow_MGR [mgt_client, mma, m](isa, osa, r_client) >j < r_client !mgt_client ;STOP> );This is a request to join the audio Multicast. The request contains a return gate,r_client, of the requesting client and the gate that has to be bound to the audio stream,osa.The MGR agent creates the gates isa, m and mgt_clientand two objects, One_Ind_Flowand Client_One_Flow_MGR, and a return message <r_client!mgt_client;STOP>. Gateisa connects the Multicast object to One_Ind_Flow which conveys the audio stream tothe client gate osa. Client_One_Flow_MGRmanages through the access gate mgt_client



A Multicast Multimedia Binding Object 13the requests from the client concerning this stream. Client_One_Flow_MGR operates onOne_Ind_Flow through gate m. Message <r_client!mgt_client; STOP> noti�es theclient of the success of the binding and provides him with the interface name mgt_clientthat has been created for him to manage his connection.mma !Creq !isa ; MGR [c, mma, mmv](* MGR conveys the request, on behalf of the client, to theaudio Multicast object, and provides the name of the input gate isa *)[]Hide isv, m, mgt_client INc !Creq-v ?r_client:gid ?osv:gid?delmin:time ?delmax:time ?jmin:time ?jmax:timeNEW( < One_Ind_Flow [isv, osv, m](empty, delmin,delmax,jmin, jmax) >j < Client_One_Flow_MGR [mgt_client, mmv, m](isv, osv, r_client) >j < r_client !mgt_client ;STOP> );mmv !Creq !isv ; MGR [c, mma, mmv]This is the symmetric request for a video connection[] Hide isa, isv, m, mgt_client INc !Creq-av ?r_client:gid ?osa:gid ?osv:gid?delmin:time ?delmax:time ?jmin:time ?jmax:time?abv:time ? vba:time ?ar:time ?vr:timeNEW( RESTRICT s TO( < One_Sync_Flow [isa, osa, m, s](empty, delmin, delmax,jmin, jmax,0, 0, 0, 0, abv, vba, ar, vr, a, v) >j < One_Sync_Flow [isv, osv, m, s](empty, delmin, delmax,jmin, jmax,0, 0, 0, 0, vba, abv, vr, ar, v, a) >)j < Client_Two_Flows_MGR [mgt_client, mma, mmv, m](isa,isv,osa,osv, r_client) >j < r_client !mgt_client ;STOP>); ( mma !Creq !isa ; EXIT jjj mmv !Creq !isv ; EXIT )>> MGR [c, mma, mmv]This third sub-expression of the choice represents the handling of a combined au-dio/video connection request. The client provides two gates to be bound, osa and osv,one for the audio and one for the video stream respectively. In this case, the objects thatconvey the streams are instantiated from the One_Sync_Flow template: the two streamshave to be synchronized. In this instantiation, we have used the following constants:abv : Maximum advance of the audio stream on the video streamvba : Maximum advance of the video stream on the audio streamar : Interval between two audio data packets.vr : Interval between two video data packets.WHERE



14 Compositional Speci�cation of ODP Binding ObjectsPROCESS Client_One_Flow_MGR [mgt_client, mm, m](ist, ost, r_client:gid) :noexit :=( mgt_client ! Dreq ; (mm !Dreq !ist ; STOPjjj m !Dreq !ost ; STOP )[] m ? er:error!ost ; mm !Dreq !ist NEW<r_client!er!ost; STOP> ; STOP )ENDPROC (* Client_One_Flow_MGR *)PROCESS Client_Two_Flows_MGR[mgt_client, mma, mmv, m](isa,isv,osa,osv,r_client:gid) :noexit :=mgt_client ! Dreq !a ; m!dis_other_stream!osv ;( mma !Dreq!isa; EXIT jjj m!Dreq !osa ; EXIT )>> Client_One_Flow_MGR [mgt_client, mmv, m](isv, osv, r_client)[] mgt_client ! Dreq !v ; m!dis_other_stream!osa ;(mmv !Dreq!isv; EXIT jjj m!Dreq !osv ; EXIT )>> Client_One_Flow_MGR [mgt_client, mma, m](isa, osa, r_client)[] m ? er:error!osa ;( mma!Dreq !isa; EXIT jjj mmv!Dreq !isv; EXIT jjj m!Dreq!osv;EXIT )>> i NEW <r_client!er!osa ; STOP> ; STOP[] m ? er:error!osv ;( mma!Dreq !isa; EXIT jjj mmv!Dreq !isv; EXIT jjj m!Dreq!osa; EXIT )>> i NEW <r_client!er!osv ; STOP> ; STOPENDPROC (* Client_Two_Flows_MGR *)ENDPROC (* MGR *)ENDSPEC
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Figure 3 the binding object with one client connected to both the audio and video casts5 CONCLUSIONMobile-Timed-LOTOS extends the classical formal description technique LOTOS withtwo new features: quantitative time and mobility. These two enhancements make MT-
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