
A Computer Aided Design of aSecure Registration ProtocolF. Germeau, G. LeducResearch Unit in Networking, Universit�e de Li�egefgermeau,leducg@monte�ore.ulg.ac.be
AbstractWe use the formal language LOTOS to specify a registration protocol betweena user and a Trusted Third Party, that requires mutual authentication. Weexplain how a model-based veri�cation method can be used to verify its ro-bustness to attacks by an intruder. This method is also used to �nd a simplerprotocol that remains secure. KeywordsSecurity, Authentication, Registration protocol, Guillou-Quisquater, Trustedthird party, Formal veri�cation, LOTOS speci�cation1 INTRODUCTIONWith the development of the Internet and especially with the birth of elec-tronic commerce, the security of communications between computers becomesa crucial point. All these new applications require reliable protocols able toperform secure transactions. The environment of these operations is very hos-tile because no transmission channel can be considered safe. Formal descrip-tions and veri�cations can be used to obtain the assurance that a protocolcannot be threatened by an intruder.In this paper, we will show that it is possible to make a formal veri�ca-tion of a security protocol. We can certify that an intruder cannot break aprotocol with di�erent kinds of attacks. We will also show how the veri�-cation process is able to give useful information to correct the protocol ifnecessary. The veri�cation technique we have developed is based on the LO-TOS (Bolognesi et al. 1987)(ISO8807 1989) language and the CADP package(Fernandez et al. 1996) included in the Eucalyptus toolbox (Garavel 1996).

2 A Computer Aided Design of a Secure Registration ProtocolWe use a model-based approach that, until recently, was not felt adequate totackle the veri�cation of security protocols (Leduc et al. 1996)(Lowe 1996).We will illustrate the method on a registration protocol. The Equicryptprotocol (Lacroix et al. 1996) is a conditional access protocol under designin the European ACTS OKAPI project (Guimaraes et al. 1996). It allows auser to subscribe to multimedia services such as video on demand. Equicryptis an open protocol where the user must �rst register with a Trusted ThirdParty (TTP) using a challenge-response exchange. After a successful registra-tion, this third party issues a public-key certi�cate which allows the user tosubscribe to a service with di�erent service providers. The subscription parthas been studied in (Leduc et al. 1996) and some possible attacks have beenreported. In this paper, we will focus on the design and veri�cation of theregistration protocol which must provide the authentication of the user bythe TTP and authentication of the TTP by the user. The protocol is alsoused to transmit the user's public key to the TTP.The paper is organized as follow. The section 2 describes the registrationprotocol that we want to verify and possibly correct. In section 3 we presentthe formal speci�cation of the protocol written in LOTOS and the section4 is dedicated to the properties we want to verify. The veri�cation itself isexplained in section 5 and concludes this paper.2 THE REGISTRATION PROTOCOL2.1 NotationThe protocol involves several cryptographic operations, for which we give anabstract view only. Each scheme uses peer encryption and decryption keysKEandKD and functions E(;) andD(;) such that D(KD; E(KE ;m)) = m forany message m. In public key cryptography, the encryption key is the publickey and the decryption key is the private key for ciphering operations. Forsignature operations, the encryption key is the private key and the decryptionkey is the public key. We also use the more compact notation fmgKE to denotethe message m encrypted with the key KE. That is fmgKE = E(KE ;m).KPA denotes the public key of the user A and KSA the private secret key ofthe user A. The expression fmgKE where KE is a public key represents themessage m encrypted with the key KE . The same expression where KE is aprivate key represents both the message m in clear and a hash of the messagem encrypted with the key KE .We widely use the concept of nonce (i.e. a number used only once). Anonce is a random number that must be used during only one instance of theprotocol. This prevents an intruder from replaying outdated messages and isan abstract model of the pair \time stamps, random number".All the messages have the following structure :Number : Source! Destination :Message Id < Message F ields >

The registration protocol 32.2 PrinciplesThe following is a presentation of the Equicrypt system and its registrationprotocol. The aim of the Equicrypt system is to control the access to mul-timedia services proposed by service providers. To avoid requiring di�erentaccess systems for every service provider, a unique decoder uses a public-keycryptography protocol to subscribe to and decode di�erent services. An inde-pendent entity known as the Trusted Third Party (TTP) acts as a registeringauthority trusted by both users and providers. The registration protocol mustachieve the mutual authentication of the user and the TTP. The TTP mustbe sure that the claimed identity of the user is the right one and the usermust be sure that it registers with the right TTP. The TTP must also receivethe good user's public-key to issue a public-key certi�cate similar to X.509certi�cates (ITU-T X.509 1993). This kind of certi�cate is the user's publickey signed with the TTP's private key.The authentication of the user by the TTP uses the Guillou-Quisquaterzero-knowledge identi�cation scheme (Guillou et al. 1988). When the userbuys his decoder, he receives secret personal credentials derived from its real-life identity. These credentials will help the user to prove who he is. The goal ofthe Guillou-Quisquater (GQ) algorithm is to convince the TTP that the userhas valid credentials without revealing them. The authentication of the TTPby the user uses a challenge based on a nonce similar to the 3-way authen-tication protocol (Schneier 1996). When the user receives his credentials, healso receives the TTP's public-key that will allow him to perform the requiredchecks on the messages and to authenticate the TTP.The transmission of the user's public key is the third purpose of the regis-tration protocol. The TTP must be sure that the received public key is reallythe user's one. He must make a link between the user's identity and his publickey. An improved version of GQ algorithm proposed in Lacroix et al. (1996)can be used to check this.2.3 The Guillou-Quisquater identi�cation schemeThe cryptographic details of the GQ algorithm are beyond the scope of thispaper but the principles will be exposed. Basically, the credentials the userreceives are mathematically related to its identity. Let the user act as theprover P and the TTP act as the veri�er V in the following protocol.1 : P ! V : Request < ID;KPP ; T (KPP ; r) >2 : V ! P : Challenge < d >3 : P ! V : Response < t(r; d; B) >The prover generates a random number r and computes a function T of thisnumber and of his public key. He sends the veri�er his identity ID, his publickeyKPP and the result of the function T . As a response, the veri�er sends backanother random number d. Then the prover computes a function t with the tworandom numbers r and d and his credentials B and sends it to the veri�er.When he receives the response, the veri�er can check that the credentialsused to compute t correspond to the identity claimed in the �rst message,thanks to the existing mathematical relationship between ID and B. The

4 A Computer Aided Design of a Secure Registration Protocoluser's credentials B must be kept secret so that the only one who could havecomputed a right function t is the real user. Thus the TTP has obviouslyreceived a fresh response from the right user and has authenticated him.In message 1, the user's public key has also been scrambled (by the functionT) with the random number r. When the veri�er received message 3, he gainsthe mathematical ability to check that the public key received in message 1is also the one used to compute T . Although the public key is transmitted inclear in message 1 and is thus known to an intruder, this intruder cannot forgea fake message 1 with another public key. This is because he does not knowthe random number r used again in message 3 and so he cannot generate avalid function T (KPP ; r).2.4 Abstract model of the Guillou-Quisquater algorithmIn fact, the GQ algorithm can be seen as a general encryption/decryptionscheme. This will be very useful for our formal description. We can considerthe user's identity together with its public key as a public decryption keyand the credentials as a corresponding secret encryption key. Then, the GQalgorithm looks like an authentication scheme based on a nonce and works asfollows. The prover sends his decryption key and receives back the randomnumber d from the veri�er. The random number d acts as the nonce. Thenhe encrypts it with his encryption key. The veri�er can check that the noncehe sent has a good signature.This scheme resists to the \man-in-the-middle" attack because the decryp-tion key is mathematically linked to the prover's identity : the identity itselfbeing a part of the decryption key. When this authentication scheme is usedwith the classical public key cryptography, not the GQ algorithm, the veri�ermust receive the prover's public key in another way by a secure channel.The real algorithm also involves the random number r. As said previously,its main purpose is to scramble the user's public key in the function T . If theintruder generates such a fake function in the �rst message, the credentialscomputation performed by the veri�er when he receives the third messagewill fail. We will obtain the same result if the intruder changes the user'spublic key. This behaviour is exactly transposed in our model because boththe user's identity and its public key are used to check the credentials. Thesecond purpose of r is to prevent the TTP from guessing B. Our speci�cationdoes not take these cryptographic attacks into account. Thus we do not needto consider the random number r and we can ignore it in our model. To avoidconfusion, we use the special notation F (B; d) to express the encryption ofthe nonce d with the credentials B. This will help the reader to keep themodelling in mind.2.5 Protocol descriptionThe complete registration protocol is as follows. The protocol comprises theauthenti�cation of the user by the TTP with the GQ algorithm. We haveadded the authentication of the TTP by the user with a challenge based on anonce. Finally, we have added a fourth message to carry the registration result

Formal speci�cation 5and we use the abstraction of the GQ identi�cation scheme depicted above.This �rst version of the protocol has a
aw. We will see in section 5 that theformal veri�cation has revealed it and has given information to correct theprotocol and to produce new versions.(a) Initial knowledge of the user� An identity : UserID.� A pair of public/private keys : KPU and KSU .� Credentials : B.� The public parameters of the GQ algorithm.� The public key of the TTP : KPTTP .(b) Initial knowledge of the TTP� A pair of public/private keys : KPTTP and KSTTP .� The public parameters of the GQ algorithm.(c) Message exchangesThe user generates a random nonce n and sends the message 1.1 : User ! TTP : Register Request < UserID;KPU ; fngKPTTP >When the TTP receives message 1, he decrypts the nonce n and signs it,generates a random number d and sends them to the user. The TTP canhandle several registrations at a time. So he maintains an internal table withone entry for each user who has a registration in progress and he records thetuple < UserID;KPU ; n; d >.2 : TTP ! User : Register Challenge < d; fngKSTTP >When the user receives message 2, he checks the signature. If the signature iscorrect, he performs the GQ calculation and sends the result to the TTP.3 : User ! TTP : Register Response < F (B; d) >When the TTP receives message 3, he checks the GQ authentication using thismessage and the data found in his internal table. Then, he sends a responseaccording to the result. The response is signed and includes both the user'sidentity and the nonce n. The user's entry in the internal table is deleted. Ifthe response is positive, the TTP registers the tuple < UserID;KPU >.4+ : TTP ! User : Register Ack < fY es; UserID; ngKSTTP >4� : TTP ! User : Register Ack < fNo;UserID; ngKSTTP >Now that we have presented the registration protocol, we will continue withits speci�cation, its veri�cation.3 FORMAL SPECIFICATIONThe formal speci�cation has been written in LOTOS which is a standardizeddescription language suitable for the description of distributed systems.

6 A Computer Aided Design of a Secure Registration Protocol
User TTPIntruder

UsndTTP

UrcvTTP TTPsndU

TTPrcvU

AUTH
SYSTEM_STATE

Figure 1 Structure of the LOTOS speci�cation3.1 BehaviourThe LOTOS speci�cation models both the authentication system and theenvironment. The authentication system is composed of the user, the TTPand the intruder. Figure 1 shows the general structure of the processes andtheir interaction points.The communication channel between the user and the TTP is replaced bythe intruder. He intercepts all messages and transmits them or not, with orwithout modi�cation. We give more details about the intruder in section 3.3.Gates UsndTTP and UrcvTTP are used by the user for its communication in bothdirections. The TTP uses the gates TTPsndU and TTPrcvU.The environment is responsible for the management of speci�c events. First-ly, he plays the role of the real user who asks his decoder to register with aninteraction at the gate AUTH. Secondly, he receives messages that give infor-mation about the internal state of the user and about the internal state of theTTP. These messages will help us to perform the formal veri�cation. In thispaper, we call them the special events. We have de�ned six of them receivedthrough the gate SYSTEM_STATE :1 : User ! Environment : USER START REG < UserID >This message noti�es the environment that the user whose identity is UserIDhas received the order to register. The user generates this message before send-ing a valid registration request to the TTP. In our speci�cation, the user andthe TTP always behave correctly.2 : TTP ! Environment : TTP START REG < UserID >With this message, the TTP informs the environment that he has received avalid registration request from the user who claims that his identity is UserID.3 : TTP ! Environment : TTP REG SUCCEEDED < UserID;K >When the TTP sends this message, this means that he has successfully reg-istered the user UserID with the public key K. This message occurs whenthe TTP owns a valid response to his GQ veri�cation. He will then send amessage 4+.4 : TTP ! Environment : TTP REG FAILED < UserID;K >This message corresponds to the previous one but when the GQ veri�cationhas failed. The TTP will send a message 4�.5 : User ! Environment : USER REG SUCCEEDED < UserID >The user informs the environment he has received a valid successful registra-tion acknowledgement from the TTP.

Formal speci�cation 7
1

2

3

4

5

6

TTP_START_REG

TTP_REG_SUCCEEDED

TTP_REG_FAILED

Send message 4-
Receive message 1

Send message 4+

Send message 2

Receive message 3

2

3

4

5

6 7

8 9

1

USER_START_REG

USER_REG_SUCCEEDED

Send message 1

Receive message 2

Send message 3

Receive message 4+Receive message 4-

User TTP

USER_REG_FAILEDFigure 2 Behaviour of the user and the TTP6 : User ! Environment : USER REG FAILED < UserID >The user informs the environment that he has received a valid refused reg-istration acknowledgement from the TTP. That is, the user has received amessage 4� where the TTP's signature is valid but his response is negative.Finally, the third task of the environment is to receive error messages. Theuser and the TTP perform several checks when they receive a message. If oneof these checks fails, a message indicating the reason of the error is generated.It is very important to understand the di�erence between the two kinds ofinterruptions a registration can encounter. The registration can fail becausethe TTP has decided that the user does not own good credentials. That iswhat we will call a failure. The other cases are errors. An error occurs when theregistration protocol stops due to a badly formed message : wrong signature,wrong nonce, ... We obviously focus on failures because we want to defeatthe intruder when he generates good messages. An intruder can always createerrors by sending garbage in the transmission channel.Figure 2 sketches the main behaviours of the user and the TTP. Each transi-tion is labelled with the transmission of a message, the reception of a messageor the generation of a special event. Error cases and data manipulation arenot shown for simplicity.3.2 Data typesThis speci�cation has been written using data type language extensions, aso�ered by the APERO tools (Pecheur 1996) included in the Eucalyptus tool-box. The original text has to be processed by the APERO translator to geta valid LOTOS speci�cation. This provides for a smaller and more readablespeci�cation.The abstract data types are composed of :

8 A Computer Aided Design of a Secure Registration Protocol� Base values : identi�ers, keys, credentials described as explicit enumera-tions.� Cryptographic functions : Encryption and decryption are modelled as ab-stract operations that are the reverse of each other. If a decryption isperformed with a bad key, the result is not the encrypted message but aspecial junk value.type EncryptedMessage is Message, PublicKey, PrivateKeysorts EncryptedMessageopnsE (*! constructor *) : PublicKey, Message -> EncryptedMessageD : PrivateKey, EncryptedMessage -> Messageeqnsforall msg : Message,pubkey : PublicKeyprvkey : PrivateKeyofsort MessageMatch(pubkey,prvkey) => D(prvkey,E(pubkey,msg))=msg;not(Match(pubkey,prvkey)) => D(prvkey,E(pubkey,msg))=Message_Junk;endtype� Set of values : They are specially used to model the knowledge of the in-truder. For example, to form a message, the intruder will pick a value ineach of his sets non determinatically.� Tables : Needed for storing information about registrations. The TTP canmanage several registrations simultaneously so he must store the valuesreceived in the messages to make the authentication.3.3 The IntruderThe intruder replaces the channel between the user and the provider. We wanthim to mimic any attack a real-world intruder can realize. Thus our intrudermust be able to :� Eavesdrop on and/or intercept any message exchanged among the entities.� Decrypt parts of messages that are encrypted with his own public key andstore them.� Introduce fake messages in the system. A fake message is an old messagereplayed or a new one built up from components of old messages includingcomponents he was unable to decrypt.The LOTOS process that models the intruder is always ready to interact atthe four gates UsndTTP, TTPsndU, UrcvTTP and TTPrcvU. When the user, respec-tively the TTP, sends a message to the gate UsndTTP, respectively TTPsndU, theintruder catches the message and tries to decrypt its encrypted parts. Thenhe stores each part of the message in separate sets of values. These sets con-stitute the intruder's knowledge base that increases each time a message isreceived. When the user, respectively the TTP, expects a message on the gateUrcvTTP, respectively TTPrcvU, the intruder builds a new message with values

Formal speci�cation 9stored in his sets. With this method, the intruder tries every message it cancreate.The intruder is parameterized with some initial knowledge which gives hima certain amount of power. This power includes the capabilities to act as a userwith the real TTP and to act as a TTP with the real user. Thus the intruderowns a valid identity, valid credentials and a valid pair of public/private keys.To give the intruder the capability of generating nonces, his initial knowledgealso contains nonces that are distinct from those used by the entities. Thesystem we modelled only includes one real user and one real TTP. With hisknowledge, the intruder can be seen as a second user and a second TTP. So,our speci�cation incorporates the case where a second valid user tries to cheatand the case where a second valid TTP tries to catch the registration.The initial knowledge of the intruder is as follows :� An identity : IntruderID.� The identity of the user : UserID.� A pair of public/private keys : KPI et KSI .� Valid credentials : BI .� The public parameters of the GQ algorithm.� The public key of the user KPU and the public key of the TTP KPTTP .� Nonces.We assume that our intruder cannot break the public key cryptosystem.That is, he cannot get a message in clear from an encrypted message andhe cannot forge a signature without the private key. Note that LOTOS easilyprovides processes that transgress this rule. Care must be taken to avoid thesekinds of unrealistic behaviours. A more detailed description of the intrudercan be found in Germeau et al. (1997)3.4 Labelled Transition SystemTo gain con�dence into the speci�cation, it has been simulated with the XSim-ulator tool from the Eucalyptus toolbox in step-by-step execution mode. Thisallows us to get a LOTOS speci�cation which is likely to behave correctlywithout the intruder. Then we have used the CADP package to carry out theveri�cation. The �rst step consists of using the Caesar tool to generate fromthe LOTOS speci�cation a graph called Labelled Transition System (LTS).To be able to generate a �nite-state LTS of reasonable size, some limitationswere required. The exponential growth of states we meet forces us to limitthe user to only one registration and the TTP to only two registrations. Thishas no e�ect on the generality of our result because the intruder is still ableto perform a registration aside the user's one.The size of the resulting graph greatly depends on the version of the pro-tocol we study. The generated LTS of the protocol presented previously wascomposed of 487446 states and 2944856 transitions. But the corrected versionthat will be used in section 5.2 raises to 973684 states and 7578109 transitions.All the computations were performed on a Sun Ultra-2 workstation runningSolaris 2.5.1 with 2 CPUs and 832 Mb of RAM. The CPU time required forthe generation went up to six hours.

10 A Computer Aided Design of a Secure Registration ProtocolThe second step in the process consists of using the Aldebaran tool tominimize the resulting graph. The minimization is always done modulo thestrong bisimulation equivalence that preserves all the properties of the graph.This phase is generally carried out in less than �fteen minutes of CPU time.The reduction factor obtained is very important. The minimized LTS of the�rst protocol is made of 3968 states and 37161 transitions. This clearly showsthat our biggest problem is the generation of the brute LTS with the Caesartool.As we will see in the next section, all the properties we want to verifyare safety properties. Thus the minimization could have been improved mod-ulo the safety equivalence which preserves all the properties expressible inBranching time Safety Logic (Bouajjani et al. 1991). This was not mandatorybecause the graphs were already small enough to make the veri�cation.4 SAFETY PROPERTIES TO BE VERIFIEDOur goal is to verify that the user always correctly authenticates the TTP, thatthe TTP always correctly authenticates the user and that the TTP receivesthe right user's public key. We are going to reach it with the combination ofthe following safety properties.� P1 : When the TTP successfully registers the user, the user must havestarted a registration with the TTP before.� P2 : When the TTP successfully registers the user, it must have started aregistration with this user before.� P3 : When the TTP refuses to register the user, it must have started aregistration with this user before. This refusal is what we called a failure.� P4 : The verdict given by the TTP (i.e. registered or failed) must alwaysbe correct and consistent with the acknowledgement received by the user.This property will be further explained below.� P5 : The TTP always registers the user with its real public key.Each of these properties can be expressed with the special events man-aged by the environment. For instance, property P1 is translated to \AllTTP_REG_SUCCEEDED with a particular user identi�er must be preceded by aUSER_START_REG with the same user identi�er". This kind of condition can beeasily written in the language of our veri�cation tools as a reference graphcomposed of 3 states and 3 transitions.If we consider the user whose identity is USERID_A and whose public key isUSERPKEY_A, the graph is as follows :des(0,3,3)(0, "SYSTEM_STATE !USER_START_REG !USERID_A",1)(1, "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A", 2)(2, "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A", 2)This is a small graph that requires a USER_START_REG event before anyTTP_REG_SUCCEEDED event. Property P1 will be veri�ed if the LTS of our systemwhere events other than these two have been turned into internal events isrelated to this LTS by the safety preorder (Bouajjani et al. 1991). Informally,

Safety properties to be veri�ed 11
2

1

TTP_REG_FAILED TTP_REG_FAILED
TTP_REG_SUCCEEDED

TTP_REG_FAILED

3

4

USER_REG_SUCCEEDED

TTP_REG_FAILEDTTP_REG_SUCCEEDED

USER_REG_FAILED

USER_REG_FAILED

Figure 3 Labelled transition system modelling property P4the LTS of a system is related to the LTS of a safety property by the safetypreorder if and only if the behaviour of the system is allowed by the property.The comparison of two graphs modulo a particular relation is performed bythe Aldebaran tool.Property P4 can be best expressed by the graph shown on �gure 3. Itshows the temporal orderings that we authorize among the TTP_REG_SUCCEEDED,TTP_REG_FAILED, USER_REG_SUCCEEDED and USER_REG_FAILED events. In particu-lar, a USER_REG_SUCCEEDED must always be preceded by one TTP_REG_SUCCEEDEDbecause, when the user learns that he has successfully registered, the TTPmust have successfully registered him. A USER_REG_FAILED must always bepreceded by at least one TTP_REG_FAILED and no TTP_REG_SUCCEEDED because,when the user learns that his registration failed, the TTP must have refusedto register him at least once and the TTP must not have registered that usersuccessfully. A USER_REG_FAILED must never follow a TTP_REG_SUCCEEDED.Properties P1 and P4 achieve the mutual authentication of the user and theTTP. The authentication of the user by the TTP is considered successful onlyif the TTP registers the user when the user wants to be registered. Thus weneed to be sure that the user has started a registration with the TTP whenthe TTP registers the user. This is provided by property P1. We also need tobe sure that the intruder is unable to perform a new registration of the user.Hence, property P4 allows only one successful registration. The authenticationof the TTP by the user is considered successful if the user receives the rightresponse from the TTP. This is guaranteed by property P4.Properties P2 and P3 ensure that the TTP has really started a registrationwith the user when he gives a verdict. We need this check because the TTPcan manage several registrations simultaneously. Finally, property P5 ensuresthat the user is always registered with its own public key (and not e.g. theintruder's one). To do so, the TTP_REG_SUCCEEDED event has two parameters :the user's identity and its public key. We must verify that these two �eldsalways match for every TTP_REG_SUCCEEDED event in the LTS of our system.

12 A Computer Aided Design of a Secure Registration Protocol5 VERIFICATION OF THE PROTOCOLThis section is the core of our study. We will show how the registration pro-tocol can be certi�ed using the Eucalyptus toolbox.5.1 A
awWhen checking our properties, Aldebaran discovered that property P4 was notsatis�ed. We use the Exhibitor tool of the CADP package to produce a diag-nostic sequence of 19 steps that exhibits one scenario that leads to the unde-sirable state. This sequence of transitions comprises an event USER_REG_FAILEDbefore an event TTP_REG_SUCCEEDED. Thus the TTP successfully registers theuser after the user has learned that his registration failed. This clearly doesnot ful�l property P4.The diagnostic sequence is the following :<initial state>1: "AUTH !USERID_A"2: "SYSTEM_STATE !USER_START_REG !USERID_A"3: "USNDTTP !USERID_A !USERPKEY_A !E (TTPPKEY, NONCE_A)"4: "TTPRCVU !USERID_A !USERPKEY_A !E (TTPPKEY, NONCE_A)"5: "SYSTEM_STATE !TTP_START_REG !USERID_A"6: "TTPSNDU !RANDOM1_TTP !S (TTPSKEY, NONCE_A)"7: "TTPRCVU !USERID_A !S (CERT_I, RANDOM1_TTP)"8: "SYSTEM_STATE !TTP_REG_FAILED !USERID_A !USERPKEY_A"9: "TTPSNDU !S (TTPSKEY, NO, NONCE_A, USERID_A)"10: "TTPRCVU !USERID_A !USERPKEY_A !E (TTPPKEY, NONCE_A)"11: "SYSTEM_STATE !TTP_START_REG !USERID_A"12: "TTPSNDU !RANDOM2_TTP !S (TTPSKEY, NONCE_A)"13: "URCVTTP !RANDOM2_TTP !S (TTPSKEY, NONCE_A)"14: "USNDTTP !USERID_A !S (CERT_A, RANDOM2_TTP)"15: "URCVTTP !S (TTPSKEY, NO, NONCE_A, USERID_A)"16: "SYSTEM_STATE !USER_REG_FAILED !USERID_A"17: "TTPRCVU !USERID_A !S (CERT_A, RANDOM2_TTP)"18: "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A"<goal state>19: "TTPSNDU !S (TTPSKEY, YES, NONCE_A, USERID_A)"At line 1, the environment asks for a registration of user A. The user'sdecoder receives the order and begins the registration with a USER_START_REGevent. It sends a register request message to the TTP at step 3 (see section2.5).User ! Intruder : Register Request < A;KPA ; fNAgKPTTP >The intruder intercepts the message and replays it without alteration to theTTP at line 4.Intruder ! TTP : Register Request < A;KPA ; fNAgKPTTP >When the TTP receives this message, he starts the registration and sendsback a message 2 with a random number R1 at step 6.TTP ! Intruder : Register Challenge < R1; fNAgKSTTP >

Veri�cation of the protocol 13The intruder learns the random number required by the GQ veri�cation whenhe receives this message. He immediately generates a fake response : that isline 7.Intruder ! TTP : Register Response < F (BI ; R1) >Obviously, the GQ veri�cation fails because the intruder does not own theuser's credentials. The TTP declares a failed authentication and sends a neg-ative response.TTP ! Intruder : Register Ack < fNo;A;NAgKSTTP >At this point, the TTP knows that he has refused the user A's registration butthis user is still waiting for a response to his registration request. The intrudergoes on with the attack by replaying the register request at line 10. The TTPstarts a second registration of the user A and sends back a new challengewith a random number R2 di�erent from the previous one. The intruder stillintercepts the message but this time he forwards it to the user (steps 12 and13).Intruder ! TTP : Register Request < A;KPA ; fNAgKPTTP >TTP ! Intruder : Register Challenge < R2; fNAgKSTTP >Intruder ! User : Register Challenge < R2; fNAgKSTTP >The user receives the so long awaited response and answers to it.User ! Intruder : Register Response < F (BA; R2) >The intruder immediately replies by replaying the previous negative registeracknowledgement message recorded at stage 9.Intruder ! User : Register Ack < fNo;A;NAgKSTTP >This acknowledgement is considered valid by the user though it does not be-long to the right registration. The user closes by declaring a failed registrationwith the event USER_REG_FAILED at step 16. Meanwhile, the intruder forwardsthe user's response to the TTP.User ! Intruder : Register Response < F (BA; R2) >This response is valid, so the TTP successfully registers the user and sends apositive response.TTP ! Intruder : Register Ack < fY es;A;NAgKSTTP >Both the user and the TTP have �nished their exchange but they have notthe same view of the registration.For this attack to succeed, the intruder does not even need valid credentials.It only needs to create a fake response to the �rst registration to obtaina negative acknowledgement from the TTP. When he owns it, he replaysthe user's request and inserts the negative response in the exchange at theright place. Hopefully, this attack does not allow the intruder to authenticatehimself as the user. So the TTP still authenticates correctly the user. Butthe authentication of the TTP by the user failed. The intruder can obtain adenial of service by performing this attack systematically.The strength of our technique is that the analysis of the sequence immedi-ately brings us the reason of the failure. The acknowledgement of the TTP istoo general because it can be considered valid in two distinct registrations.

14 A Computer Aided Design of a Secure Registration Protocol5.2 A corrected versionA way to prevent the attack is to add to the acknowledgement a unique iden-ti�er of the registration. The random number used in the GQ veri�cation isthe right candidate. This number is meant to be di�erent at each registration.Its integration into the signature of the fourth message will allow the user tocheck its freshness. Here is the corrected version of our registration protocol :1 : User ! TTP : Register Request < UserID;KPU ; fngKPTTP >2 : TTP ! User : Register Challenge < d; fngKSTTP >3 : User ! TTP : Register Response < F (B; d) >4+ : TTP ! User : Register Ack < fY es; UserID; n; dgKSTTP >4� : TTP ! User : Register Ack < fNo;UserID; n; dgKSTTP >Aldebaran states that all our properties are ful�lled with this version. Hence,the mutual authentication and the transmission of the public key succeeddespite the attempts of the intruder. We conclude that this is a secure reg-istration protocol provided that the cryptographic computations cannot bebroken.5.3 The simplest protocolSection 5.2 demonstrates that the signature of the registration acknowledge-ment message is very important. It can certainly not be removed as it performsthe authentication of the whole registration. We have found that the additionof the random number d in the signature of the fourth message makes thenonce n useless. It was used at �rst for the user to authenticate the TTPbut the TTP's signature of the acknowledgement is su�cient to perform thisauthentication. The authentication of d with a signature in the registrationchallenge message is not anymore mandatory. These two simpli�cations leadto a very simple protocol with only one signature :1 : User ! TTP : Register Request < UserID;KPU >2 : TTP ! User : Register Challenge < d >3 : User ! TTP : Register Response < F (B; d) >4+ : TTP ! User : Register Ack < fY es; UserID; dgKSTTP >4� : TTP ! User : Register Ack < fNo;UserID; dgKSTTP >All the �ve properties are satis�ed. This version is as robust as the previousone from the point of view of the mutual authentication. Obviously, the in-truder can more easily disturb the registration. The only di�erence is thatthe intruder's actions will be discovered later in the protocol. Formally, thereexists a safety preorder between the corrected version of the protocol andthis simpli�ed version regarding the six special events only. Hence the formersatis�es all safety properties veri�ed by the latter.6 CONCLUSIONThis paper presents a formal description of a security protocol. We have chosena protocol that achieves the registration of a user to a trusted third party. We

Conclusion 15have shown how complex cryptographic operations can be abstracted awayfrom mathematical details and speci�ed by abstract data types. Our model ofthe Guillou-Quisquater algorithm is particularly simple while still capturingthe essence of it.We have shown how intrusions can be taken into account by adding anintruder process. Our model of this intruder is very simple and powerful.He can mimic very easily all reasonable real-world attacks, that is all noncryptographic and non repetitive attacks.We have shown how to model the security properties, and in particularauthentication properties as simple safety properties that can be checked au-tomatically. The veri�cation is based on the safety preorder which should holdbetween the system and the property.Finally, we have shown on a concrete protocol how helpful formal descrip-tion techniques and model-checkers can be to design security protocols. Manysubtle attacks were indeed found (such as those provided in this paper) duringthe design that could probably not have been discovered, at least so early, bya human-being.The computer aided design aspect of this work has been pushed further inGermeau et al. (1997) where we have made an improvement of the protocol.We show how to give the entities the ability to know exactly why a registrationdoes not complete. We want to make a distinction between registration failuresdue to intruder's actions or due to a genuine user with bad credentials. A newversion of the protocol have been designed with the veri�cation tools to meetthis additional requirement.The results of the veri�cation are obviously based on our set of safety prop-erties and on some assumptions on our model. In particular, we do not proveformally the correctness of our abstract �nite model with respect a more re-alistic model composed of more users and more TTPs. To strengthen ourveri�cation, it would be interesting to add such a proof, as in Lowe (1996),but our case-study is more complex. Another possible approach, proposedrecently in Bolignano (1997), is based on an abstraction function and auto-mates the computation of a correct abstract model. Finally, we do not proveany sort of completeness of our set of safety properties. Methods to automatethe de�nition of security properties would be desirable. Some work in thisdirection is proposed in Abadi et al. (1997).REFERENCESAbadi, M. and Gordon, A.D. (1997) A Calculus for Cryptographic ProtocolsThe Spi Calculus, Proceedings of the 4th ACM Conference on Com-puter and Communications Security.Bolignano, D. (1997) Towards a Mechanization of Cryptographic Protocol Ve-ri�cation, Proceedings of CAV 97, LNCS 1254, Springer-Verlag.Bolognesi, T. and Brinksma E. (1987) Introduction to the ISO Speci�cationLanguage LOTOS, Computer Networks and ISDN Systems 14.Bouajjani, A. Fernandez, J.C. Graf, S. Rodriguez, C. and Sifakis, J. (1991)Safety for Branching Time Semantics, 18th ICALP, Springer-Verlag.Fernandez, J.C. Garavel, H. Kerbat, A. Mateescu, R. Mounier, L. and Sighire-

16 A Computer Aided Design of a Secure Registration Protocolanu, M. (1996) CAESAR/ALDEBARAN Development Package : AProtocol Validation and Veri�cation Toolbox, Proceedings of the 8thConference on Computer-Aided Veri�cation, Alur & Henzinger Eds.Garabel, H. (1996) An overview of the Eucalyptus Toolbox, Proceedings ofCOST247 workshop.Germeau, F. and Leduc, G. (1997)Model-based Design and Veri�cation of Se-curity Protocols using LOTOS, Proceedings of the DIMACS Workshopon Design and Formal Veri�cation of Security Protocols.Guillou, L. and Quiquater, J.J. (1988) A Practical Zero-knowledge ProtocolFitted to Security Microprocessor Minimizing both Transmission andMemory, Proceedings of Eurocrypt 88, Springer-Verlag.Guimaraes, J. Boucqueau, J.M. Macq, B. (1996) OKAPI : a Kernel for Ac-cess Control to Multimedia Services based on Trusted Third Parties,Proceedings of ECMAST 96, pp. 783-798.ISO (1989) LOTOS, a Formal Description Technique Based on the TemporalOrdering of Observational Behaviour, Information Processing Systems- Open Systems Interconnection : IS 8807.ITU-T (1993) The Directory : Authentication Framework, Information Tech-nology - Open Systems Interconnection : ITU-T RecommendationX.509.Lacroix, S. Boucqueau, J.M. Quisquater, J.J. and Macq, B. (1996) ProvidingEquitable Conditional Access by Use of Trusted Third Parties, Pro-ceedings of ECMAST 96, pp. 763-782.Leduc, G. Bonaventure, O. Koerner, E. L�eonard, L. Pecheur, C. and Zanetti,D. (1996) Speci�cation and Veri�cation of a TTP Protocol for theConditional Access to Services., Proceedings of 12th J. Cartier Work-shop on Formal Methods and their Applications : Telecommunications,VLSI and Real-Time Computerized Control System, Canada.Lowe, G. (1996) Breaking and Fixing the Needham-Schroeder Public-Key Au-thentication Protocol using FDR, T. Margaria and B. Ste�en Eds.,Tools and Algorithms for the Construction and Analysis of Systems,LNCS 1055, Springer-Verlag.Pecheur, C. (1996) Improving the Speci�cation of Data Types in LOTOS,Doctoral dissertation, University of Li�ege.Schneier, B. (1996) Applied Cryptography, Second Edition, J. Wiley & Sons.7 BIOGRAPHYFran�cois Germeau has joined the Research Unit in Networking in 1996 andis studying the conception and veri�cation of security protocols with formaldescription techniques.Guy Leduc is professor at the University of Li�ege, his main research �eldis on formal languages and methods applicable to the software engineering ofcomputer networks and distributed systems.This work has been partially supported by the Commission of the European Union(DG XIII) under the ACTS AC051 project OKAPI : \Open Kernel for Access toProtected Interoperable Interactive Services".

