

Bidding in day-ahead electricity markets: a dynamic programming framework

Jérôme De Boeck^a, Bernard Fortz^{a,*}, Martine Labbé^{b,1}, Étienne Marcotte^c, Patrice Marcotte^d, Gilles Savard^e

^a*HEC Liège, Management School of the University of Liège, Liège, Belgium*

^b*Université libre de Bruxelles, Belgium and INOCS, INRIA Lille Nord-Europe, France*

^c*ServiceNow Research, Montréal, Canada*

^d*DIRO, Université de Montréal, Montréal, Canada*

^e*École Polytechnique de Montréal, Montréal, Canada*

Abstract

Strategic bidding problems have gained a lot of attention with the introduction of deregulated electricity markets where producers and retailers trade electricity in a day-ahead market run by a Market Operator (MO). All actors propose bids composed of a unit production price and a quantity of electricity to the MO. Based on these bids, the MO selects the most interesting ones and defines the spot price of electricity at which all actors are paid. As the bids of all actors determine the price of electricity, a bidding Generation Company (GC) faces a high risk regarding its profit when placing bids as the bids of competitors are not known in advance. This paper proposes a novel dynamic programming framework for a GC's Stochastic Bidding Problem (SBP) in the day-ahead market considering uncertainty over the competitor bids. We prove this problem is NP-hard and study two variants of this problem solved with the dynamic programming framework. Firstly, a relaxation provides an upper bound solved in polynomial time (SBP-R). Secondly, we consider a bidding problem using fixed bidding quantities (SBP-Q) that has previously been solved through heuristic methods. We prove that SBP-Q is NP-hard and solve it to optimality in pseudo-polynomial time. SBP-Q is solved on much larger instances than in previous studies. We show on realistic instances that its optimal value is typically under 1% of the optimal value of SBP by using the upper bound provided by SBP-R.

Keywords: Deregulated electricity markets, Strategic bidding, Dynamic Programming, Stochastic optimization

1. Introduction

Electricity markets have significantly evolved over the past years following the introduction of deregulated systems where Generation Companies (GCs) and retailers trade electricity according to a standardized procedure, to maximize the social welfare (Hobbs et al., 2000), through increased competition between the

*Corresponding author

5 agents. In this context, we consider a wholesale electricity market run by a market operator (MO) within a day-ahead scheme. In this context, producers and retailers propose to the MO, on the day before delivery, hourly bids corresponding to a unit production cost, together with associated quantities. Based on this information, the MO selects the optimal bids and sets the resulting hourly spot prices on delivery day. For a GC, the bids are associated with generators and represent the minimum unit price accepted by the GC for a
10 generator and the quantity that can be produced at that price. For a retailer, the bid price corresponds to the maximum price it is willing to pay for electricity. Based on all bids, the MO selects the cheapest production bids and the most expensive retailer bids for each hour until demand is met. Finally, the maximum price of the production bids accepted defines the hourly spot price (Hobbs & Helman, 2004; Ramos et al., 1999).

Wholesale electricity markets lead to challenging problems for electricity producers (Conejo & Prieto,
15 2001; Kahn, 1995). As spot prices depend on the bids of all agents, a GC is exposed to a high risk regarding its pricing strategy. Indeed, low bids may yield a decreasing spot price, thus negatively impacting revenues. Alternatively, high bids could be rejected and result in lost sales as analyzed in Brotcorne et al. (2022). Striking the right balance requires a thorough understanding of the market mechanism that determines the spot price of electricity (Esmaeili Aliabadi et al., 2017; Panda & Kumar Tiwari, 2018).

20 This paper addresses the issue of determining an optimal bidding strategy for a GC in a day-ahead market. This problem is complex for several reasons. First, its mathematical formulation is highly nonconvex (Kwon & Frances, 2012). Next, uncertainty concerning the competing bids induces uncertainty concerning the spot price (Madani & Van Vyve, 2015). Thirdly, the electricity production planning problem for the GC called Unit Commitment (UC), which determines the production cost of electricity, is also a challenging problem
25 in itself (Tahanaan et al., 2015).

Most of the literature concerning the bidding problem for a GC uses a deterministic approach where competitors' bids are considered as known. This removes the uncertainty over the spot prices defined by the bids of the GC (de la Torre et al., 2002). The focus is then on integrating a UC model to have realistic production costs (Steeger et al., 2014) in a uniform pricing market. Further market regulations features have
30 also been considered, such as bidding curves associated to generators (Bakirtzis et al., 2007), or coupled day-ahead markets linked by a transmission network, such as the European network (Kardakos et al., 2014; Brotcorne et al., 2022). Mathematically, the problem is most commonly formulated as a bilevel optimization problem involving the bidding GC at the upper level and the MO at the lower level, where hourly spot prices based on the bids of the GC are determined (Bakirtzis et al., 2007; Fampa et al., 2008; Ruiz & Conejo, 2009;
35 Zhang et al., 2011; Kardakos et al., 2014; Dalby, 2017; Brotcorne et al., 2022). Based on the characterization of lower-level optimality via the Karush-Kuhn-Tucker conditions, the problem can be reformulated and solved (for small instances) as an equivalent mixed integer linear program (MILP).

Other approaches explicitly embed uncertainty within the formulation while simultaneously relaxing some

production or regulation constraints. For instance, Baillo et al. (2004) consider uncertain residual demand functions to estimate the possible spot prices depending on the bidding quantities of the GC under the assumption of linear production costs. Computationally, the model is formulated as a MILP and solved using a Benders decomposition algorithm. Beraldi et al. (2008) consider a UC formulation with transmission constraints, where uncertainty over competitor bids is modeled through scenarios. The drawback of this approach is that it uses predetermined spot prices. The reformulation of the problem as a MILP is then solved on a set of small instances. In Fampa et al. (2008), production costs are linear, and competing bids are represented by a set of scenarios. The resulting model SBP-Q is then solved by a primal-dual heuristic algorithm whose performance is assessed on instances that can be solved to optimality. For large instances, Fampa & Pimentel (2015) propose a genetic algorithm, while, in Fampa & Pimentel (2017), the upper bound obtained by solving a linear program is validated on instances of reduced size. Ostadi et al. (2020) use risk-based portfolio optimization to determine bidding strategies for a GC. Fixed bidding prices are used as chromosomes in a genetic algorithm. The associated bidding quantities are determined through a Markowitz model with an associated risk in terms of acceptance. Deterministic bids of competitors are estimated through historical data and used in the Markowitz model. The bidding problem from the point view of a retailer is studied by Song & Amelin (2018). From this side, no production cost must be considered; the new difficulty lies in the real-time demand of the consumers. The problem is modeled through a MILP formulation, optimizing the Condition Value-at-Risk of the profit. The uncertainty is modeled through a set of scenarios consisting of the aggregated production of GCs, and an elasticity matrix is used to represent the deviation in real-time demand. This leads to a large formulation considering only a limited number of scenarios.

In the present paper, we address the *Stochastic Bidding Problem* (SBP) to determine a bidding strategy that maximizes the expected profit of a GC. Solving SBP to optimality is very challenging (and an open question), we tackle this problem by studying two variants of this problem: the first one provides a heuristic solution of high quality, and the second one provides a tight upper bound that allows to assess the quality of the heuristic solution. We assume that production costs are linear, and uncertainty enters the model via a set of scenarios representing competitors' bids. The MO uses uniform pricing, and network constraints are not considered as in Fampa et al. (2008); Fampa & Pimentel (2015, 2017). The resulting model is a generalization of SBP-Q that embeds the bidding quantities as decision variables. Problem SBP-Q is used as a proxy model for SBP. The contribution of this work is twofold. First, we prove that SBP and SBP-Q are both NP-hard. Next, based on properties of the bidding prices, we develop an exact dynamic programming (DP) framework for two variants of SBP. The first one (SBP-R) consists of a relaxation of SBP where the GC may place as many bids as desired, independently from the generators. It is solved by DP in polynomial time, providing an upper bound on SBP. The second one is the problem studied by Fampa et al. (2008) using

predetermined bidding quantities (SBP-Q), which is solved to optimality by DP in pseudo-polynomial time with respect to the number of generators. On both variants, DP performs better than previously proposed
75 algorithms. In numerical experiments, we observe that the proxy model SBP-Q finds near-optimal solutions for SBP, the solution quality being assessed by the upper bound provided by SBP-R.

The rest of the paper is organized as follows. Section 2 provides a description of SBP, its two variants, as well as some general properties of the spot price and bid prices. We also show that SBP is NP-hard. Section 3 proposes a DP framework for SBP, which is adapted to compute an upper bound on the optimal value of
80 the problem in Section 3.2 and to solve SBP-Q to optimality in Section 3.3. Numerical results are presented in Section 4. Section 5 concludes with suggestions for algorithmic improvements.

2. The stochastic bidding problem

2.1. Problem Description

The *Stochastic Bidding Problem* faced by a GC consists in placing revenue-maximizing bids towards the
85 market operator, together with productions for its generators, within the day-ahead market. The day-ahead market consists of a trading platform for producers and retailers, which is run by a *Market Operator* (MO) using uniform pricing and ignoring transmission constraints. Hourly bids composed of a unit price and a quantity are proposed by all actors to the MO the day before delivery. Once all bids are received, the MO selects the bids maximizing the social welfare, settles quantities traded between actors, and fixes the resulting
90 spot price for electricity for each time period (O'Neill et al., 2005). Without loss of generality, we consider only bidding producers and a fixed demand; this will be detailed in Section 2.5. In the day-ahead market, the spot price occurs at the intersection of the aggregate production and demand curves, as illustrated in Figure 1. In this example, the demand is equal to 10, and there are four bids: (2,4), (5,3),(8,1) and (10,3). Bids below the spot price are traded, bids above the spot price are not traded, while bids that match the
95 spot price are partially traded to meet the demand. All bids are fully traded in this example, except the last one for which only a quantity of 2 is traded.

Throughout this paper, we assume that production costs are linear and that the bids of the competing GCs and the fixed total demand are estimated through a set of scenarios. It follows from the linearity assumption that the problem can be decomposed by time period. From now on, GC will refer to the
100 optimizing GC.

Let the GC own a set of generators J , $|J| = m$ and place bids $\{(\pi_j, q_j)\}_{j \in J}$ on a day-ahead market, π_j representing the unit bid price of electricity and q_j the bidden quantity. Each generator $j \in J$ has an associated unit production cost c_j and a maximum production capacity \bar{q}_j . The MO sets a maximum bid price of $\bar{\pi}$, and we assume that $c_j \leq \pi_j \leq \bar{\pi}$ for all $j \in J$. This assumption is made without loss of generality

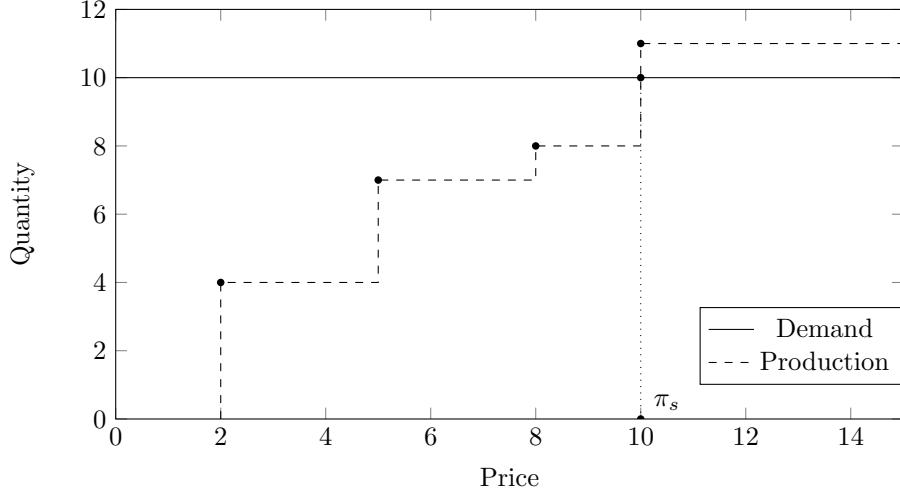


Figure 1: Aggregated production curve and spot price

105 as bids not respecting this condition are either refused by the MO or cannot produce a positive income. Generators in J are indexed in non-decreasing order of cost, that is, $c_j \leq c_{j'}$ if $j, j' \in J, j < j'$.

The competitors own a set of generators \tilde{J} , $|\tilde{J}| = \tilde{m}$. The uncertainty over the total demand and competing bids can be represented through a set of scenarios S (Birge & Louveaux, 2011) each consisting of:

110

- p_s : the probability of scenario s ,
- d_s : the total demand on the market,
- $\{(\tilde{\pi}_j^s, \tilde{q}_j^s)\}_{j \in \tilde{J}}$: the bids of the competitors, with $0 < \tilde{\pi}_j^s \leq \bar{\pi}$ and $0 < \tilde{q}_j^s$. We assume that $\sum_{j \in \tilde{J}} \tilde{q}_j^s > d_s$ to ensure the demand can be met in each scenario. We consider that the bidding prices of competitors are distinct as competitor bids at the same price can be aggregated into a single bid from the perspective 115 of the GC.

In a day-ahead market, the GC places its bids before knowing what scenario occurs. It must thus consider the information of all scenarios in its bidding strategy. A single GC is likely to represent only a small proportion of the total number of generators bidding in this market. Without loss of generality, we consider in the following that $m < \tilde{m}$ to simplify the complexity analysis of the algorithms proposed.

120 In a given scenario $s \in S$, the profit of the GC depends on the quantity q_j^s traded by the MO for each generator $j \in J$ and the spot price π^s of electricity. The MO determines these values by maximizing the social welfare based on the bids received. The MO can trade any proportion of a bid from the GC or a competitor. If the MO receives a set of bids $\{(\tilde{\pi}_j, \tilde{q}_j)\}_{j \in J^{MO}}$ in scenario $s \in S$, including the bids of the GC,

and trades a quantity q_j^s for each $j \in J^{MO}$, $J^{MO} = J \cup \tilde{J}$, its problem can be formulated as the mathematical
125 program

$$\begin{aligned}
(\text{SPOT}^s) \quad & \min \sum_{j \in J^{MO}} \pi_j q_j^s \\
\text{s.t.} \quad & \sum_{j \in J^{MO}} q_j^s = d_s \quad (\pi^s) \\
& 0 \leq q_j^s \leq \tilde{q}_j, \quad \forall j \in J^{MO}
\end{aligned} \tag{1}$$

It has been shown by Baker & Taylor (1979); Balachandran & Ramakrishnan (1996) that the spot prices π^s are the optimal values of the dual variables associated with the demand constraints (1) of (SPOT^s) .

As the MO solves the maximization welfare problem only once all bids are received, we face a two-stage Stackelberg game, where the leader GC places revenue-maximizing bids, anticipating the spot price and
130 quantities traded determined by the MO. This problem has been presented by Fampa et al. (2008) as the following bilevel problem:

$$\begin{aligned}
(\text{SBP}) \quad & \max_{s \in S} \sum_{j \in J} (\pi^s - c_j) q_j^s \\
\text{s.t.} \quad & 0 \leq \pi_j \leq \bar{\pi}, \quad \forall j \in J \\
& 0 \leq q_j \leq \bar{q}_j, \quad \forall j \in J \\
& (q_j^s, \pi^s) \in \arg \min \left(\sum_{j \in J} \pi_j q_j^{s'} + \sum_{j \in \tilde{J}} \tilde{\pi}_j^s q_j^{s'} \right) \quad s \in S \\
\text{s.t.} \quad & \sum_{j \in J \cup \tilde{J}} q_j^{s'} = d_s \quad (\pi^s) \\
& 0 \leq q_j^{s'} \leq q_j \quad j \in J \\
& 0 \leq q_j^{s'} \leq \tilde{q}_j \quad j \in \tilde{J}
\end{aligned}$$

Note that this formulation is invalid as the spot prices π^s , which are not available in closed form, must enter the objective function. This problem is generally formulated as a Mathematical Program with Equilibrium Constraints (MPEC) in the literature to incorporate the quantities traded and the spot prices of the lower-
135 level problem (Bakirtzis et al., 2007; Ruiz & Conejo, 2009; Kardakos et al., 2014; Dalby, 2017; Brotcorne et al., 2022). We rather chose an approach based on the characterization of the spot price. We assume that given equivalent lower-level solutions, the one maximizing the GC's revenue is selected. This hypothesis corresponds to the optimistic assumption (Loridan & Morgan, 1996) and ensures an equilibrium always exists, which is a common assumption for bilevel formulations or MPECs. Namely,

140 • If several spot prices are available, the highest one is selected, which is consistent with classical economic theory for the spot price of a resource (Littlechild, 1988).

- If several bid prices are equivalent for the MO, the one preferred by the GC will be selected. This can occur if several bids are made at the spot price. Practically, the GC can decrease the bidding price by a small value ϵ to ensure this priority with a negligible impact on profit if $\epsilon \rightarrow 0$.

145 *2.2. Variants of SBP*

Two variants of SBP are considered in this paper:

1. The *Stochastic Bidding Problem Relaxation* (SBP-R), in which the GC can place bids independently from generators. A solution of SBP-R consists in a set of bids $B = \{(\pi_k, q_k)\}_{k \in \{1, \dots, K\}}$ where K is an arbitrary number of bids and such that $\sum_{k=1}^K q_k \leq \sum_{j \in J} \bar{q}_j$. Once the MO has selected the bids, the GC dispatches the production to its cheapest generators.

150 A solution of SBP is feasible for SBP-R and can have a higher value in SBP-R, as the production of each generator can be split across multiple bids, increasing bidding flexibility. The optimal value of SBP-R thus provides an upper bound on SBP.

2. The *Stochastic Bidding Problem with fixed Quantities* (SBP-Q), a constrained version of SBP in which the bidden quantity of each generator is set to its maximum production capacity, $q_j = \bar{q}_j$ for all $j \in J$. A solution of SBP-Q consists in a set of bids $B = \{(\pi_j, \bar{q}_j)\}_{j \in J}$ where only bid prices π_j need to be determined. In economic terms, this corresponds to a Bertrand model where a company tries to optimize its profit by adjusting the price of a resource.

155 This problem is used as a proxy model for SBP and has previously been studied by Fampa et al. (2008), who presented a primal-dual heuristic and a genetic algorithm (Fampa & Pimentel, 2015) to find a feasible solution. The quality of this solution was first validated by using a strong MILP formulation to obtain the optimal value of SBP-Q. An upper bound on the optimal solution was found later by studying a relaxation of the problem and addressing it by a cutting plane method (Fampa & Pimentel, 2017).

160 Let z^x be the optimal value of problem x . We have

$$z^{SBP-Q} \leq z^{SBP} \leq z^{SBP-R}.$$

The quality of a feasible solution for SBP provided by the proxy model SBP-Q can be evaluated through the optimal value of SBP-R.

165 *2.3. Spot and bid prices*

The spot prices defined in a day-ahead market must respect some basic rules to prevent trading at loss or ending up with a spot price strictly higher than bids not traded (Madani & Van Vyve, 2015). More formally,

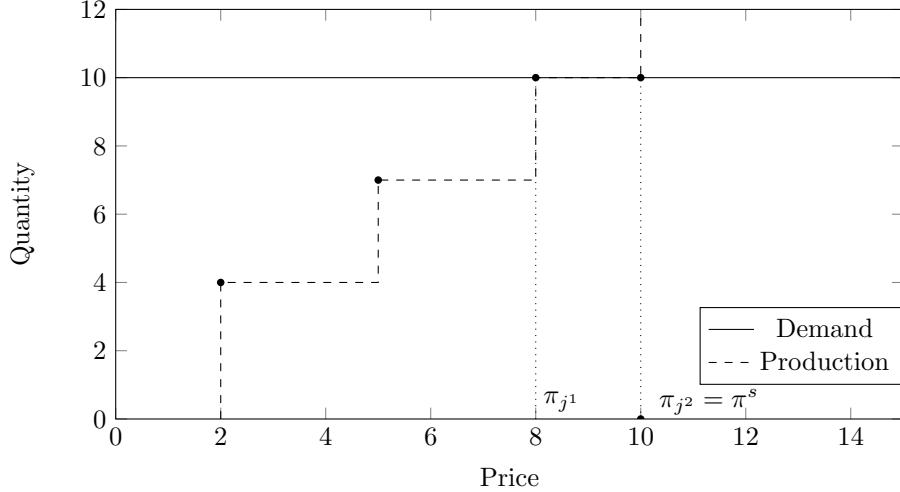


Figure 2: Multiple spot price scenario

for a set of bids $\{(\tilde{\pi}_j, \tilde{q}_j)\}_{j \in J^{MO}}$ ordered in non-decreasing order of price and an optimal solution of SPOT^s with values q_j^{s*} we must have that

$$\tilde{\pi}_{j^1} \leq \pi^s \leq \tilde{\pi}_{j^2}, \quad j^1 = \max\{j \in J^{MO} | q_j^{s*} > 0\}, \quad j^2 = \min\{j \in J^{MO} | q_j^{s*} = 0\}$$

Generator j_1 corresponds to the first generator meeting the demand while generator j_2 corresponds to the first generator exceeding the demand. Note that formulation SPOT^s, akin to a continuous knapsack problem, is solved by selecting the cheapest bids that meet the demand. As a result,

$$j^1 = \min\{j \in J^{MO} | \sum_{j' \in J^{MO}, j' \leq j} q_{j'}^s \geq d_s\},$$

$$j^2 = \min\{j \in J^{MO} | \sum_{j' \in J^{MO}, j' \leq j} q_{j'}^s > d_s\}$$

and the spot price lies in the interval $[\pi_{j^1}, \pi_{j^2}]$. In the example of Figure 1, $j^1 = j^2$ and $\pi_{j^1} = \pi_{j^2}$ as the demand is strictly met only at a price equal to 10. Alternatively, the demand can be exactly met for an interval of price values, in which case $j^1 \neq j^2$, as illustrated in Figure 2. In this example, the bids are (2,4), (5,3), (8,3) and (10,3). The quantity bidden at a price of 8 in Figure 1 has been increased to meet the demand at that price. It follows that the demand is met for a price between 8 and 10. As the highest spot price is always selected when there are several possibilities (Littlechild, 1988), the MO sets the spot price to π_{j^2} . These observations are summarized in the following lemma.

Lemma 1. *Given a demand d_s and a set of bids $\{(\pi_j, q_j)\}_{j \in J^{MO}}$, the highest spot price π^s is equal to π_{j^*} , where $j^* = \min\{j \in J^{MO} : \sum_{j' \in J^{MO}, \pi_{j'} \leq \pi_j} q_{j'} > d_s\}$.*

As a consequence of Lemma 1, the continuous bidding prices π_j to consider in an optimal solution of SBP can be restricted to a finite set that depends on the competitors' bids throughout all possible scenarios, as shown by Fampa et al. (2008). Let Λ denote this set of increasing and distinct bid prices of the competitors in scenarios of S , where the values 0 and $\bar{\pi}$ are added if not present in the scenarios, that is, $\Lambda = \{\tilde{\pi}_j^s | s \in S, j \in \tilde{J}\} \cup \{0, \bar{\pi}\}$. Let I denote the set of price indices in Λ with $n = |\Lambda| - 1$. The i^{th} price in Λ is denoted λ_i with $\lambda_0 = 0, \lambda_n = \bar{\pi}$ and $\lambda_i < \lambda_{i'}$, for $i, i' \in I$ and $i < i'$. Without loss of generality, we consider that if the GC does not place a bid for some given generator $j \in J$, then $\pi_j = \bar{\pi}$. As we consider there are \tilde{m} bidding prices in each scenario, $\tilde{m} \leq n$. We also consider $m < \tilde{m}$, so $m < n$. This observation is made to simplify the notation in the complexity analysis of the algorithms presented in Section 3.

For each price $i \in I$ and scenario $s \in S$, the residual demand r_i^s is defined as the difference between the demand d_s and the total bidden quantities of competitors at prices strictly smaller than λ_i :

$$r_i^s = d_s - \sum_{\substack{j \in \tilde{J} \\ \tilde{\pi}_j^s < \lambda_i}} \tilde{q}_j^s, s \in S, i \in I$$

Table 1 presents the residual demands for the example of Figure 2.

λ_i	2	5	8	10	> 10
r_i^s	10	6	3	0	< 0

Table 1: Residual demands for the example of Figure 2

According to Lemma 1, the spot price is the lowest price λ_i such that the total quantity bidden by the GC up to this price is strictly greater than r_{i+1}^s .

2.4. Theoretical complexity

In this section, we consider the *decision version of SBP* (DBP) that consists in determining whether SBP has an optimal solution with a given value V and show that it is strongly NP-complete through a reduction from the 3-Partition problem (see Garey & Johnson (1979)). Given a positive integer B and a set A of $3n$ positive integers $\{a_1, \dots, a_{3n}\}$ such that $B/4 < a_j < B/2$ for all $j \in \{1, \dots, 3n\}$ and $\sum_{j=1}^{3n} a_j = nB$, the 3-Partition problem consists in determining whether the set A can be partitioned into n sets A_1, \dots, A_n , each containing exactly three elements, such that $\sum_{a \in A_i} a = B$.

Theorem 2. *Problem SBP is strongly NP-hard.*

Proof. The result follows from the reduction of 3-Partition to SBP. Given an instance of 3-Partition, a corresponding instance of DBP can be constructed as follows:

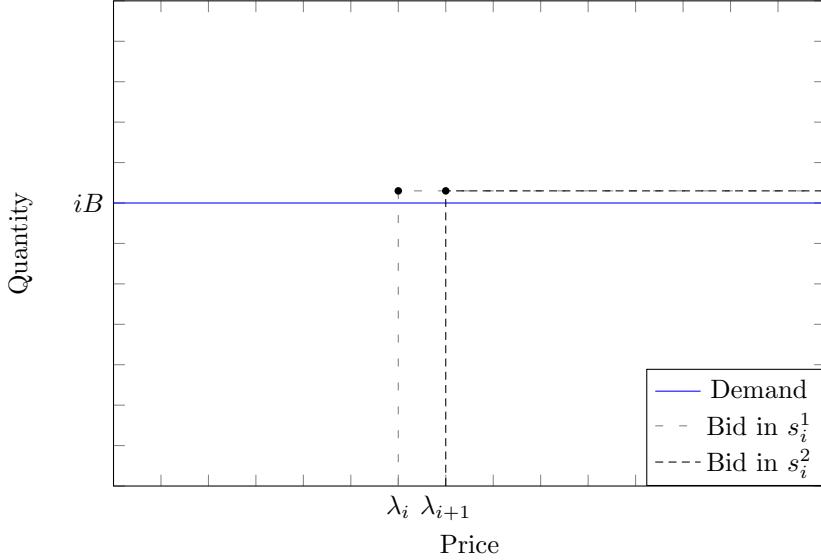


Figure 3: Scenarios s_i^1 and s_i^2 generated from 3-Partition

- A generator j is created for each element in the set A of the 3-Partition problem. The maximum production capacity \bar{q}_j equal to a_j , the j^{th} smallest value a_j in A , and the production cost is set to 0. The total production capacity of the GC is then $\sum_{j=1}^{3n} \bar{q}_j = nB$.
- 2n scenarios $S = \{s_i^1, s_i^2 | i \in \{1, \dots, n\}\}$ are created. For each couple $s_i = (s_i^1, s_i^2)$, we set:
 - the probabilities $p_{s_i^1} = p_{s_i^2} = \frac{1}{2n}$ to have equiprobable scenarios,
 - the demands $d_{s_i^1}$ and $d_{s_i^2}$ are equal to value iB ,
 - scenario s_i^1 contains a unique bid $(i, iB + 1)$ from the competition,
 - and scenario s_i^2 contains a unique bid $(i + 1, iB + 1)$ from the competition.

As a consequence, there exists a competitor bid at each price between 1 and $n + 1$. We thus have $\Lambda = \{0, 1, \dots, n + 1 = \bar{\pi}\}$ and $\lambda_i = i$.

- The value V used as potential optimal value for DBP is defined by $V = \frac{B}{2n} \sum_{i=1}^n i(2i + 1)$.

Figure 3 illustrates a pair of scenario s_i^1 and s_i^2 .

We can observe that if the GC does not place any bid, the spot prices in scenarios s_i^1 and s_i^2 are respectively λ_i and λ_{i+1} . These values are the highest possible spot prices that can be achieved in these scenario as an additional bid of the GC could only potentially decrease them.

Consider a set of bids of the GC, let Q_i be the total bidden up to price λ_i included, $\mathcal{Q} = \{Q_0, Q_1, \dots, Q_n\}$ the set of cumulative bidding quantities at each price λ_i , and $\bar{R}_s(\mathcal{Q})$ an upper bound on the maximum profit

in scenario s based on \mathcal{Q} . The upper bounds $\bar{R}_s(\mathcal{Q})$ can be computed as follow for each pair of scenarios s_i^1 and s_i^2 :

$$\bar{R}_{s_i^1}(\mathcal{Q}) = \begin{cases} \lambda_i Q_i & \text{if } Q_i < iB, \\ \lambda_i iB & \text{if } Q_i = iB, \\ \lambda_i iB & \text{if } Q_i > iB. \end{cases} \quad \bar{R}_{s_i^2}(\mathcal{Q}) = \begin{cases} \lambda_{i+1} Q & \text{if } Q_i < iB, \\ \lambda_{i+1} iB & \text{if } Q_i = iB, \\ \lambda_i iB & \text{if } Q_i > iB. \end{cases}$$

For $\bar{R}_{s_i^1}(\mathcal{Q})$, if $Q_i < iB$, the demand is not met by the bid of the GC who trades the total quantity Q_i due to priority over its competitors. If $Q_i = iB$ or $Q_i > iB$, then the quantity meeting the demand iB is traded. In all cases, the spot price is at most λ_i . The same observations can be made for $\bar{R}_{s_i^1}(\mathcal{Q})$ with a difference between the two last case as if $Q_i > iB$, the demand will be exceeded at price λ_i , making the spot price fall to this value by Lemma 1. For both scenarios s_i^1 and s_i^2 , if $Q_i = iB$, then the profit is the highest. This is true for all $i \in \{1, \dots, n\}$.

An upper bound on the optimal value of SBP is thus obtained if the upper bound is reached in all scenarios if $Q_i = iB$ for $i \in \{1, \dots, n\}$. Since $\lambda_i = i$, this upper bound is equal to

$$V = \frac{\sum_{i=1}^n (\lambda_i + \lambda_{i+1})iB}{2n} = \frac{\sum_{i=1}^n (2i+1)iB}{2n}.$$

An instance of DBP built from a 3-Partition instance has a solution if $Q_i = iB$ for all $i \in \{1, \dots, n\}$, i.e., the total production bidden at each price λ_i is equal to B for all $i \in \{1, \dots, n\}$. If such a solution exists, all generators are thus bidding their maximum capacity since $\sum_{j=1}^{3n} \bar{q}_j = nB$. With such a set of bids, the upper bound $\bar{R}_s(\mathcal{Q})$ is reached in every scenario, and the average profit is equal to V . The quantities of generators $j \in J$ bidden at price λ_i for $i \in \{1, \dots, n\}$ correspond to the integers values a_j composing set A_i in the solution of the original 3-Partition problem. \square

Theorem 3. *Problem SBP-Q is strongly NP-hard.*

Proof. The proof is the same as for Theorem 2 as all generators are bidding their maximum capacity in the reduction. \square

2.5. Considering a fixed demand

We mentioned in the problem description that considering a fixed demand is not restrictive. Indeed, if there exists a scenario where retailer bids are considered, it can be transformed into a scenario with a constant demand and only production bids as follows:

- add the bidden quantity of all retailer bids to obtain the fixed demand,
- consider each retailer bid as a competitor production bid.

The residual demands obtained at each bidding price are identical in both scenarios, as well as the resulting spot price. An illustration of this procedure is provided in Figure 4.

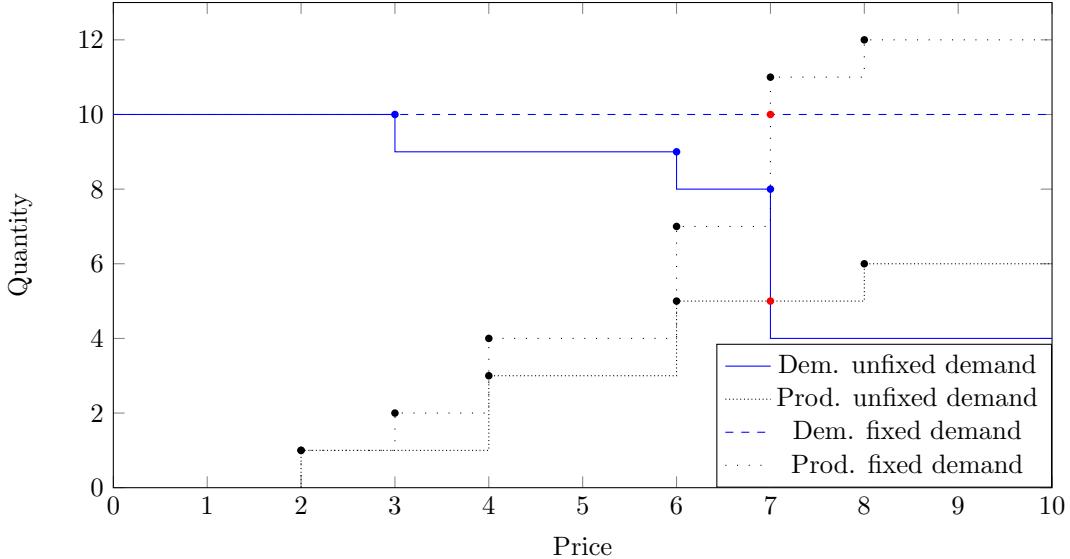


Figure 4: Identical scenario examples with unfixed and fixed demand

3. A dynamic programming framework

In this section, we introduce a dynamic programming framework for determining optimal bid policies among a finite number of such policies provided by Lemma 1. This framework is based on a recursive equation for computing the profit associated with a given set of bids and is used to solve to optimality SBP-R, providing an upper bound on SBP, as well as the proxy model SBP-Q. The bidding prices in Λ are used as stages of the dynamic programming framework. The states used for SBP-R and SBP-Q are described in the corresponding sections below. We first summarize the notation used throughout this paper in Table 2.

255 *3.1. Recursive profit computation*

Our dynamic programming framework builds a solution by non-decreasing bidding prices. When adding a bid (π_j, q_j) with a price higher or equal to existing bids of the GC, the MO trades a quantity q_j^{*} of this new bid, minimizing its objective in each scenario $s \in S$ and defining new spot prices π^s as illustrated in Figure 5. Initially, the competitors place bids $(2, 2)$, $(5, 2)$, $(8, 1)$, $(10, 3)$ and $(12, 2)$ in this scenario, while the 260 GC places bids $(2, 2)$ and $(5, 1)$. With these bids, the spot price is set at 10, the price at which the demand is met. This situation is illustrated in the top left figure.

When placing a new bid (π_j, q_j) at a price $\lambda_i \in \Lambda$ higher or equal to 5, there are three possibilities regarding the impact on the GC's profit:

- If the total bidden quantity Q is lower or equal to the residual demand r_i^s , then the new bid is entirely traded, as illustrated in the top right figure. The spot price does not change in this example, but this

Notation	Definition
J	Generators of the bidding GC.
$m = J $	Number of generators of the bidding GC.
c_j	Unit production cost of generator $j \in J$.
\bar{q}_j	Maximum production capacity of generator $j \in J$.
\bar{q}^J	Total generation capacity of the GC, $\sum_{j \in J} \bar{q}_j$.
(π_j, g_j)	Unit price and quantity of the bid associated to generator $j \in J$.
\tilde{J}	Generators of the competitors.
$\tilde{m} = \tilde{J} $	Number of generators of the competitors.
$J^{MO} = J \cup \tilde{J}$	Set of generators bidding to the MO.
$\bar{\pi}$	Maximum bidding price allowed by the MO.
S	Set of scenarios.
p_s	Probability of scenario $s \in S$.
d_s	Demand in scenario $s \in S$.
$\{(\tilde{\pi}_j^s, \tilde{q}_j^s)\}_{j \in \tilde{J}}$	The set of competitor bids in scenario $s \in S$.
q_j^s	Quantity of bid $j \in J^{MO}$ and $s \in S$ traded by the MO.
π^s	Spot price of electricity in scenario $s \in S$.
Λ	Set of bidding prices of competitors in all scenarios $\cup \{0, \bar{\pi}\}$.
n	Number of prices in Λ .
$I = \{0, 1, \dots, n\}$	Indices of increasing price in Λ .
λ_i	$i \in I$, i^{th} price of Λ ordered by value.
r_i^s	Residual at price $i \in I$ and scenario $s \in S$. Maximum quantity the GC can trade with priority over competitors up to price λ_i in s .
\bar{q}_i^J	Total generation capacity up to price λ_i , $\sum_{j \in J, c_j \leq \lambda_i} \bar{q}_j$.
$B = \{(\pi_j, q_j)\}_{j \in J'}$	Set of bids placed by the GC.
$P(B)$	Profit of a set of bids B .
$R_i(\bar{J}, Q)$	Maximum profit by bidding a total quantity Q with generators \bar{J} up to price λ_i .
$\Delta^s(i, j, Q, q_j)$	Impact on profit in scenario s of bidding a quantity q_j with generator $j \in J$ at price λ_i , assuming existing bids have a lower price and a total quantity Q .

Table 2: Notation for SBP

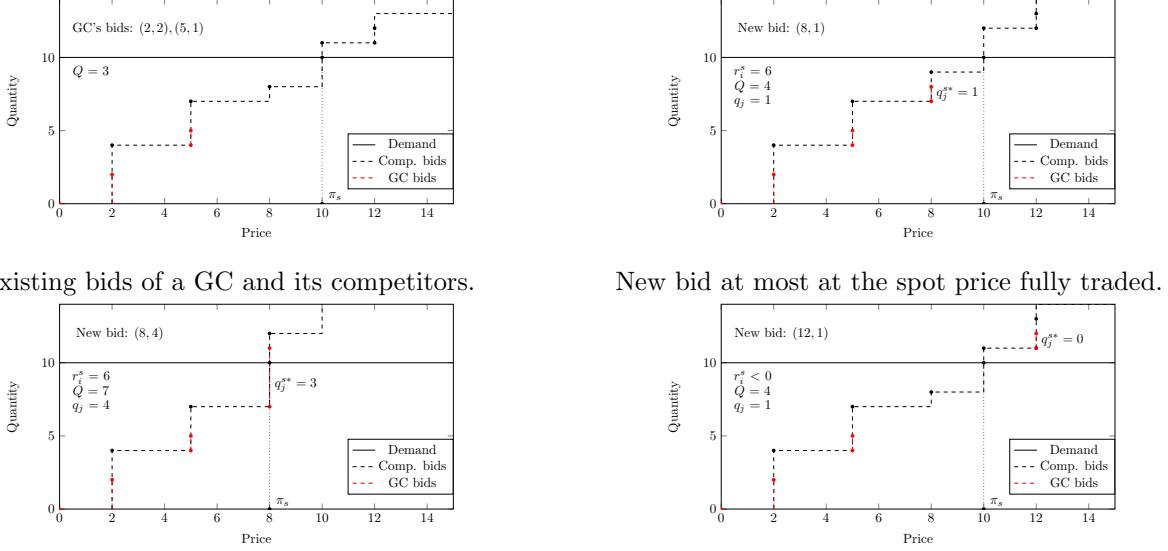


Figure 5: Impact on profit when adding a new bid at a higher price than others.

is not always true. If the bid $(5,4)$ had been added instead, the demand would have been exceeded at a price of 5, making the spot price fall to this value.

- If the residual demand r_i^s is nonnegative, the total bidden quantity prior to the new bid is strictly smaller than r_i^s , and the total bidden quantity Q exceeds it with the new bid, then the new bid is partially traded, as illustrated in the bottom left figure. In this case, the spot price falls to the bidden price as the new bid exceeds the demand.
- Otherwise, the residual demand r_i^s is already met by the total bidden quantity Q prior to the new bid, the new bid is not traded, and the spot price remains unchanged.

In the first two cases, a higher quantity is traded but at a potentially lower price. In the third case, the profit remains unchanged. What can be observed is that in a given scenario $s \in S$, the impact on profit of bid (π_j, q_j) only depends on the total bidden quantity Q and the residual demand r_i^s . These values allow us to compute the spot prices with and without the new bid, the total quantity traded, and the production cost of the new bid that is traded. The impact on profit of bid (π_j, q_j) in each scenario can thus be computed, as well as the impact on the total expected profit. We formalize this to compute the profit of a set of bids by recursively removing the bids with the maximum price.

Consider a set of bids $B = \{(\pi_j, q_j)\}_{j \in J(B)}$ placed by the GC, where $J(B)$ denotes the set of generators associated with B , and $P(B)$ is the profit of the solution to SBP obtained by setting $(\pi_j, q_j) = (0, 0)$, for all $j \in J \setminus J(B)$. Let $Q = \sum_{j \in J(B)} q_j$ be the total bidden quantity, $B^{-j} = B \setminus \{(\pi_j, q_j)\}$ be the set of bids

excluding generator j for $j \in J(B)$, and $J^{\max} = \{j \in J(B) : \pi_j = \lambda_i \geq \pi_k, k \in J(B)\}$ the maximum bidden price in B .

Lemma 4. *The profit of a set of bids B can be computed recursively as follows:*

$$P(B) = \max_{j \in J^{\max}} \{P(B^{-j}) + \sum_{s \in S} p^s \Delta^s(i, j, Q, q_j)\},$$

where $\Delta^s(i, j, Q, q_j)$ is the impact on profit in scenario $s \in S$ adding a bid (λ_i, q_j) with generator j to B^{-j} and is computed by

$$\Delta^s(i, j, Q, q_j) = \pi^s(Q)(q_j^{s*} + Q - q_j) - \pi^s(Q - q_j)(Q - q_j) - c_j q_j^{s*} \quad (2)$$

if $Q - q_j \leq r_i^s$ (0 otherwise),

the quantity of (π_j, q_j) traded is

$$q_j^{s*} = \min\{q_j, r_i^s - Q + q_j\},$$

and the spot price in scenario s for a total bidden quantity x in (2) is

$$\pi^s(x) = \min\{\lambda_{i'} \in \Lambda : x > r_{i'+1}^s\}. \quad (3)$$

Proof. For each scenario $s \in S$, the incorporation of the bid (π_j, q_j) to the set B^{-j} results in one of the following two cases:

- $Q - q_j > r_i^s$: the bids $(\pi_k, q_k) \in B^{-j}$ are sufficient to satisfy the whole demand. The new bid is not traded, and the profit remains constant.
- $Q - q_j \leq r_i^s$: all bids $(\pi_k, q_k) \in B^{-j}$ are traded and the new bid is partially or fully traded. The difference in profit $P(B) - P(B^{-j})$ is the sum of the differences in income and production costs. The difference in production cost depends on the quantity $q_j^{s*} = \min\{q_j, r_i^s - Q + q_j\}$ produced with generator j that is traded. Concerning the difference in income, the total quantity traded will increase by q_j^{s*} , and the spot price, which either stays constant or decreases, is determined according to Equation (3).

□

From Lemma 4, we can conclude that the impact on the expected profit of adding a bid with a strictly higher price to a set of existing bids (i.e., $|J^{\max}| = 1$) depends only on the new bid, the residual demand, and the total bidden quantity. This change is computed by averaging quantities $\Delta^s(i, j, Q, q_j)$ representing the difference in profit when adding a bid in each scenario following their probability distribution. In the case we add a bid with a price equal to the highest price of a set of existing bids (i.e., $|J^{\max}| > 1$), the same computation can be performed for all generators in J^{\max} . Furthermore, quantities $\Delta^s(i, j, Q, q_j)$ can

305 be determined in logarithmic time based on residual demands. Now, let $R_i(\bar{J}, Q)$ denote the maximum expected profit for the GC if it places bids (π_j, q_j) only for generators $j \in \bar{J}$ up to price λ_i with a total quantity Q , that is, $\pi_j \leq \lambda_i$ for all $j \in \bar{J}$ and $\sum_{j \in \bar{J}} q_j = Q$. We consider $R_i(\emptyset, 0) = 0$ for all $i \in I$ and $R_0(\bar{J}, Q) = 0$ for all $\bar{J} \subseteq J$ and $0 \leq Q \leq \bar{q}^{\bar{J}} = \sum_{j \in \bar{J}} \bar{q}_j$.

310 Consider the set of bids B bidden up to price λ_i leading to a profit $R_i(\bar{J}, Q)$. Either no bid is placed at price λ_i , and $R_i(\bar{J}, Q) = R_{i-1}(\bar{J}, Q)$, or there exists a bid (π_j, q_j) placed at price λ_i . In the second case, by Lemma 4, $R_i(\bar{J}, Q)$ can be computed recursively if we know the bid (π_j, q_j) . The bidden generator j is a generator in \bar{J} , and the quantity q_j must respect the production capacity of j as well as the total quantity Q . The following proposition shows how to determine the expected profits $R_i(\bar{J}, Q)$ recursively.

Proposition 5. *Let \bar{J} be a subset of generators of J and Q be such that $0 \leq Q \leq \bar{q}^{\bar{J}}$. Then,*

$$R_i(\bar{J}, Q) = \max\{R_{i-1}(\bar{J}, Q), \quad (4)$$

$$\max_{j \in \bar{J}} \max_{0 \leq q \leq \min\{\bar{q}_j, Q\}} R_i(\bar{J} \setminus \{j\}, Q - q) + \sum_{s \in S} p^s \Delta^s(i, j, Q, q)\}. \quad (5)$$

315 *Proof.* We distinguish two cases.

CASE 1:

In the optimal set of bids for the GC corresponding to $R_i(\bar{J}, Q)$, all bid prices are strictly lower than λ_i . Then $R_i(\bar{J}, Q) = R_{i-1}(\bar{J}, Q)$.

CASE 2:

320 There exists a bid (π_j, q_j) such that $\pi_j = \lambda_i$. It follows that $0 < q_j \leq \min\{\bar{q}_j, Q\}$, and Lemma 4 applies. The maximum profit is then evaluated by taking the maximum over all possible indices $j \in \bar{J}$ and all possible values of q .

□

To compute $R_i(\bar{J}, Q)$ with Equation 4, we would need to discretize the values to consider for q for 325 a recursive computation of $R_i(\bar{J}, Q)$. The optimal value of SBP would be $R_n(J, Q)$, but the total bidden quantity Q in an optimal solution of SBP remains unknown, preventing us from solving SBP. In the following sections, we answer these questions on the two variants of SBP and derive an upper bound on the optimal value of the problem through SBP-R, together with a feasible solution from the proxy model SBP-Q.

3.2. Dynamic programming for SBP-R

330 In the *Stochastic Bidding Problem Relaxation* (SBP-R), we consider bids must not be assigned to generators. The GC can place as many bids as desired without exceeding its total production capacity. By Lemma 1, the bidding prices can be restricted to Λ , and are used as stages in our dynamic programming algorithm. A solution $B = \{(\lambda_i, q_i)\}_{i \in I}$ of SBP-R consists in determining what quantity q_i to bid at each price $\lambda_i \in \Lambda$. Table 3 lists the main notation used for SBP-R.

Notation	Definition
$B_\Lambda = \{(\lambda_i, q_i)\}_{i \in I}$	Set of bids associated to prices in Λ . Each bid has a price $\lambda_{i'} \in \Lambda$ and quantity $q_{i'}$ representing the bidden quantity at that price.
$c(Q)$	Minimum production cost for quantity Q .
Q_i	Total quantity bidden up to price λ_i , $Q_i = \sum_{i' \in I, i' \leq i} q_{i'}$.
$P(B_\Lambda)$	Profit of a set of bids B_Λ
$R_i^*(Q)$	Maximum profit by bidding a total quantity Q up to price λ_i . This is similar to $R_i(\bar{J}, Q)$, \bar{J} is omitted as bids are not assigned to generators.
$\Delta^s(i, Q, q_i)$	Impact on profit in scenario s of bidding a quantity q_i at price λ_i . This is similar to $\Delta^s(i, j, Q, q_j)$ for SBP except j can be omitted as bids are not assigned to generators.
$P^s(\lambda_i, q_i)$	Single bid profit in scenario $s \in S$ when placing a unique bid (λ_i, q_i) .

Table 3: Notation for SBP-R

335 Besides the unlimited number of bids, another main difference with SBP is the way the production costs are settled, as the bids are not associated with generators. When the MO clears the market, it communicates the total quantity traded to the GC. The GC then dispatches the production to its cheapest generators. Let Q^s be the total quantity the MO trades from the GC in scenario $s \in S$. Let us order the generators of the GC $j \in J = \{1, \dots, m\}$ in non decreasing order of unit cost c_j and define $j(Q^s) = \min\{j : \sum_{j'=1}^j \bar{q}_{j'} \geq Q^s\}$
340 the set of generators of minimum cost required to produce Q^s . All generators in $j(Q^s)$ produce at their maximum capacity except the last one, which completes the production to Q^s . The production cost of the GC is then given by:

$$c(Q^s) = \sum_{j'=1}^{j(Q^s)-1} c_{j'}(\bar{q}_{j'}) + c_{j(Q^s)}(Q^s - \sum_{j'=1}^{j(Q^s)-1} \bar{q}_{j'}). \quad (6)$$

The complexity of computing $c(Q^s)$ is in $O(\log m)$ if the generators are sorted by non-decreasing bidding price.

345 Note that, as $c_j < \bar{\pi}$ for all $j \in J$, the unused capacity can be bidden at price $\bar{\pi}$ in any optimal solution of SBP-R without any risk of production at loss.

In SBP-R, we focus on the quantities q_i to bid at each price $\lambda_i \in \Lambda$. Let Q_i be the cumulative quantity offered by the GC up to price λ_i , i.e., $Q_i = \sum_{i' \in I, i' \leq i} q_{i'}$. Problem SBP-R is equivalent to determining cumulative quantities Q_i , $i \in I$, such that $Q_i \leq Q_{i+1}$ and $Q_n = \bar{q}^J$ that maximize the expected profit.
350 The values that will be considered for Q_i will represent the states at stage λ_i in our dynamic programming algorithm. The spot price in scenario s is equal to the price $\lambda_{i(s)}$, where $i(s) = \min\{i \in I : Q_i > r_{i+1}^s\}$, which is a reformulation of Lemma 1. Moreover, the total quantity traded by the MO, $Q^s = \min\{Q_{i(s)}, r_{i(s)}^s\}$ is

the total bidden quantity up to the spot price, or the residual demand if it exceeds it.

The properties and equations of the previous section can be simplified for SBP-R. As we do not associate bids to generators and the production costs are determined only once the MO decides Q^s , the prices at which bids are placed up to the spot price lose their importance. In Figure 6, we take back the bottom left example of Figure 5 in which a bid of (8,4) was added to two existing bids. In SBP, the quantity the MO trades for the generators bidden at prices 2, 5, and 8 are 2, 1, and 3. The production costs would be computed for these quantities. In SBP-R, what only matters is that a total quantity of 6 is traded, a quantity that would be dispatched to the cheapest generators. All bids up to the spot price can be aggregated, as illustrated in the right figure, without changing the profit. The profit of such aggregated bids representing the profit

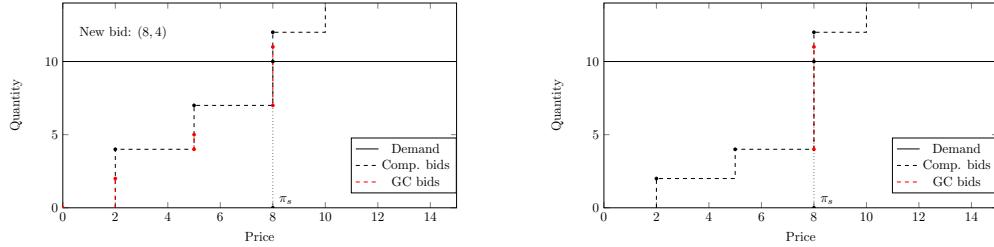


Figure 6: Aggregation of bids up to the spot price.

obtained in scenario s by placing a single bid (λ_i, q_i) at price λ_i with a quantity q_i are called *single bid profits* and denoted $P^s(\lambda_i, q_i)$.

Single-bid profits can easily be computed as follows:

$$P^s(\lambda_i, q_i) = \begin{cases} 0 & \text{if } r_i^s < 0, \\ \lambda_i r_i^s - c(r_i^s) & \text{if } 0 \leq r_i^s < q_i, \\ \pi^s(q_i) q_i - c(q_i) & \text{if } q_i \leq r_i^s. \end{cases} \quad (7)$$

In the first case of (7), the demand is satisfied by competitor bids before λ_i as the residual demand is negative and the bid is not traded. In the second case, bid (λ_i, q_i) will exceed the demand and is partially traded as the residual demand is nonnegative. The spot price is set at λ_i , and the residual demand r_i^s meeting the demand is traded. In the last case, the bidden quantity q_i does not meet the demand and is fully traded and the spot price is computed based on q_i with Equation (3).

Lemma 4 can be streamlined based on single bid profits with a similar proof.

Lemma 6. *Let $B_\Lambda = \{(\lambda_k, q_k)\}_{k \in I}$ be a set of bids associated to prices in Λ . Let λ_i be the highest bidden price in B_Λ , Q the cumulative bidden quantity up to price λ_i included, and B_Λ^{-i} denote the subset of bids in B_Λ without bid (λ_i, q_i) . We have that*

$$P(B_\Lambda) = P(B_\Lambda^{-i}) + \sum_{s \in S} p^s \Delta^s(i, Q, q_i). \quad (8)$$

with

$$\Delta^s(i, Q, q_i) = \begin{cases} 0 & \text{if } Q - q_i > r_i^s, \\ P^s(\lambda_i, Q) - P^s(\lambda_i, Q - q_i) & \text{if } Q - q_i \leq r_i^s, \end{cases} \quad (9)$$

375

Proof. For each scenario $s \in S$, the incorporation of the bid (λ_i, q_i) to the set B_Λ^{-i} results in one of the following two cases:

- $Q - q_i > r_i^s$: the demand is met at price λ_i , the new bid is not traded, and the profit remains constant.
- $Q - q_i \leq r_i^s$: the new bid is partially or fully traded, and the spot price is at least λ_i . In B_Λ and B_Λ^{-i} , all bids can be aggregated into single bids (λ_i, Q) and $(\lambda_i, Q - q_i)$ without changing their profit. The difference in profit is then the difference between these two single-bid profits.

□

Note that values $\Delta^s(i, Q, q_i)$ are computed in constant time based on single bid profits, and a single bid profit is computed in $O(\log n)$ based on residual demands r_i^s .

385 Next, let $R_i^*(Q)$ represent the maximum expected profit for the GC if it places bids up to price λ_i for a total cumulative quantity $Q_i = Q$. This value is similar to $R_i(\bar{J}, Q)$ in SBP. As we assume $c_j \leq \bar{\pi}, j \in J$ the optimal value of SBP-R is:

$$z^* = R_n^*(\bar{q}^J) \quad (10)$$

Moreover, we set $R_i^*(0) = 0$ for all $i \in I$.

390 Proposition 5 can also be easily adapted to SBP-R.

Proposition 7. *Let Q be such that $0 \leq Q \leq \bar{q}^J$. Then,*

$$R_i^*(Q) = \max_{q \in \Theta_i(Q)} \{R_{i-1}^*(Q - q) + \sum_s \Delta^s(i, Q, q)\}, \quad (11)$$

where $\Theta_i(Q) \subset [0, Q]$.

We will prove further that $\Theta_i(Q)$ can be discretized, allowing to compute $R_n^*(\bar{q}^J)$ recursively.

As we do not make a distinction between generators, we do not need to consider the case where several 395 bids are placed at the same price. The maximum revenue by placing bids up to price λ_i included is computed only based on the maximum revenue at price λ_{i-1} and the possible bids (λ_i, q) at price λ_i .

When placing a bid, we want to trade as much as possible without decreasing too much the spot price. We have already seen in Figure 2 the limit at which a spot price decreases: when the demand is strictly

exceeded. A strategy for the GC would then be to bid quantities that match residual demands. It would
400 then bid the maximum possible quantity before decreasing the spot price.

The following proposition shows that we can restrict the set $\Theta_i(Q)$ of values to consider for q in the recurrence relations (11) to a set of polynomial size based on residual demands and maximum production capacities.

Proposition 8. *There exists an optimal solution $Q_i^*, i \in I$ to (SBP-R) such that*

$$Q_i^* \in \{r_{i+1}^s : s \in S, r_{i+1}^s \leq \bar{q}_i^J\} \cup \{\bar{q}_i^J, Q_{i+1}^*\}, \quad (12)$$

405 with $Q_{n+1}^* = \bar{q}_n^J$ and $\bar{q}_i^J = \sum_{j \in J, c_j \leq \lambda_i} \bar{q}_j$.

Proof. Consider an optimal solution in which some cumulative quantity Q_i^* does not satisfy (12). First, let $i' \in I$ be the smallest index such that $Q_{i'}^* \geq \bar{q}_{i'}^J$. Then, profit will increase or stay unchanged if $Q_{i'}^*$ is decreased to $\bar{q}_{i'}^J$. Applying this transformation iteratively, one obtains an optimal solution in which all cumulative quantities Q_i^* are lower than or equal to the maximum capacity \bar{q}_i^J without producing at loss.

410 Second, let i' be the largest index for which the cumulative quantity $Q_{i'}^*$ is not equal to one of the candidate values given by (12), and denote by a the smallest candidate value greater than $Q_{i'}^*$. We are going to increase $Q_{i'}^*$ up to a while preserving optimality. Since $Q_{i'}^* < \bar{q}_{i'}^J$, increasing $Q_{i'}^*$ cannot induce production at loss. Furthermore, given that $Q_{i'+1}^*$ satisfies (12), it follows that $a \leq Q_{i'+1}^*$. The profit P^s of each scenario $s \in S$ obtained by increasing $Q_{i'}^*$ will depend on its spot price π^s :

415

- $\pi^s < \lambda_{i'}^*$: demand d_s is satisfied using bids with price smaller than $\lambda_{i'}$, P^s stays unchanged after increasing $Q_{i'}$ up to a .
- $\pi^s > \lambda_{i'+1}^*$: all bids up to price $\lambda_{i'+1}$ are traded. Increasing $Q_{i'}$ up to a does not change the spot price. As a consequence, P^s stays unchanged.
- $\pi^s = \lambda_i^*$: all bids lower than price λ_{i-1} , in addition to some production at price λ_i , are required to meet the demand d_s . Increasing $Q_{i'}$ up to a increases or leaves P^s unchanged since the spot price stays at $\lambda_{i'}$.
- $\pi^s = \lambda_{i'+1}^*$: Then, $Q_{i'}^* < r_{i'+1}^s$. Since $\min\{r_{i'+1}^s, \bar{q}_i^J\}$ is one of the candidate values, $a \leq \min\{r_{i'+1}^s, \bar{q}_i^J\}$. By increasing $Q_{i'}$ to a , the spot price remains constant, and the profit P^s increases.

In conclusion, for all scenarios $s \in S$, increasing $Q_{i'}$ to its next candidate value a either increases the profit
425 P^s or leaves it unchanged. This procedure can be iterated until all cumulative quantities Q_i satisfy (12). \square

Proposition 8 provides a polynomial number of states Q_i^* to consider when searching for an optimal solution of SBP-R using Equation (11). The first set in (12) contains the residual demands at price λ_{i+1}

respecting the production capacity. In the second set lies the maximum production capacity and the quantities at the next price Q_{i+1}^* . This means the potential values for Q_i^* are all residual demand $r_{i'}^s$ with $i' > i$ respecting production capacities. We are thus searching for bids with cumulative quantities reaching residual demands throughout the scenarios.

Set $\Theta_i(Q)$ contains $O(S)$ values that will lead to cumulative quantities Q_i^* lying in (12) and can be defined by:

$$\Theta_i(Q) = \{Q - r_i^s : s \in S, r_i^s \leq \min\{\bar{q}_{i-1}^J, Q\}\} \cup \{\min\{Q - \bar{q}_{i-1}^J, 0\}\} \quad (13)$$

The values in the first set of $\Theta_i(Q)$ are the values leading to states equal to a residual demand r_i^s at stage λ_{i-1} . The second set of $\Theta_i(Q)$ is the value leading to a state equal to the maximum production capacity at stage λ_{i-1} or to the same state as at stage λ_i , in which case no bid is placed at stage λ_{i-1} .

Figure 7 illustrates a situation in which it is interesting to place bids reaching a residual demand in some scenarios and the impact in other scenarios. Each column corresponds to a scenario, and each line corresponds to the bidding strategy of the GC. We consider that the GC places a single bid with a generator that has a production cost equal to 4. In scenario 1, the residual demand at a price of 10 is equal to 2, meaning the GC can bid 2 units up to a price of 10 and sell the full bidden quantity. By Proposition 8, we know this quantity of 2 units should be bidden at most up to the previous bidding price, which is equal to 8. On the first line, the GC bids a quantity of 2 at a price of 8, which is fully sold in scenario 1 at a price of 10. Consequently, this bid is not sold in scenario 2 and partially in scenario 3. The average profit is $\frac{12+0+4}{3} = \frac{16}{3}$. On the second line, the GC bids at the lowest possible price of 4 to try to sell the highest possible quantity. In scenario 1, the spot price and quantity sold are unchanged; in scenario 2, the bid is fully sold; in scenario 3, the bid is partially sold at a lower spot price than on the first line. The average profit is of $\frac{12+2+0}{3} = \frac{14}{3}$. The total quantity sold increases, but the spot prices are decreased in scenarios 2 and 3, leading to a lower expected profit. On the last line, the GC bids at an intermediate price of 7. The spot price and quantity sold are unchanged in scenario 1, and in scenarios 2 and 3, the quantity sold is equal to 1, but the spot price is increased to 7. The average profit is of $\frac{12+3+3}{3} = 6$. The optimal bidding prices are thus not necessarily the smallest or biggest ones when aiming to meet the residual demand at a given price. At each price, we aim to bid a cumulative quantity that will meet the residual demand at a higher price. This is the case on the third line of Figure 7 in which the GC aims at meeting the residual demand at a price of 8 but places its bids at a lower price.

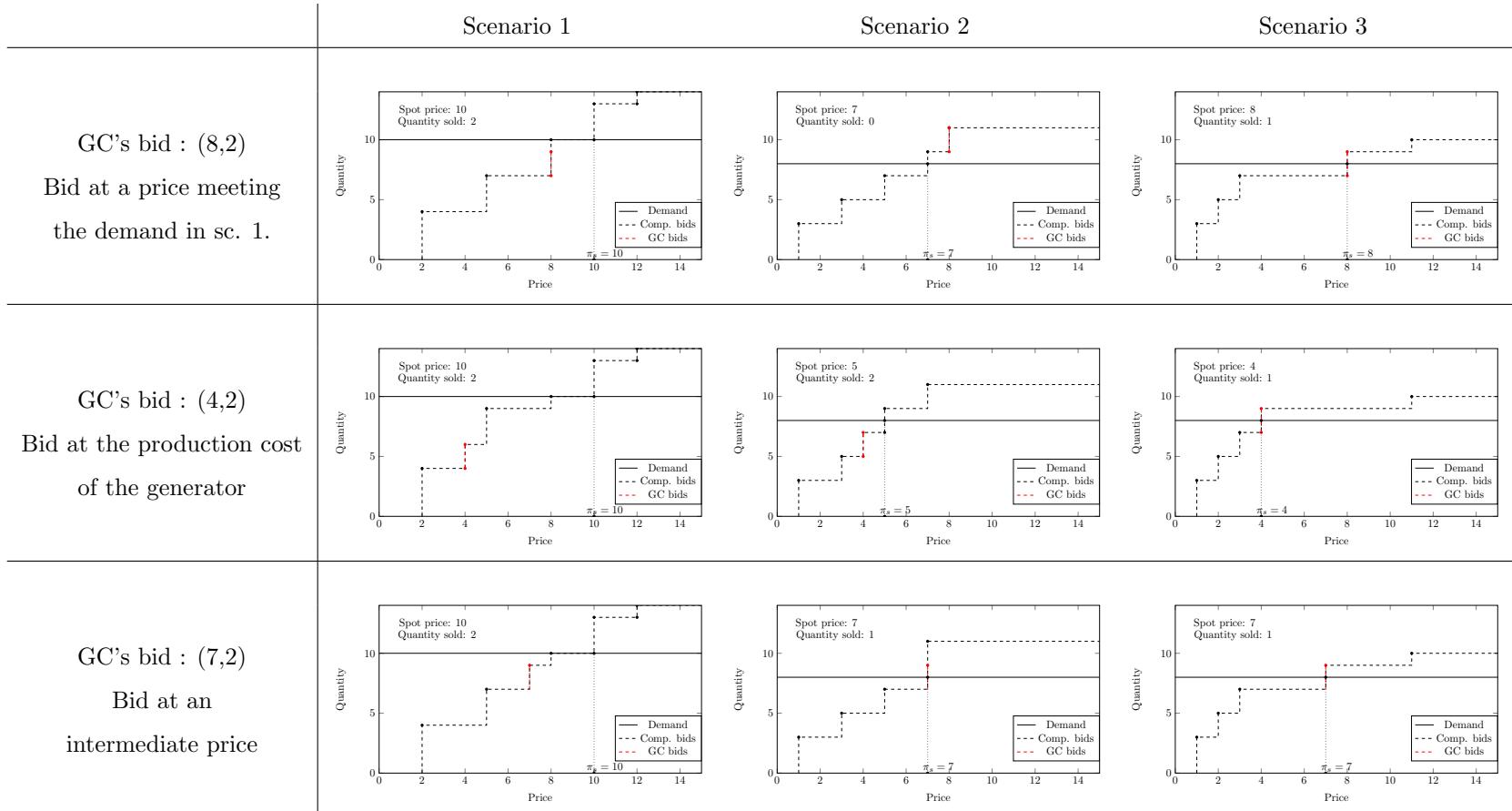


Figure 7: Impact of a GC's bid in several scenarios

Computing the optimal value of SBP-R using (11) with quantities given by (13) can be interpreted as searching for the longest path in a directed graph. The nodes of the graph are the states at the different stages given by (12). Arcs are defined by the quantities provided by $\Theta_i(Q_i)$, linking states Q_{i-1} and Q_i . The weight of each arc corresponds to $\sum_{s \in S} p_s \Delta^s(i, Q_i, q_i)$ representing the average impact on profit when 460 adding a bid (λ_i, q_i) to state Q_{i-1} at stage λ_{i-1} . The searched path goes from state $Q_0 = 0$ at stage $\lambda_0 = 0$ to state \bar{q}^J at stage λ_n . An illustration of the graph of an instance with three scenarios is provided in Figure 8 in which stage λ_i is equal to a price of i . The residual demands in each scenario are given under each price, the square nodes in the graph represent quantities Q_i equal to a residual demand at the next price r_{i+1}^s .

Some arcs can easily be discarded by excluding some values from $\Theta_i(Q)$:

465 • If $Q \leq \min\{r_i^s | s \in S\}$ for $i \in I$, the bids preceding price λ_i are all traded and can be made at price λ_i without changing the profit, thus $\Theta_i(Q) = \{0\}$.

For example, in Figure 8, at stage λ_3 , all states are smaller than the minimum residual demand at this price which is equal to 6. Thus, all incoming arcs at stage λ_3 come from state 0 at stage λ_2 .

470 • As soon as a state reaches the maximum residual demand r_i^s throughout all scenarios at a stage λ_{i-1} , any quantity bidden at the next stages cannot be traded. In this situation, the only quantities that need to be considered for bidding at the following stages are quantities leading to state \bar{q}^J . Quantities in $\Theta_i(Q)$ leading to a state \bar{q}_{i-1}^J exceeding this maximum residual demand but smaller than the maximum production capacity can be eliminated.

The path in red in Figure 8 corresponds to the three following bids from the GC: $(\lambda_5, 2)$, $(\lambda_6, 1)$, and 475 $(\lambda_7, 4)$. The GC has three generators with capacities and production costs given in the description of the figure.

All nodes representing cumulative quantities Q_i are either the maximum capacity at the corresponding price or a residual demand $r_{i'}^s$ for $i' > i$. For instance, 3 is the residual demand at price λ_7 in the third scenario. A node representing this residual demand appears at price λ_6 and all smaller prices until the 480 production capacity is violated. The incoming arcs of a node are all residual demands at the current price and either the node at the previous price with the same quantity or the maximum capacity at this price. For instance, the residual demands at price λ_7 are 0, 2, and 3. The incoming arcs of node $(\lambda_7, 7)$ are thus the nodes at price λ_6 with quantities equal to 0, 2, 3, or 7. When placing a bid reaching a square node, such as bid $(\lambda_2, 2)$, the demand is exactly met at this price in the corresponding scenario. With this bid, the spot 485 price will be equal to λ_6 in the second scenario. The next bid, $(\lambda_6, 1)$, will meet exactly the demand at this price in scenario 3, fixing the spot price at λ_7 . This is as in the first column of Figure 7 in which we attempt to meet exactly the demand in some scenarios to push the spot price at a higher value.

Regarding the computational complexity, the computation of $R_n^*(\bar{q}^J)$ can be decomposed into two steps.

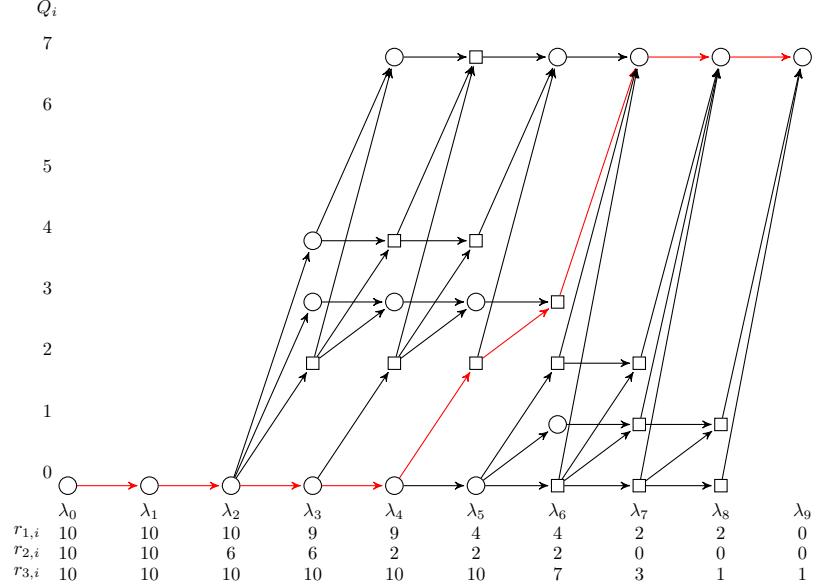


Figure 8: Graph of SBP-R instance with $\bar{q}_1 = 2$, $\bar{q}_2 = 2$, $\bar{q}_3 = 3$, $c_1 = 1$, $c_2 = 3$, $c_3 = 5$.

First, all single bid profits $P^s(\lambda_i, q_i)$ (7) are used to compute differences on profit $\Delta^s(i, Q, q_i)$ (9) faster, 490 before computing $R_n^*(\bar{q}^J)$ recursively using (11) and candidate sets $\Theta_i(Q)$.

Since each scenario includes \tilde{m} bids from the competitors, the total number of states for each of the n stages is $O(\tilde{m}|S|)$ according to Proposition 8. As a single bid profit in a given scenario is computed in $O(\log n)$, all single bid profits are computed for all scenarios in $O(n\tilde{m}|S|^2 \log n)$. Based on residual demands, each of the $O(n\tilde{m}|S|)$ values $R_i^*(Q)$ being computed in $O(S^2)$ time (there are $O(|S|)$ states in $\Theta_i(Q)$ and 495 the difference in profit is computed for the $|S|$ scenarios). This yields a complexity of $O(n\tilde{m}|S|^3)$ for the computation of $R_n^*(\bar{q}^J)$. The overall complexity is in $O(n\tilde{m}|S|^2(\log n + |S|))$.

Lemma 9. *SBP-R can be solved in polynomial time.*

3.3. Dynamic programming for SBP-Q

The *Stochastic Bidding Problem with fixed Quantities* (SBP-Q) is a constrained version of SBP where 500 quantities bidden by generators are fixed to their maximum capacity. It can be used as a proxy model to find feasible solutions for SBP. A solution $B = \{(\pi_j, \bar{q}_j)\}_{j \in J}$ consists in determining the bidden prices π_j for each generator as the associated bidden quantity is trivial. As for SBP-R, the bidding prices π_j can be restricted to Λ by Lemma 1 and are used as stages. The states of SBP-Q are the generators bidden up to a the corresponding stage included. Table 4 lists the main notation used for SBP-Q.

505 Lemma 4 holds for SBP-Q. We simplify the notation $\Delta_s(i, j, Q, q_j)$ to $\Delta_s(i, j, Q)$ where the fixed quantity \bar{q}_j has been dropped as they are predetermined. Let $R_i^Q(\bar{J})$ denote the maximum expected profit for the

Notation	Definition
$R_i^Q(\bar{J})$	Maximum profit by bidding generators \bar{J} up to price λ_i . This is similar to $R_i(\bar{J}, Q)$ with Q omitted as bidden quantities are fixed.
$\Delta^s(i, j, Q)$	Impact on profit in scenario s of bidding generator $j \in J$ at price λ_i . This is similar to $\Delta^s(i, j, Q, q_j)$ for SBP except q_j can be omitted as bidden quantities are fixed.

Table 4: Notation for SBP-Q

GC if it places bids (π_j, \bar{q}_j) only for generators $j \in \bar{J}$, up to price λ_i included. As we assume $c_j < \bar{\pi}, j \in J$ the optimal value of SBP-Q is:

$$z^* = R_n^Q(J) \quad (14)$$

Moreover, we set $R_n^Q(\emptyset) = 0$ for all $i \in I$ and $R_0^Q(\bar{J}) = 0$.

510 The notation of Proposition 5 can trivially be adapted to compute $R_i^Q(\bar{J})$, the proof is identical by setting $q_j = \bar{q}_j$.

Proposition 10. *For any subset \bar{J} of J , there holds that*

$$R_i^Q(\bar{J}) = \max\{R_{i-1}^Q(\bar{J}), \max_{j \in \bar{J}}(R_i^Q(\bar{J}^{-j}) + \sum_{s \in S} p^s \Delta^s(i, j, Q))\} \quad (15)$$

By using (14) and Proposition 10, we can compute the optimal value of SBP-Q by adding generators one by one by non-decreasing price.

515 As for SBP-R, solving SBP-Q can be interpreted as searching for the longest path in a directed graph. Figure 9 illustrates the graph explored when computing $R_Q^*(J)$ on the same instance used in Figure 8. The solution plotted in red represents bids $(\lambda_3, 2)$, $(\lambda_6, 2)$ and $(\lambda_4, 3)$ for generators 1, 2 and 3 respectively. Some states obtained by bidding generators at price λ_i in Equation (10) when computing $R_Q^*(J)$ can easily be eliminated based on the maximum and minimum residual demands:

520 • If $\bar{q}^{\bar{J}} > \max\{r_i^s | s \in S\}$, then a part of the total production of generators \bar{J} would not be sold if some are bidden at stage λ_i .

- If \bar{J} contains the cheapest generator in J , then if a bid is placed at stage λ_i , they are placed by non-decreasing price c_j to trade in priority the cheapest generators if their quantity is to be traded. For example, in Figure 9, there is no arc from state $\{2,3\}$ to state $\{1,2,3\}$ at stages λ_8 and λ_9 .
- Otherwise, \bar{J} does not contain the cheapest generator in J (because it has already been bidden), say j_{min} , its production is not traded. Thus if a bid is made with a generator $j \in \bar{J}$ at stage λ_i ,

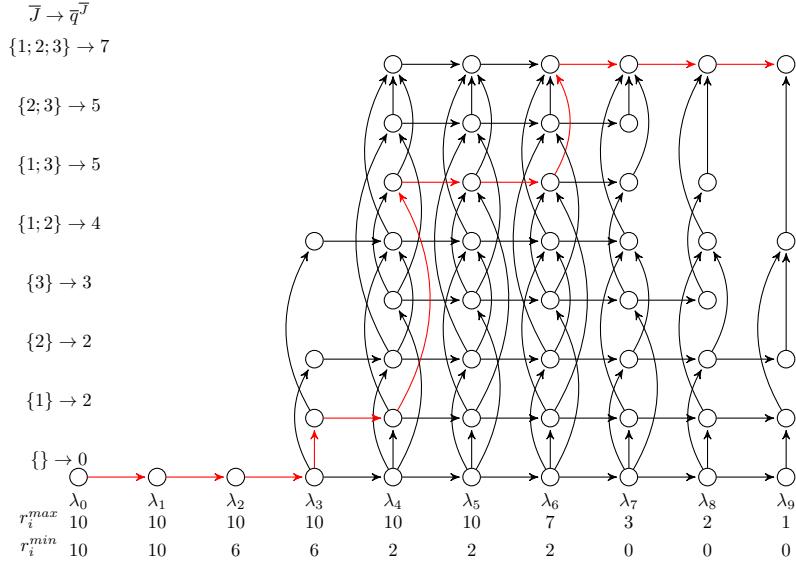


Figure 9: Graph of SBP-Q instance with $\bar{q}_1 = 2$, $\bar{q}_2 = 2$, $\bar{q}_3 = 3$, $c_1 = 1$, $c_2 = 3$ and $c_3 = 5$.

this cannot lead to a higher profit than having bidden j_{min} at stage λ_i (and swapped the two bids of j and j_{min}). Thus, in this situation, no bid is placed at price λ_i with generators in \bar{J} as we are computing the maximum revenue. This is the case in Figure 9 for state $\{2,3\}$ at stage λ_7 that has no incoming arc from the same stage.

530

535

- If $\bar{q}^{\bar{J}} < \min\{r_i^s | s \in S\}$, $\bar{J} \neq \emptyset$ and all generators in \bar{J} have a production cost at most equal to λ_i , then bidding a generator at price λ_i or a lower price will lead to the same profit. As any bid yields a positive profit, there is at least one bid between stages λ_0 and λ_i . Thus, we force a bid at price λ_i in this situation to eliminate states at a lower price. Hence there is no arc between two nodes at the same stage before stage λ_3 in Figure 9.

The computational complexity of finding the optimal value $R_n^Q(J)$ of SBP-Q is established similarly for SBP-R. The spot prices used to compute the difference on profit $\Delta^s(i, j, Q)$ in (2) are precomputed for the $O(2^m)$ possible subsets $\bar{J} \subseteq J$ in $O(n|S|2^m \log n)$. Based on these spot prices, $\Delta^s(i, j, Q)$ is computed in $O(\log m)$. The value of $R_n^Q(J)$ is computed recursively using (15). A total of $O(n2^m)$ values $R_i^Q(\bar{J})$ are computed, each of them in $O(m|S| \log m)$, for a total computational complexity in $O(nm|S|2^m \log m)$ for the recurrence relation. The overall complexity is in $O(n|S|2^m(\log n + m \log m))$.

540

Lemma 11. *SBP-Q can be solved in polynomial time for a fixed number of generators.*

As previously mentioned, SBP-Q can be used as a proxy model for obtaining heuristic solutions for SBP. Figure 10 illustrates a case where the value of the heuristic is at most $\frac{2}{3}$ of the optimal value of SBP. However,

our numerical experiments in Section 4 show that in practice, SBP-Q is much closer to SBP, leading to very reasonable gaps.

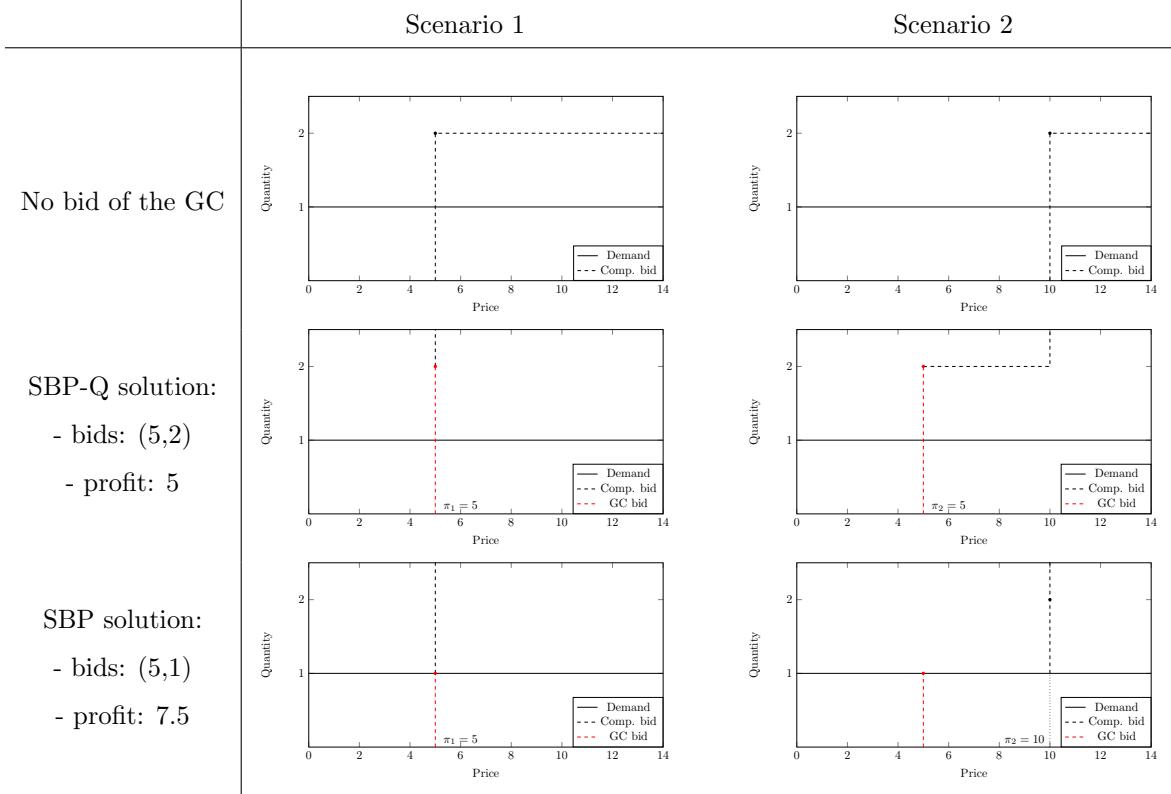


Figure 10: Illustration of worse-case performance of SBP-Q vs SBP

Consider an instance with two scenarios having equal probability and illustrated at the first line of the figure. Both have a demand of 1 and a single bid from the competitors, (5,2) and (10,2), respectively, 550 exceeding the demand. The GC has a single generator with a maximum production capacity of 2 and no production cost. This is a generic example to represent what can occur if the demand is exceeded in two scenarios by competitor bids at prices with a large difference. In SBP-Q, the GC has to place a bid with a quantity of 2 units. A bid of (5,2) is an optimal bidding strategy in which the profit is equal to 5 in both scenarios and is illustrated in the second line. The drawback of bidding with fixed quantities is decreasing 555 the spot price in scenario 2 as the production exceeds the demand with the bid of the GC. Note that (10,2) would also be an optimal bidding strategy, not selling the bid in scenario 1 and generating a profit of 10 in scenario 2. In the last line, an optimal solution of SBP is illustrated with a bid of (5,1) and an average profit of 7.5. Reducing the bidden quantity can preserve a higher spot price in scenario 2 with a profit of 10 while 560 generating the same profit of 5 in scenario 1 as for SBP-Q. The optimal solution with fixed quantities has therefore a value of only $\frac{2}{3}$ of the optimal solution of SBP. Note that the low performance in this situation

is due to the large gap between the bidding prices of the competitor, situation that is unlikely in practice.

We leave the generalization of this example to find a lower bound on the approximation performance of SBP-Q for future research.

4. Numerical results

565 In this section, we demonstrate the efficiency of the dynamic programming algorithm. Test instances used by Fampa & Pimentel (2015) based on data from the Brazilian Electric System National Operator were kindly provided by W. Pimentel. The instances involve 6 generators, 108 competitor bids per scenario, and a number of scenarios ranging from 10 to 70. In our presentation, the focus is mainly on the number of generators and scenarios. Larger instances are built by clustering or splitting the production of generators of
570 the GC, and we generate new scenarios by modifying 20% or less of the prices and quantities of competing bids. Five instances are generated for each pair of values $(|J|, |S|)$. All instances are available on the GitHub repository <https://github.com/jdeboeck/SBP>. Numerical results reported are averages over these five instances. For each type of instance, we provide the computing times and, in the case of the proxy model SBP-Q, the difference ('gap') between the optimum achieved and the upper bound corresponding to the
575 optimum of the relaxed problem SBP-R. This gap is an upper bound on the optimality gap in SBP of an optimal solution of SBP-Q.

The algorithms have been implemented in Python 3.8.2 and run on a 4-core i7 2.30 GHz processor with 64Go RAM. In Section 4.1, previous numerical results of SBP-Q are outlined, while the numerical results for the dynamic programming framework are discussed in Section 4.2.

580 *4.1. Comparison with previous studies*

Fampa & Pimentel (2015) have proposed a genetic algorithm to solve SBP-Q, based on the MILP formulation introduced in Fampa et al. (2008) to test its efficiency. The MILP formulation could solve to optimality instances involving up to 30 scenarios. On larger instances, the running time was limited to 16,000 seconds, with an optimality gap always less than 3%, while the genetic algorithm could find within a few seconds (7
585 to 35) a solution within 0.01% of the best feasible MILP solution.

A relaxation of SBP-Q has also been shown by Fampa & Pimentel (2017) to yield solutions within 10% of optimality in an average CPU time of 70 seconds on small instances involving 4 generators and up to 3 scenarios of 10 competitor bids.

The performance of the dynamic programming framework is illustrated in Table 5, where CPU times
590 (in seconds). As we have not implemented these methods described in Fampa & Pimentel (2017), a direct comparison of the performance with the dynamic programming algorithm for SBP-Q is impossible. Still, as it solves these instances in under 2 seconds, it outperforms a MILP-based approach and seems significantly

faster than the genetic algorithm while providing proof of optimality. The optimal value of SBP-R is an upper bound on SBP-Q. The gap reported in Table 5 is the relative gap between the optimal values of SBP-Q and SBP-R. The gap is, on average, similar to the results of Fampa & Pimentel (2017), but significantly larger instances are considered, which are solved in a reasonable time.

instance	SBP-R		SBP-Q			Fampa		
	$ S $	time	SD	time	SD	gap (%)	Solved	time
10	0.17	0.07	0.27	0.01	1.54	5	38.25	20.96
20	0.88	0.14	0.62	0.05	2.04	5	442.36	162.96
30	2.14	0.43	0.78	0.06	2.61	5	824.31	681.97
40	6.25	2.08	1.28	0.12	2.12	3	1233.43	584.95
50	8.34	0.93	1.36	0.05	2.09	4	2778.9	415.6
60	12.53	2.63	1.42	0.10	2.60	1	1142.33	0
70	19.34	2.65	1.71	0.08	2.11	0	-	-

Table 5: Impact of the number of scenarios for a fixed number of generators $m = 6$. Time units are seconds and ‘SD’ stands for the standard deviation of CPU time.

4.2. Results on larger instances

The data displayed in Tables 6 and 7 illustrate the performance of the dynamic programming algorithms on larger instances. Besides CPU times, they report the average number of bids in the solution obtained at termination.

instance	SBP-R			SBP-Q			
	m	time	SD	bids	time	SD	bids
2	76.46	8.00	4.8	0.17	0.01	1.8	2.02
4	75.90	9.64	4.8	0.84	0.06	2.2	1.79
6	73.32	10.16	10.6	3.35	0.16	3.8	2.10
8	72.07	9.58	7.4	15.4	0.54	4.4	0.97
10	58.63	7.28	8.0	34.32	5.33	4.2	0.80
12	71.82	8.35	9.6	275.68	11.87	6.4	0.77
14	71.32	7.79	10.2	1128.4	44.93	6.6	0.81
16	70.88	6.80	9.6	4840.87	244.48	7.0	0.38

Table 6: Impact of the number of generators, for a fixed number of scenarios $|S| = 100$.

instance	SBP-R			SBP-Q				
	$ S $	time	SD	bids	time	SD	bids	gap (%)
50	8.74	0.9	6.6	15.11	1.14	4.4	1.83	
100	58.63	7.28	8.0	34.32	5.33	4.2	0.80	
150	172.25	33.38	7.8	50.99	8.37	3.0	0.05	
200	372.15	57.54	10.4	75.25	10.45	4.4	0.19	
250	648.24	89.48	10.6	80.78	9.89	4.2	0.24	
300	1128.79	147.97	11.2	111.57	18.04	3.2	0.05	
350	1661.03	219.19	12.6	119.22	14.48	3.8	0.05	
400	2367.06	250.76	10.6	122.26	13.04	3.8	0.19	

Table 7: Impact of the number of scenarios for a fixed number of generators $m = 10$.

Table 6 illustrates the impact of the bidding GC's number of generators for a fixed number of 100 scenarios. Note that the solution times of SBP-R do not vary much with the number of generators, as the theoretical complexity ($O(n\tilde{m}|S|^2(\log n + |S|))$) does not depend on m . In contrast, the solution times for SBP-Q reflect the exponential factor in the complexity ($O(n|S|2^m(\log n + m \log m))$).

Table 7 shows that the computing times increase cubically (respectively linearly) with the number of scenarios involved in SBP-R (respectively SBP-Q). While the efficiency of the algorithm for solving SBP-Q decreases as the number of generators gets large, it outperforms the MILP-based algorithm of Fampa et al. (2008), which required over an hour of CPU on instances involving up to 6 generators, and at most 20 scenarios. For one, the linear growth of the complexity of SBP-Q in the number of scenarios allows us to solve instances involving much larger scenarios than in previous studies. As for SBP-R, the dynamic programming framework can address much larger instances than those considered in Fampa & Pimentel (2017), which were limited to 3 scenarios and 4 generators for the GC. Furthermore, our upper bound is, on average, much tighter than the one of Fampa & Pimentel (2017), with an optimality gap of less than 1% on large instances.

From an economic viewpoint, it is interesting to note that the number of bids placed is always larger in the solutions of SBP-R versus those of SBP-Q. This illustrates the financial interest for GC to place bids independently from generators and be more flexible.

An open question was to know the quality of an optimal solution of SBP-Q considering fixed bidden quantities compared to an optimal solution of SBP where variable bidden quantities are allowed as in classical day-ahead markets. As the algorithm for SBP-R provides an upper bound to problem SBP, comparing the optimal solutions of SBP-R and SBP-Q can answer this question. The gaps are generally under 1% on large instances, which illustrates that SBP-Q is an efficient proxy model for SBP.

5. Conclusion

The bidding problem SBP has been mentioned in the literature as a theoretical problem (Fampa et al., 2008) but lacks practical methods to solve it. Only the variant with fixed bidding quantities SBP-Q was solved through heuristic methods on realistic instances (Fampa et al., 2008; Fampa & Pimentel, 2015). As no method could provide an upper bound on SBP, the gap to optimality of a solution of SBP-Q could not be tracked.

The general dynamic programming framework proposed in this paper to find quality solutions for SBP allows us to solve two variants of this problem. First, problem SBP-R provides an upper bound on the optimal value of SBP, which is found in polynomial time. This upper bound is tighter than previous work on large instances (Fampa & Pimentel, 2017). Second, problem SBP-Q, previously studied in the literature (Fampa et al., 2008; Fampa & Pimentel, 2015), is solved to optimality and showed empirically to be an efficient proxy model for SBP. Our method to solve SBP-Q in a polynomial time for a fixed number of generators provides an optimal solution in significantly less time than previous studies and allows us to consider larger instances. The numerical results are the first to illustrate that an optimal solution found when bidding the maximum capacity of each generator is in a 1% gap of the optimal solution of SBP, a problem that has not yet been solved to optimality. We showed in this paper that the heuristic solution provided by the optimal solution of SBP-Q can have an objective value as bad as $\frac{2}{3}$ of the optimal value of SBP. Future research should explore lower bounds to this ratio to determine if SBP-Q is a constant-factor approximation of SBP. Identifying the structure of instances on which SBP-Q performs close to SBP (as in our numerical experiments) is also a possible avenue for research.

Our dynamic programming framework cannot practically be applied to SBP because an infinite number of states are to be considered at each step of constructing a solution. In future research, one could try to discretize the states as for SBP-R and use them to solve SBP to optimality by using the same dynamic programming framework.

Problem SBP-Q was presented by Fampa et al. (2008) as a Bertrand model of problem SBP, optimizing the bidding price for fixed quantities. A Cournot model could also be studied by optimizing the bidding quantities for fixed prices (SBP-P). Our dynamic programming framework could be adapted to this problem by finding an appropriate set of states. This could lead to an improvement in the optimal solution of SBP-Q by considering the bidding prices of this solution as fixed and optimizing the bidding quantities.

The linear production costs should also be generalized to convex production costs to make the problem more realistic. This could be done in SBP-Q, which could be solved using the same DP algorithm we proposed. It is easy to see that the properties used to solve SBP-Q can be generalized to convex production costs while preserving the solutions' optimality. Only the complexity would be impacted regarding the computation of production costs.

References

Baillo, A., Ventosa, M., Rivier, M., & Ramos, A. (2004). Optimal offering strategies for generation companies operating in electricity spot markets. *IEEE Transactions on Power Systems*, 19, 745–753.

660 Baker, K. R., & Taylor, R. E. (1979). A linear programming framework for cost allocation and external acquisition when reciprocal services exist. *The Accounting Review*, 54, 784–790.

Bakirtzis, A. G., Ziogos, M. P., Tellidou, A. C., & Bakirtzis, G. A. (2007). Electricity producer offering strategies in day-ahead energy market with step-wise offers. *IEEE Transactions on Power Systems*, 22, 1804–1818.

665 Balachandran, B. V., & Ramakrishnan, R. T. (1996). Joint cost allocation for multiple lots. *Management Science*, 42, 247–258.

Beraldi, P., Conforti, D., & Violi, A. (2008). A two-stage stochastic programming model for electric energy producers. *Computers and Operations Research*, 35, 3360–3370.

Birge, J. R., & Louveaux, F. (2011). *Introduction to Stochastic Programming*. Springer.

670 Brotcorne, L., De Boeck, J., & Fortz, B. (2022). Strategic bidding in price coupled regions. *Mathematical Methods of Operations Research*, 95, 365–407.

Conejo, A., & Prieto, F. (2001). Mathematical programming and electricity markets. *TOP*, 9, 1–53.

Dalby, E. (2017). *Stratégies d'offre sur le marché électrique*. Master's thesis Sorbonne Universities.

675 Esmaeili Aliabadi, D., Kaya, M., & Sahin, G. (2017). Competition, risk and learning in electricity markets: An agent-based simulation study. *Applied Energy*, 195, 1000–1011.

Fampa, M., Barroso, L., Candal, D., & Simonetti, L. (2008). Bilevel optimization applied to strategic pricing in competitive electricity markets. *Computational Optimization and Applications*, 39, 121–142.

Fampa, M., & Pimentel, W. (2015). An application of genetic algorithm to a bidding problem in electricity markets. *International Transactions in Operational Research*, 22.

680 Fampa, M., & Pimentel, W. (2017). Linear programming relaxations for a strategic pricing problem in electricity markets. *International Transactions in Operational Research*, 24, 159–172.

Garey, M., & Johnson, D. (1979). *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W.H. Freeman and Company.

Hobbs, B., & Helman, U. (2004). *Modeling Prices in Competitive Electricity Markets*, ch. 3. Wiley Finance.

685 Hobbs, B., Metzler, C., & Pang, J. (2000). Strategy gaming analysis for electric power systems: an mpec approach. *IEEE Transactions on Power Systems*, 15, 638–645.

Kahn, E. (1995). Regulation by simulation: the role of production cost models in electricity planning and pricing. *Operations Research*, 43, 388–398.

Kardakos, E. G., Simoglou, C. K., & Bakirtzis, A. G. (2014). Optimal bidding strategy in transmission-constrained electricity markets. *Electric Power Systems Research*, 109, 141–149.

690 Kwon, R. H., & Frances, D. (2012). Optimization-based bidding in day-ahead electricity auction markets: A review of models for power producers. *Handbook of Networks in Power Systems I*, (pp. 41–59).

Littlechild, S. (1988). Spot pricing of electricity. *Energy Policy*, (pp. 398–403).

Loridan, P., & Morgan, J. (1996). Weak via strong stackelberg problem: New results. *Journal of Global Optimization*, 8, 263–287.

695 Madani, M., & Van Vyve, M. (2015). Computationally efficient mip formulation and algorithms for european day-ahead electricity market auctions. *European Journal of Operational Research*, 242, 580–593.

O'Neill, R. P., Sotkiewicz, P. M., Hobbs, B. F., Rothkopf, M. H., & Stewart, W. R. J. (2005). Efficient market-clearing prices in markets with nonconvexities. *European Journal of Operational Research*, 164, 700 269–285.

Ostadi, B., Motamed Sede, O., & Husseinzadeh Kashan, A. (2020). Risk-based optimal bidding patterns in the deregulated power market using extended markowitz model. *Energy*, 191, 116516.

Panda, R., & Kumar Tiwari, P. (2018). Economic risk-based bidding strategy for profit maximisation of wind-integrated day- ahead and real-time double-auctioned competitive power markets. *IET Generation, Transmission & Distribution*, 13, 209–218.

705 Ramos, A., Ventosa, M., & Rivier, M. (1999). Modeling competition in electric energy markets by equilibrium constraints. *Utilities Policy*, 7, 233–242.

Ruiz, C., & Conejo, A. J. (2009). Pool strategy of a producer with endogenous formation of locational marginal prices. *IEEE Transactions on Power System*, 24, 1855–1866.

710 Song, M., & Amelin, M. (2018). Price-maker bidding in day-ahead electricity market for a retailer with flexible demands. *IEEE Transactions on Power Systems*, 33, 1948–1958. doi:10.1109/TPWRS.2017.2741000.

Steeger, G., Barroso, L. A., & Rebennack, S. (2014). Optimal bidding strategies for hydro-electric producers: A literature survey. *IEEE Transactions on Power Systems*, 29, 1758–1766.

Tahanan, M., van Ackooij, W., Frangioni, A., & Lacalandra, F. (2015). Large-scale unit commitment under
715 uncertainty: a literature survey. *4OR*, 13, 115–171. doi:10.1007/s10288-014-0279-y.

de la Torre, S., Arroyo, J. M., Conejo, A. J., & Contreras, J. (2002). Price maker self-scheduling in a
pool-based electricity market: A mixed-integer lp approach. *IEEE Transactions on Power Systems*, 17,
1037–1042.

Zhang, G., Zhang, G., Y.Gao, & J.Lu (2011). Competitive strategic bidding optimization in electricity
720 markets using bilevel programming and swarm technique. *IEEE Transactions on industrial electronics*,
58, 2138–2146.