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Abstract

Strategic bidding problems have gained a lot of attention with the introduction of deregulated electricity
markets where producers and retailers trade electricity in a day-ahead market run by a Market Operator
(MO). All actors propose bids composed of a unit production price and a quantity of electricity to the MO.
Based on these bids, the MO selects the most interesting ones and defines the spot price of electricity at which
all actors are paid. As the bids of all actors determine the price of electricity, a bidding Generation Company
(GC) faces a high risk regarding its profit when placing bids as the bids of competitors are not known in
advance. This paper proposes a novel dynamic programming framework for a GC’s Stochastic Bidding
Problem (SBP) in the day-ahead market considering uncertainty over the competitor bids. We prove this
problem is NP-hard and study two variants of this problem solved with the dynamic programming framework.
Firstly, a relaxation provides an upper bound solved in polynomial time (SBP-R). Secondly, we consider a
bidding problem using fixed bidding quantities (SBP-Q) that has previously been solved through heuristic
methods. We prove that SBP-Q is NP-hard and solve it to optimality in pseudo-polynomial time. SBP-Q
is solved on much larger instances than in previous studies. We show on realistic instances that its optimal
value is typically under 1% of the optimal value of SBP by using the upper bound provided by SBP-R.
Keywords: Deregulated electricity markets, Strategic bidding, Dynamic Programming, Stochastic

optimization

1. Introduction

Electricity markets have significantly evolved over the past years following the introduction of deregulated
systems where Generation Companies (GCs) and retailers trade electricity according to a standardized

procedure, to maximize the social welfare (Hobbs et al., 2000)), through increased competition between the
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agents. In this context, we consider a wholesale electricity market run by a market operator (MO) within a
day-ahead scheme. In this context, producers and retailers propose to the MO, on the day before delivery,
hourly bids corresponding to a unit production cost, together with associated quantities. Based on this
information, the MO selects the optimal bids and sets the resulting hourly spot prices on delivery day. For a
GC, the bids are associated with generators and represent the minimum unit price accepted by the GC for a
generator and the quantity that can be produced at that price. For a retailer, the bid price corresponds to the
maximum price it is willing to pay for electricity. Based on all bids, the MO selects the cheapest production

bids and the most expensive retailer bids for each hour until demand is met. Finally, the maximum price of

the production bids accepted defines the hourly spot price (Hobbs & Helman| 2004; Ramos et al., |1999).

Wholesale electricity markets lead to challenging problems for electricity producers (Conejo & Prieto,

[2001} |[Kahn| |1995). As spot prices depend on the bids of all agents, a GC is exposed to a high risk regarding

its pricing strategy. Indeed, low bids may yield a decreasing spot price, thus negatively impacting revenues.

Alternatively, high bids could be rejected and result in lost sales as analyzed in Brotcorne et al| (2022).

Striking the right balance requires a thorough understanding of the market mechanism that determines the

spot price of electricity (Esmaeili Aliabadi et al., 2017; Panda & Kumar Tiwari, 2018).

This paper addresses the issue of determining an optimal bidding strategy for a GC in a day-ahead market.

This problem is complex for several reasons. First, its mathematical formulation is highly nonconvex (Kwon|

2012). Next, uncertainty concerning the competing bids induces uncertainty concerning the spot
price (Madani & Van Vyve| 2015). Thirdly, the electricity production planning problem for the GC called

Unit Commitment (UC), which determines the production cost of electricity, is also a challenging problem

in itself (Tahanan et al.| 2015).

Most of the literature concerning the bidding problem for a GC uses a deterministic approach where

competitors’ bids are considered as known. This removes the uncertainty over the spot prices defined by

the bids of the GC (de la Torre et all [2002). The focus is then on integrating a UC model to have realistic

production costs (Steeger et al2014)) in a uniform pricing market. Further market regulations features have

also been considered, such as bidding curves associated to generators (Bakirtzis et al., [2007)), or coupled

day-ahead markets linked by a transmission network, such as the European network (Kardakos et al., [2014;

[Brotcorne et all) [2022). Mathematically, the problem is most commonly formulated as a bilevel optimization

problem involving the bidding GC at the upper level and the MO at the lower level, where hourly spot prices
based on the bids of the GC are determined (Bakirtzis et al., 2007} [Fampa et al., [2008} Ruiz & Conejoj, |2009;
|Zhang et al.,|2011; Kardakos et all2014; |Dalbyl 2017; Brotcorne et al.,[2022)). Based on the characterization

of lower-level optimality via the Karush-Kuhn-Tucker conditions, the problem can be reformulated and solved
(for small instances) as an equivalent mixed integer linear program (MILP).

Other approaches explicitly embed uncertainty within the formulation while simultaneously relaxing some
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production or regulation constraints. For instance, Baillo et al.| (2004) consider uncertain residual demand
functions to estimate the possible spot prices depending on the bidding quantities of the GC under the
assumption of linear production costs. Computationally, the model is formulated as a MILP and solved
using a Benders decomposition algorithm. Beraldi et al.[(2008]) consider a UC formulation with transmission
constraints, where uncertainty over competitor bids is modeled through scenarios. The drawback of this
approach is that it uses predetermined spot prices. The reformulation of the problem as a MILP is then
solved on a set of small instances. In |Fampa et al| (2008), production costs are linear, and competing
bids are represented by a set of scenarios. The resulting model SBP-Q is then solved by a primal-dual
heuristic algorithm whose performance is assessed on instances that can be solved to optimality. For large
instances, [Fampa & Pimentel (2015) propose a genetic algorithm, while, in [Fampa & Pimentel| (2017)), the
upper bound obtained by solving a linear program is validated on instances of reduced size. |Ostadi et al.
(2020)) use risk-based portfolio optimization to determine bidding strategies for a GC. Fixed bidding prices
are used as chromosomes in a genetic algorithm. The associated bidding quantities are determined through
a Markowitz model with an associated risk in terms of acceptance. Deterministic bids of competitors are
estimated through historical data and used in the Markowitz model. The bidding problem from the point
view of a retailer is studied by |Song & Amelin| (2018). From this side, no production cost must be considered;
the new difficulty lies in the real-time demand of the consumers. The problem is modeled through a MILP
formulation, optimizing the Condition Value-at-Risk of the profit. The uncertainty is modeled through a set
of scenarios consisting of the aggregated production of GCs, and an elasticity matrix is used to represent
the deviation in real-time demand. This leads to a large formulation considering only a limited number of
scenarios.

In the present paper, we address the Stochastic Bidding Problem (SBP) to determine a bidding strategy
that maximizes the expected profit of a GC. Solving SBP to optimality is very challenging (and an open
question), we tackle this problem by studying two variants of this problem: the first one provides a heuristic
solution of high quality, and the second one provides a tight upper bound that allows to assess the quality
of the heuristic solution. We assume that production costs are linear, and uncertainty enters the model via
a set of scenarios representing competitors’ bids. The MO uses uniform pricing, and network constraints
are not considered as in [Fampa et al.| (2008)); [Fampa & Pimentel (2015, 2017). The resulting model is a
generalization of SBP-Q that embeds the bidding quantities as decision variables. Problem SBP-Q is used as
a proxy model for SBP. The contribution of this work is twofold. First, we prove that SBP and SBP-Q are
both NP-hard. Next, based on properties of the bidding prices, we develop an exact dynamic programming
(DP) framework for two variants of SBP. The first one (SBP-R) consists of a relaxation of SBP where the
GC may place as many bids as desired, independently from the generators. It is solved by DP in polynomial

time, providing an upper bound on SBP. The second one is the problem studied by [Fampa et al.[ (2008) using
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predetermined bidding quantities (SBP-Q), which is solved to optimality by DP in pseudo-polynomial time
with respect to the number of generators. On both variants, DP performs better than previously proposed
algorithms. In numerical experiments, we observe that the proxy model SBP-Q finds near-optimal solutions
for SBP, the solution quality being assessed by the upper bound provided by SBP-R.

The rest of the paper is organized as follows. Section [2| provides a description of SBP, its two variants, as
well as some general properties of the spot price and bid prices. We also show that SBP is NP-hard. Section
proposes a DP framework for SBP, which is adapted to compute an upper bound on the optimal value of
the problem in Section [3.2] and to solve SBP-Q to optimality in Section Numerical results are presented

in Section[4 Section [f] concludes with suggestions for algorithmic improvements.

2. The stochastic bidding problem

2.1. Problem Description

The Stochastic Bidding Problem faced by a GC consists in placing revenue-maximizing bids towards the
market operator, together with productions for its generators, within the day-ahead market. The day-ahead
market consists of a trading platform for producers and retailers, which is run by a Market Operator (MO)
using uniform pricing and ignoring transmission constraints. Hourly bids composed of a unit price and a
quantity are proposed by all actors to the MO the day before delivery. Once all bids are received, the MO
selects the bids maximizing the social welfare, settles quantities traded between actors, and fixes the resulting
spot price for electricity for each time period (O’Neill et al., [2005). Without loss of generality, we consider
only bidding producers and a fixed demand; this will be detailed in Section 2.5] In the day-ahead market,
the spot price occurs at the intersection of the aggregate production and demand curves, as illustrated in
Figure |1} In this example, the demand is equal to 10, and there are four bids: (2,4), (5,3),(8,1) and (10,3).
Bids below the spot price are traded, bids above the spot price are not traded, while bids that match the
spot price are partially traded to meet the demand. All bids are fully traded in this example, except the last
one for which only a quantity of 2 is traded.

Throughout this paper, we assume that production costs are linear and that the bids of the competing
GCs and the fixed total demand are estimated through a set of scenarios. It follows from the linearity
assumption that the problem can be decomposed by time period. From now on, GC will refer to the
optimizing GC.

Let the GC own a set of generators J, |J| = m and place bids {(7},q;)};es on a day-ahead market,
m; representing the unit bid price of electricity and g; the bidden quantity. Each generator j € J has an
associated unit production cost ¢; and a maximum production capacity g;. The MO sets a maximum bid

price of 7, and we assume that c; < m; <7 for all j € J. This assumption is made without loss of generality
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Figure 1: Aggregated production curve and spot price

as bids not respecting this condition are either refused by the MO or cannot produce a positive income.
Generators in J are indexed in non-decreasing order of cost, that is, ¢; < ¢js if 4,7 € J,j < j'.

The competitors own a set of generators J, \j | = m. The uncertainty over the total demand and

competing bids can be represented through a set of scenarios S (Birge & Louveaux, 2011) each consisting

of:
e p,: the probability of scenario s,
e dg: the total demand on the market,

° {(ﬁ-;, Qj)}jej: the bids of the competitors, with 0 < 77 <7 and 0 < g;. We assume that Zje] q; > ds
to ensure the demand can be met in each scenario. We consider that the bidding prices of competitors

are distinct as competitor bids at the same price can be aggregated into a single bid from the perspective

of the GC.

In a day-ahead market, the GC places its bids before knowing what scenario occurs. It must thus consider
the information of all scenarios in its bidding strategy. A single GC is likely to represent only a small
proportion of the total number of generators bidding in this market. Without loss of generality, we consider
in the following that m < m to simplify the complexity analysis of the algorithms proposed.

In a given scenario s € S, the profit of the GC depends on the quantity ¢; traded by the MO for each
generator j € J and the spot price 7° of electricity. The MO determines these values by maximizing the
social welfare based on the bids received. The MO can trade any proportion of a bid from the GC or a

competitor. If the MO receives a set of bids {(7;, ;) }jesmo in scenario s € S, including the bids of the GC,
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and trades a quantity g; for each j € J MO gMO — JUJ, its problem can be formulated as the mathematical

program

(SPOT?®) min Z Tq;

jEJMO
st Y ¢ =d. (1) (1)
jGJMO

0< ¢} <q, VjeJYo

It has been shown by Baker & Taylor| (1979); Balachandran & Ramakrishnan| (1996 that the spot prices 7*

are the optimal values of the dual variables associated with the demand constraints of (SPOT?).
As the MO solves the maximization welfare problem only once all bids are received, we face a two-stage

Stackelberg game, where the leader GC places revenue-maximizing bids, anticipating the spot price and

quantities traded determined by the MO. This problem has been presented by Fampa et al| (2008]) as the

following bilevel problem:

(SBP) max Zps Z(’/Ts —¢j)q;

seS  jeJ
st. 0<m; <, Vied

(¢j,7*) € argmin (Z quj/ + Zfr;qjl) ses
jed jeJ
s.t. Z qj/ =d; (m%)
jeJud
0<q; <gqj jed
0<q < jed

Note that this formulation is invalid as the spot prices 7, which are not available in closed form, must enter
the objective function. This problem is generally formulated as a Mathematical Program with Equilibrium
Constraints (MPEC) in the literature to incorporate the quantities traded and the spot prices of the lower-
level problem (Bakirtzis et al., |2007; Ruiz & Conejol 2009; Kardakos et al., 2014; Dalby} 2017} Brotcorne
. We rather chose an approach based on the characterization of the spot price. We assume that

given equivalent lower-level solutions, the one maximizing the GC’s revenue is selected. This hypothesis

corresponds to the optimistic assumption (Loridan & Morgan) [1996) and ensures an equilibrium always

exists, which is a common assumption for bilevel formulations or MPECs. Namely,

e If several spot prices are available, the highest one is selected, which is consistent with classical economic

theory for the spot price of a resource (Littlechild) [1988).
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e If several bid prices are equivalent for the MO, the one preferred by the GC will be selected. This can

occur if several bids are made at the spot price. Practically, the GC can decrease the bidding price by

a small value € to ensure this priority with a negligible impact on profit if € — 0.

2.2. Variants of SBP

Two variants of SBP are considered in this paper:

1.

The Stochastic Bidding Problem Relazation (SBP-R), in which the GC can place bids independently
from generators. A solution of SBP-R consists in a set of bids B = {(mx, qx) }ref1,..., k} Where K is an
arbitrary number of bids and such that Zle qx < ZjEqu' Once the MO has selected the bids, the
GC dispatches the production to its cheapest generators.

A solution of SBP is feasible for SBP-R and can have a higher value in SBP-R, as the production of
each generator can be split across multiple bids, increasing bidding flexibility. The optimal value of
SBP-R thus provides an upper bound on SBP.

The Stochastic Bidding Problem with fixred Quantities (SBP-Q), a constrained version of SBP in which
the bidden quantity of each generator is set to its maximum production capacity, ¢; = q; for all j € J.
A solution of SBP-Q consists in a set of bids B = {(m;,q;)}jes where only bid prices m; need to
be determined. In economic terms, this corresponds to a Bertrand model where a company tries to
optimize its profit by adjusting the price of a resource.

This problem is used as a proxy model for SBP and has previously been studied by Fampa et al.[(2008]),
who presented a primal-dual heuristic and a genetic algorithm (Fampa & Pimentel, 2015) to find a
feasible solution. The quality of this solution was first validated by using a strong MILP formulation
to obtain the optimal value of SBP-Q. An upper bound on the optimal solution was found later by

studying a relaxation of the problem and addressing it by a cutting plane method (Fampa & Pimentel,

2017).

Let z® be the optimal value of problem x. We have

ZSBP—Q < ZSBP < ZSBP—R'

The quality of a feasible solution for SBP provided by the proxy model SBP-Q can be evaluated through

the optimal value of SBP-R.

2.8. Spot and bid prices

The spot prices defined in a day-ahead market must respect some basic rules to prevent trading at loss or

ending up with a spot price strictly higher than bids not traded (Madani & Van Vyve, 2015). More formally,



12

| —

10

Quantity
o
I
|

—— Demand
- - - Production

1 T2 = 709
J J ) |

l
0 2 4 6 8 10 12 14

Price

Figure 2: Multiple spot price scenario

for a set of bids {(7;,§;)} ;e mo ordered in non-decreasing order of price and an optimal solution of SPOT*®

with values ¢j* we must have that
Fp <mt <@, j=max{j e JMg* >0}, j*=min{j e JMC|¢* =0}

Generator j; corresponds to the first generator meeting the demand while generator js corresponds to
the first generator exceeding the demand. Note that formulation SPOT?®, akin to a continuous knapsack
problem, is solved by selecting the cheapest bids that meet the demand. As a result,

jt=min{je MO N i >4},

JIETMO 51 <j
j2=min{j e M 3" g >d}

JreJMo jr <y
and the spot price lies in the interval [m1,m;2]. In the example of Figure 451 = 42 and mj1 = m;2 as the
demand is strictly met only at a price equal to 10. Alternatively, the demand can be exactly met for an
interval of price values, in which case j' # j2, as illustrated in Figure[2| In this example, the bids are (2,4),
(5,3), (8,3) and (10,3). The quantity bidden at a price of 8 in Figure |1 has been increased to meet the
demand at that price. It follows that the demand is met for a price between 8 and 10. As the highest spot
price is always selected when there are several possibilities (Littlechild) |1988]), the MO sets the spot price to

m;2. These observations are summarized in the following lemma.

Lemma 1. Given a demand d, and a set of bids {(7;,q;)}je o, the highest spot price ©° is equal to mj«,

where j* = min{j € JMO : Zj/eJMO,ﬂj/gwj g0 > ds}.



180

185

190

195

200

As a consequence of Lemma the continuous bidding prices m; to consider in an optimal solution
of SBP can be restricted to a finite set that depends on the competitors’ bids throughout all possible
scenarios, as shown by [Fampa et al.| (2008). Let A denote this set of increasing and distinct bid prices of
the competitors in scenarios of S, where the values 0 and 7 are added if not present in the scenarios, that
is, A ={7i|s € 5,j € J}U{0,7}. Let I denote the set of price indices in A with n = [A| — 1. The ** price
in A is denoted A\; with A\g = 0,\,, =7 and \; < Ay, for 7,4’ € I and i < /. Without loss of generality, we
consider that if the GC does not place a bid for some given generator j € J, then m; = 7. As we consider
there are m bidding prices in each scenario, m < n. We also consider m < m, so m < n. This observation
is made to simplify the notation in the complexity analysis of the algorithms presented in Section

For each price ¢ € I and scenario s € S, the residual demand 7] is defined as the difference between the

demand dg and the total bidden quantities of competitors at prices strictly smaller than A;:

i =ds — Z q;,se€Siel
jeJ
77';<>\7‘,

Table [1| presents the residual demands for the example of Figure

)\i‘Q 5 8 10 >10
r§‘10630 <0

K2

Table 1: Residual demands for the example of Figure

According to Lemma [T} the spot price is the lowest price A; such that the total quantity bidden by the
GC up to this price is strictly greater than r7, ;.

2.4. Theoretical complexity

In this section, we consider the decision version of SBP (DBP) that consists in determining whether SBP
has an optimal solution with a given value V' and show that it is strongly NP-complete through a reduction
from the 3-Partition problem (see |Garey & Johnson| (1979)). Given a positive integer B and a set A of 3n
positive integers {ai,...,as,} such that B/4 < a; < B/2 for all j € {1,...,3n} and Z;Zlaj = nB, the
3-Partition problem consists in determining whether the set A can be partitioned into n sets Ay,..., A,,

each containing exactly three elements, such that a4,0=B.
Theorem 2. Problem SBP is strongly NP-hard.

Proof. The result follows from the reduction of 3-Partition to SBP. Given an instance of 3-Partition, a

corresponding instance of DBP can be constructed as follows:
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e A generator j is created for each element in the set A of the 3-Partition problem. The maximum
production capacity g, equal to aj, the jth smallest value a; in A, and the production cost is set to 0.

The total production capacity of the GC is then Z?Zﬁj =nB.

e 2n scenarios S = {s},s?|i € {1,...,n}} are created. For each couple s; = (s}, s?), we set:

— the probabilities Pst =DPg2 = ﬁ to have equiprobable scenarios,
— the demands d 1 and d,2 are equal to value B,
— scenario s} contains a unique bid (i,iB + 1) from the competition,

— and scenario s? contains a unique bid (i + 1,iB + 1) from the competition.

As a consequence, there exists a competitor bid at each price between 1 and n + 1. We thus have

A={0,1,....,n+1=7}and \; =i.
e The value V used as potential optimal value for DBP is defined by V = % S (20 +1).

Figure [3] illustrates a pair of scenario sland s?.

We can observe that if the GC does not place any bid, the spot prices in scenarios s}and s? are respectively
A; and A;y1. These values are the highest possible spot prices that can be achieved in these scenario as an
additional bid of the GC could only potentially decrease them.

Consider a set of bids of the GC, let @; be the total bidden up to price \; included, Q@ = {Qo, @1, ...,Qn}

the set of cumulative bidding quantities at each price \;, and Rs(Q) an upper bound on the maximum profit

10
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in scenario s based on Q. The upper bounds R4(Q) can be computed as follow for each pair of scenarios s

and s2:
AiQi it Q; <iB, Ait1Q i Qi <iB,
Ra(Q) =19 NiB if Q; =iB, Rz(Q) =19 MNuiiB if Qi =iB,
\iB if Q; > iB. NiB if Q; > iB.

For Rs} (Q), if Q; < iB, the demand is not met by the bid of the GC who trades the total quantity Q;
due to priority over its competitors. If ); = iB or @); > ¢B, then the quantity meeting the demand B is
traded. In all cases, the spot price is at most ;. The same observations can be made for ES}(Q) with a
difference between the two last case as if Q); > ¢B, the demand will be exceeded at price \;, making the spot
price fall to this value by Lemma [l For both scenarios s} and s?, if ); = iB, then the profit is the highest.
This is true for all ¢ € {1,...,n}.

An upper bound on the optimal value of SBP is thus obtained if the upper bound is reached in all

scenarios if @; = iB for i € {1,...,n}. Since A\; = ¢, this upper bound is equal to

i+ Xip1)iB YT (20 + 1)iB

V= 2n 2n

An instance of DBP built from a 3-Partition instance has a solution if Q; = iB for all i € {1,...,n}, i.e.,
the total production bidden at each price A; is equal to B for all i € {1,...,n}. If such a solution exists,
all generators are thus bidding their maximum capacity since ijl q; = nB. With such a set of bids, the
upper bound R,(Q) is reached in every scenario, and the average profit is equal to V. The quantities of
generators j € J bidden at price A; for ¢ € {1,...,n} correspond to the integers values a; composing set A;

in the solution of the original 3-Partition problem. O
Theorem 3. Problem SBP-Q is strongly NP-hard.

Proof. The proof is the same as for Theorem [2] as all generators are bidding their maximum capacity in the

reduction. O

2.5. Considering a fixed demand

We mentioned in the problem description that considering a fixed demand is not restrictive. Indeed,
if there exists a scenario where retailer bids are considered, it can be transformed into a scenario with a

constant demand and only production bids as follows:
e add the bidden quantity of all retailer bids to obtain the fixed demand,
e consider each retailer bid as a competitor production bid.

The residual demands obtained at each bidding price are identical in both scenarios, as well as the resulting

spot price. An illustration of this procedure is provided in Figure [4]

11
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Figure 4: Identical scenario examples with unfixed and fixed demand

3. A dynamic programming framework

In this section, we introduce a dynamic programming framework for determining optimal bid policies
among a finite number of such policies provided by Lemma [I} This framework is based on a recursive
equation for computing the profit associated with a given set of bids and is used to solve to optimality
SBP-R, providing an upper bound on SBP, as well as the proxy model SBP-Q. The bidding prices in A are
used as stages of the dynamic programming framework. The states used for SBP-R and SBP-Q are described

in the corresponding sections below. We first summarize the notation used throughout this paper in Table

2

3.1. Recursive profit computation

Our dynamic programming framework builds a solution by non-decreasing bidding prices. When adding
a bid (;, ¢;) with a price higher or equal to existing bids of the GC, the MO trades a quantity ¢;* of this
new bid, minimizing its objective in each scenario s € S and defining new spot prices 7° as illustrated in
Figure[5| Initially, the competitors place bids (2, 2), (5,2), (8,1), (10,3) and (12, 2) in this scenario, while the
GC places bids (2,2) and (5,1). With these bids, the spot price is set at 10, the price at which the demand
is met. This situation is illustrated in the top left figure.

When placing a new bid (7;,¢;) at a price A; € A higher or equal to 5, there are three possibilities

regarding the impact on the GC’s profit:

o If the total bidden quantity () is lower or equal to the residual demand 7}, then the new bid is entirely

traded, as illustrated in the top right figure. The spot price does not change in this example, but this

12



Notation Definition
J Generators of the bidding GC.

m = |J]| Number of generators of the bidding GC.
c;j Unit production cost of generator j € J.
q; Maximum production capacity of generator j € J.
7’ Total generation capacity of the GC, 3 jes OG-

(75,95) Unit price and quantity of the bid associated to generator j € J.
J Generators of the competitors.

m=|J| Number of generators of the competitors.

JMO — JuJ Set of generators bidding to the MO.
s Maximum bidding price allowed by the MO.
S Set of scenarios.
Ds Probability of scenario s € S.
ds Demand in scenario s € S.
{(75,35)  eq The set of competitor bids in scenario s € S.
q; Quantity of bid j € JM? and s € S traded by the MO.
s Spot price of electricity in scenario s € S.
A Set of bidding prices of competitors in all scenarios U{0, 7}
n Number of prices in A.
1={0,1,....,n} Indices of increasing price in A.
A i € I,it" price of A ordered by value.
{4 Residual at price ¢ € I and scenario s € S. Maximum quantity the
GC can trade with priority over competitors up to price A; in s.
a/ Total generation capacity up to price A;, > jedie;<n Gj
B ={(mj,qj)}jes | Set of bids placed by the GC.
P(B) Profit of a set of bids B.
Ri(J,Q) Maximum profit by bidding a total quantity Q with generators J
up to price \;.
A%(i,4,Q,q5) Impact on profit in scenario s of bidding a quantity g; with

generator j € J at price )\;, assuming existing bids have a lower price

and a total quantity Q.

Table 2: Notation for SBP

13
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Figure 5: Impact on profit when adding a new bid at a higher price than others.

is not always true. If the bid (5,4) had been added instead, the demand would have been exceeded at

a price of 5, making the spot price fall to this value.

o If the residual demand r] is nonnegative, the total bidden quantity prior to the new bid is strictly

smaller than 7], and the total bidden quantity @) exceeds it with the new bid, then the new bid is

partially traded, as illustrated in the bottom left figure. In this case, the spot price falls to the bidden

price as the new bid exceeds the demand.

o Otherwise, the residual demand r{ is already met by the total bidden quantity @) prior to the new bid,

the new bid is not traded, and the spot price remains unchanged.

In the first two cases, a higher quantity is traded but at a potentially lower price. In the third case, the

profit remains unchanged. What can be observed is that in a given scenario s € S, the impact on profit of

bid (7}, ¢;) only depends on the total bidden quantity @ and the residual demand 7. These values allow us

to compute the spot prices with and without the new bid, the total quantity traded, and the production cost

of the new bid that is traded. The impact on profit of bid (7;, ¢;) in each scenario can thus be computed,

as well as the impact on the total expected profit. We formalize this to compute the profit of a set of bids

by recursively removing the bids with the maximum price.

Consider a set of bids B = {(7}, ¢;)};es(B) placed by the GC, where J(B) denotes the set of generators

associated with B, and P(B) is the profit of the solution to SBP obtained by setting (7;,¢;) = (0,0), for
all j € J\ J(B). Let @ =}, ;(p)4; be the total bidden quantity, B~7 = B\ {(n,q;)} be the set of bids
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excluding generator j for j € J(B), and J™* = {j € J(B) : m; = \; > 7, k € J(B)} the maximum bidden

price in B.

Lemma 4. The profit of a set of bids B can be computed recursively as follows:

P(B) = max {P(B™7)+ Y p*A°(i, ], Q,q5)},

eJrnaX
J seS

where A*(i, j, Q, q;) is the impact on profit in scenario s € S adding a bid (\;,q;) with generator j to B~

and is computed by

A0, 5,Q,45) = 7 Q)¢5 + Q@ — ¢5) — 7°(Q — ¢;)(Q — ¢j) — ¢5¢5" 2)
if Q@ —q; < rf (0 otherwise),
the quantity of (7, q;) traded is
q;" = min{g;,r} — Q + q¢;},

and the spot price in scenario s for a total bidden quantity x in (@ 18
() =min{\y € A:x >} (3)

Proof. For each scenario s € S, the incorporation of the bid (7;,q;) to the set B~J results in one of the

following two cases:

e ) —q; > rf: the bids (7, qx) € B™7 are sufficient to satisfy the whole demand. The new bid is not

traded, and the profit remains constant.

e Q—q; < all bids (mg, qr) € B7J are traded and the new bid is partially or fully traded. The
difference in profit P(B) — P(B~7) is the sum of the differences in income and production costs. The
difference in production cost depends on the quantity ¢;* = min{g;, r{ —Q+q; } produced with generator
J that is traded. Concerning the difference in income, the total quantity traded will increase by ¢;*,

and the spot price, which either stays constant or decreases, is determined according to Equation .
O

From Lemma [4 we can conclude that the impact on the expected profit of adding a bid with a strictly
higher price to a set of existing bids (i.e., |J™**| = 1) depends only on the new bid, the residual demand,
and the total bidden quantity. This change is computed by averaging quantities A®(4, j, @, g;) representing
the difference in profit when adding a bid in each scenario following their probability distribution. In the
case we add a bid with a price equal to the highest price of a set of existing bids (i.e., |J™**| > 1), the

same computation can be performed for all generators in J™%*. Furthermore, quantities A*(4, 5, @, ¢;) can
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be determined in logarithmic time based on residual demands. Now, let R;(J,Q) denote the maximum
expected profit for the GC if it places bids (m;, ;) only for generators j € J up to price \; with a total
quantity @, that is, m; < \; for all j € J and >je7 4 = Q. We consider R;(0,0) = 0 for all ¢ € T and
Ro(J,Q)=0forall JC Jand 0 <Q < Qj = Zjejqj.

Consider the set of bids B bidden up to price \; leading to a profit R;(J, Q). Either no bid is placed at
price \;, and R;(J,Q) = R;_1(J, @), or there exists a bid (;, g;) placed at price ;. In the second case, by
Lemma {4} R;(J,Q) can be computed recursively if we know the bid (m;, ;). The bidden generator j is a
generator in .J, and the quantity ¢; must respect the production capacity of j as well as the total quantity

Q. The following proposition shows how to determine the expected profits R;(.J, Q) recursively.

Proposition 5. Let J be a subset of generators of J and Q be such that 0 < Q < ﬁj. Then,

R; (7, Q) = maX{Ri*1(77 Q)? (4)
max  max  Ri(N\{j},Q—q)+ > p°A%i,5,Q,9)} (5)

‘c7 0<q<min{g.,
j€J 0<¢<min{g;,Q} ses

Proof. We distinguish two cases.

CASE 1:

In the optimal set of bids for the GC corresponding to R;(J,Q), all bid prices are strictly lower than \;.
Then R;(J,Q) = R;_1(J,Q).

CASE 2:

There exists a bid (7, ¢;) such that 7; = A;. It follows that 0 < ¢; < min{g;, Q}, and Lemmaapplies. The
maximum profit is then evaluated by taking the maximum over all possible indices j € J and all possible
values of q.

O

To compute R;(J,Q) with Equation we would need to discretize the values to consider for ¢ for
a recursive computation of R;(J,Q). The optimal value of SBP would be R,(J,Q), but the total bidden
quantity ) in an optimal solution of SBP remains unknown, preventing us from solving SBP. In the following
sections, we answer these questions on the two variants of SBP and derive an upper bound on the optimal

value of the problem through SBP-R, together with a feasible solution from the proxy model SBP-Q.

3.2. Dynamic programming for SBP-R

In the Stochastic Bidding Problem Relazation (SBP-R), we consider bids must not be assigned to genera-
tors. The GC can place as many bids as desired without exceeding its total production capacity. By Lemma
[I} the bidding prices can be restricted to A, and are used as stages in our dynamic programming algorithm.
A solution B = {(\;, ¢;) }ier of SBP-R consists in determining what quantity ¢; to bid at each price A; € A.
Table B] lists the main notation used for SBP-R.
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Notation Definition

Ba = {(M\i,qi) }ier | Set of bids associated to prices in A. Each bid has a price \;; € A and
quantity ¢;; representing the bidden quantity at that price.

c(Q) Minimum production cost for quantity Q.
Q; Total quantity bidden up to price \;, Q; = Zi’e[,i’gi qir-
P(By) Profit of a set of bids By
R (Q) Maximum profit by bidding a total quantity @ up to price \;.

This is similar to R;(J,Q), J is omitted as bids are not assigned to generators.
A%(i,Q, q) Impact on profit in scenario s of bidding a quantity ¢; at price \;.
This is similar to A®(4, 7, @, ¢;) for SBP except j can be omitted

as bids are not assigned to generators.

P#(N;,qi) Single bid profit in scenario s € S when placing a unique bid (\;, g;).

Table 3: Notation for SBP-R

Besides the unlimited number of bids, another main difference with SBP is the way the production costs
are settled, as the bids are not associated with generators. When the MO clears the market, it communicates
the total quantity traded to the GC. The GC then dispatches the production to its cheapest generators. Let
@° be the total quantity the MO trades from the GC in scenario s € S. Let us order the generators of the
GC j e J={1,...,m} in non decreasing order of unit cost ¢; and define j(Q*) = min{j : Z?,:l q; > Q%)
the set of generators of minimum cost required to produce @Q°. All generators in j(Q®) produce at their
maximum capacity except the last one, which completes the production to Q°. The production cost of the

GC is then given by:

Q)1 Ji(Q7)-1
Q%) = Z Cj’(@j') + ¢ (Q° — Z qu)~ (6)
j=1 j=1

The complexity of computing ¢(Q*) is in O(logm) if the generators are sorted by non-decreasing bidding
price.

Note that, as ¢; < 7 for all j € J, the unused capacity can be bidden at price 7 in any optimal solution
of SBP-R without any risk of production at loss.

In SBP-R, we focus on the quantities ¢; to bid at each price A; € A. Let @; be the cumulative quantity
offered by the GC up to price A;, i.e., Q; = Zz"el,z"gi qi. Problem SBP-R is equivalent to determining
cumulative quantities Q;, i € I, such that @Q; < Q;41 and @, = g’ that maximize the expected profit.
The values that will be considered for (); will represent the states at stage A; in our dynamic programming
algorithm. The spot price in scenario s is equal to the price \;,), where i(s) = min{i € I : Q; >}, }, which

is a reformulation of Lemma (I, Moreover, the total quantity traded by the MO, Q* = min{Q; (), rf(s)} is

17



355

360

365

370

the total bidden quantity up to the spot price, or the residual demand if it exceeds it.

The properties and equations of the previous section can be simplified for SBP-R. As we do not associate
bids to generators and the production costs are determined only once the MO decides @Q°, the prices at which
bids are placed up to the spot price lose their importance. In Figure[6 we take back the bottom left example
of Figure [5| in which a bid of (8,4) was added to two existing bids. In SBP, the quantity the MO trades for
the generators bidden at prices 2, 5, and 8 are 2, 1, and 3. The production costs would be computed for
these quantities. In SBP-R, what only matters is that a total quantity of 6 is traded, a quantity that would
be dispatched to the cheapest generators. All bids up to the spot price can be aggregated, as illustrated
in the right figure, without changing the profit. The profit of such aggregated bids representing the profit

New bid: (8,4) PR [N

Quantity
i
Quantity

””””” : —— Demand oo —— Demand
; - -~ Comp. bids ' --- Comp. bids
! --- GChbids P <<= GC bids

Figure 6: Aggregation of bids up to the spot price.

obtained in scenario s by placing a single bid ()\;, ¢;) at price A; with a quantity ¢; are called single bid profits
and denoted P*()\;, ¢;).
Single-bid profits can easily be computed as follows:
0 if rf <0,
P*(Niqi) = s —c(r?)  H0<7ri<gq, (7)
m(q:)q; — c(q;) if ¢ <77
In the first case of , the demand is satisfied by competitor bids before A; as the residual demand is negative
and the bid is not traded. In the second case, bid ()\;, ¢;) will exceed the demand and is partially traded as
the residual demand is nonnegative. The spot price is set at A;, and the residual demand r] meeting the
demand is traded. In the last case, the bidden quantity ¢; does not meet the demand and is fully traded and
the spot price is computed based on ¢; with Equation .

Lemma [4] can be streamlined based on single bid profits with a similar proof.

Lemma 6. Let By = {(Ai, qr) trer be a set of bids associated to prices in A. Let A; be the highest bidden
price in Bp, Q the cumulative bidden quantity up to price X\; included, and BXi denote the subset of bids in

B without bid (A, q;). We have that

P(Bp) = P(BY) + Y _p°A%(i,Q, i) (8)
seS
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with
A0, Qo) = ’ yQma= o)
P\, Q) — P°(\i,Q —qi) ifQ—qi <,

Proof. For each scenario s € S, the incorporation of the bid (\;,¢;) to the set Bxi results in one of the

following two cases:
e (Q—gq; > r}: the demand is met at price A;, the new bid is not traded, and the profit remains constant.

e (Q —q; <rj: the new bid is partially or fully traded, and the spot price is at least A;. In Bx and Bxi,
all bids can be aggregated into single bids (A;, @) and (\;, @ — ¢;) without changing their profit. The

difference in profit is then the difference between these two single-bid profits.
O

Note that values A®(i, @, ¢;) are computed in constant time based on single bid profits, and a single bid
profit is computed in O(logn) based on residual demands r3.

Next, let R (Q) represent the maximum expected profit for the GC if it places bids up to price \; for a
total cumulative quantity @; = Q. This value is similar to R;(J, Q) in SBP. As we assume ¢; <7, € J the

optimal value of SBP-R is:
2 =R (') (10)

Moreover, we set Rf(0) =0 for all i € I.

Proposition [f] can also be easily adapted to SBP-R.

Proposition 7. Let Q be such that 0 < Q < g”’. Then,

7€9,;(Q)

Ri(Q) = max {Ri_,(Q—q)+) A°(i,Q,q)}, (11)

where 0;(Q) C [0,Q)].

We will prove further that ©;(Q) can be discretized, allowing to compute R (g”) recursively.

As we do not make a distinction between generators, we do not need to consider the case where several
bids are placed at the same price. The maximum revenue by placing bids up to price )\; included is computed
only based on the maximum revenue at price \;_; and the possible bids ()\;, ¢) at price A;.

When placing a bid, we want to trade as much as possible without decreasing too much the spot price.

We have already seen in Figure |2 the limit at which a spot price decreases: when the demand is strictly
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exceeded. A strategy for the GC would then be to bid quantities that match residual demands. It would
then bid the maximum possible quantity before decreasing the spot price.

The following proposition shows that we can restrict the set ©;(Q) of values to consider for ¢ in the
recurrence relations to a set of polynomial size based on residual demands and maximum production

capacities.

Proposition 8. There exists an optimal solution QF,i € I to (SBP-R) such that

Q; € {7"1'8+1 :s €S, Tf+1 < 6;’} U {qng;:Ll}v (12)

. —J —J —
with Q41 =G, and q; = ZjelchAi q;-

Proof. Consider an optimal solution in which some cumulative quantity ()} does not satisfy . First,
let ' € I be the smallest index such that Q} > g7. Then, profit will increase or stay unchanged if Q}
is decreased to . Applying this transformation iteratively, one obtains an optimal solution in which all
cumulative quantities )] are lower than or equal to the maximum capacity g/ without producing at loss.
Second, let ¢’ be the largest index for which the cumulative quantity @} is not equal to one of the
candidate values given by , and denote by a the smallest candidate value greater than Q},. We are going
to increase @}, up to a while preserving optimality. Since Q7 < @J , increasing @)}, cannot induce production
at loss. Furthermore, given that Qj, , satisfies , if follows that a < @7, ;. The profit P* of each scenario

s € S obtained by increasing @}, will depend on its spot price 7°:

e 1 < )\y: demand d; is satisfied using bids with price smaller than \;;, P® stays unchanged after

increasing Q;s up to a.

e 7° > A\yyq: all bids up to price A\;s11 are traded. Increasing @;» up to a does not change the spot price.

As a consequence, P? stays unchanged.

e 7° = );: all bids lower than price A;_1, in addition to some production at price A;, are required to
meet the demand d,. Increasing ;s up to a increases or leaves P° unchanged since the spot price stays

at /\i’ .

e 7 = Ayq1: Then, Qy <7, ,. Since min{rf,ﬂ,ﬁ;-]} is one of the candidate values, a < min{rf,+1,q;]}.

By increasing ;s to a, the spot price remains constant, and the profit P? increases.

In conclusion, for all scenarios s € S, increasing ;s to its next candidate value a either increases the profit

P? or leaves it unchanged. This procedure can be iterated until all cumulative quantities @Q); satisfy . O

Proposition [8] provides a polynomial number of states @} to consider when searching for an optimal

solution of SBP-R using Equation (L1]). The first set in contains the residual demands at price A;y;
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respecting the production capacity. In the second set lies the maximum production capacity and the quan-
tities at the next price Q;, ;. This means the potential values for Q; are all residual demand rf, with i’ > i
respecting production capacities. We are thus searching for bids with cumulative quantities reaching residual
demands throughout the scenarios.

Set ©;(Q) contains O(S) values that will lead to cumulative quantities @} lying in and can be defined
by:

0;(Q) ={Q —r} : s € S,rf <min{gi_,,Q}} U {min{Q — 7/ ,,0}} (13)

The values in the first set of ©;(Q) are the values leading to states equal to a residual demand r} at stage
Ai—1. The second set of ©;(Q) is the value leading to a state equal to the maximum production capacity at
stage A\;_1 or to the same state as at stage \;, in which case no bid is placed at stage \;_1.

Figure [7] illustrates a situation in which it is interesting to place bids reaching a residual demand in
some scenarios and the impact in other scenarios. Each column corresponds to a scenario, and each line
corresponds to the bidding strategy of the GC. We consider that the GC places a single bid with a generator
that has a production cost equal to 4. In scenario 1, the residual demand at a price of 10 is equal to 2,
meaning the GC can bid 2 units up to a price of 10 and sell the full bidden quantity. By Proposition
we know this quantity of 2 units should be bidden at most up to the previous bidding price, which is equal
to 8. On the first line, the GC bids a quantity of 2 at a price of 8, which is fully sold in scenario 1 at a
price of 10. Consequently, this bid is not sold in scenario 2 and partially in scenario 3. The average profit
is w = 13—6. On the second line, the GC bids at the lowest possible price of 4 to try to sell the highest
possible quantity. In scenario 1, the spot price and quantity sold are unchanged; in scenario 2, the bid is
fully sold; in scenario 3, the bid is partially sold at a lower spot price than on the first line. The average
profit is of 12+732+0 = 13—4. The total quantity sold increases, but the spot prices are decreased in scenarios 2
and 3, leading to a lower expected profit. On the last line, the GC bids at an intermediate price of 7. The
spot price and quantity sold are unchanged in scenario 1, and in scenarios 2 and 3, the quantity sold is equal
to 1, but the spot price is increased to 7. The average profit is of % = 6. The optimal bidding prices
are thus not necessarily the smallest or biggest ones when aiming to meet the residual demand at a given
price. At each price, we aim to bid a cumulative quantity that will meet the residual demand at a higher
price. This is the case on the third line of Figure [7] in which the GC aims at meeting the residual demand

at a price of 8 but places its bids at a lower price.
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Computing the optimal value of SBP-R using with quantities given by can be interpreted as
searching for the longest path in a directed graph. The nodes of the graph are the states at the different
stages given by . Arcs are defined by the quantities provided by ©;(Q;), linking states Q;—1 and @Q;.
The weight of each arc corresponds to ) g psA°(i,Q;,q;) representing the average impact on profit when
adding a bid (\;, ¢;) to state Q;_1 at stage A\;—1. The searched path goes from state Qy = 0 at stage A\g = 0 to
state 7 at stage \,. An illustration of the graph of an instance with three scenarios is provided in Figure
in which stage \; is equal to a price of 7. The residual demands in each scenario are given under each price,
the square nodes in the graph represent quantities ); equal to a residual demand at the next price r7, ;.

Some arcs can easily be discarded by excluding some values from 0,(Q):

o If Q < min{rf|s € S} for i € I, the bids preceding price A; are all traded and can be made at price \;
without changing the profit, thus 0,(Q) = {0}.

For example, in Figure 8] at stage A3, all states are smaller than the minimum residual demand at this

price which is equal to 6. Thus, all incoming arcs at stage A3 come from state 0 at stage Aq.

e As soon as a state reaches the maximum residual demand r; throughout all scenarios at a stage \;_1,
any quantity bidden at the next stages cannot be traded. In this situation, the only quantities that need
to be considered for bidding at the following stages are quantities leading to state g’. Quantities in
0:(Q) leading to a state g;_; exceeding this maximum residual demand but smaller than the maximum

production capacity can be eliminated.

The path in red in Figure 8| corresponds to the three following bids from the GC: (A5,2), (Xg,1), and
(A7,4). The GC has three generators with capacities and production costs given in the description of the
figure.

All nodes representing cumulative quantities ); are either the maximum capacity at the corresponding
price or a residual demand 7§ for i’ > 4. For instance, 3 is the residual demand at price A7 in the third
scenario. A node representing this residual demand appears at price A\¢ and all smaller prices until the
production capacity is violated. The incoming arcs of a node are all residual demands at the current price
and either the node at the previous price with the same quantity or the maximum capacity at this price.
For instance, the residual demands at price A7 are 0, 2, and 3. The incoming arcs of node (A7,7) are thus
the nodes at price A\g with quantities equal to 0, 2, 3, or 7. When placing a bid reaching a square node, such
as bid (Ag,2), the demand is exactly met at this price in the corresponding scenario. With this bid, the spot
price will be equal to Ag in the second scenario. The next bid, (Ag, 1), will meet exactly the demand at this
price in scenario 3, fixing the spot price at A7. This is as in the first column of Figure [7]in which we attempt
to meet exactly the demand in some scenarios to push the spot price at a higher value.

Regarding the computational complexity, the computation of R*(g”) can be decomposed into two steps.

23



490

495

500

505

Qi

©)
0
O
O
O
O

o S =
Ao A1 A2 A3 Ag As A6 A7 As Ag
i 10 10 10 9 9 4 4 2 2 0
T2,i 10 10 6 6 2 2 2 0 0 0
34 10 10 10 10 10 10 7 3 1 1

Figure 8: Graph of SBP-R instance with g; =2,9, =2,G3 =3,¢c1 =1,c2 =3, ¢c3 =5.

First, all single bid profits P*(\;, ;) are used to compute differences on profit A®(i, Q, g;) @ faster,
before computing R’ (g”) recursively using and candidate sets 0;(Q).

Since each scenario includes m bids from the competitors, the total number of states for each of the
n stages is O(m|S|) according to Proposition As a single bid profit in a given scenario is computed in
O(logn), all single bid profits are computed for all scenarios in O(nm|S|?logn). Based on residual demands,
each of the O(nm|S|) values R} (Q) being computed in O(S?) time (there are O(]S]) states in 0;(Q) and
the difference in profit is computed for the |S| scenarios). This yields a complexity of O(nm|S|?) for the
computation of R%(g”). The overall complexity is in O(nm|S|?(logn + |S])).

Lemma 9. SBP-R can be solved in polynomial time.

3.3. Dynamic programming for SBP-Q

The Stochastic Bidding Problem with fized Quantities (SBP-Q) is a constrained version of SBP where
quantities bidden by generators are fixed to their maximum capacity. It can be used as a proxy model to
find feasible solutions for SBP. A solution B = {(7;,q;)}jes consists in determining the bidden prices 7;
for each generator as the associated bidden quantity is trivial. As for SBP-R, the bidding prices 7; can be
restricted to A by Lemma [ and are used as stages. The states of SBP-Q are the generators bidden up to a
the corresponding stage included. Table [4] lists the main notation used for SBP-Q.

Lemma holds for SBP-Q. We simplify the notation A(7, , @, q;) to As(4, j, Q) where the fixed quantity
q; has been dropped as they are predetermined. Let RZ»Q (J) denote the maximum expected profit for the
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Notation | Definition

RZQ (J) Maximum profit by bidding generators J up to price ;.

This is similar to R;(J, Q) with Q omitted as bidden quantities are fixed.
A%(i,7,Q) | Impact on profit in scenario s of bidding generator j € J at price A;.
This is similar to A®*(7, 7, Q, ;) for SBP except ¢; can be omitted

as bidden quantities are fixed.

Table 4: Notation for SBP-Q

GC if it places bids (7;,q;) only for generators j € J, up to price \; included. As we assume ¢; < 7, j € J
the optimal value of SBP-Q is:

2* = RY(J) (14)

Moreover, we set R(()) = 0 for all i € I and RY(J) = 0.
The notation of Proposition [5|can trivial be adapted to compute RiQ (J), the proof is identical by setting

45 = 4;-

Proposition 10. For any subset J of J, there holds that

RE(7) = max{RE, (7). max(RY (77) + 3 _pA%(0.5. Q))} (15)
seS

By using and Proposition we can compute the optimal value of SBP-Q by adding generators one
by one by non-decreasing price.

As for SBP-R, solving SBP-Q can be interpreted as searching for the longest path in a directed graph.
Figure |§| illustrates the graph explored when computing R*Q(J ) on the same instance used in Figure [8] The
solution plotted in red represents bids (s, 2), (Xs,2) and (A4, 3) for generators 1, 2 and 3 respectively. Some
states obtained by bidding generators at price \; in Equation when computing RZ?(J) can easily be

eliminated based on the maximum and minimum residual demands:

o If 67 > max{r{|s € S}, then a part of the total production of generators J would not be sold if some

are bidden at stage ;.

— If J contains the cheapest generator in .J, then if a bid is placed at stage );, they are placed
by non-decreasing price c¢; to trade in priority the cheapest generators if their quantity is to be
traded. For example, in Figure [0} there is no arc from state {2,3} to state {1,2,3} at stages As
and Ag.

— Otherwise, J does not contain the cheapest generator in J (because it has already been bidden),

SaY jmin, its production is not traded. Thus if a bid is made with a generator j € J at stage \;,
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Figure 9: Graph of SBP-Q instance with g; = 2,9, =2,¢3 =3,¢c1 =1, c2 =3 and c3 = 5.

this cannot lead to a higher profit than having bidden j,,;, at stage A; (and swapped the two
bids of j and ji,). Thus, in this situation, no bid is placed at price \; with generators in J as
530 we are computing the maximum revenue. This is the case in Figure |§| for state {2,3} at stage A7

that has no incoming arc from the same stage.

o If 67 < min{r{|s € S}, J # 0 and all generators in J have a production cost at most equal to A;,

then bidding a generator at price \; or a lower price will lead to the same profit. As any bid yields

a positive profit, there is at least one bid between stages A\g and ;. Thus, we force a bid at price \;

535 in this situation to eliminate states at a lower price. Hence there is no arc between two nodes at the

same stage before stage A3 in Figure [0

The computational complexity of finding the optimal value R%(.J) of SBP-Q is established similarly for
SBP-R. The spot prices used to compute the difference on profit A*(4, j, @) in are precomputed for the
O(2™) possible subsets J C J in O(n|S|2™logn). Based on these spot prices, A*(i,j, Q) is computed in

so O(logm). The value of RQ(J) is computed recursively using (15). A total of O(n2™) values RZQ (J) are
computed, each of them in O(m/|S|logm), for a total computational complexity in O(nm|S|2™ logm) for

the recurrence relation. The overall complexity is in O(n|S|2™ (logn + mlogm)).
Lemma 11. SBP-Q can be solved in polynomial time for a fized number of generators.

As previously mentioned, SBP-Q can be used as a proxy model for obtaining heuristic solutions for SBP.

505 Figure illustrates a case where the value of the heuristic is at most % of the optimal value of SBP. However,
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our numerical experiments in Section [4] show that in practice, SBP-Q is much closer to SBP, leading to very

reasonable gaps.

Scenario 1 Scenario 2
2 ] 2 g
No bid of the GC | & I ;
— Demand i |— Demand
) ) ) ) _ |-~ Comp. bid ) ) ) ) ‘ --- Comp. bid
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Price Price
2 + 2t L EEEREEE e TR
SBP-Q solution: | »
- bids: (5,2) & ERN
: — Demand : — Demand
- proﬁt: 5 ! --- Comp. bid ! -~~~ Comp. bid
) ) m =5 ) _|--_GCbid ) ) U m =5 ) _|--- achid
0 2 1 6 8 10 12 14 0 2 4 6 B 10 12 14
Price Price
2 2
SBP solution: ‘
- bids: (5,1) & CI
: — Demand : — Demand
- pI‘OﬁtS 75 , --- Comp. bid , -~~~ Comp. bid
)  imes ) |-- covid ) N m =10, |--- GCbid
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Price Price

Figure 10: Illustration of worse-case performance of SBP-Q vs SBP

Consider an instance with two scenarios having equal probability and illustrated at the first line of the
figure. Both have a demand of 1 and a single bid from the competitors, (5,2) and (10,2), respectively,
exceeding the demand. The GC has a single generator with a maximum production capacity of 2 and no
production cost. This is a generic example to represent what can occur if the demand is exceeded in two
scenarios by competitor bids at prices with a large difference. In SBP-Q, the GC has to place a bid with a
quantity of 2 units. A bid of (5,2) is an optimal bidding strategy in which the profit is equal to 5 in both
scenarios and is illustrated in the second line. The drawback of bidding with fixed quantities is decreasing
the spot price in scenario 2 as the production exceeds the demand with the bid of the GC. Note that (10,2)
would also be an optimal bidding strategy, not selling the bid in scenario 1 and generating a profit of 10 in
scenario 2. In the last line, an optimal solution of SBP is illustrated with a bid of (5,1) and an average profit
of 7.5. Reducing the bidden quantity can preserve a higher spot price in scenario 2 with a profit of 10 while
generating the same profit of 5 in scenario 1 as for SBP-Q. The optimal solution with fixed quantities has

therefore a value of only % of the optimal solution of SBP. Note that the low performance in this situation
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is due to the large gap between the bidding prices of the competitor, situation that is unlikely in practice.
We leave the generalization of this example to find a lower bound on the approximation performance of

SBP-Q for future research.

4. Numerical results

In this section, we demonstrate the efficiency of the dynamic programming algorithm. Test instances
used by [Fampa & Pimentel| (2015) based on data from the Brazilian Electric System National Operator were
kindly provided by W. Pimentel. The instances involve 6 generators, 108 competitor bids per scenario, and
a number of scenarios ranging from 10 to 70. In our presentation, the focus is mainly on the number of
generators and scenarios. Larger instances are built by clustering or splitting the production of generators of
the GC, and we generate new scenarios by modifying 20% or less of the prices and quantities of competing
bids. Five instances are generated for each pair of values (|.J|,|S]). All instances are available on the GitHub
repository https://github.com/jdeboeck/SBP. Numerical results reported are averages over these five
instances. For each type of instance, we provide the computing times and, in the case of the proxy model
SBP-Q, the difference (‘gap’) between the optimum achieved and the upper bound corresponding to the
optimum of the relaxed problem SBP-R. This gap is an upper bound on the optimality gap in SBP of an
optimal solution of SBP-Q.

The algorithms have been implemented in Python 3.8.2 and run on a 4-core i7 2.30 GHz processor with
64Go RAM. In Section previous numerical results of SBP-Q are outlined, while the numerical results

for the dynamic programming framework are discussed in Section 4.2

4.1. Comparison with previous studies

Fampa & Pimentel (2015) have proposed a genetic algorithm to solve SBP-Q, based on the MILP formu-
lation introduced in [Fampa et al.[(2008)) to test its efficiency. The MILP formulation could solve to optimality
instances involving up to 30 scenarios. On larger instances, the running time was limited to 16,000 seconds,
with an optimality gap always less than 3%, while the genetic algorithm could find within a few seconds (7
to 35) a solution within 0.01% of the best feasible MILP solution.

A relaxation of SBP-Q has also been shown by Fampa & Pimentel (2017)) to yield solutions within 10%
of optimality in an average CPU time of 70 seconds on small instances involving 4 generators and up to 3
scenarios of 10 competitor bids.

The performance of the dynamic programming framework is illustrated in Table 5] where CPU times
(in seconds). As we have not implemented these methods described in [Fampa & Pimentel| (2017)), a direct
comparison of the performance with the dynamic programming algorithm for SBP-Q is impossible. Still, as

it solves these instances in under 2 seconds, it outperforms a MILP-based approach and seems significantly
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faster than the genetic algorithm while providing proof of optimality. The optimal value of SBP-R is an
upper bound on SBP-Q. The gap reported in Table[]is the relative gap between the optimal values of SBP-Q
and SBP-R. The gap is, on average, similar to the results of [Fampa & Pimentel (2017), but significantly

larger instances are considered, which are solved in a reasonable time.

instance SBP-R SBP-Q Fampa
|S] time  SD | time SD gap (%) | Solved time SD
10 0.17 0.07 | 0.27 0.01 1.54 ) 38.25 20.96
20 0.88 0.14 | 0.62 0.05 2.04 5 442.36  162.96
30 2.14 043 | 0.78 0.06 2.61 5 82431 681.97
40 6.25 2.08 | 1.28 0.12 2.12 3 1233.43 584.95
50 834 0.93 | 1.36 0.05 2.09 4 27789  415.6
60 12,53 2.63 | 1.42 0.10 2.60 1 1142.33 0
70 19.34 2.65 | 1.71 0.08 2.11 0 - -

Table 5: Impact of the number of scenarios for a fixed number of generators m = 6. Time units are seconds and ‘SD’ stands

for the standard deviation of CPU time.

4.2. Results on larger instances

The data displayed in Tables [6] and [7] illustrate the performance of the dynamic programming algorithms

on larger instances. Besides CPU times, they report the average number of bids in the solution obtained at

termination.
instance SBP-R SBP-Q
m time SD  bids time SD  bids gap (%)
2 76.46 8.00 4.8 0.17 0.01 1.8 2.02
4 75.90 9.64 4.8 0.84 0.06 2.2 1.79
6 73.32 10.16 10.6 3.35 0.16 38 2.10
8 72.07  9.58 7.4 15.4 0.54 44 0.97
10 58.63 7.28 8.0 34.32 5.33 4.2 0.80
12 71.82 835 9.6 | 275.68 11.87 64 0.77
14 71.32 7.79 10.2 1128.4  44.93 6.6 0.81
16 70.88 6.80 9.6 | 4840.87 244.48 7.0 0.38

Table 6: Impact of the number of generators, for a fixed number of scenarios |.S| = 100.
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instance SBP-R SBP-Q
|S] time SD  bids time SD bids gap (%)
50 8.74 0.9 6.6 15.11 1.14 44 1.83
100 58.63 7.28 8.0 34.32 5.33 4.2 0.80
150 172.25 3338 7.8 50.99 837 3.0 0.05
200 372.15 57.54 104 75.25 10.45 44 0.19
250 648.24  89.48 10.6 80.78  9.89 4.2 0.24
300 1128.79 147.97 11.2 | 111.57 18.04 3.2 0.05
350 1661.03 219.19 12.6 | 119.22 14.48 3.8 0.05
400 2367.06 250.76 10.6 | 122.26 13.04 3.8 0.19

Table 7: Impact of the number of scenarios for a fixed number of generators m = 10.

Table [f] illustrates the impact of the bidding GC’s number of generators for a fixed number of 100
scenarios. Note that the solution times of SBP-R do not vary much with the number of generators, as the
theoretical complexity (O(nm|S|?(logn + |S|))) does not depend on m. In contrast, the solution times for
SBP-Q reflect the exponential factor in the complexity (O(n|S|2™(logn + mlogm))).

Table |7| shows that the computing times increase cubically (respectively linearly) with the number of
scenarios involved in SBP-R (respectively SBP-Q). While the efficiency of the algorithm for solving SBP-
Q decreases as the number of generators gets large, it outperforms the MILP-based algorithm of Fampa)
et al.| (2008)), which required over an hour of CPU on instances involving up to 6 generators, and at most
20 scenarios. For one, the linear growth of the complexity of SBP-Q in the number of scenarios allows us
to solve instances involving much larger scenarios than in previous studies. As for SBP-R, the dynamic
programming framework can address much larger instances than those considered in [Fampa & Pimentel
(2017, which were limited to 3 scenarios and 4 generators for the GC. Furthermore, our upper bound is, on
average, much tighter than the one of [Fampa & Pimentel (2017, with an optimality gap of less than 1% on
large instances.

From an economic viewpoint, it is interesting to note that the number of bids placed is always larger in
the solutions of SBP-R versus those of SBP-Q. This illustrates the financial interest for GC to place bids
independently from generators and be more flexible.

An open question was to know the quality of an optimal solution of SBP-Q considering fixed bidden
quantities compared to an optimal solution of SBP where variable bidden quantities are allowed as in classical
day-ahead markets. As the algorithm for SBP-R provides an upper bound to problem SBP, comparing the
optimal solutions of SBP-R and SBP-Q can answer this question. The gaps are generally under 1% on large
instances, which illustrates that SBP-Q is an efficient proxy model for SBP.
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5. Conclusion

The bidding problem SBP has been mentioned in the literature as a theoretical problem (Fampa et al.,
2008) but lacks practical methods to solve it. Only the variant with fixed bidding quantities SBP-Q was
solved through heuristic methods on realistic instances (Fampa et al., [2008; [Fampa & Pimentel, 2015)). As
no method could provide an upper bound on SBP, the gap to optimality of a solution of SBP-Q could not
be tracked.

The general dynamic programming framework proposed in this paper to find quality solutions for SBP
allows us to solve two variants of this problem. First, problem SBP-R provides an upper bound on the
optimal value of SBP, which is found in polynomial time. This upper bound is tighter than previous work
on large instances (Fampa & Pimentel| 2017)). Second, problem SBP-Q, previously studied in the literature
(Fampa et all [2008; [Fampa & Pimentel, |2015)), is solved to optimality and showed empirically to be an
efficient proxy model for SBP. Our method to solve SBP-Q in a polynomial time for a fixed number of
generators provides an optimal solution in significantly less time than previous studies and allows us to
consider larger instances. The numerical results are the first to illustrate that an optimal solution found
when bidding the maximum capacity of each generator is in a 1% gap of the optimal solution of SBP, a
problem that has not yet been solved to optimality. We showed in this paper that the heuristic solution
provided by the optimal solution of SBP-Q can have an objective value as bad as % of the optimal value of
SBP. Future research should explore lower bounds to this ratio to determine if SBP-Q is a constant-factor
approximation of SBP. Identifying the structure of instances on which SBP-Q performs close to SBP (as in
our numerical experiments) is also a possible avenue for research.

Our dynamic programming framework cannot practically be applied to SBP because an infinite number
of states are to be considered at each step of constructing a solution. In future research, one could try to
discretize the states as for SBP-R and use them to solve SBP to optimality by using the same dynamic
programming framework.

Problem SBP-Q was presented by [Fampa et al.| (2008) as a Bertrand model of problem SBP, optimizing
the bidding price for fixed quantities. A Cournot model could also be studied by optimizing the bidding
quantities for fixed prices (SBP-P). Our dynamic programming framework could be adapted to this problem
by finding an appropriate set of states. This could lead to an improvement in the optimal solution of SBP-Q
by considering the bidding prices of this solution as fixed and optimizing the bidding quantities.

The linear production costs should also be generalized to convex production costs to make the problem
more realistic. This could be done in SBP-Q, which could be solved using the same DP algorithm we
proposed. It is easy to see that the properties used to solve SBP-Q can be generalized to convex production
costs while preserving the solutions’ optimality. Only the complexity would be impacted regarding the

computation of production costs.
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