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A B S T R A C T

Background: Traumatic brain injury (TBI) can come with long term consequences for functional outcome that can complicate return to work.
Objectives: This study aims to make accurate patient-specific predictions on one-year return to work after TBI using machine learning algorithms. Within this process,
specific research questions were defined: 1 How can we make accurate predictions on employment outcome, and does this require follow-up data beyond hospi-
talization? 2 Which predictors are required to make accurate predictions? 3 Are predictions accurate enough for use in clinical practice?
Methods: This study used the core CENTER-TBI observational cohort dataset, collected across 18 European countries between 2014 and 2017. Hospitalized patients
with sufficient follow-up data were selected for the current analysis (N = 586). Data regarding hospital stay and follow-up until three months post-injury were used to
predict return to work after one year. Three distinct algorithms were used to predict employment outcomes: elastic net logistic regression, random forest and gradient
boosting. Finally, a reduced model and corresponding ROC-curve was created.
Results: Full models without follow-up achieved an area under the curve (AUC) of about 81 %, which increased up to 88 % with follow-up data. A reduced model with
five predictors achieved similar results with an AUC of 90 %.
Conclusion: The addition of three-month follow-up data causes a notable increase in model performance. The reduced model - containing Glasgow Outcome Scale
Extended, pre-injury job class, pre-injury employment status, length of stay and age - matched the predictive performance of the full models. Accurate predictions on
post-TBI vocational outcomes contribute to realistic prognosis and goal setting, targeting the right interventions to the right patients.

1. Introduction

Prognostication is a key aspect of medicine and can be defined as
relating patient and injury features to the patient’s outcome.1 These
factors influencing patient outcomes often include demographics,
pre-injury health status, severity and mechanism of injury, severity of
potential other injuries, and social environment.2 When empirical data
on these features are analyzed and integrated into a prognostic model,
individualized predictions can be obtained for use in clinical practice.
For patients as well as their relatives, realistic expectations and coun-
seling based on such individualized outcome predictions are highly
important.3

Traumatic brain injury (TBI) is a condition for which accurate
prognostication is particularly relevant. TBI is defined as “an alteration
in brain function, or other evidence of brain pathology, caused by an
external force”.4 Apart from substantial mortality, neurological injury is
anticipated to be the dominant contributor to impairment from

neurological conditions up until today.5 The complexity of the brain, the
nature and severity of damage, and the varying individual response to
the specific injury result in a wide-ranging variability of clinical mani-
festations of TBI.2 Prognostic models can help clinicians provide indi-
vidual patients insight into expected outcomes despite this complexity
and variability.

In 2017, the Lancet Neurology Commission on TBI published a report
on the state of the art of current evidence, of which section 8 highlights
the remaining gaps in TBI research.2 One of their conclusions was that
there is a lack of prediction models on other topics than mortality and
overall level of disability as measured by the Glasgow Outcome Scale
Extended (GOSE). Their 2022 update only showed progress in the pre-
diction of quality of life and post-concussive symptoms.3

Return to work is a very relevant outcome for prognostication, both
from an individual and a societal point of view. Declining community
integration, health-related quality of life and life satisfaction all have
been linked to unemployment after TBI.6–8 On a more global level,
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unemployment after TBI implies a loss of human potential and comes
with a considerable cost for society. The indirect costs generated by
productivity losses account for a substantial share of the financial
burden TBI generates for society.9

The current study aims to create a prediction model for employment
outcomes at one year after TBI for patients hospitalized with TBI in
Europe. In order to create this prediction model, the following research
questions were assessed:1 How can we make accurate predictions on
employment outcome, and does this require follow-up data beyond
hospitalization?2 Which predictors are required to make accurate pre-
dictions?3 Are predictions accurate enough for use in clinical practice?

2. Methods

2.1. Data sources and patient selection

This study used data from the CENTER-TBI project, which prospec-
tively collected longitudinal observational data of patients hospitalized
with TBI (stratified by severity) across 63 centers in 18 European
countries between 2014 and 2017.10 The CENTER-TBI project with EC
grant 602150 was carried out in line with all pertinent EU local legis-
lation of the countries of the recruiting sites.

The total number of patients in the core dataset was 4509. However,
the current analysis has some additional selection criteria. First of all,
this study was limited to patients in the work force at the time of injury.
This was operationalized as an age between 16 and 65 at the time of
injury, without being a student, retired, disabled or homemaker at the
time of injury. Patients who were unemployed but looking for work,
were considered to be in the work force. Second, patients were selected
based on the presence of outcome data, as will be elaborated upon in the
next section. Finally, in order to be included in this study, patients were
required to have a completeness of at least 80 % of the follow-up out-
comes data at the three months post-TBI timepoint, to ensure usability of
these data as predictors while avoiding a large amount of imputation.

2.2. Study outcome

The outcome of this study was a binary classification of whether an
individual was competitively employed at one year after the date of
injury. Within the CENTER-TBI study, outcomes were collected through
structured phone interviews or mail surveys. At least one variable on
employment at one year post-TBI had to be available. Distinct classifi-
cations of employment status in the CENTER-TBI dataset were re-
categorized into one common, broader outcome classification. When
multiple potential outcome variables were available, some apparent
contradictions were possible, likely due to slightly different nuances in
the phrasing of the original question. When this occurred, a majority of
indications for a certain category was required to include a patient in the
final study dataset. Also, when it was indicated that a patient did not
return to work due to a reason unrelated to the injury, this patient was
removed from the analysis.

2.3. Data preparation

All data preparation and analysis steps were conducted in R, with
most steps being completed within the tidymodels framework (see
Digital Supplemental Content 1–3). This study used the CENTER-TBI
data subsets on patient demographics, medical history, injury and
emergency care, imaging, hospital stay, vitals, surgeries and other
medical interventions, follow-up data and outcomes. Variables were
removed if they concerned the research process rather than the patient
and provided care (e.g., variables related to consent and study partici-
pation). Additionally, variables with a data type that is not suitable for
modelling (e.g., free-text or large number of categories) were excluded.
In case of time-dependency of predictors, only the data points up to three
months post-injury were considered. For features related to medical

imaging, the information (regarding observed lesions) of the last avail-
able scan up to three months post-injury was retained. After consulting a
radiologist, MRI findings, when available, were considered dominant
over CT evidence in case of inconsistencies. Furthermore, variables with
more than 85 % missingness were removed. The remaining features
were imputed using a k-nearest neighbors algorithm, using the corre-
sponding function in the recipes package (see Digital Supplementary
Content 1). Finally, data were decorrelated with a cutoff of 0.8. When
decorrelation led to the removal of features, priority was given to fea-
tures that can be more intuitively associated with employment outcomes
after TBI. Throughout the data preparation, data recoding and/or
merging of related features was performed if these could avoid unnec-
essary removal of features (e.g., due to large number of categories,
missingness or correlation).

2.4. Data analysis

Given the large number of features available in the CENTER-TBI
dataset and the high degree of complexity of the relation between the
various predictors and the outcome to be modelled, machine learning is
the preferred modelling approach.11,12 Additionally, machine learning
possesses the capability to effectively manage extensive sets of
predictors.

This study compares three machine learning algorithms: elastic net
logistic regression, a random forest ensemble and a gradient boosting
ensemble.13 A quasi-random tuning grid (Latin hypercube) was used on
25 bootstrap samples to select the optimal hyperparameter values of
each of these three algorithms. The models with the best balanced ac-
curacy were selected, calculated as the average of the sensitivity and the
specificity, to account for class imbalance of the outcome variable. The
corresponding hyperparameter values were used to finalize the models
by refitting them on the entire training dataset. The final estimates of the
model performance were obtained using a hold-out test dataset,
comprising 25 % of the data stratified by outcome. Area under the curve
(AUC) was used for model evaluation. To gain some insight into the
features that contribute the most to the obtained predictions, feature
importance of ensemble models was quantified using Gini impurity. For
the elastic net logistic regression model, feature importance was repre-
sented by the magnitude of parameter coefficients.

The dependence of the measured model performance on the data
split was assessed by creating twenty different repetitions of the analysis
with different data splits and visually summarizing the distribution of
performance metrics. For feature importance, pairwise rank correlations
were calculated to estimate the consistency between different runs (re-
sults are presented in Digital Supplemental Content 2). Finally, a linear
mixed model was used to test which condition (i.e. with or without
follow-up data) and modelling algorithm was best across all twenty it-
erations while accounting for the inherent relations in the data. Addi-
tionally, contrasts with Tukey correction were calculated to allow direct
comparison of all modelling algorithms.

After finalizing the full models, the best reduced model was created
using a forward stepwise procedure. The same data splits and metrics as
before were used to evaluate performance of reduced models. The
classification-ability of the final model was evaluated by calculating
accuracy, sensitivity, specificity, positive predictive value and negative
predictive value across all thresholds. Additionally, a calibration plot
was created to assess how well the probabilities estimated by a model
align with the actual probabilities of the events being predicted in the
population under examination.

3. Results

3.1. Study sample

Fig. 1 shows a flowchart of the patient selection process. The final
study sample contained 586 individuals. An overview of their
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demographics and early outcome characteristics is shown per outcome
category in Table 1. The study sample had a mean age of 43 (SD = 13)
and consisted of 76 % males. A majority of 63 % of the sample had mild
TBI at baseline, 10 % had moderate TBI and 22 % severe TBI. The

median acute length of stay (LOS) was 8 days (Q1 = 3; Q3 = 21). As for
educational and professional background, half of the sample (49 %)
obtained a degree of post-secondary education. Before injury, 75 %
worked full-time, 17 % worked part-time, and 8 % was unemployed and
looking for work. After one year, 70 % of the study sample were
working.

3.2. Full model performance

The first column of Fig. 2 shows the distribution of AUC for each of
the twenty data splits, for either the data available at discharge or the
follow-up enhanced data. Without follow-up data, the median AUC
achieved by the different modelling algorithms is around 81 % across
algorithms. With three-month follow-up, this went up to about 88 %. All
three modelling algorithms performed similarly. Thus, the logistic
regression model was chosen because it has the highest transparency
and explainability.

When the AUC values obtained by the twenty repetitions of the three
modelling algorithms in two conditions (with vs. without follow-up
data) are modelled using a linear mixed effect model, a significant
main effect of the condition is found (p< 0.0001). Additionally, the AUC
values of the gradient boosting model has significantly lower perfor-
mance than the other two algorithms (see Digital Supplementary Con-
tent 2).

Fig. 1. Patient selection flowchart.

Table 1
Overview of study sample characteristics per outcome.

Employed at 1y post-TBI Not employed at 1y post-TBI

Demographics
Age
18-35 131 (32 %) 48 (28 %)
36-50 137 (33 %) 53 (31 %)
51-65 147 (35 %) 70 (41 %)

Sex
Male 297 (72 %) 126 (74 %)
Female 118 (28 %) 45 (26 %)

Education
Higher education 128 (31 %) 32 (19 %)
No higher education 262 (63 %) 132 (77 %)

Cause of Injury
Road traffic accident 191 (46 %) 95 (56 %)
Incidental fall 148 (36 %) 52 (30 %)
Other non-intentional injury 32 (8 %) 6 (4 %)
Violence 17 (4 %) 7 (4 %)
Suicide 4 (<1 %) 1 (<1 %)

Pre-injury Employment Situation
Pre-injury Employment Status
Working full time 321 (77 %) 120 (70 %)
Working part time 65 (16 %) 28 (16 %)
Unemployed 18 (4 %) 26 (15 %)

Pre-injury Job Class
Manager/Professional 89 (21 %) 17 (10 %)
Technician/Supervisor/Associate 72 (17 %) 17 (10 %)
Clerk/Sales 47 (11 %) 9 (5 %)
Skilled manual worker 61 (15 %) 35 (20 %)
Manual worker 67 (16 %) 42 (25 %)

Acute and Post-acute TBI Severity
Baseline Glasgow Coma Scale
Mild 293 (71 %) 74 (43 %)
Moderate 38 (9 %) 18 (11 %)
Severe 64 (15 %) 66 (39 %)

Glasgow Outcome Scale at 3 mo post-TBI
Good recovery 235 (57 %) 16 (9 %)
Moderate disability 158 (38 %) 74 (43 %)
Severe disability 19 (5 %) 80 (47 %)
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3.3. Feature importance

Without follow-up, LOS showed up as the most important predictor,
across all algorithms. Other consistently important predictors include
age, pre-injury employment status, total injury severity and some vital
parameters (heart rate, blood pressure and oxygen saturation). With
three-month follow-up, GOSE became the most important predictor in
each of the algorithms.

There was a high degree of consistency in the rank of the feature

importance for different data splits (see Digital Supplemental Content
2). This is shown for the elastic net logistic regression model in Fig. 3.
The highest ranking features for this model in terms of importance, are
shown in Digital Supplemental Content 2 as well.

3.4. Reduced model

Based on the feature importance of the full elastic net logistic
regression model, a forward stepwise procedure adding features in order
of importance resulted in the performance shown in the right panel of
Fig. 2. With the GOSE as the only predictor in a univariable model, a
decent AUC of 84 % is observed. The stepwise addition of pre-injury
occupation, pre-injury employment status, LOS and age results in
further improvement to the model performance. Model coefficients are
presented in Table 2, with the corresponding metric curves in Fig. 4.
Digital Supplemental Content 4 contains the full table of sensitivity,
specificity, PPV, NPV and accuracy values per threshold. Fig. 5 presents
the calibration curve of the model, showing no systematic over- or un-
derestimation of the probability of returning to work.

A reduced model was created as well for the dataset with discharge
data only. This can be consulted in Digital Supplemental Content 3.

Fig. 2. Aggregated Area Under the Curve (AUC) of full (left) and reduced models (right).
Each dot on the graphs represents a different data split, with diamonds indicating outliers.

Fig. 3. Feature importance of elastic net logistic regression model with follow-
up data.
(GOSE = Glasgow Outcome Scale Extended; AVPU = Alert, Voice, Pain, Un-
responsive; AIS = Abbreviated Injury Scale).

Table 2
(Exponentiated) coefficients of reduced model.

Variable Coefficients Odds Ratios

B LCL UCL Exp(B) Exp(LCL) Exp(UCL)

Intercept − 1.82 − 3.50 − 0.19 0.16 0.03 0.82
GOSE 1.06 0.85 1.30 2.89 2.34 3.65
Pre-Injury Job Class (ref = Manager/Professional)

Technician/Supervisor/Associate Professional − 0.25 − 1.16 0.66 0.78 0.31 1.94
Clerk/Sales 0.11 − 0.94 1.20 1.12 0.39 3.32
Skilled manual worker − 1.25 − 2.10 − 0.44 0.29 0.12 0.65
Manual worker − 1.14 − 1.99 − 0.32 0.32 0.14 0.73
Other − 0.97 − 1.85 − 0.12 0.38 0.16 0.89

Pre-Injury Employment Status (ref = Working Full-Time)
Unemployed, looking for work − 2.96 − 3.93 − 2.03 0.05 0.02 0.13
Working Part-Time (20–34 h/week) 0.16 − 0.65 0.99 1.17 0.52 2.70
Working Part-Time (<20 h/week) − 0.54 − 1.71 0.73 0.58 0.18 2.07

Length Of Stay − 0.04 − 0.05 − 0.02 0.96 0.95 0.98
Age at Injury − 0.04 − 0.06 − 0.02 0.96 0.94 0.98

B = estimate; LCL = Lower Confidence Limit; UCL = Upper Confidence Limit; Exp = Exponentiated; ref = reference category; GOSE = Glasgow Outcome Scale
Extended.
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4. Discussion

4.1. How can we make accurate predictions on employment outcome, and
does this require follow-up data beyond hospitalization?

In general, it can be observed that the addition of three-month
follow-up data to the full model is associated with a significant
improvement of model performance across all modelling algorithms (see
Digital Supplementary Content 2). Among the modelling algorithms
tested in this study, the best predictions can be obtained by an elastic net
logistic regression or a random forest algorithm. Preference was given to
the logistic regression model over the random forest because of more
transparency of the prediction mechanism. Surprisingly, the develop-
ment of the reduced model showed that good predictions do not require
a large number of predictors.

4.2. Which predictors are required to make accurate predictions?

Among acute hospitalization variables, LOS is the most important
predictor. LOS is known to be affected by social determinants, which
could also be relevant in this context.14,15 However, the main explana-
tion for the importance of LOS is that it can be considered a proxy

variable for medical complexity and injury severity. The latter is also a
highly important feature in our models. Similarly, acute injury severity
is also represented in vital parameters (heart rate, blood pressure and
oxygen saturation), whose feature importance ranks highly as well.

Older age is considered to be a barrier for return to work across
different pathologies.16 Specifically for TBI, a majority of studies found
age to be associated with employment outcomes.17 On the one hand, this
can be explained by the general societal tendency towards a negative
relation between employability and advancing age.18,19 On the other
hand, age is also associated with slower recovery and worse outcomes
after TBI.20,21

The importance of pre-injury employment status to predict post-
injury employment status is self-explanatory. As for pre-injury occupa-
tion, the fact that higher job levels are predictive of better outcomes has
previously been explained by workers without stable qualifications or
work experience pre-injury having more difficulty to reintegrate onto
the labor market post-injury.22

When three-month follow-up is added, total GOSE score systemati-
cally becomes the most important predictor of one-year employment
outcome. The feature importance of the full model and the substantial
predictive accuracy of the univariable model, and the odds ratio (in-
crease with factor 2.89 per point increase in GOSE) indicate the
importance of the GOSE as a predictor for return to work. This is un-
surprising, as return to work is only possible for the upper levels for the
GOSE. General disability level can also be quantified using different
scales, including the DRS, the FIM and the GOSE. Though measurements
of these scales were not available in this study, other studies found ev-
idence for each of these scales to be associated with employment out-
comes after TBI.17

4.3. Are predictions accurate enough for use in clinical practice?

The calibration plot shows that the predicted probabilities match the
actual probabilities of returning to work well. Given the relatively small
hold-out dataset the plot was based on, some occasional deviations are
less concerning than the general trend, which aligns well with the di-
agonal. This indicates that there is no systematic over- or underesti-
mation of the actual probability of returning to work.

Fig. 4 shows that if a health practitioner wants to give a prognosis to
a patient that is as predictive as possible (i.e., PPV + NPV as high as
possible), the probability of the prediction being correct is somewhat
over 80 % at a threshold of about 0.33. While this is far from a perfect
prediction, this has some indicative value. Thus, the model can be used
in a supportive role in clinical practice, as long as the characteristics of
the sample of the current study can be considered similar to those of the
target patient population and, therefore, generalizable. Fig. 4 and Dig-
ital Supplemental Content 4 allow the determination of a different
optimal decision threshold if the health practitioner has another pref-
erence regarding the metrics to be maximized.

4.4. Limitations and suggestions for future research

A first limitation of this study concerns the fact that the hospitals
where the CENTER-TBI data collection took place were mostly special-
ized trauma centers. Therefore, we have no information on the perfor-
mance of our models for patients in more local hospitals. Despite the
relatively large sample size of the complete CENTER-TBI project, the
combination of the study inclusion criteria and the incompleteness of
the follow-up data led to a substantial decrease in the available number
of observations for this analysis. Given this limited number of patients,
our robustness analysis showed a range for different model performance
metrics depending on the data split. Additionally, a larger sample size
would have resulted in more consistent model performance estimates.

The fact that the vastly reduced models perform at least as well as the
full models indicates slight overfitting. Therefore, potential improve-
ment of model performance could have been achieved through more

Fig. 4. Performance metrics across all possible thresholds (with slight LOESS
smoothing).
PPV = Positive Predictive Value; NPV = Negative Predictive Value.

Fig. 5. Calibration plot. Interpretation aid: Among the individuals who had a
predicted probability of X% to return to work, Y% actually returned to work.
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customization of the used prediction algorithms rather than the use of
off-the-shelf algorithms and the standard data science workflow. While
this was beyond the scope of the current study, fine-tuning the desired
behavior of the algorithms could potentially have improved the pre-
dictive performance by avoiding overfitting.

Despite good predictive performance, the models created in this
work do not fully capture the underlying patterns related to unem-
ployment one year after TBI. It is likely that this is in part caused by the
limitations of the predictor set. CENTER-TBI contains an extensive and
detailed collection of variables measured during hospitalization. It also
comes with follow-up data, though in this analysis only an overall
indication of functioning seemed to come forward. Furthermore, clinical
datasets such as CENTER-TBI contain little to no information on more
environmental factors, which are important when considering return to
work outcomes. These can be specific to the direct environment of the
patient, such as their support system and workplace characteristics.23–25

Additionally, factors related to the economic circumstances as well as
the services, systems and policies in the country of the individual are
highly relevant as well.23,24,26,27 Particularly in this study, where the
utilized data were collected in 18 different countries, this is likely to
have caused some of the remaining unexplained variation. Future
research should explore these environmental factors further.

Finally, as this is a first modelling attempt, patients who did not have
data on the outcome variable at one year post-injury were removed from
the analysis which may have introduced bias.

5. Conclusion

This study highlights the predictive value of the GOSE for return to
work. Though this scale is often not routinely administered in a care
context, this work shows its value for prediction of employment out-
comes. Therefore, it may be worthwhile the 10–15 min time it takes to
fill out the GOSE questions for patients with TBI who are in the labor
force pre-injury.

The reduced prediction model presented in this study can be used to
make predictions on employment outcome with an AUC of 90 %.
Depending on the goal of the predictions as well as the corresponding
cost of false-negatives and false-positives, an appropriate decision
threshold can be chosen based on Fig. 4 and the Digital Supplemental
Content 4.

Return to work is often a key objective for rehabilitation as
employment is an important aspect of community integration. Precise
predictions about post-TBI vocational outcomes are therefore particu-
larly relevant as a means of realistic goal setting. Adequate expectations
are essential for the patient to be sufficiently informed to participate in
the decision-making process concerning his or her treatment. Solid
probability estimates provide the opportunity to target resources and
efforts in terms of labor market integration programs towards those who
have either the best chances of reaching stable employment or those
who require extra support in order to obtain this goal.
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