
I 

 

 

Genetic evaluation of 

young adults with cancer  
by 

Maria Valeria Freire Chadrina 

 

 

A thesis 

Submitted to the Faculty of Medicine 

University of Liege 

in fulfillment of the requirements 

for the degree of Doctorate in Medical Sciences 

 

 

Supervised by Prof. Vincent Bours 
 

 

 

 

 

2025 



 

 



I 

Abstract 

The oligogenic coinheritance of heterozygous pathogenic variants (PVs) in cancer-related genes is a 

poorly studied event. Currently, due to the increment of cancer survivors and the the wide-spreading of 

next generation sequencing (NGS) methods, the probability of presenting multiple primary cancers 

(MPCs) and uncommon cancer-gene associations is higher. 

This study included young MPCs patients and patients with single or MPCs and multiple PVs. NGS 

sequencing techniques of germline and tumoral DNA were used. 

Ten patients with MPC were included in the study and presented a mean of three cancers per patient. 

Whole exome sequencing (WES) of the germline DNA identified 1-3 variants possibly related to the 

disease in each patient, and most of them were classified as variants of uncertain significance. 

Additionally, six patients from five MPCs families who coinherited PVs in two cancer predisposition 

genes, and three patients with metastatic colorectal cancer that were heterozygous for a previously 

known BRCA1 nonsense variant were described. 

The sequencing of patients with early cancers, family history and multiple tumors is already a standard 

of care. However, the growing evidence suggests that patient´s assessment should not stop at the 

identification of one PV in a cancer predisposition gene. 
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Résumé 

La co-hérédité oligogénique de variants pathogènes (VP) hétérozygotes dans les gènes liés au cancer 

est un événement peu étudié. Actuellement, en raison de l’augmentation du nombre de survivants du 

cancer et de la large diffusion des méthodes de séquençage de nouvelle génération (NGS), la 

probabilité de présenter plusieurs cancers primaires (PCP) et des associations rares de gènes de cancer 

est plus élevée. 

Cette étude a inclus de jeunes patients atteints de PCP et des patients présentant un ou plusieurs PCP 

et plusieurs VP. Des techniques de séquençage NGS de l’ADN germinal et tumoral ont été utilisées. 

Dix patients atteints de PCP ont été inclus dans l’étude et présentaient en moyenne 3 cancers par 

patient. Le WES de l'ADN germinal a identifié 1 à 3 variants possiblement liés à la maladie chez chaque 

patient, et la plupart d'entre eux ont été classés comme variants de signification incertaine. De plus, six 

patients de cinq familles PCP qui ont co-hérité de VP dans deux gènes de prédisposition au cancer, et 

trois patients atteints d'un cancer colorectal métastatique qui étaient hétérozygotes pour un variant 

non-sens BRCA1 précédemment connu ont été décrits. 

Le séquençage des patients présentant des cancers précoces, des antécédents familiaux et des 

tumeurs multiples constitue déjà une norme de soins. Cependant, de plus en plus de preuves suggèrent 

que l'évaluation du patient ne devrait pas s'arrêter à l'identification d'un variant pathogène dans un gène 

de prédisposition au cancer. 
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Introduction 

Multiple primary cancers 

Cancer is a leading cause of premature death worldwide, and the global cancer burden is expected to 

exceed 27 million new cancer cases per year by 2040 (1). In recent years, advances in the diagnosis and 

treatment of cancer have increased the probability of survival of the patients, making the development 

of a subsequent cancer a growing concern (2). 

Definition  

Multiple primary cancers (MPCs) are generally defined as two or more malignant tumors that are 

histologically distinct and arise in the same or a different organ (3). Historically, Renaud and Rokitansky 

reported the first MPC patient in 1855 (4). However, it was Theodor Billroth in 1889 who proposed the 

first diagnostic criteria for MPCs (5,6), followed by Warren and Gates (7) in 1932. Moertel considered 

Billroth’s criteria to be too rigid, while Warren’s criteria were subjected to an excessively liberal 

interpretation. Consequently, in 1977 Moertel published his classification (6) with examples of each 

category (see Table 1).  

Table 1. Multiple primary cancers definition and classification according to different authors 

Billroth criteria, 1889 

1. Each tumor must have a distinct microscopic morphology. 

2. Each tumor should generate its own metastases. 

Warren and Gates Criteria, 1932 

1. Each tumor must be histologically proven as malignant. 

2. Each tumor must be anatomically distinct. 

3. The probability of one being a metastatic lesion originating from the other must be ruled 

out. 

Moertel criteria, 1977 

I. Multiple primary malignant neoplasms of multicentric origin. 

A. The same tissue and organ (for example, multiple epitheliomas of the skin). 
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B. A common, contiguous tissue shared by different organs (for example, a 

squamous cell carcinoma of the pharynx and a squamous cell carcinoma of the 

larynx). 

C. The same tissue in bilaterally paired organs (for example, bilateral breast cancer). 

II. Multiple primary malignant neoplasms of different tissues or organs (for example, an 

adenocarcinoma of the breast and an osteogenic sarcoma, or a squamous cell 

carcinoma of the mouth and a squamous cell carcinoma of the cervix). 

III. Multiple primary malignant neoplasms of multicentric origin plus a lesion(s) of a different 

tissue or organ (it is a combination of I and II). 

 

The American Cancer Society in 2009 proposed a more detailed list of criteria (2) for considering each 

tumor as a separate primary. These conditions include: 

▪ A cancer in a different site and histologic type from the original is considered a separate primary. 

▪ Same-site cancers of different histological types are considered separate primaries regardless 

of the time of diagnosis. 

▪ The threshold for considering a cancer of the same histology in the same site as a separate 

tumor is 2 months unless a recurrent or metastatic disease is specifically stated in the medical 

record. 

▪ In paired organs, each one is considered a separate site. 

▪ Most histological types of prostate and urinary bladder cancer are exceptions – multiple tumors 

are reported as a single primary in these cases. 

▪ The rules to define MPCs in the lymphatic and hematopoietic systems are different. 

The development of epidemiological cancer surveillance and the creation of cancer registries created 

a need for more strictly defined criteria for MPC. Currently, for reporting purposes two main sets of 

criteria are used: the National Cancer Institute Surveillance, Epidemiology, and End Results Program 

(SEER) (8) mainly in the United States of America (US) and the International Agency for Research on 

Cancer (IARC) (9) in the rest of the world. Both classifications use different rules for solid tumors and 

hematological malignancies. 

The SEER generally defines as MPCs separate/non-contiguous tumors in different primary sites 

excluding metastasis and separate/non-contiguous tumors in the same primary site but of different 

histology regardless of time. The SEER and IARC classifications have some differences which are further 

explained in Table 2. 
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Table 2. The main differences between the SEER and IARC MPCs classification of solid tumors 

Criteria 

National Cancer Institute 

Surveillance, Epidemiology, 

and End Results Program 

(SEER)(8) 

International Agency for 

Research on Cancer (IARC)(9) 

Topography codes of the 

International 

Classification of 

Diseases for Oncology 

Each group is considered one 

site (e.g. tumors of different parts 

of the colon are considered 

MPCs) 

Several groups are considered 

one site (e.g. the whole colon is 

considered one site) 

The time between the 

original diagnosis/last 

recurrence and the new 

tumor 

5 years for breast, head, and 

neck cancer 

3 years for urinary tissue, lung, 

and kidney cancer 

1 year for colon and other 

cancers 

Time is not a defining criterion 

Paired organs or tissues Separate/non-contiguous 

tumors in paired organs are 

considered MPCs 

Only one tumor is recognized in 

each paired organ or tissue 

Multifocal tumors Can be considered MPCs 

depending on histology* 

Are always considered one tumor 

Skin cancer Multiple skin tumors are 

considered MPCs (even with the 

same histology) 

Only the first tumor of a specific 

histological type is considered an 

incident tumor during a person’s 

lifetime 

MPCs – multiple primary cancers. *Specific histological subtypes that are considered MPCs: micropapillary urothelial 

carcinoma and urothelial carcinoma of the bladder; at least one small cell carcinoma (or its subtypes/variants) combined with 

a non-small cell carcinoma (or its subtypes/variants) irrelevant of laterality; the combination of a first glial tumor followed by a 

glioblastoma multiforme; subsequent small cell carcinoma of the prostate >1 year following a diagnosis of acinar 

adenocarcinoma or its subtypes; follicular and papillary tumors in the thyroid gland diagnosed >60 days; anaplastic thyroid 

gland carcinoma combined with a tumor of any other histology. 
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MPCs can also be divided into synchronous and metachronous according to the time between the 

diagnosis of the tumors. SEER defines synchronous cancers as those present within 2 months since the 

diagnosis of the first tumor (8), while the IARC sets this threshold at 6 months (9). 

Epidemiology 

The increased cancer survival due to improvements in early detection, supportive care, and treatment 

augmented over time the probability of developing more than one cancer (10,11). As of January 2005, 

880 300 of the 11 million cancer survivors in the US were diagnosed with more than one cancer (2). 

Furthermore, the risk of developing a second primary malignancy is different in each cancer site (see 

Figure 1).  

Figure 1. Ten most common primary sites among men and women diagnosed with more than one 

cancer alive as of January 1, 2005 

 
Note: Adapted from (2) and created with BioRender.com. 

The frequency of MPCs in epidemiological studies varies between 2-17% (12–16). The variation in the 

reported numbers may stem from differences in the applied definition of MPCs, the duration of follow-

up (where longer observation periods are associated with an increased likelihood of subsequent cancer 

development), and the characteristics of the studied population (11). 

In the period 2004-2017, MPCs accounted for 12.2% of cases in Belgium. About 90% of these MPCs 

were a second primary cancer, while 9% were a third primary cancer. The fourth or higher primary cancer 

represented less than 1% of all the MPCs. In the same period, 67 344 (8.3%) of patients had at least two 

primary cancers, and 5 804 patients (8.6% of patients with at least two primary cancers) had the first 
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and second primary cancer diagnosed on the same day. The majority (70.2%) of MPC patients in 

Belgium had the same cancer site for their first and second cancer, primarily breast and colorectal 

cancer (CRC) for women and CRC and head and neck cancers for men (17). 

Risk factors  

The probability of developing MPCs in the cancer patient population is higher than the incidence of 

primary malignancies in the general population. In most of the patients from the National Cancer 

Institute of the US registry who survived their first cancer, a second cancer was expected even if the 

cancer survivors had the same risk of disease as the general population. The likelihood of a person 

developing more than one cancer depends on the initial cancer type (the first primary site), treatment, 

lifestyle factors, environment, host factors, and gene-gene or gene-environment interactions (2) (See 

Figure 2).  

Figure 2. Multiple primary cancer risk factors 

 
The previous cancer diagnosis and treatment along with other risk factors affect the 

development of subsequent cancers. Note: Adapted from (18). 

Lifestyle factors 

Lifestyle risk factors for the development of MPCs include smoking status, alcohol consumption, and 

dietary patterns, among others. Tobacco and tobacco smoke contain over 9500 chemical compounds, 

83 of which are known carcinogens (19). Exposure to these substances over time can trigger field 

cancerization, leading to the formation of multiple patches of transformed cells, mainly in the 

respiratory and urinary systems. These cells can later evolve into second or subsequent cancers (20). 

Smoking is a well-established risk factor for developing new malignancies and cancer recurrence (21). 

Both former and current smokers face elevated risks of developing MPCs compared to those who have 
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never smoked (22). Furthermore, individuals who continued smoking after their initial cancer diagnosis 

exhibited a 35% increased risk of developing smoking-related cancers (23).  

Similar to tobacco, alcoholic beverages contain many carcinogens, with ethanol serving as their primary 

carcinogenic compound. The IARC classified alcohol consumption and ethanol in alcoholic beverages 

as carcinogenic (24). Alcohol consumption was linked to various cancers, including those of the oral 

cavity, oro- and hypopharynx, larynx, esophagus, colon, rectum, liver, intrahepatic bile duct, and female 

breast (1). Alcohol intake contributes to 8% of cancer incidence in France (25), 3% in Australia (26), and 

4% in the UK (27). 

Environmental influences 

Environmental factors such as geography, contamination, pathogens, and occupation play significant 

roles in cancer development. Areas of radon exposure have shown an increased risk of lung cancer. 

Additionally, infections caused by pathogens such as human papillomavirus and Epstein-Barr virus 

have been linked to cancer development. Certain professions, like those involving asbestos handling, 

are linked to cancers such as mesothelioma (28). In France, infections ranked fifth (accounting for 4.0% 

of cancer incidence), while environmental exposures ranked sixth (3.6% of cancer incidence) among 

the leading causes of cancer in 2015 (25). 

Host factors 

Host risk factors associated with developing MPCs encompass age, sex, genetics, immune function, 

hormonal profile, and other factors. Age is a non-modifiable risk factor for MPC development. Moreover, 

among individuals who have survived cancer, one of the leading causes of morbidity and mortality was 

the emergence of a second cancer (29). Studies have revealed that people who survived childhood 

cancer had a six-fold increased risk of developing cancer compared to the general population (30). In 

the US, those diagnosed with cancer before the age of 18 had 9.4% higher odds of having two or more 

cancers (p = 0.0057) compared to the reference age group (18-29 years). In the same study, the 

individuals who developed their first cancer at 30-49 years and 50-64 years had 20.5% and 13.7% higher 

odds of developing more than one cancer (p <0.0001 in both cases). On the contrary, people who 

developed their first cancer after 65 years old had 11.6% lower odds of having MPCs than those 18-29 

years old (p <0.0001) (22). 

Gender is another non-modifiable host risk factor significantly associated with the number of cancers 

(22). Data from 1995-2008 revealed higher rates of MPCs among females compared to males, with 

17.2% according to SEER rules and 14.5% according to IARC rules for females versus 15.8% (SEER) and 

14.4% (IARC) for males (14). Furthermore, individuals undergoing prolonged immunosuppression, such 

as organ transplant recipients, face a higher risk of developing skin, lung, and head and neck cancer 

(31). 
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Diagnosis  

The development of new imaging methods allowed the early detection of tumors that were previously 

ignored. The techniques that allow a better view of soft tissue, such as positron emission tomography-

computed tomography (PET-CT) have enhanced the detection of additional malignant tumors. After a 

PET-CT scan in 1912 patients, 4.1% of suspicious lesions were identified, 1.2% of which were 

histologically confirmed second primaries (32). These tumors were in the thyroid, colon, breast, 

esophagus, bile duct, and head and neck. In 200 patients who underwent a PET-CT scan for esophageal 

cancer staging, a synchronous MPC was identified in 17% of them (33). 

An atypical metastatic spread is one of multiple clinical characteristics that can indicate a high 

possibility of MPCs. Tumor metastases can be atypical in terms of their characteristics or site (prostate 

cancer with radiologically lytic bone metastases), number (head and neck cancer with a single 

pulmonary nodule), and chronology (new metastatic spread years after initial diagnosis). Other features 

that may suggest a high likelihood of MPCs are the recurrence in patients exposed to environmental 

carcinogens, atypical values in tumor markers (prostate cancer with low prostate-specific antigen and 

extensive liver metastases), and imaging (discovery of suspicious lesions during staging or follow-up). 

Previous treatment of the individuals is also important. Hematological malignancy in patients with 

previous chemotherapy or secondary malignancies (especially if in the same site) after radiotherapy can 

be a sign of high MPC risk (28). 

When MPCs are suspected, histological confirmation is important. When the primary cancer tissue is 

available for diagnosis, it makes the diagnosis easier, especially in cases of undifferentiated histology 

(28). 

Screening and genetic counseling  

Cancer genetic risk assessment and counseling involve a comprehensive process to identify and advise 

high-risk cancer patients and their families. Advancements in cancer genetics, including the expanded 

adoption of multigene panel testing, have transformed the clinical approach to screening high-risk 

patients and their families. Strategies that streamline the screening process are the search for a known 

pathogenic variant (PV) identified in a relative or testing of individuals with early-onset disease, multiple 

relatives with cancer, or MPCs (See Table 3). Generally, genetic testing is recommended for those with 

personal or family history suggestive of genetic cancer susceptibility when the results will aid in risk 

management and treatment (34).  
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Table 3. Criteria for considering genetic testing 

▪ A relative presenting a confirmed pathogenic germline variant associated with increased 

susceptibility to cancer. 

▪ Diagnosis of cancer at an early age, such as colon cancer before age 50.  

▪ Occurrence of multiple distinct cancer types in the same individual.  

▪ Cancer diagnoses across multiple relatives, particularly with patterns such as: 

- Several first-degree relatives affected by the same type of cancer. 

- Family history, including breast or ovarian cancer. 

- Family history, including both colon and endometrial cancer. 

▪ Cancer affecting both paired organs, such as the two kidneys or breasts.  

▪ Diagnosis of male breast cancer, adrenocortical carcinoma, carcinoid tumors, diffuse gastric 

cancer, fallopian tube/primary peritoneal cancer, leiomyosarcoma, medullary thyroid cancer, 

paraganglioma/pheochromocytoma, renal cell carcinoma of chromophobe, hybrid oncocytotic, 

or oncocytoma histology, sebaceous carcinoma, or sex cord tumors with annual tubules.  

▪ Presence of birth defects linked to recognized inherited cancer syndromes, such as specific 

non-cancerous conditions or physical anomalies.  

▪ Being a member of a racial or ethnic group with documented increased susceptibility to specific 

inherited cancer syndromes, and having one or more of the above features as well 

Note: Adapted from (35,36) 

Predictive genetic testing identifies inherited gene PVs, enabling the prediction of an individual’s 

susceptibility to specific types of cancer and future disease risks (37). Unlike traditional diagnostic 

tests, these assessments are designed to detect potential health issues before the onset of symptoms, 

allowing for the early identification of individuals at risk (38) 

Multigene testing can detect pathogenic or likely pathogenic (P/LP) variants that remain undetected by 

single-gene testing. This strategy is particularly beneficial when multiple genes could explain an 

inherited cancer syndrome, making phenotype-directed testing through a multigene panel more 

efficient and/or cost-effective based on personal and family history. It may also be considered for 

individuals with suggestive family history despite negative testing for a specific syndrome (34,39–41). 

Genetic counseling for patients with MPCs should adhere to several key principles. Firstly, if a PV is 

identified, relatives should be offered testing for that specific PV, and subsequent counseling should be 

tailored accordingly. In instances where no PV is found, counseling should be based on the individual 

tumor types observed in the proband, rather than the combination. For instance, if a woman has 

experienced multiple primary colon and breast cancers, her daughters should be provided with 

appropriate screening for both colon and breast cancer, tailored to the age at which their mother was 

diagnosed (42). Table 4 includes common tumor sites and the criteria that warrant assessment for 

cancer predisposition with the most frequent genes. 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Table 4. Assessment of cancer predisposition by tumor type 

Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

Basal cell carcinoma 

(BCC) 

>5 cumulative BCCs or BCC dx at age <30 and one 

additional nevoid basal cell carcinoma syndrome 

criterion (See Table 7) in the same person 

Nevoid basal cell 

carcinoma syndrome 

AD PTCH1 

SUFU 

109400 

607035 

Brain Brain tumor dx at age <18 if any of the following criteria 

are met: 

–Café-au-lait macules and/or other signs of NF1, or 

hypopigmented skin lesions 

–Consanguineous parents 

–Family history of Lynch syndrome-associated cancer 

–Second primary cancer 

–Sibling with a childhood cancer 

Constitutional 

mismatch repair 

deficiency syndrome 

AR MLH1, PMS2, 

MSH6, MSH2 

276300, 

600259, 

600678, 

609309 

 

 
 
 
 

 

Brain tumor and two additional cases of any Lynch 

syndrome-associated cancer (See Table 8) in the same 

person or relatives 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Brain tumor and one additional Li-Fraumeni syndrome 

tumor (See Table 9) in the same person or two relatives, 

one dx at age ≤45 

Li-Fraumeni syndrome AD TP53 151623 

 Astrocytoma and melanoma in the same person or two 

first-degree relatives 

Melanoma-astrocytoma 

syndrome 

AD CDKN2A 155755 

 Subependymal giant cell astrocytoma and one 

additional Tuberous sclerosis complex criterion (See 

Table 10) in the same person 

Tuberous sclerosis 

complex 

AD TSC1, TSC2 191100, 

191092 

 Medulloblastoma and ≥10 cumulative adenomatous 

colon polyps in the same person 

Familial adenomatous 

polyposis 

AD APC 175100 

 Medulloblastoma (Primitive Neuro Ectodermal Tumors) 

dx at age <18 and one additional nevoid basal cell 

carcinoma syndrome criterion (See Table 7) in the same 

person 

Basal cell nevus 

syndrome 

AD PTCH1 109400 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

Breast cancer, 

female 

Breast cancer dx at age ≤50  

Triple-negative breast cancer dx at age ≤60 

≥2 primary breast cancers in the same person 

Ashkenazi Jewish ancestry and breast cancer at any age 

≥3 cases of breast, ovarian, pancreatic, and/or 

aggressive prostate cancer in close relatives, including 

the patient 

Breast cancer and one additional Li-Fraumeni syndrome 

tumor (See Table 9) in the same person or in two 

relatives, one dx at age ≤45 

Hereditary breast and 

ovarian cancer 

syndrome 

AD BRCA1, BRCA2, 

PALB2 

604370, 

612555, 

610355 

 Li-Fraumeni syndrome AD TP53 151623 

 Breast cancer and ≥1 Peutz-Jeghers polyp in the same 

person 

Peutz-Jeghers Syndrome AD STK11 175200 

 Lobular breast cancer and diffuse gastric cancer in the 

same person 

Lobular breast cancer in one relative and diffuse gastric 

cancer in another, one dx at age <50 

Diffuse gastric and 

lobular breast cancer 

syndrome 

AD CDH1 137215 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Breast cancer and two additional Cowden syndrome 

criteria (See Table 11) in the same person 

Cowden syndrome AD PTEN 158350 

Breast cancer, male Single case present  Hereditary breast and 

ovarian cancer 

syndrome 

AD BRCA1, BRCA2, 

PALB2 

604370, 

612555, 

610355 

Colorectal cancer Colorectal cancer dx at age <50 

Colorectal cancer dx at age ≥50 if there is a first-degree 

relative with colorectal or endometrial cancer at any age 

Synchronous or metachronous colorectal or 

endometrial cancers in the same person 

Colorectal cancer showing mismatch repair deficiency 

on tumor screening 

Colorectal cancer and two additional cases of any 

Lynch syndrome-associated cancer (See Table 8) in the 

same person or close relatives 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 

 Mismatch repair cancer 

syndrome 

AR MLH1 276300 

 MUTYH-associated 

polyposis 

AR MUTYH 608456 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Colorectal cancer and two additional Cowden 

syndrome criteria (See Table 11) in the same person 

Cowden syndrome AD PTEN 158350 

 Colorectal cancer and one additional Li-Fraumeni 

syndrome tumor (See Table 9) in the same person or two 

relatives, one dx at age ≤45 

Li-Fraumeni syndrome AD TP53 151623 

 Colorectal cancer with ≥10 cumulative adenomatous 

colon polyps in the same person 

MUTYH-associated 

polyposis 

AR MUTYH 608456 

 Familial adenomatous 

polyposis 

AD APC 175100 

Endometrial cancer Endometrial cancer dx at age <50 

Endometrial cancer dx at age ≥50 if there is a first-

degree relative with colorectal or endometrial cancer at 

any age 

Synchronous or metachronous colorectal or 

endometrial cancer in the same person 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Endometrial cancer showing mismatch repair 

deficiency on tumor screening 

Endometrial cancer and 2 additional cases of any Lynch 

syndrome-associated cancer (See Table 8) in the same 

person or in close relatives 

    

 Epithelial endometrial cancer and two additional 

Cowden syndrome criteria (See Table 11) in the same 

person 

Cowden syndrome AD PTEN 158350 

Gastric cancer ≥2 cases of gastric cancer, one dx at age <50 in close 

relatives 

≥3 cases of gastric cancer in close relatives 

Diffuse gastric cancer dx at age <40 

Diffuse gastric cancer and lobular breast cancer in the 

same person 

Diffuse gastric cancer in one relative and lobular breast 

cancer in another, one dx at age <50 

Diffuse gastric and 

lobular breast cancer 

syndrome 

AD CDH1 137215 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Gastric cancer and 2 additional cases of any Lynch 

syndrome -associated cancer (See Table 8) in the same 

person or in close relatives 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 

Leukemia Leukemia dx at age <18, if any of the following criteria 

are met: 

-Café-au-lait macules and/or other signs of NF1, or 

hypopigmented skin lesions 

-Consanguineous parents 

-Family history of Lynch syndrome-associated cancers 

-Second primary cancer 

-Sibling with childhood cancer 

Constitutional 

mismatch repair 

deficiency syndrome 

AR MLH1, PMS2, 

MSH6, MSH2 

276300, 

600259, 

600678, 

609309 

 Leukemia and one additional Li-Fraumeni syndrome 

(See Table 9) in the same person or 2 close relatives, 

one dx at age ≤45 

Li-Fraumeni syndrome AD TP53 151623 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

Melanoma ≥3 cases of melanoma and/or pancreatic cancer in 

close relatives  

≥3 primary melanomas in the same person 

Melanoma and pancreatic cancer in the same person 

Melanoma and astrocytoma in the same person or 2 

first-degree relatives 

Familial atypical mole 

and malignant 

melanoma 

AD CMM1 155600 

 Melanoma-astrocytoma 

syndrome 

AD CDKN2A 155755 

Ovarian/Fallopian 

tube/primary 

peritoneal cancer 

Single case present in the patient or a first-degree 

relative 

Hereditary breast and 

ovarian cancer 

syndrome 

AD BRCA1, BRCA2, 

PALB2 

604370, 

612555, 

610355 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 

Pancreatic cancer Pancreatic cancer dx at any age, if any of the following 

criteria are met: 

-≥2 cases of pancreatic cancer in close relatives 

Hereditary breast and 

ovarian cancer 

syndrome 

AD BRCA1, BRCA2, 

PALB2 

604370, 

612555, 

610355 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 -≥2 cases of breast, ovarian, and/or aggressive prostate 

cancer in close relatives 

-Ashkenazi Jewish ancestry 

    

 Pancreatic cancer and ≥1 Peutz–Jeghers polyp in the 

same person 

Peutz-Jeghers Syndrome AD STK11 175200 

 Pancreatic cancer and two additional cases of any 

Lynch syndrome -associated cancer (See Table 8) in the 

same person or close relatives 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 

 ≥3 cases of pancreatic cancer and/or melanoma in 

close relatives 

Pancreatic cancer and melanoma in the same person 

Familial atypical mole 

and malignant 

melanoma 

AD CMM1 155600 

Prostate cancer ≥2 cases of prostate cancer dx at age ≤55 in close 

relatives 

≥3 first-degree relatives with prostate cancer 

Hereditary prostate 

cancer 

AD 

 

XL 

RNASEL 

HOXB13 

AR 

Xq27-q28 

601518 

610997 

176807 

300147 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Aggressive (Gleason score >7) prostate cancer and ≥2 

cases of breast, ovarian, and/or pancreatic cancer in 

close relatives 

Hereditary breast and 

ovarian cancer 

syndrome 

AD BRCA1, BRCA2, 

PALB2 

604370, 

612555, 

610355 

Renal cancer RCC with clear cell histology, if any of the following 

criteria are met: 

-dx at age <50 

-Bilateral or multifocal tumors 

-≥1 close relative with clear cell RCC 

von Hippel-Lindau 

syndrome 

AD VHL 193300 

 Birt-Hogg-Dube 

syndrome 

AD FLCN 135150 

 RCC with papillary type 1 histology Hereditary papillary 

renal cancer 

 PRCC 605074 

  MET 605074 

 RCC with papillary type 2 histology 

RCC with collecting duct histology 

RCC with tubulopapillary histology 

Hereditary 

leiomyomatosis and 

renal cell cancer 

AD FH 150800 

 RCC with Birt-Hogg-Dube-related histology 

(chromophobe, oncocytoma, oncocytic hybrid) 

Birt-Hogg-Dube 

syndrome 

AD FLCN 135150 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Urothelial carcinoma (or transitional cell carcinoma) 

and 2 additional cases of any Lynch syndrome-

associated cancer (See Table 8) in the same person or in 

relatives 

Lynch syndrome AD MSH2, MLH1, 

PMS2, MSH6 

120435, 

120436, 

600259, 

600678 

 RCC and 2 additional Cowden syndrome criteria (See 

Table 11) in the same person 

Cowden syndrome AD PTEN 158350 

 Angiomyolipomas of the kidney and one additional 

Tuberous sclerosis complex criterion (See Table 10) in 

the same person 

Tuberous sclerosis 

complex 

AD TSC1, TSC2 191100, 

191092 

Thyroid cancer Medullary thyroid cancer, OMIM Multiple endocrine 

neoplasia type 2 

AD RET 171400, 

155240, 

162300 

 Nonmedullary thyroid cancer and one additional Carney 

complex criterion in the same person: 

-Spotty skin pigmentation on lips, conjunctiva and inner 

Carney complex AD PRKAR1A 160980 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

or outer canthi, and/or vaginal or penile mucosa 

-Myxoma (cutaneous and mucosal) 

-Cardiac myxoma 

-Breast myxomatosis or fat-suppressed magnetic 

resonance imaging findings suggestive of this diagnosis 

-Acromegaly due to growth hormone–producing 

adenoma 

-Large cell calcifying Sertoli cell tumor or characteristic 

calcification on testicular ultrasonography  

-Primary pigmented nodular adrenocortical dysplasia 

-Thyroid carcinoma (nonmedullary) or multiple 

hypoechoic nodules on thyroid ultrasonography in a 

young patient 

-Psammomatous melanotic schwannoma 

-Blue nevus, epithelioid blue nevus (multiple) 

-Breast ductal adenoma (multiple) 

-Osteochondromyxoma 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

 Nonmedullary thyroid cancer and 2 additional Cowden 

syndrome criteria (See Table 11)  in the same person 

Cowden syndrome AD PTEN 158350 

 Papillary thyroid cancer (cribriform-morular variant) Familial adenomatous 

polyposis 

AD APC 175100 

Sarcoma (non-Ewing 

sarcoma) 

Sarcoma and one additional Li-Fraumeni syndrome 

tumor (See Table 9) in the same person or in 2 close 

relatives, one dx at age ≤45 

-Sarcoma dx at age <18 

Li-Fraumeni syndrome AD TP53 151623 

Pheochromocytoma/ 

paraganglioma 

Single case present in the patient or a first-degree 

relative 

Hereditary 

pheochromocytoma/ 

paraganglioma 

syndrome  

AD 

AD 

AD 

AD 

AD 

AD 

SDHB 

SDHD  

SDHC  

SDHAF2 

MAX  

TMEM127 

115310 

168000 

605373 

601650 

154950 

613403 



AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Cancer in the 

patient or first-

degree relative 

Genetic counseling reference criteria 
Syndrome(s) to 

consider 
Inheritance Gene/locus OMIM 

  von Hippel-Lindau 

syndrome 

AD VHL 193300 

  Multiple endocrine 

neoplasia type 2 

AD RET 171400 

Retinoblastoma Single case present in the patient or a first-degree 

relative 

Hereditary 

retinoblastoma 

AD RB1 180200 

AD – autosomal dominant, AR – autosomal recessive, BCC – Basal cell carcinoma, dx – diagnosis, NF1 – neurofibromatosis type 1, RCC – renal cell carcinoma, XL – X-linked. Note: adapted 

from: (57) 
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Genetic testing techniques  

Genetic testing techniques for cancer predisposition include cytogenetics, microarrays, DNA and RNA 

sequencing (See Figure 3). Classical cytogenetic studies rely on two main methods: karyotyping and 

fluorescence in situ hybridization (FISH). These two methods involve microscopic examination of 

chromosomes in individual cells or tissues fixed on a microscope slide (43). A karyotype is a visual 

representation of the number and structure of chromosomes, offering a low-resolution, genome-wide 

screening method for detecting chromosomal variants. This method is limited to living, actively dividing 

cells analyzed during metaphase, when chromosomes are at their most condensed state. A karyotype 

can identify numerical and structural chromosomal abnormalities visible under a microscope, such as 

gains or losses of chromosomes, as well as deletions, insertions, duplications, and translocations 

spanning approximately 5–10 megabases. Notably, this method enables direct evaluation of genomic 

complexity, clonal evolution, and unrelated clones within individual cells, facilitating the classification 

of abnormalities within a clone and distinguishing between related or unrelated clones. A key advantage 

of a karyotype lies in its ability to detect clones present at very low frequencies in a sample, particularly 

in myeloid neoplasms (43,44). 

Figure 3. Overview of genetic testing techniques 

 
CMA – Chromosomal Microarray, CNV – Copy Number Variant, FISH – fluorescence in situ hybridization, 

MLPA – Multiplex Ligation-Dependent Probe Amplification, NGS – Next-Generation Sequencing, OGM – 

Optical Genome Mapping, SNV – Single Nucleotide Variant, WES – Whole Exome Sequencing, WGS – Whole 

Genome Sequencing. 
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FISH utilizes fluorescently labeled DNA probes specifically designed to target recurrent, clinically 

significant chromosomal rearrangements or copy number variations. Unlike karyotyping, FISH does not 

provide an overview of the entire chromosomal composition of a cell but focuses solely on genomic 

regions complementary to the chosen probes. This technique complements karyotyping by enabling 

analysis in non-dividing cells, including paraffin-embedded tissues, and delivering rapid detection of 

specific chromosomal or genetic abnormalities. Such findings can assist in diagnosing conditions like 

gene fusions in leukemias and gene rearrangements in lymphoma. With higher resolution than 

karyotyping, FISH can detect submicroscopic abnormalities and permits the rapid examination of 

numerous cells. This capability is particularly advantageous for identifying low-level clones, such as in 

cases of minimal residual disease or early relapse (43,45). 

DNA microarrays are used to identify copy number alterations throughout the genome. This testing can 

be performed using two distinct approaches: chromosomal microarray (CMA, previously known as 

array-CGH) and single nucleotide polymorphism (SNP) arrays.  

CMA provides valuable complementary information to karyotype and FISH analyses. In certain tumors 

where copy number alterations, rather than gene rearrangements, play a pivotal role in disease 

management (such as neuroblastoma, Wilms tumor, and most central nervous system tumors) CMA 

may serve as the primary diagnostic tool. By hybridizing tumoral DNA to whole-genome copy number or 

SNP microarrays, DNA gains, losses, and amplifications that might go unnoticed with conventional 

cytogenetic techniques are detected. Furthermore, SNP probes allow the identification of regions with 

copy-neutral loss of heterozygosity, which could contain critical tumor-related genes. CMA offers a 

resolution of several hundreds to thousands of base pairs, depending on the number of probes used 

(46,47). 

In CMA, patient and reference DNA are labeled with distinct fluorescent dyes, typically green for patient 

DNA and red for reference DNA. An array slide is prepared with oligonucleotide DNA probes—short DNA 

sequences designed to hybridize to specific genomic regions. The probes are unevenly distributed, with 

some providing general "backbone" coverage and others focusing on gene-rich areas, syndrome-

associated regions, or specific genes of interest. The labeled DNA samples are applied to the array slide, 

where they competitively bind to the probes. Following hybridization, the slide is washed to remove 

unbound DNA and scanned to measure fluorescence at each probe location. The intensity and color of 

the fluorescence are analyzed by computer software: yellow indicates equal amounts of patient and 

reference DNA, red signifies more reference DNA than patient DNA (suggesting a deletion), and green 

represents more patient DNA than reference DNA (suggesting a duplication) (48). 

A SNP array slide is prepared using allele-specific DNA probes designed to target regions of SNP 

variation among individuals. Patient DNA is hybridized to the slide, where it binds to the probes. 
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Following hybridization, the slide is scanned to measure the fluorescence at each probe location. The 

intensity of the fluorescence indicates the alleles present at the targeted SNP sites in the patient’s 

genome. Specialized software analyzes this data to identify regions of copy number variation by 

evaluating the nucleotides present at each SNP site. At each SNP, an individual may be heterozygous 

(AB or BA) or homozygous (AA or BB). Regions with deletions are characterized by a loss of signal 

intensity and the appearance of homozygous SNPs across the affected area. In contrast, regions with 

duplications exhibit altered allele ratios compared to normal regions, leading to an increase in signal 

intensity (48). 

Hybrid arrays integrate SNP and oligonucleotide probes to overcome the uneven genomic distribution 

of SNPs, which can create coverage gaps in standard SNP arrays. By incorporating oligonucleotide 

probes alongside SNP-specific probes, these arrays achieve more uniform genomic coverage. 

Additionally, this design allows for targeted analysis of regions or genes associated with specific 

syndromes, thereby increasing their value for both diagnostic and research purposes (48). 

Sequencing technologies enable the determination of nucleic acid sequences. To date, three 

generations of sequencing technologies can be distinguished. The first generation includes methods 

developed in the mid-1970s, such as the Maxam-Gilbert chemical degradation method (49) and the 

Sanger method (50), which relies on polymerase arrest using dideoxynucleotides. The second 

generation encompasses high-performance sequencing technologies commercialized in the mid-

1990s, which, despite varying principles, require signals derived from multiple identical DNA molecules 

(short-read sequencing). These include sequencing by hybridization (Affymetrix, now largely displaced) 

(51), sequencing by ligation (Polonator, by Dover/Harvard), pyrosequencing (currently discontinued), 

sequencing by synthesis (Illumina), and ion semiconductor sequencing (Ion Torrent, Thermo Fisher 

Scientific) (52). More recently, third-generation sequencing (long-read sequencing) technologies have 

emerged such as RS II system from Pacific Biosciences (Menlo Park, CA, USA) and Oxford Nanopore 

Technologies (ONT, Oxford, UK), capable of detecting signals from single nucleic acid molecules (53). 

Sanger sequencing, short-read sequencing, and long-read sequencing, are highly effective for detecting 

various genetic alterations, including single-nucleotide variants (SNVs), copy number variants (CNVs), 

and rearrangements. They have a range of potential clinical applications, including whole genome 

sequencing (WGS), whole exome sequencing (WES), gene panel testing, and single-gene testing. RNA 

sequencing is particularly efficient for identifying gene fusions, while DNA sequencing can detect SNVs, 

CNVs, and fusions depending on the assay design. Long-read sequencing, which requires fresh or 

frozen tissue samples, can be clinically applied to identify large or complex structural rearrangements 

and to assess methylation status (46). 



26 

Optical genome mapping (OGM) is a cytogenomic tool that facilitates genome-wide analysis of copy 

number alterations, balanced rearrangements (such as translocations, inversions, and insertions), and 

complex structural rearrangements with high resolution. This method relies on the use of linearized 

strands of high molecular weight DNA, which are much longer than the DNA sequences analyzed by 

current second- and third-generation sequencing technologies, achieving average read lengths greater 

than 200 kilobases. In comparison, the RS II system from Pacific Biosciences has an average read length 

of 10–16 kilobases, while Oxford Nanopore Technologies devices are practically limited to about 20 

kilobases when significant human genome coverage is required. However, with substantial effort, an 

N50 read length of 100 kilobases can be achieved for low-coverage human genome analysis. The use of 

long DNA molecules in OGM facilitates the mapping of repetitive and complex regions more effectively 

than with shorter molecules. This capability allows for the creation of genome maps that can span entire 

chromosomal arms while still detecting insertions and deletions as small as 500 bp. Other CNVs require 

a minimum size of 30 kilobases to be detected (46,47). 

Finally, there are polymerase chain reaction (PCR)-derived methods also used in the evaluation of 

cancer predisposition. These include testing for MSI using PCR (54) and multiplex ligation-dependent 

probe amplification (MLPA) evaluation of cancer predisposition genes such as BRCA1 and BRCA2 in 

breast cancer patients (55). 

MLPA employs pairs of oligonucleotide probes that can be multiplexed in a single reaction, enabling the 

screening of all exons in a gene, for example. Each probe pair binds exclusively to its target sequence, 

and if the probes are adjacent, their ends ligate. Each probe in the pair contains a primer binding site at 

its end, so PCR amplification occurs only if the probes are ligated. The resulting amplification products 

are separated by size using capillary electrophoresis. The amount of amplification product correlates 

with the quantity of the target sequence in the sample. By comparing the peak heights of the 

amplification products from the sample with those from a reference sample with a known copy number, 

dosage abnormalities such as exon deletions or duplications can be identified (56). 

 

Genomic instability and DNA damage response 

Preserving genomic stability is critical for cell survival and reproduction. Damage to the DNA molecule 

can compromise genomic stability, leading to a higher-than-normal rate of mutation in the cells 

(genomic instability), and inducing carcinogenesis. This process comprises a cascade response of 

triggering proto-oncogenes (e.g. EGFR, MYC, and RAS families) while simultaneously suppressing anti-

oncogenes (e.g. TP53) (58–60). 
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DNA damage 

DNA damage can occur through either a direct or indirect pathway, both culminating in the disruption 

of the molecule’s chemical bonds and the alteration of DNA’s structure and properties. Direct damage 

occurs when either endogenous or exogenous materials directly contact with the molecule. At the same 

time, in the indirect pathway, these substances activate other products (e.g. free radicals) that 

subsequently damage DNA. Nonetheless, certain DNA-damaging agents, like UV light, can act as both 

direct and indirect agents (via reactive oxygen species) (59–61). 

DNA damage factors vary in their origins, nature, and the types of alterations they generate (See Figure 

4).  

Figure 4. Types of DNA damage factors 

 

DNA damaging factors
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Physical
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Type of alterations

Information content

Structural alterations
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Endogenous factors, such as oxidative phosphorylation, tend to be more severe and/or extensive 

compared to exogenous factors (e.g. environmental influences). Moreover, endogenous factors are 

more common than exogenous ones (See Table 5). Eukaryotic cells typically lose several thousand 

bases daily due to base hydrolysis alone. Based on their nature, DNA damage factors can be divided 

into physical (such as UV radiation, ionizing radiation, and, under certain circumstances, infrared, 

microwaves, and radio waves) and chemicals (including alkylating agents, oxidizing agents, and 

chemicals that create DNA-DNA or DNA-protein crosslinks). Content-altering agents typically act at a 

nucleotide level (e.g. mismatch), while structure-altering agents affect higher-order structures (such as 

Z-conformation or triple-strand DNA). Finally, cytotoxic agents damage the entire cell, whereas 

genotoxic ones specifically target DNA (62).  

Table 5. Endogenous and exogenous DNA damaging agents 

Endogenous Exogenous 

Replication errors 

DNA base mismatches 

Topoisomerase-DNA complexes 

Spontaneous base deamination 

Abasic sites 

Oxidative DNA damage 

DNA methylation 

 

Ionizing radiation 

UV radiation 

Chemical agents 

▪ Alkylating agents 

- Dietary components 

- Tobacco smoke 

- Biomass burning 

- Industrial processing 

- Chemotherapeutic agents 

▪ Crosslinking agents 

- Cyclophosphamide 

- Cisplatin 

- Psoralen 

▪ Aromatic amines 

- 2-aminofluorene 

- N-acetyl-2-Aminofluorene 

▪ Polycyclic aromatic hydrocarbons 

- Benzo[α]pyrene 

▪ Reactive electrophiles 

- 4-Nitroquinoline 1-oxide 

▪ Toxins 

- Aflatoxin B1 

Note: (63) 
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Solar UV radiation reaching the Earth's surface includes UVA (315–400 nm) and long UVB (290–315 nm) 

wavelengths, while shorter wavelengths (short UVB and UVC) are blocked by the ozone layer. UVB is 

carcinogenic, inducing mutagenic DNA damage through photon absorption that generates covalent 

bonds between adjacent pyrimidines. These bonds can occur at all potential dipyrimidine sites (CC, CT, 

TC, and TT), resulting in two major UVR-induced DNA lesions: cyclobutane pyrimidine dimers (CPDs) 

and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). CPDs are particularly mutagenic and play a 

central role in UVR-induced skin cancers. They account for 70% of UVB-induced DNA lesions and are 

responsible for the formation of the UV signature mutations (C → T transitions) at dipyrimidine sites, 

particularly at sites containing cytosine (CT, TC, and CC) (64). 

It is well established that, unlike UVB radiation, the less energetic UVA photons primarily exert their 

biological effects on cells and skin through oxygen-dependent mechanisms. These effects target a 

broad range of cellular components, including membranes, proteins, and DNA. Exposure to UVA 

radiation induces oxidative DNA damage in cells and human skin, primarily generating 8-oxo-7,8-

dihydroguanine (8-oxoGua), along with smaller amounts of oxidized pyrimidine bases and 

oligonucleotide strand breaks (65). 

On average, each human cell is subject to approximately 70 000 DNA lesions daily. Most of these lesions 

are single-strand DNA breaks (SSBs), followed by a formation of an abasic site 

(depurination/depyrimidination). Double-strand breaks (DSBs) are the least frequent yet most severe 

lesions for the cells (61,66) (See Figure 5). 

Figure 5. Types of DNA lesions and mutations with estimated frequencies in human cells 

 
8-oxoG – 8-hydroxyguanine, N/d – not determined. Note: Adapted from (61). 
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DNA repair  

Cells are equipped with multiple systems to reduce the deleterious effects of DNA damage, namely 

DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways. DNA damage response 

(DDR) pathways sense DNA damage, signal its presence, and physically remove the damage. Five main 

DNA repair pathways act through different stages of the cell cycle (See Figure 6), including base excision 

repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination 

(HR), and nonhomologous end joining (NHEJ). Additionally, a few specific lesions can be removed by 

direct repair (DR) and interstrand crosslinking (ICL) repair(63). 

Figure 6. Activation of DNA pathways during different cell cycle phases 

 
Direct repair, short-patch BER, and global genome NER are active through all the cell cycle phases. Nonhomologous 

end joining acts during G0, G1, and early S phases, while long-patch BER, mismatch repair, and transcription-coupled 

NER act during the S phase. Cell cycle phases: G0 – resting phase, G1 – growth, S – DNA synthesis, G2 – growth and 

preparation for mitosis, M – mitosis. BER – base excision repair, NER – nucleotide excision repair. Note: (67). 

 

Except for direct repair, all DNA repair pathways involve five main steps: recognition, 

reinforcement/recruitment, removal, reconstruction, and reinstatement (See Figure 7). In the initial 

recognition step, glycosylases and helicases detect and locate the damage. Subsequently, during the 

reinforcement/recruitment phase, the damage site is stabilized, and additional proteins are attracted to 

aid in repair by scaffolding and stabilizing proteins. During removal, endonucleases and lyases 

eliminate damaged bases from the DNA strand, preparing the site for new bases. Polymerases and 

progressivity factors then insert new nucleotides during the reconstruction step, while exonucleases 

and ligases restore the correct DNA configuration in the reinstatement phase (67). 
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Figure 7. DNA repair pathways 

 

DR – direct repair, BER – base excision repair, MMR – mismatch repair, NER – nucleotide excision repair, NHEJ – nonhomologous 

end joining, HR – homologous recombination, GG – global genome NER, TC – transcription-coupled NER, LP – long-patched 

BER, SP – short-patched BER. Note: (67) 

The direct repair mechanism relies on a single protein to eliminate DNA damage and lesions, making it 

less error-prone and efficient in maintaining genetic information without involving incisions in the sugar-

phosphate backbone or base excision (68). Direct repair primarily refers to the repair of pyrimidine 

dimers caused by UV exposure or other factors and the repair of alkylated bases (69). In humans, direct 

repair is carried out by two different pathways: the O6-methylguanine-DNA methyltransferase (MGMT) 

and the alkylated DNA repair protein B (AlkB) homologs. The MGMT pathway is present in all cells. Its 

mechanism involves the direct transfer of the alkyl group from the oxygen in the DNA to a cysteine 

residue in its active site. This reaction reverses the base damage, but the alkylation of MGMT results in 

its inactivation, followed by ubiquitination and proteasomal degradation. Alternatively, the AlkB 

homolog pathway reversibly removes numerous modified bases but principally 1-methyladenine and 3-

methylcytosine residues (70,71). 

BER is activated in response to oxidative, alkylating, and deamination DNA damage. This mechanism 

operates through two common pathways: short-patch (repairing a single nucleotide) and long-patch 

(repairing at least two nucleotides) (72,73). Four key proteins are involved in BER – DNA glycosylase, 
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apurinic/apyrimidinic (AP) endonuclease, DNA polymerase, and DNA ligase (74).  Currently, at least 11 

distinct mammalian DNA glycosylases have been identified, excluding mitochondrial isoforms, which 

typically arise from alternative splicing. DNA glycosylases are classified as monofunctional or 

bifunctional based on their activities. Monofunctional glycosylases, such as uracil-DNA glycosylase, 

have only glycosylase activity, creating apurinic/apyrimidinic sites, while bifunctional glycosylases, like 

NTHL1 and NEIL1, also have β-lyase and β,δ-lyase activity, respectively. Cleavage of the DNA strand via 

β-elimination or β,δ-elimination produces ends that must be processed before base excision BER can 

continue. (75,76). 

NER is a versatile repair mechanism that removes various types of lesions, including UV-induced 

damage, bulky chemical adducts, and intrastrand cross-links. In eukaryotes, NER can be divided into 

two distinct pathways, the global genome (GG-NER) and the transcription-coupled NER (TC-NER). GG-

NER can take place anywhere in the genome, whereas TC-NER specifically targets and accelerates the 

repair of lesions on the transcribed strand of active genes. GG-NER is initiated by the GG-NER specific 

factor XPC-RAD23B, sometimes assisted by UV-DDB (UV-damaged DNA-binding protein). In contrast, 

TC-NER initiates when RNA polymerase stalls at a lesion, with assistance from TC-NER-specific factors 

CSA, CSB, and XAB2. GG-NER and TC-NER rely on the core NER factors to complete the excision 

process (77–79). 

Two main mechanisms repair DNA double-strand breaks: HR and NHEJ. NHEJ uses enzymes such as 

nucleases, DNA polymerases, and ligases, which have multifunctional roles in DNA repair (80). This 

pathway employs various proteins to identify, remove, polymerize, and ligate DNA ends (81). 

Endogenous damage from reactive oxygen species (ROS) causes 10-50 DSBs per cell daily in tumor cells 

(82). NHEJ is the primary pathway in mammalian cells for repairing DSBs from ionizing radiation, which 

can lead to chromosomal translocations and genomic instability if not repaired correctly (83). Major 

NHEJ proteins include KU70 (XRCC6), KU80 (XRCC5), dependent protein kinase catalytic subunit (DNA-

PKcs), XRCC4-XLF, and ligase 4. DNA-PKcs inhibitors prevent DSB re-joining and stimulate cytotoxicity, 

and defects in NHEJ cause sensitivity to ionizing radiation and lymphocyte excision (84,85). 

HR involves various proteins and is highly accurate, repairing collapsed replication forks, single-ended 

DSBs, and ICLs, thus re-establishing genomic stability (86). Pathogenic variants in one or more genes 

encoding HR proteins can impair the entire pathway. Tumor-suppressor genes like BRCA1, BRCA2, and 

ATM are involved in HR, and DSBs caused by ionizing radiation, and topoisomerase I poisons 

(Camptothecin, Irinotecan and Topotecan) occur more frequently in tumors with defective HR, 

enhancing the efficacy of cytotoxic drugs. Additionally, HR deficient tumors are more vulnerable to 

platinum-based therapies (87,88).  
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Crucial steps in HR include RAD51 phosphorylation and accumulation, dependent on the proto-

oncogene ABL1, with ABL1 inhibitors increasing cell responsiveness to crosslinking agents and ionizing 

radiation (89,90). ATM is needed for the initiation of the DSB repair by HR. Upon DNA damage, ATM is 

recruited to the damaged site and leads to subsequent check-point activation during the G1/S 

checkpoint. ATM and ATR phosphorylate multiple downstream targets such as p53, H2AX, and BRCA1 

either directly or via CHEK2 gene coding checkpoint kinase 2 protein activation (91,92). The central 

reaction of HR is the homology search and DNA strand invasion mediated by the Rad51-ssDNA 

presynaptic filament, which aligns the invading 3′-end with a homologous template duplex to initiate 

repair synthesis. Rad51 catalyzes both the homology search and DNA strand exchange. Among the 

mediator proteins, the tumor suppressor BRCA2 is particularly significant. BRCA2 is essential for 

radiation-induced Rad51 focus formation in vivo and serves as a critical regulatory hub within the HR 

pathway (93). 

The association and colocalization of BRCA1 with RAD51 in nuclear foci of mitotic cells provided early 

evidence of BRCA1's role in HR repair. These foci are observed both before and after DNA damage, 

highlighting BRCA1's involvement in repairing both intrinsic and induced DNA damage. The interactions 

of BRCA1 and BRCA2 with RAD51 suggest a functional link among these proteins in RAD51-mediated 

DNA damage repair. While BRCA2 directly facilitates RAD51-mediated repair, BRCA1 appears to 

function through a more complex mechanism, involving interactions with additional proteins (94). 

MMR recognizes and repairs erroneous insertions, deletions, and base mis-incorporations that occur 

during DNA replication and recombination, as well as some forms of DNA damage. Defects in MMR 

increase the spontaneous mutation rate and induce multistage carcinogenesis (95). The MMR pathway 

corrects DNA mismatches generated during replication, preventing permanent mutations in cell 

divisions. Many human cancers, hereditary or non-hereditary, are linked to MMR inactivation, with some 

DNA damage requiring MMR for cell cycle arrest or programmed apoptosis. MMR plays a crucial role in 

the DNA damage response, eradicating severely damaged cells and suppressing short-term 

mutagenesis and long-term tumorigenesis (96). The MMR system was first identified in Escherichia coli, 

where mismatches in DNA triggered a repair response upon transformation into the bacterial cell. Key 

E. coli genes implicated in this process include MutS, MutL, MutH, and uvrD (ultraviolet repair protein 

D). Comparative studies in model organisms, such as bacteria and Saccharomyces cerevisiae, have 

demonstrated that MMR mechanisms and proteins are highly conserved across species, from 

prokaryotes to humans. In E. coli, MMR begins with the MutS protein, which detects mismatches in 

double-stranded DNA. Upon binding the lesion, MutS undergoes a conformational change, forming a 

homodimer and stabilizing its interaction with the mismatch. It then recruits MutL, which mediates 

interactions with downstream proteins such as MutH and uvrD. MutH, an endonuclease, cleaves the 



34 

newly synthesized strand at hemimethylated GATC sites, ensuring strand-specific repair. uvrD, a 

helicase, unwinds the DNA for mismatch removal. While prokaryotes rely on DNA methylation for strand 

discrimination, this mechanism remains unclear in eukaryotes (97). Microsatellite instability (MSI), a 

hypermutator phenotype resulting from MMR deficiencies, is associated with various tumors, including 

those associated with Lynch syndrome (98). 

In response to specific DNA damage, one or multiple repair pathways are activated. Mismatched bases 

resulting from replication are addressed by the MMR. The Fanconi anemia (FA) pathway restores ICLs 

generated by natural or synthetic compounds. UV radiation, environmental mutagens, endogenous 

DNA damaging agents, and ROS cause SSBs that are repaired with BER and NER. DSBs triggered by 

ionizing radiation are handled either by NHEJ if the DNA ends are protected by the Ku70/Ku80 complex, 

or by homology-directed repair (HDR)/microhomology-mediated end joining (MMEJ)/single-strand 

annealing (SSA), depending on the length of the homology DNA fragments available (77,99). 

 

Genetics of multiple primary cancers 

The emergence of genomic analysis using genetic technologies and next-generation sequencing (NGS) 

has significantly broadened our understanding of cancer susceptibility and genomic changes within 

cancer cells. It is now recognized that malignant tumor development requires the emergence of a new 

cell population harboring a diverse array of genetic and epigenetic changes, some of which will be driver 

mutations. These driver mutations can initiate tumorigenesis by conferring selective advantages over 

the neighboring cells, as they occur in specific cancer driver genes. Since the establishment of genetics, 

one of the main goals has been the identification of these cancer-driver genes (1,100). 

Mutations targeting oncogenes, tumor suppressor genes, including “caretaker” genes (= DNA repair 

genes) directly involved in MPCs are the main genetic factors contributing to the development of MPCs. 

Additionally, the increasing number of genome-wide studies has shed light on the potential influence of 

common genetic markers shared among diverse tumors (pleiotropic loci) and low penetrance variants 

that elevate the risk of MPCs. A pleiotropic locus can increase the probability of developing MPCs in an 

individual while also influencing the risk of various cancer types. Furthermore, cancer treatment can 

alter the risk of developing MPCs if DNA-repair genes are altered, particularly in cases of treatment-

exposure-related MPCs (101,102). 
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MPC development mechanisms  

The mechanisms involved in MPC development include MSI, p53 inactivation, alterations in the receptor 

tyrosine kinases (RTK)-RAS pathway, and in the DSB repair systems, and others (See Figure 8).  

Microsatellites are intrinsically hypermutable short and simple repeating DNA sequences that are 

repaired with the MMR mechanism. In cases of impaired MMR, the excess of replication errors alters the 

microsatellite length and is called MSI. MMR abnormalities have been linked to MPCs, especially 

digestive tumors. Five percent of cancer patients are diagnosed with multiple colorectal cancers 

(CRCs). Metachronous CRCs have a higher rate of MSI compared to synchronous CRCs and have mainly 

a hereditary pattern with inactivation of MMR genes (101,103). 

DSB repair abnormalities can also significantly increase the risk of MPCs. HR is one of the main DSB 

repair mechanisms, which are crucial for preserving genomic integrity and normal cellular function. Key 

driver genes, such as Breast cancer type 1 (BRCA1), and Breast cancer type 2 (BRCA2) genes, play 

significant roles in the HR repair process (101).  

Germline PVs in BRCA1/2 occurred in 42.9% of breast cancer patients with a second primary tumor. 

This percentage dropped to 22.7% when the subsequent cancer was not ovarian but soared to 84.4% if 

the second primary cancer originated in the ovary. Additionally, genes like Cadherin 1 (CDH1), 

Phosphatase and tensin homolog (PTEN), Serine/threonine kinase 11 (STK11) and TP53 can be mutated 

in cases of hereditary breast and ovarian cancer (104). 

CHEK2 is an important protein in the DDR network in an ATM-dependent manner. This gene plays a 

crucial role in regulating cell cycle checkpoints, halting cell division to facilitate repair processes. When 

phosphorylated, CHEK2 can trigger apoptosis through TP53-dependent or independent pathways. 

Recognized for its high prevalence of germline PVs, CHEK2 is commonly incorporated into diagnostic 

NGS panels (101). 

The p53 protein is pivotal in tumor suppression, serving as a central hub for various signaling pathways. 

Somatic PVs in TP53 are present in over 50% of cancers, leading to the survival and proliferation of 

damaged cells, and ultimately promoting cancer invasion and metastasis. Although there is notable 

variability, malignancies induced by p53 inactivation consistently follow a predictable pattern of 

genome evolution. This leads to deficient repair mechanisms and genetic instability, which are thought 

to be significant contributors to MPCs (105,106). 
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Figure 8. Multiple primary cancers development mechanisms and hereditary syndromes 

 

Note: (107–112) 
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Monogenic inheritance. Cancer predisposition genes and syndromes  

 

Hereditary cancer predisposition syndromes encompass a diverse range of genetic diseases that 

increase the risk of developing tumors. Among these, some severe inherited disorders involve 

widespread organ failures, with cancer susceptibility being just one aspect of their clinical presentation 

(examples include Bloom syndrome, Fanconi anemia, Nijmegen breakage syndrome, and ataxia-

telangiectasia). Most of these syndromes are caused by the inactivation of genes crucial for DNA repair 

and often manifest with severe immune deficiency (113,114). In contrast, individuals affected by 

"genuine" hereditary cancer syndromes typically do not exhibit noticeable physical abnormalities; their 

distinction from healthy individuals lies primarily in their markedly heightened predisposition to develop 

cancer in specific organs (See Table 6) (115). 

Hereditary cancers appear to be the most prevalent category of disorders with vertical transmission. 

Unlike well-known genetic diseases such as cystic fibrosis or phenylketonuria, which are typically rare, 

conditions like BRCA1/2-related hereditary breast-ovarian cancer or MLH1/MSH2-associated Lynch 

syndrome are much more common, with a population frequency about 8-30 times higher, approaching 

approximately 1 in 300 to 1 in 400 people (116,117). It is estimated that at least 2% of apparently healthy 

individuals carry inherited variants associated with significantly increased and often life-threatening 

risks of specific types of cancer, with these figures potentially higher in populations where there is a 

strong founder effect (118,119). 

Most hereditary cancer predisposition syndromes mainly involve cancers specific to certain organs or 

tissues. However, with the advent of hereditary cancer registries and large datasets, it has become 

evident that many hereditary cancer syndromes are linked to a broader range of cancers than initially 

recognized, although most of the newly discovered associations show only a slight increase in lifetime 

cancer risk. For instance, BRCA1 and BRCA2 were originally identified as genes associated with breast 

and ovarian cancers. Recent findings suggest that individuals with PVs in BRCA1/2 may also face a 

borderline elevated likelihood of developing nearly all major types of cancer (120–126). 

 

 



 

AD – autosomal dominant, AR – autosomal recessive, M – mixed, U – unknown, X – X-linked. Note: (127) 
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Table 6. List of hereditary cancer predisposition syndromes 

Syndrome Prevalence Inheritance Involved Genes 

Hereditary paraganglioma-

pheochromocytoma 

syndrome 

1–9:1,000,000 AD (SDHA, SDHB, 

SDHC, TMEM127) 

Probable paternal 

inheritance (SDHD, 

SDHAF2, MAX) 

SDHA, SDHAF2, SDHB, 

SDHC, SDHD, MAX, 

TMEM127 

Carney Complex U AD PRKAR1A 

Neurofibromatosis type 1 1:2600 AD NF1 

Neurofibromatosis type 2 1:60,000 AD NF2 

Schwannomatosis 1:70,000 AD SMARCB1, LZTR1 

Multiple endocrine 

neoplasia type 1 

1:10,000 AD MEN1 

Multiple endocrine 

neoplasia type 2A 

1:44,000 AD RET 

Multiple endocrine 

neoplasia type 2B 

1:700,000 AD RET 

Familial medullary thyroid 

carcinoma 

1:233,000 AD RET 

Multiple endocrine 

neoplasia type 4 

<1:1,000,000 AD CDKN1B 

Hyperparathyroidism-jaw 

tumor syndrome 

U AD CDC73 

Parathyroid carcinoma 

syndrome 

U AD CDC73 

Nijmegen Breakage 

syndrome 

1:100,000 AR NBN 

Von Hippel–Lindau 

syndrome 

1:36,000 AD VHL 



 

AD – autosomal dominant, AR – autosomal recessive, M – mixed, U – unknown, X – X-linked. Note: (127) 
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Syndrome Prevalence Inheritance Involved Genes 

Hereditary papillary renal 

carcinoma syndrome 

U AD HPRC 

(MET protooncogene) 

Hereditary leiomyomatosis 

and renal cancer cell 

syndrome 

<1:500 AD FH 

Tuberous Sclerosis 

Complex 

1:5800 AD TSC1, TSC2 

Birt–Hogg–Dubé syndrome 1:500,000 AD FLCN 

Li–Fraumeni syndrome 1:3500 AD TP53 

Bloom syndrome U AR BLM 

Familial GIST U AD KIT, PDGFRA 

BRCA1- and BRCA2-

associated hereditary 

cancer syndrome 

1:500 (BRCA1) 

1:225 (BRCA2) 

AD BRCA1, BRCA2 

CHEK2-associated 

hereditary cancer 

syndrome 

1:937 (CHEK2 R95) AD CHEK2 

PALB2-associated 

hereditary cancer 

syndrome 

1:1250 AD PALB2 

RAD51C-associated 

hereditary cancer 

syndrome 

1:1600 AD RAD51C 

RAD51D-associated 

hereditary cancer 

syndrome 

U AD RAD51D 

ATM-associated hereditary 

cancer syndrome 

1:100 AR ATM 

Ataxia telangiectasia 1:40,000–300,000 AR ATM 



 

AD – autosomal dominant, AR – autosomal recessive, M – mixed, U – unknown, X – X-linked. Note: (127) 
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Syndrome Prevalence Inheritance Involved Genes 

Peutz–Jeghers syndrome 1:25,000–280,000 AD STK11 

BARD1-associated 

hereditary cancer 

syndrome 

U AD BARD1 

BRIP1-associated 

hereditary cancer 

syndrome 

1:500 AD BRIP1 

Fanconi Anemia 1–9:1,000,000 

The carrier 

frequency of FA is 

1/181 in the 

general population 

in North America 

and 1:93 in Israel. 

Specific 

populations have 

a founder effect 

with increased 

carrier frequencies 

(1 per 100 or less) 

M (AR, X) AR: FANCA, FANCC, 

FANCD1/BRCA2, 

FANCD2, FANCE, 

FANCF, FANCG 

(XRCC9), FANCI, 

FANCJ/BRIP1, FANCL, 

FANCM, 

FANCN/PALB2, 

FANCP/SLX4, 

FANCQ/ERCC4, 

FANCR/RAD51, 

FANCS/BRCA1, 

FANCT/UBE2T, 

FANCU/XRCC2, 

FANCV/REV7, 

FANCW/RFWD3, and 

FANCY/FAP100 

X: a hemizygous 

pathogenic variant 

in FANCB 

Familial atypical mole-

malignant melanoma 

syndrome 

U AD CDKN2A, CDK4 



 

AD – autosomal dominant, AR – autosomal recessive, M – mixed, U – unknown, X – X-linked. Note: (127) 
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Syndrome Prevalence Inheritance Involved Genes 

Nevoid basal cell 

carcinoma 

1:31,000–164,000 AD PTCH1, SUFU 

Xeroderma pigmentosum 1:1,000,000 (EU, 

USA), 1:22,000 

(JAP) 

AR DDB2 (XPE), ERCC1, 

ERCC2 (XPD), ERCC3 

(XPB), ERCC4 (XPF), 

ERCC5 (XPG), POLH 

(XPV), XPA, XPC 

BAP1 tumor predisposition 

syndrome 

U AD BAP1 

Shelterin complex genes 

hereditary cancer 

syndrome 

U AD POT1, ACD, TERF2IP 

TERT hereditary cancer 

syndrome 

U AD/AR TERT 

DICER1 tumor 

predisposition syndrome 

U AD DICER1 

Lynch syndrome 1:279 AD MLH1, MSH2, MSH6, 

PMS2, EPCAM 

RPS20-associated 

hereditary nonpolyposis 

colorectal cancer 

syndrome 

U AD RPS20 

Familial adenomatous 

polyposis 

1:8000 AD APC 

Attenuated familial 

adenomatous polyposis 

U AD APC 

Gastric adenocarcinoma 

and proximal polyposis of 

the stomach 

U AD APC 



 

AD – autosomal dominant, AR – autosomal recessive, M – mixed, U – unknown, X – X-linked. Note: (127) 
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AD – autosomal dominant, AR – autosomal recessive, M – mixed, U – unknown, X – X-linked. Note: (127) 

  

Syndrome Prevalence Inheritance Involved Genes 

Polymerase proofreading-

associated polyposis 

U AD POLE, POLD1 

MUTYH-associated 

polyposis 

1:20,000 

(carrier 1:100) 

AR MUTYH 

NTHL1 tumor syndrome U AR NTHL1 

MSH3-associated polyposis <1:1,000,000 AR MSH3 

MLH3-associated polyposis U AR MLH3 

Juvenile polyposis 

syndrome 

U AD BMPR1A, SMAD4 

Hereditary mixed polyposis 

syndrome 

U AD GREM1 

Sessile serrated polyposis 

cancer syndrome 

U AD RNF43 

Cowden syndrome 1:200,000 AD PTEN 

Hereditary diffuse gastric 

cancer syndrome 

U AD CDH1 

Hereditary pancreatitis 1–9:1,000,000 AD (PRSS1, CFTR, 

SPINK1, CPA1, CTRC, 

CASR, CEL) 

X (CLDN2) 

AR (CFTR, SPINK1, 

TRPV6) 

PRSS1, SPINK1, CFTR, 

CTRC, CLDN2, CPA1 

(Putative genes: CEL, 

CELP, CASR, GGT1, 

TRPV6) 

Howel–Evans syndrome <1:1,000,000 AD RHBDF2 

EGFR-associated genetic 

susceptibility 

U AD EGFR 

NBN hereditary cancer 

syndrome 

U AD NBN 
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The main syndromes that increase the risk of developing multiple primary cancers are described below. 

Nevoid basal cell carcinoma 

Nevoid basal cell carcinoma, also known as Gorlin-Goltz syndrome, is an autosomal dominant 

multisystemic disease marked by the appearance of multiple jaw keratocysts, typically starting in the 

second decade of life, and/or basal cell carcinomas (BCCs), which usually begin in the third decade 

(See Table 7). Many affected individuals have a distinctive appearance, characterized by macrocephaly, 

frontal bossing, coarse facial features, and facial milia. Most also exhibit skeletal anomalies, such as 

bifid ribs and wedge-shaped vertebrae. Ectopic calcification, particularly in the falx cerebri, occurs in 

90% of affected individuals by age 30. Cardiac fibromas occur in about 2% of individuals, while ovarian 

fibromas are seen in approximately 20%. About 5% of children with this disease develop 

medulloblastoma, usually the desmoplastic subtype. The risk of developing medulloblastoma is 

significantly higher in individuals with a pathogenic variant in the SUFU gene (33%) compared to those 

with a PTCH1 pathogenic variant (less than 2%), with peak incidence occurring at one to two years of 

age. Life expectancy for individuals with nevoid basal cell carcinoma is generally not significantly 

different from the average. Approximately 20%-30% of individuals with the disease harbor de novo PVs, 

while 70%-80% of patients inherit the disease from an affected parent. The estimated prevalence varies 

from 1/57,000 to 1/256,000, with a male to female ratio of 1:1 (128,129). 

Table 7. Nevoid basal cell carcinoma syndrome criteria 

Major criteria 

Lamellar calcification of the falx in an individual younger than age 20 

Jaw keratocyst 

Palmar or plantar pits 

Multiple basal cell carcinomas (>5 in a lifetime) or a basal cell carcinoma diagnosed before age 30 

(excluding basal cell carcinomas that develop after radiotherapy) 

First-degree relative with nevoid basal cell carcinoma syndrome 

Minor criteria 

Childhood medulloblastoma (primitive neuroectodermal tumor) 

Lymphomesenteric or pleural cysts 

Macrocephaly (occipital frontal circumference >97th percentile) 

Cleft lip or cleft palate 

Vertebral or rib anomalies observed on x-ray 
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Preaxial or postaxial polydactyly 

Ovarian or cardiac fibromas 

Ocular anomalies (cataracts, developmental defects, and pigmentary changes of the retinal 

epithelium) 

Note: adapted from (57) 

 

Lynch syndrome 

Lynch syndrome is the most common hereditary form of CRCs, resulting from autosomal dominant PVs 

in the mismatch repair genes MLH1, MSH2 (including methylation due to a deletion of the 3’ end of 

EPCAM including the polyadenylation signal), MSH6, or PMS2 (130). Lynch syndrome is associated with 

increased lifetime risks for colorectal (40–80%), endometrial (25–60%), ovarian (4–24%), and gastric (1–

13%) cancers (131,132). Lynch syndrome accounts for 2% to 4% of all CRCs and approximately 2.5% of 

endometrial cancer cases (130). Additionally, individuals with Lynch syndrome have elevated risks for 

urothelial carcinoma, glioblastoma, and sebaceous, biliary, small bowel, and pancreatic 

adenocarcinomas (133–135) (See Table 8). The lifetime cancer risks are generally lower in those with 

MSH6 and PMS2 PVs. Most tumors (77–89%) in individuals with Lynch syndrome exhibit MSI due to 

defective mismatch repair (136). 

 

Table 8. Tumors associated with Lynch syndrome 

Colorectal adenocarcinoma 

Endometrial adenocarcinoma 

Urothelial carcinoma (ureter and renal collecting ducts) 

Gastric cancer 

Ovarian cancer 

Small bowel cancer 

Glioblastoma 

Sebaceous adenocarcinoma 

Biliary tract cancer 

Pancreatic cancer 

Note: adapted from (57) 
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Li-Fraumeni syndrome 

Li-Fraumeni syndrome is an autosomal dominant cancer predisposition syndrome caused by PVs in the 

TP53 gene. It is characterized by a higher risk of developing five primary types of tumors: adrenocortical 

carcinomas, breast cancer, central nervous system tumors, osteosarcomas, and soft-tissue sarcomas 

(See Table 9), often before the age of 50, with many patients developing MPCs (137,138). The lifetime 

risk of cancer for these individuals is over 70% for men and over 90% for women (139). 

Table 9. Tumors associated with Li–Fraumeni syndrome 

Soft-tissue sarcoma 

Osteosarcoma 

Brain tumor 

Breast cancer (often early onset) 

Adrenocortical tumor 

Leukemia 

Bronchoalveolar cancer 

Colorectal cancer 

Note: adapted from (57) 

Early diagnosis, particularly before age 30, and specific types of malignancies, such as adrenocortical 

tumors or choroid plexus tumors diagnosed before age 18, are strong indicators of a TP53 PV, with the 

likelihood of identifying a PV approaching 80% and 100%, respectively (138,140,141). Children 

diagnosed with sarcoma also have a higher likelihood of having Li-Fraumeni syndrome (142).  

De novo germline TP53 pathogenic variants are found in approximately 7% to 20% of cases (139). 

Genetic evaluation is recommended for individuals with a personal or family history (first-degree 

relative) that includes: two or more close relatives with a Li-Fraumeni syndrome spectrum tumor, one 

diagnosed at or before age 45, breast cancer diagnosed before age 30, two or more Li-Fraumeni 

syndrome tumors in the same person, one diagnosed at or before age 45, adrenocortical tumors, 

choroid plexus tumors, childhood sarcoma (57). 

Tuberous sclerosis complex 

Tuberous sclerosis complex (TSC) is an AD disorder caused by PVs in the TSC1 and TSC2 genes. It is 

characterized by the development of tumors in the brain, kidneys, and heart, along with various skin and 

neurological abnormalities (143,144). Brain lesions in TSC are diverse and include subependymal 

nodules, cortical hamartomas, focal cortical hypoplasia, and heterotopic gray matter. Renal lesions, 
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such as angiomyolipomas and cysts, typically appear during childhood and become more common 

with age (144,145). Approximately two-thirds of newborns with TSC have one or more cardiac 

rhabdomyomas, which are largest at birth and tend to regress over time (146). Skin lesions are observed 

in nearly all individuals with TSC, though none are unique to the disease (144). 

Interestingly, about two-thirds to three-fourths of TSC cases result from de novo PVs (147). Clinical 

diagnosis is based on a combination of major and minor criteria (see Table 10). Referral for genetic 

evaluation should be considered for any individual with a personal or family history (first-degree relative) 

of any two major or minor diagnostic criteria (57). 

Table 10. Tuberous sclerosis complex criteria 

Major criteria 

Facial angiofibromas or forehead plaque 

Nontraumatic ungual or periungual fibroma 

Hypomelanotic macules (≥3) 

Shagreen patch (connective tissue nevus) 

Cortical tuber in the brain 

Subependymal glial nodule 

Subependymal giant cell astrocytoma 

Multiple retinal nodular hamartomas 

Cardiac rhabdomyomas, single or multiple 

Lymphangiomyomatosis 

Renal angiomyolipoma 

Minor criteria 

Multiple, randomly distributed pits in dental enamel 

Hamartomatous rectal polyps 

Bone cysts 

“Confetti” skin lesions 

Multiple renal cysts 

Nonrenal hamartoma 

Cerebral white matter radial migration lines 

Retinal achromic patch 

Gingival fibromas 

Note: adapted from (57) 
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Cowden syndrome 

Cowden syndrome, also known as PTEN hamartoma tumor syndrome, is an AD cancer predisposition 

syndrome characterized by multiple hamartomas and an increased risk of malignant transformation. 

These lesions can arise in tissues derived from any of the three embryonic germ layers (148). The 

estimated prevalence of the disease is 1 in 250,000, though this may be underestimated due to the 

syndrome's variable expression and the subtlety of its features, which can occur in the general 

population and be easily overlooked (149). There is a higher prevalence in females and most reported 

cases are in Caucasians (150). Diagnosis of Cowden syndrome typically occurs between the ages of 13 

and 65 (151). 

Cowden syndrome is caused by PVs in the PTEN gene and is associated with benign skin findings and 

significantly increased lifetime risks of several cancers: breast cancer (30–85%, often early-onset), 

follicular thyroid cancer (10–38%), renal cell cancer (34%), endometrial cancer (5–28%), colorectal 

cancer (9%), and possibly melanoma (6%) (152–155). The mucocutaneous manifestations of Cowden 

disease are so common that some of them are considered pathognomonic, such as facial 

trichilemmoma, acral keratosis, and papillomatous lesions (156). Clinical diagnosis is based on a 

combination of major and minor criteria (See Table 11). It is recommended to refer individuals who meet 

any three criteria from the major or minor diagnostic lists for genetic evaluation (57). 

Table 11. Cowden syndrome diagnostic criteria 

Major criteria 

Breast cancer 

Endometrial cancer (epithelial) 

Thyroid cancer (follicular) 

Gastrointestinal hamartomas (including ganglioneuromas but excluding hyperplastic polyps; ≥3) 

Lhermitte–Duclos disease (adult) 

Macrocephaly (≥97th percentile: 58cm for adult women, 60cm for adult men) 

Macular pigmentation of the glans penis 

Multiple mucocutaneous lesions (any of the following): 

Multiple trichilemmomas (≥3, at least 1 proven by biopsy) 

Acral keratoses (≥3 palmoplantar keratotic pits and/or acral hyperkeratotic papules) 

Mucocutaneous neuromas (≥3) 

Oral papillomas (particularly on tongue and gingival), multiple (≥3) OR biopsy proven OR 

diagnosed by a dermatologist 
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Minor criteria 

Autism spectrum disorder 

Colon cancer 

Esophageal glycogenic acanthosis (≥3) 

Lipomas (≥3) 

Intellectual disability (i.e., intelligence quotient ≤75) 

Renal cell carcinoma 

Testicular lipomatosis 

Thyroid cancer (papillary or follicular variant of papillary) 

Thyroid structural lesions (e.g., adenoma, multinodular goiter) 

Vascular anomalies (including multiple intracranial developmental venous anomalies) 

Note: adapted from (57) 

Birt–Hogg–Dubé syndrome 

Birt–Hogg–Dubé (BHD) syndrome is an AD disorder caused by PVs in the FLCN gene, characterized by a 

combination of skin lesions, renal tumors, and lung cysts (See Table 12) (157). The skin lesions, which 

include fibrofolliculomas, perifollicular fibromas, trichodiscomas, angiofibromas, and acrochordons, 

typically appear in the 30s and 40s and increase with age. The median age at diagnosis for renal tumors 

is 48 years, with a range from 31 to 71 years (57). Renal tumors occur in 12-34% of individuals with BHD, 

with the mean age of onset between 46-52 years, though cases have been reported in patients as young 

as 20 years (158–160). The risk of developing renal tumors is seven times higher in individuals with BHD 

compared to their unaffected siblings (161). In BHD individuals, the most common renal cell carcinoma 

(RCC) type is the hybrid oncocytic tumor (50%), featuring characteristics of chromophobe RCC and 

renal oncocytoma. Additionally, BHD patients may develop chromophobe RCC (35%), clear cell RCC 

(9%), and, less frequently, renal oncocytoma (5%) (162,163). Multiple bilateral lung cysts, often 

associated with spontaneous pneumothorax, are also a characteristic feature of BHD syndrome. 

Table 12. Birt–Hogg–Dubé syndrome criteria 

▪ ≥5 Birt–Hogg–Dubé–associated facial or truncal papules 

▪ Early-onset (<50 years old), bilateral or multifocal clear cell renal carcinoma 

▪ Renal cancers with Birt–Hogg–Dubé histology (chromophobe, oncocytoma, or oncocytic 

hybrid) 

▪ Lung cysts associated with multiple spontaneous pneumothoraxes. 

Note: (57) 
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Constitutional mismatch repair deficiency 

Constitutional mismatch repair deficiency is a recessive condition caused by biallelic PVs in MMR genes 

(MLH1, MSH2, MSH6, and PMS2), including MSH2 methylation due to a deletion of the 3’ end of EPCAM 

including the polyadenylation signal. The tumor spectrum of this syndrome can be categorized into four 

main groups: hematological malignancies, brain tumors, Lynch syndrome-associated tumors, and 

other malignancies (164,165). Individuals with this deficiency often exhibit neurofibromatosis type 1–

like features, such as café-au-lait macules, which are observed in most cases, and skinfold freckling, 

Lisch nodules, neurofibromas, and tibial pseudoarthrosis, which are reported in fewer cases. Notably, 

a family history of cancer is not always present in individuals with constitutional mismatch repair 

deficiency (57,165). 

Referral for evaluation should be considered for anyone with a personal history of or a first-degree 

relative with Lynch syndrome-associated cancer in childhood or another type of childhood cancer 

accompanied by one or more of the following features: 

▪ Café-au-lait macules, skinfold freckling, Lisch nodules, neurofibromas, tibial pseudoarthrosis, 

or hypopigmented skin lesions 

▪ Family history of LS-associated cancer 

▪ A second primary cancer 

▪ A sibling with a childhood cancer 

▪ Consanguineous parents (57). 

Familial adenomatous polyposis and attenuated familial adenomatous polyposis 

Familial adenomatous polyposis (FAP) and attenuated FAP are AD disorders caused by PVs in the APC 

gene. Both are characterized by adenomatous colon polyps and a significantly increased lifetime risk of 

CRC: nearly 100% for individuals with FAP and 70% for those with attenuated FAP (166,167). Classic 

FAP is clinically diagnosed when an individual has more than 100 adenomatous polyps in the colon, 

while attenuated FAP is characterized by having 30 to 100 polyps (168). 

In addition to CRC, individuals with FAP have increased risks for other cancers, including duodenal 

cancer (4–12%), pancreatic cancer (~2%), cribriform morular variant of papillary thyroid cancer (1–2%), 

hepatoblastoma by age 5 (1–2%), and medulloblastoma (<1%) (169–172). They may also exhibit 

extracolonic manifestations such as congenital hypertrophy of the retinal pigmented epithelium, 

osteomas, dental abnormalities, benign cutaneous lesions like epidermoid cysts and fibromas, and 

desmoid tumors. APC PVs were identified in 80% of patients with 1,000 or more adenomas, 56% of 

those with 100–999 adenomas, 10% with 20–99 adenomas, and 5% with 10–19 adenomas (173).



OR – Odds Ratio, RR – Relative Risk, SE – Standard Error, SIR – Standardized Incidence Ratio, SRR – Standardized Rate Ratio, y 

– years. Note: adapted from (183) 
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Referral for genetic evaluation should be considered for individuals with a personal history of or a first-

degree relative with any of the following:  

▪ 10 or more adenomatous colon polyps, with or without CRC or other FAP-associated cancers 

▪ Cribriform morular variant of papillary thyroid cancer 

▪ Desmoid tumor 

▪ Hepatoblastoma diagnosed before age 5. 

Familial gastrointestinal stromal tumor 

Familial gastrointestinal stromal tumor (GIST) is an AD disease linked to PVs in the KIT, PDGFRA, SDHB, 

and SDHC genes. People with germline KIT PVs may exhibit hyperpigmentation, mast cell tumors, or 

dysphagia, while large hands are associated with PDGFRA PVs (174,175). NF1 patients are also prone 

to developing GISTs (176). GIST tumors can occur throughout the gastrointestinal tract but are most 

found in the stomach and small intestine, and less frequently in the colorectum and esophagus (177). 

Rarely, tumors may arise in the mesentery and omentum, known as extra-GISTs (178). Sporadic GISTs 

can also occur outside of familial and syndromic contexts, and these multiple tumors may be 

mistakenly identified as recurrent or metastatic disease (179–181). 

Hereditary breast–ovarian cancer syndrome (HBOC) 

The most common breast cancer susceptibility genes, BRCA1 and BRCA2, are well known for their 

association with the risk of developing ovarian and pancreatic cancer. However, with advances in NGS 

analysis technology, researchers have identified several non-BRCA genes that also contribute to the risk 

of breast and ovarian cancers (See Table 13) (182). 

Table 13. HBOC genes and candidate HBOC predisposing genes 

Gene Cancer type 
Relative cancer risk (95%CI) 

(p value) 
Absolute cancer risk (95%CI) 

BRCA1 Female Breast 

cancer 

 

OR 9.25 (8.20-10.30) (<0.0001) >60% 

Primary: 72% (65-79%) by age 

80y, Contralateral: By 20y after 

diagnosis of primary: 40% (35-

45%) 

~55% by age 80y 



 

OR – Odds Ratio, RR – Relative Risk, SE – Standard Error, SIR – Standardized Incidence Ratio, SRR – Standardized Rate Ratio, y 

– years. Note: adapted from (183) 
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Gene Cancer type 
Relative cancer risk (95%CI) 

(p value) 
Absolute cancer risk (95%CI) 

Male Breast 

cancer 

OR: 1.80 (0.30-6.80) (0.30) 

RR: 4.30 (1.09-16.96) (0.04) 

0.2-1.2% 

1.2% (0.22-2.8%) to age 70y 

0.40% (0.10-1.50%) by age 80y 

Ovarian cancer OR 35.26 (29.60-42.00) 

(<0.0001) 

SRR 11.78 (10.42-13.28) 

(<0.0001) 

>39-58% 

44% (36-55%) by age 80y 

Pancreatic 

cancer 

OR 2.58 (1.54-4.05) (0.002) 

RR 2.36 (1.51-3.68) (<0.001) 

≤5% 

Males: 2.90% (1.90-4.50%) by 

age 80y 

Females: 2.30% (1.50-3.60%) 

by age 80y 

Prostate cancer SIR 2.35 (1.43-3.88) relative to 

the population incidence. At 

most, moderate risk: RR 2-4 

<65y, 1-2 >65y 

7-26% 

21% (3-34%) by age 75y  

29% (17-45%) by age 85y  

Melanoma OR 2.86 (significance not 

reached) 

RR 0.64 (0.14-2.95) (0.56) 

No definitive association 

Stomach 

cancer 

RR 2.17 (1.25-3.77) (0.01) Males: 1.6% (0.7-4.0%) by age 

80y 

Females: 0.7% (0.3-1.7%) by 

age 80y 

BRCA2 Female Breast 

cancer  

OR 5.67 (5.14-6.30) (<0.0001) >60% 

Primary: 69% (61-77%) by age 

80y  

Contralateral: 26% (20-33%) 

20y after diagnosis of primary 

~45% by age 80 

Ovarian cancer  OR 11.91 (9.87-14.40) (<0.0001) 

SRR 7.97 (7.00-9.01) (<0.0001) 

13-29% 

17% (11-25%) by age 80y 



 

OR – Odds Ratio, RR – Relative Risk, SE – Standard Error, SIR – Standardized Incidence Ratio, SRR – Standardized Rate Ratio, y 

– years. Note: adapted from (183) 
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Gene Cancer type 
Relative cancer risk (95%CI) 

(p value) 
Absolute cancer risk (95%CI) 

Male Breast 

cancer 

OR 13.9 (8.50-22.50) (<0.0001) 

RR 44.03 (21.32-90.93) (<0.001) 

1.80-7.10% 

7.1% (SE 5.2-8.6%) to age 70y; 

8.4% (SE 6.2-10.6%) to age 80y 

6.8% (3.2-12%) by age 70y 

3.80% (1.9-7.7%) by age 80y 

Pancreatic 

cancer 

OR 6.20 (4.62-8.17) (<0.001) 

RR 3.34 (2.21-5.06) (<0.001) 

5-10% 

Males: 3% (1.7-5.4%) by age 80y 

Females: 2.30% (1.3-4.2%) by 

age 80y 

Prostate cancer  SIR 4.45 (2.99-6.61) relative to 

the population incidence 

RR 2.22 (1.63-3.03) (<0.001) 

19-61% 

27% (17-41%) by age 75y; 60% 

(43-78%) by age 85y  

Melanoma Evidence for a statistically 

significant association is 

conflicting 

No definitive association 

Stomach 

cancer 

RR 3.69 (2.40-5.67) (<0.001) Males: 3.5% (2.1-6.1%) by age 

80y 

Females: 3.5% (1.9-6.4%) by 

age 80y 

PALB2 Female Breast 

cancer  

OR 4.87 (4·20-5·65) (<00001) 

RR 7.18 (5.82-8.85) (<00001) 

41-60% 

53% (44-63%) by age 80y  

~40% by age 80y 

Ovarian cancer OR 2.13 (1·420-3·207) (0.0003) 

RR 2.91 (1.40-6.04) (4.1x10-3)  

SRR 3.08 (1.93-4.67) (1.2x10-5)  

3-5% 

5% (2-10%) by age 80y 

Male Breast 

cancer 

OR 6.60 (1.70-21.10) (0.013) 

RR 7.34 (1.28-42.18) (2.6x12-5) 

0.90% by age 70y 

1% (0.20-5%) by age 80y 

Pancreatic 

cancer 

RR 2.37 (1.24-4.50) (8.7x10-3) 

OR 7.69 (3.88-14.44) (6.01 x10-7) 

5-10% 

2-3% (1-5%) by age 80y  



 

OR – Odds Ratio, RR – Relative Risk, SE – Standard Error, SIR – Standardized Incidence Ratio, SRR – Standardized Rate Ratio, y 

– years. Note: adapted from (183) 
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Gene Cancer type 
Relative cancer risk (95%CI) 

(p value) 
Absolute cancer risk (95%CI) 

ATM Female Breast 

cancer 

OR 2.42 (2.16-2.71) (<0.0001) 20-40% 

~22% by age 80y 

Ovarian cancer OR 2.0 (1.33-2.94) (0.001) 

SRR 2.25 (1.69-2.94) (1.8x10-7) 

2-3% 

BRIP1 Ovarian cancer OR 4.94 (4.07-6.00) (<0.0001) 

SRR 4.99 (3.79-6.45) (<0.0001) 

5-15% 

Female Breast 

cancer 

OR 1.11 (0.80-1.53) (0.54) Insufficient data to define 

BARD1 Female Breast 

cancer 

OR 2.33 (1.83-2.97) (<0.0001) 20-40% 

~20% by age 80y 

Ovarian cancer OR 1.40 (0.69-2.90) (0.47) No established association 

CHEK2 Female Breast 

cancer 

OR 2.47 (2.02-3.05) (0.001) 20-40% 

~ 24% by age 80y 

Ovarian cancer OR 0.43 (0.29-0.63) (0.84) 

SRR 0.98 (0.75-1.27) (0.87) 

No established association 

CDH1 Female Breast 

cancer 

OR 2.66 (1.68-4.20) (<0.0001) 41-60% 

MLH1 Ovarian cancer 

(LS-Associated) 

OR 1.44 (0.53-3.90) (0.68) 

SRR 2.20 (0.81-4.78) (0.12) 

4-20% 

Female Breast 

cancer 

OR 0.68 (0.466-0.97) (0.05) <15% 

MSH2 Ovarian cancer 

(LS-Associated) 

OR 3.98 (1.82-8.70) (0.0007) 

SRR 13.91 (8.82-20.87) 

(<0.0001) 

8-38% 

Female Breast 

cancer 

OR 1.67 (1.17-2.34) (0.0054) <15% 

MSH6 Ovarian cancer 

(LS-Associated) 

OR 4.08 (2.43-6.85) (<0.0001) 

SRR 5.04 (3.70-6.70) (<0.0001) 

≤1-13% 

Female Breast 

cancer 

OR 1.73 (1.37-2.2) (<0.0001) <15% 



 

OR – Odds Ratio, RR – Relative Risk, SE – Standard Error, SIR – Standardized Incidence Ratio, SRR – Standardized Rate Ratio, y 

– years. Note: adapted from (183) 
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Gene Cancer type 
Relative cancer risk (95%CI) 

(p value) 
Absolute cancer risk (95%CI) 

MUTYH Breast/Ovarian 

cancer 

Insufficient data 

OR 1.00 (0.83-1.21) (0.99) 

Insufficient evidence 

NBN Breast cancer OR 1.22 (0.98-1.53) (0.083) Insufficient evidence 

Ovarian cancer OR 2.12 (1.35-3.50) (0.002) 

SRR 2.03 (1.27-3.08) (0.004) 

Insufficient Data 

PMS2 Female Breast 

cancer 

OR 0.97 (0.787-1.20) (0.81) <15% 

Ovarian cancer 

(LS-Associated) 

0.71 (0.29-1.70) (0.56) 1.3-3% by age 80y 

PTEN Female Breast 

cancer  

OR 5.40 (3.15-9.23) (<0.0001) 40-60% (historical cohort data); 

>60% (projected estimates) 

Ovarian Cancer OR 5.47 (1.26-23.8) (0.08) No established association 

RAD51C Ovarian cancer  RR 7.55 (5.60-10.19) (<0.0001) 

OR 5.59 (4.42-7.07) (<0.0001) 

SRR 5.12 (3.72-6.88) (<0.0001) 

10-15% 

11% (6-21%) by age 80y 

Female Breast 

cancer 

RR 1.99 (1.39-2.85) (<0.0001) 

OR 1.93 (1.20-3.11) (0.07) 

20-40% 

21% (15-29%) by age 80y 

RAD51D Ovarian cancer RR 7.60 (5.61-10.30) (<0.0001) 

OR 6.94 (4·028-13·140) 

(<0.0001) 

SRR 6.34 (5.10-9.44) (<0.0001) 

10-20% 

13% (7-23%) by age 80y 

Female Breast 

cancer 

RR 1.83 (1.24-2.72) (0.002) 

OR 1.72 (0.88-3.51) (0.12) 

20-40% 

20% (14-28%) by age 80y 

STK11 Female Breast 

cancer 

OR 1.10 (0.32-3.80) (0.88) 32-54% 

TP53 Female Breast 

cancer 

OR 4.36 (3.27-5.81) (<0.0001) >60% 

Ovarian cancer OR 5.05 (2.41-10.58) (<0.0001) No established association 
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BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer 

BRCA1- and BRCA2-Associated Hereditary breast-ovarian cancer (HBOC) syndrome is an AD disorder 

caused by PVs in the BRCA1 and BRCA2 genes. This syndrome significantly increases the risk of 

developing various cancers, including early-onset and/or multiple primary breast cancers, male breast 

cancer, and epithelial ovarian, fallopian tube, or primary peritoneal cancers. Additionally, individuals 

with HBOC syndrome have higher risks of pancreatic, prostate, and melanoma cancers. BRCA1 PVs, in 

particular, are strongly linked to triple-negative breast cancer, while BRCA2 is associated with an 

increased risk of prostate cancer (184–187). 

Women with ovarian cancer have a 13-18% likelihood of carrying a BRCA1 or BRCA2 PV, and 15-20% of 

men with breast cancer have these PVs (188–190). The general population prevalence is about 1 in 300 

for BRCA1 PVs and 1 in 800 for BRCA2 PVs, but certain populations, such as Ashkenazi Jewish, 

Icelandic, and Mexican Hispanic, have higher rates due to founder PVs (191). 

Referral for genetic evaluation should be considered for individuals with a personal or family history 

(first-degree relative) of the following:  

▪ Breast cancer diagnosed at or before age 50 

▪ Triple-negative breast cancer diagnosed at or before age 60 

▪ Two or more primary breast cancers in the same person 

▪ Ovarian, fallopian tube, or primary peritoneal cancer 

▪ Ashkenazi Jewish ancestry with breast or pancreatic cancer at any age 

▪ Male breast cancer.  

Additionally, referral is recommended for those with a family history of three or more cases of breast, 

ovarian, pancreatic, or aggressive prostate cancer (Gleason score ≥7), excluding families where all three 

cases are aggressive prostate cancer (192,193). 

Non-BRCA genes related to HBOC 

A review of the genetic causes of familial breast cancer revealed that only 25% of cases involved BRCA1 

or BRCA2 variants. In 5% of patients, variants in four other high-risk genes—CDH1, PTEN, STK11, and 

TP53—were identified. Additionally, variants in medium-penetrance genes were found in another 5% of 

cases, while 14% were linked to low-penetrance genes. Notably, the causative gene remained unknown 

in 51% of cases (194). Most of the known susceptibility genes for HBOC encode tumor suppressors 

involved in genome stability pathways, particularly HR repair. Some of these genes also play a role in 

MMR and interstrand DNA cross-link repair through the Fanconi anemia pathway (195). 
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Hereditary diffuse gastric cancer 

Hereditary diffuse gastric cancer (HDGC) is an AD cancer syndrome characterized by a high prevalence 

of diffuse gastric cancer and lobular breast cancer. It is largely caused by inactivating germline PVs in 

the tumor suppressor gene CDH1, though PVs in CTNNA1 are found in a minority of HDGC families (196–

198). HDGC is now estimated to have a worldwide population incidence of 5–10 per 100,000 births 

(199). CDH1 PVs occur in 25–50% of those meeting the HDGC criteria (196). 

The International Gastric Cancer Linkage Consortium has established guidelines for the clinical 

management of HDGC, including recommendations for CDH1 genetic testing (199). Referral for genetic 

testing should be considered for individuals when one of the following criteria has been met and cancer 

diagnosis has been confirmed (See Table 14). Individuals who meet the criteria for genetic testing and 

test negative for a CDH1 variant should then be considered for CTNNA1 analysis. 

Table 14. Hereditary diffuse gastric cancer criteria 

Family criteria (First- or second-degree blood relative) 

≥2 cases of gastric cancer in family regardless of age, with at least one diffuse gastric cancer 

≥1 case of diffuse gastric cancer at any age, and ≥1 case of lobular breast cancer at age <70 

years, in different relatives 

≥2 cases of lobular breast cancer in relatives <50 years of age 

Individual criteria 

Diffuse gastric cancer at age <50 years 

Diffuse gastric cancer at any age in individuals of Māori ethnicity 

Diffuse gastric cancer at any age in individuals with a personal or family history (first-degree 

relative) of cleft lip or cleft palate 

History of diffuse gastric cancer and lobular breast cancer, both diagnosed at age <70 years 

Bilateral lobular breast cancer, diagnosed at age <70 years 

Gastric in situ signet ring cells or pagetoid spread of signet ring cells in individuals <50 years of 

age 

Note: (199) 

 

Hereditary leiomyomatosis and renal cell cancer 

Hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome, also known as Reed syndrome, is 

a rare genetic disorder caused by PVs in the FH gene. This syndrome predisposes individuals to develop 

multiple cutaneous leiomyomas, RCC, and in women, uterine leiomyomas (200). Those affected by 

HLRCC typically present with various types of RCC, including papillary type 2, collecting duct, and 



 

57 

tubulopapillary carcinomas (201,202). Genetic counseling referral is recommended for individuals with 

cutaneous leiomyomas and RCC, as 85% of those with cutaneous leiomyomas (some isolated cases 

and some with a family history of uterine leiomyoma or RCC) have been found to carry an FH PV in 

studies (203–206). Additionally, a FH PV has been identified in 17% of patients with papillary type 2 RCC. 

FH gene PVs have been identified in 76% to 93% of families with clinical features consistent with HLRCC 

(207,208). This disorder has been reported in approximately 200 families worldwide, but it may be 

underdiagnosed (209). 

Hereditary melanoma 

Hereditary melanoma, or familial atypical mole and malignant melanoma, is an AD disease primarily 

caused by PVs in the CDKN2A/ARF gene and the CDK4 gene (210). Germline susceptibility to the disease 

has also been associated with PVs in other high-penetrance melanoma predisposition genes, including 

BAP1 (breast cancer associated protein-1), TERT (telomerase reverse transcriptase), and POT1 

(protection of telomeres 1), or with variants in intermediate-risk genes, such as MC1R (melanocortin 1 

receptor) and MITF (microphthalmia-associated transcription factor) (211–213). This condition is 

characterized by the presence of numerous melanocytic nevi (typically more than 50) and a family 

history of melanoma (214). A positive family history is defined as a family in which either two first-degree 

relatives or three or more melanoma patients on the same side of the family (irrespective of the degree 

of relationship) are diagnosed with melanoma (215). Approximately 5–10% of cutaneous melanomas 

occur in families with hereditary melanoma predisposition (216). Individuals with hereditary melanoma 

also have a 17% risk of developing pancreatic cancer by age 75 (214). 

In general, familial melanoma cases have an earlier age at diagnosis, around 34 years, compared to 54 

years for other melanoma cases. The cancer risk for individuals with familial melanoma is between 50-

90% (217). A study of 466 families with at least three cases of melanoma found that 38% had CDKN2A 

PVs, although the penetrance and detection rates can vary by region (218). CDKN2A PVs are relatively 

rare in families with pancreatic cancer alone but can occur in up to 11% of families that have both 

pancreatic cancer and melanoma (219). 

Hereditary papillary renal cell carcinoma 

Hereditary papillary RCC is a rare familial disorder caused by activating PVs in the MET gene. It is 

characterized by an increased risk of developing papillary type 1 RCC, with patients typically having 

multiple kidney tumors and a heightened risk of tumors in both kidneys. In a study of 129 patients with 

papillary RCC, 6% (8 out of 129) were found to have a germline MET PVs. Currently, no other types of 

cancer or noncancerous health issues are associated with hereditary papillary RCC (220,221). 
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Hereditary paraganglioma-pheochromocytoma syndrome 

Hereditary paraganglioma-pheochromocytoma (PGL/PCC) syndrome is an AD disease caused by PVs 

in the SDHB, SDHD, SDHC, SDHAF2, MAX, and TMEM127 genes. This syndrome significantly increases 

the risk of developing paragangliomas and pheochromocytomas, as well as certain other cancers, 

including, GIST, pulmonary chondromas, and clear cell RCC (222,223). Studies indicate that 8–25% of 

individuals with these tumors have hereditary PGL/PCC syndrome due to a germline PV in the SDHB, 

SDHC, or SDHD genes. The prevalence of hereditary PGL/PCC syndrome is higher in individuals with a 

family history of these tumors or other clinical factors, such as multiple tumors, recurrent, early-onset 

disease, or head and neck location (224–228). 

PVs in SDHD, SDHAF2, and possibly MAX demonstrate parent-of-origin effects, causing disease almost 

exclusively when paternally inherited. An individual who inherits an SDHD or SDHAF2 pathogenic 

variant from their father is at high risk of developing PGLs and PCCs, whereas those who inherit these 

variants from their mother are usually not at risk, though exceptions can occur (222). 

Hereditary retinoblastoma 

Hereditary retinoblastoma is an AD disease caused by PVs in the RB1 gene, characterized by a 

malignant tumor of the retina, typically occurring before age 5. Approximately 40% of all retinoblastoma 

cases are hereditary, and 80-90% of individuals with RB1 gene PVs develop ocular tumors (229,230). 

Retinoblastoma was the first disease for which a genetic etiology of cancer was described, and RB1 was 

the first identified tumor suppressor gene. In 1971, Knudson proposed the hypothesis that 

retinoblastoma is caused by two mutational events, laying the foundation for understanding the genetic 

basis of cancer (231). Individuals with a family history of retinoblastoma, bilateral tumors, or multifocal 

tumors are at the highest risk for hereditary retinoblastoma (229).  

Survival rates for retinoblastoma patients are high, but they face a significantly increased risk of 

developing secondary cancers, primarily pinealoblastoma, osteosarcoma, sarcoma (particularly 

radiogenic sarcoma), and melanoma (232–234). This predisposition to secondary cancers is attributed 

to genetic susceptibility and past radiation treatment for retinoblastoma (235–237). Chemotherapy, 

particularly with alkylating agents, has also been associated with an increased risk of bone cancer in 

retinoblastoma survivors (238–240), although it is less commonly linked to soft tissue sarcomas (241). 

Long-term survivors have a 20-fold increased risk of developing and dying from these non-ocular 

cancers (238,242). 
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Juvenile polyposis syndrome 

Juvenile polyposis syndrome is a rare AD disorder characterized by the presence of multiple juvenile-

type hamartomatous polyps throughout the gastrointestinal tract and a significantly increased risk of 

colorectal cancer (243). This syndrome is caused by PVs in the SMAD4 (20%) and BMPR1A (20%) genes, 

with about 50%-60% of juvenile polyposis syndrome patients having a germline PV in one of these genes 

(244). The term "juvenile polyp" refers to a specific histologic type of polyp rather than the age at 

diagnosis (245). 

Juvenile polyposis syndrome is defined by the presence of five or more juvenile polyps in the 

colorectum, juvenile polyps throughout the gastrointestinal tract, or any number of juvenile polyps 

combined with a positive family history of juvenile polyposis syndrome (243). Individuals with juvenile 

polyposis syndrome have a cumulative colorectal cancer risk of up to 68% by the age of 60 years (244). 

The risk for other gastrointestinal cancers, including those of the stomach, upper gastrointestinal tract, 

and pancreas, ranges from 9% to 50% in families with juvenile polyposis syndrome (245). 

Extraintestinal features of juvenile polyposis syndrome can include valvular heart disease (11%), 

telangiectasia or vascular anomalies (9%, particularly in SMAD4 carriers), and macrocephaly (11%) 

(246). Additionally, some individuals with juvenile polyposis syndrome due to SMAD4 PVs may exhibit 

symptoms of hereditary hemorrhagic telangiectasia (247,248). 

Melanoma–astrocytoma syndrome 

Melanoma–astrocytoma syndrome is a rare AD condition caused by PVs in the CDKN2A and p14ARF 

genes, and possibly the ANRIL antisense noncoding RNA. This syndrome is characterized by an 

increased risk for melanoma and astrocytomas (57). The genetic basis of this tumor predisposition 

syndrome was elucidated in 1998 by Bahuau et al., who identified deletions in the INK4 locus at 

chromosome 9p21.3 in families previously reported in 1993 and 1997 (249). The INK4 locus contains 

the CDKN2A and CDKN2B tumor suppressor genes. CDKN2A encodes the p16INK4a cyclin-dependent 

kinase inhibitor and, in an alternative reading frame, p14ARF, an inhibitor of p53 signaling. CDKN2B 

encodes p15INK4b, a cyclin-dependent kinase inhibitor closely related to p16INK4a (250,251). 

CDKN2A is a major susceptibility gene for familial cutaneous melanoma, typically through inactivating 

PVs or gene deletions (250,251). Familial melanoma-astrocytoma syndrome is considered an AD 

variant of familial melanoma syndrome, involving heterozygous germline CDKN2A inactivation that also 

predisposes individuals to astrocytomas and occasionally other neural tumors, including peripheral 

nerve sheath tumors and meningiomas (252). The tumor spectrum in this syndrome is not well 

understood, with fewer than 15 families described in the medical literature (253). 
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Multiple endocrine neoplasia type 1 

Multiple endocrine neoplasia type 1 (MEN1), also known as Wermer syndrome, is a rare and highly 

penetrant AD disorder caused by germline PVs in the MEN1 gene, which encodes the protein menin. 

MEN1 is characterized by an increased risk of developing both endocrine and nonendocrine tumors 

(254). The prevalence of MEN1 is estimated to be between 3-20 per 100,000 people (255,256). 

Individuals with two MEN1 manifestations had a 26% chance of having a MEN1 PV (257). Due to the 

relatively low PV detection rates in sporadic cases, no single MEN1-associated tumor is sufficient to 

warrant genetic counseling referral (57), except for gastrinoma, of which 20% are due to MEN1 PVs (258). 

The age-related penetrance of MEN1 exceeds 50% by age 20 and 95% by age 40 (258). MEN1 syndrome 

is marked by the development of various combinations of over 20 different types of endocrine and 

nonendocrine tumors. These tumors often show loss of heterozygosity (LOH) at chromosome 11q13, 

where the MEN1 gene is located, leading to biallelic loss of MEN1 (258–262). Additionally, instances of 

geographical clustering of MEN1 due to founder effects have been reported (263). 

Multiple endocrine neoplasia type 2 

Multiple endocrine neoplasia type 2 (MEN2) is an AD neuroendocrine neoplasia predisposition 

syndrome caused by gain-of-function mutations in the RET gene (264). MEN2 is characterized by 

increased risks for medullary thyroid cancer (up to 100%), pheochromocytomas (up to 50%), and 

parathyroid disease (up to 30%) (265–267). The syndrome occurs in approximately 1 in 200,000 live 

births and presents with variable penetrance depending on the specific subtype and associated 

genotype (265). 

MEN2 has several subtypes, each with distinct age-related penetrance, frequencies, and clinical 

presentations of component neoplasia. As many as 25% of unselected individuals with medullary 

thyroid cancer have a RET PV (268). Additionally, genetic testing for RET PVs in individuals with 

nonsyndromic pheochromocytomas has found a PV in about 5% of cases in some studies (269), though 

other studies report lower rates (227). 

MUTYH-associated polyposis 

MUTYH-associated polyposis (MAP) is a recessive condition resulting from biallelic PVs in the MUTYH 

gene, leading to a significantly increased risk of developing adenomatous colon polyps and CRC, with a 

lifetime risk as high as 80–90% (270). MAP was first identified in 2002 by a Welsh research group (271). 

Individuals with MAP may develop a varying number of adenomatous polyps, ranging from just a few to 

over 100, which can cause overlap with FAP, attenuated FAP, and Lynch syndrome (272,273). 
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Although MAP accounts for less than 1% of all CRCs, it is associated with a 28-fold increased risk of 

CRC (274,275). Testing for MAP is typically conducted alongside testing for the APC gene, especially in 

patients with 10 or more adenomatous polyps. MAP testing is also considered for patients diagnosed 

with colorectal cancer before age 50, particularly if their tumors show mismatch repair proficiency and 

Lynch syndrome has been excluded (57). 

The prevalence of biallelic MUTYH PVs varies with the number of adenomas: 2% in patients with 1000 

or more adenomas, 7% in patients with 100–999 adenomas, 7% in patients with 20–99 adenomas, and 

4% in patients with 10–19 adenomas (173). 

Peutz–Jeghers syndrome 

Peutz-Jeghers syndrome (PJS) is an AD disorder caused by PVs in the STK11 gene, characterized by 

distinct mucocutaneous hyperpigmentation seen in areas such as the mouth, lips, nose, eyes, genitalia, 

or fingers. Individuals with PJS also develop multiple hamartomatous polyps throughout the 

gastrointestinal tract, which significantly increases the risk for various cancers. Specifically, there is a 

heightened risk for CRC (39% between ages 15 and 64), pancreatic cancer (36%), gastric cancer (29%), 

and small intestinal cancer (13%) (276,277). The incidence of PJS is estimated to be between 1 in 50,000 

to 1 in 200,000 live births, with a prevalence ranging from 1 in 8,300 to 1 in 280,000 individuals (277–

283). 

In addition to gastrointestinal cancers, individuals with PJS face increased risks for other malignancies, 

including breast cancer (54%), ovarian sex cord tumors with annular tubules (21%), adenoma malignum 

of the cervix (10%), and Sertoli cell tumors of the testes (9%) (276). The hamartomatous polyps 

characteristic of PJS are composed of glandular epithelium supported by smooth muscle cells that are 

contiguous with the muscularis mucosa (57). 

Von Hippel–Lindau syndrome 

Von Hippel-Lindau (VHL) syndrome is an AD familial neoplastic syndrome caused by PVs in the VHL 

gene (284). It encompasses a spectrum of tumors affecting multiple organs, with the most common 

manifestations being hemangioblastomas in the brain, spinal cord, and retina; clear cell RCC; 

pheochromocytomas and paragangliomas; and pancreatic neuroendocrine tumors (285). Additional 

findings include endolymphatic sac tumors and papillary cystadenomas of the epididymis and broad 

ligament. VHL affects approximately 1 in 36,000 live births, with a penetrance exceeding 90% by age 65. 

Symptoms typically appear in the second decade of life, and about half of patients are symptomatic at 

diagnosis, often presenting with cerebellar hemangioblastomas (284,286). 
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VHL PVs are detected in 10–40% of individuals with isolated central nervous system 

hemangioblastoma, 46% with isolated retinal capillary hemangioma, 3–11% with isolated 

pheochromocytoma, and approximately 20% with an endolymphatic sac tumor (226,227,287–290). 

Referral for genetic counseling should be considered for individuals with personal or first-degree family 

history of clear cell RCC (especially bilateral or multifocal, diagnosed before age 50, or with close 

relatives affected), central nervous system hemangioblastoma, pheochromocytoma, endolymphatic 

sac tumor, or retinal capillary hemangioma. Unilateral, solitary RCC diagnosed at or after age 50 alone 

does not typically warrant genetic counseling referral (57,289,291). 

DICER1 syndrome 

DICER1 syndrome, also known as pleuropulmonary blastoma familial tumor susceptibility syndrome, 

is an AD genetic disorder caused by PVs in the DICER1 gene (292). The penetrance of germline DICER1 

PVs for clinical phenotypes has been calculated to be ~ 5% by age 10 years, increasing to ~ 20% by age 

50 (293). This syndrome has been linked to endocrine tumors, multinodular goiter, pleuropulmonary 

blastoma, cystic nephroma, and ovarian Sertoli-Leydig Cell Tumors (294).  

DICER1 syndrome-related tumors usually harbor an additional somatically acquired missense PV in the 

RNase IIIb cleavage domain of the gene. This second PV fulfills Knudson’s two-hit hypothesis, but in 

contrast to the classic model, with a few exceptions, the event on the second allele does not fully 

suppress DICER1 function (295). Instead, hotspot PVs in the RNase IIIb domain interfere with DICER1’s 

ability to process miRNAs (296–298). 

Approximately 87% of DICER1 PVs are inherited, while about 13% are de novo (299). Somatic mosaicism 

is also observed in around 10% of DICER1 syndrome cases (300). Those patients with mosaic PVs in the 

RNase IIIb hotspot develop a greater number of disease foci at significantly younger ages compared with 

non-RNase IIIb-mosaic individuals. In contrast, those with mosaic loss-of-function PVs tend to have one 

or two foci of disease. Regardless of the type of mosaic variant, a second PV is present (including LOH) 

(299,300).  

A subset of DICER1 syndrome tumors presents biallelic DICER1 alterations limited to the tumor (i.e. 

biallelic somatic PV). These patients have a single-organ disease and are not considered syndromic or 

at risk of developing other DICER1 syndrome symptoms, although an unrecognized mosaicism of the 

identified loss-of-function PV should be considered (301,302).  
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Digenic inheritance and oligogenic inheritance  

The first documented case of digenic inheritance in human disease was for retinitis pigmentosa in 1994. 

This was a compelling report because it included data from multiple pedigrees and showed that the 

protein products of the two implicated genes interacted with each other (303).  

When a germline PV is identified, for a few CPGs it enables  the use of targeted therapies for patients 

and the inclusion of their relatives in cancer surveillance programs. The advent of NGS technologies, 

which allow for the simultaneous analysis of multiple cancer predisposition genes (CPGs) with reduced 

time and cost, has significantly increased the use of multigene panel testing over the past decade. This 

has led to the identification of a growing number of individuals carrying two or more PVs in CPGs. As 

more genes are included in these panels, the occurrence of this phenomenon is expected to rise (304). 

Whitworth and colleagues have termed this condition Multilocus Inherited Neoplasia Alleles Syndrome 

(MINAS) (305). 

In addition to well-known cancer predisposition syndromes such as the ones described in the previous 

section, the presence of at least two independent, monoallelic germline PVs in different genes within 

the same signaling pathway has been described. These combined monoallelic double hits likely 

contribute to the clinical cancer phenotype by disrupting the affected signaling pathway. Importantly, 

these phenomena, which result from inherited combined digenic low-penetrance PVs, can occur even 

when parents show no clinical signs and the family history appears unremarkable (306). 

Similarly, observations in breast cancer patients have suggested that low-penetrance cancer 

susceptibility SNVs act as modifier genes in both BRCA1/BRCA2 PVs carriers and non-carriers, thereby 

increasing cancer risk. This phenomenon might involve genes acting as modifiers within the same 

cancer pathway or low-penetrance SNVs in individuals without BRCA1/BRCA2 PVs (307,308). 

Additionally, combined monoallelic PVs in Fanconi anemia/breast cancer (FA/BRCA) pathway genes 

have been identified in patients with more severe disease phenotypes. The FA/BRCA pathway is crucial 

for maintaining genome integrity and plays essential roles in the DDR (306). 

NGS can significantly accelerate the discovery of human digenic inheritance. By enabling the 

simultaneous sequencing of numerous genes, NGS allows the identification of disease-relevant PVs in 

two genes within a single experiment. However, it does not solve the challenge of determining which 

PVs are relevant to the phenotype, a task that is more complex in digenic inheritance than in monogenic 

inheritance (303). 
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A big review that compiled the published literature about digenic inheritance in CPGs was published in 

2022. It included 385 individuals with MINAS, who presented 430 unique P/LP variants across 63 CPGs. 

The analysis revealed that 78.5% (287 out of 385) of these cases carried a BRCA1 and/or BRCA2 variant 

(See Figure 9). Among these individuals, 108 (28%) presented with MPCs. Of these 108 cases, 2 (1.9%) 

had an unknown number of MPCs, 75 (69%) had two primary tumors, 18 (17%) had three, and 13 (12%) 

had four or more. The most common combinations of MPCs were Breast-Ovarian (33 cases), Breast-

Breast (24 cases), and Colon-Colon (6 cases) (304).  

Figure 9. Circos plots illustrating combinations of cancer predisposition genes involved in individual 

cases of MINAS (n = 385) 

 

Note: (304) 

In a big German study, out of 1485 total germline sequenced patients, 138 patients had one AD PV, 59 

patients presented one AR PV (heterozygous), 6 patients had two AD PVs, 5 patients – a combination of 

one AD PV and one AR PV, two patients had homozygous germline PVs in an AR gene (FANCA and 
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MUTYH), one patient had two AD and one heterozygous AR PVs, and one patient presented two AR 

germline PVS in two different genes (309). 

Three families with cases of childhood/adolescent and young adult cancer caused by digenic 

inheritance of heterozygous PVs in PMS2 + POLE and PMS2 + POLD1 were reported. Two siblings with 

multiple adenomas and CRC had a maternally inherited heterozygous PMS2 PV, that was not suspected 

in the family, and a paternally inherited POLD1 PV (See Figure 10) (310).  

Figure 10. Segregation of pathogenic variants in a colorectal cancer family 

 
POLD1+/- heterozygous PV in POLD1, PMS2+/- heterozygous PV in PMS2. Note: (310) 

 

In one of the PMS2 + POLE families, several maternal relatives of the proband, who developed colorectal 

cancer at 16 and high-grade urothelial carcinoma at 19, also had early-onset CRC. However, 

polymerase proofreading-associated polyposis (PPAP) was not initially suspected in the family (See 

Figure 11).  
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Figure 11. Segregation of pathogenic variants in a colorectal cancer family 

 
POLE+/- heterozygous PV in POLE, PMS2+/- heterozygous PV in PMS2. Note: (311) 

The second case described a patient from a family with a known POLE PV, who developed 

medulloblastoma at 4.5 years old. Analysis revealed the patient inherited the POLE PV from the mother 

and had a de novo PMS2 (See Figure 12). 

Figure 12. Segregation of pathogenic variants in a family with a proband with multiple cancers 

 
POLE+/- heterozygous PV in POLE, PMS2+/- heterozygous PV in PMS2. Note: (312) 
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Another CRC family presented digenic inheritance of germline PVs in MSH6 and MUTYH genes. The 

family comprised 7 cancer patients divided over two generations (See Figure 13). Fourteen relatives, all 

unaffected by cancer or polyposis, were genotyped for these variants, identifying one additional carrier 

of both variants, five MSH6‐only carriers, and four MUTYH‐only carriers (313). The involvement of MSH6 

and MUTYH in oxidative DNA damage repair, along with their physical interaction that enhances 

MUTYH's repair activity, supports the association of variants in these genes (314).  

Figure 13. Segregation of pathogenic variants in a family with a proband with multiple colorectal 

cancers 

 
MUTYH+/- heterozygous PV in MUTYH, MSH6+/- heterozygous PV in MSH6. Note: (313) 

The coinheritance of monoallelic splice site variants in OGG1 (involved in the repair of 7,8-dihydro-8-

oxoguanine) and missense MUTYH has also been described in a female with advanced synchronous 

colon cancer and adenomas at 36 years old. Segregation analysis within the family revealed that the 

patient’s mother and two aunts, who were diagnosed with adenomas at ages 66 and 67 CRC at age 56, 

respectively, were heterozygous carriers of the MUTYH variant. Additionally, the OGG1 variant was 

inherited from the father, who had only a single polyp at age 65 (315). 

A report of a coinheritance of BRCA2 and CYLD germline PVs in a family with malignant cylindroma and 

breast cancer emphasizes the importance of the recognition of double heterozygotes for the patient’s 

treatment. A 29-year-old man presented with cylindromas on his scalp since he was 8 years old, 

inherited from his mother who had CYLD cutaneous syndrome. The proband’s father and paternal 

grandmother had early-onset breast cancer, while his 33-year-old sister was diagnosed with breast 

cancer and CYLD cutaneous syndrome. Aged 28 years, the proband presented a malignant metastatic 
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cylindroma of the scalp. Somatic sequencing demonstrated LOH including the BRCA2 and CYLD loci. 

The germline and somatic PVs in this patient supported the use of unlicensed therapeutics that target 

BRCA deficiency, such as poly (ADP-ribose) polymerase inhibitor (PARPi), which have not previously 

been used to treat malignant cylindroma (316). 

The occurrence of a single patient carrying PVs in both BRCA1 and BRCA2 genes is rare, except in 

specific subpopulations with founder effects. Studies have reported that the prevalence of double 

heterozygotes ranges from 0.2% to 0.8% across various ethnic groups, but it reaches 1.8% among 

Ashkenazi Jewish individuals (317). Approximately thirty studies have identified families with breast and 

ovarian cancer that harbor PVs in both BRCA1 and BRCA2 (318). 

Similar to monogenic cancer predisposition syndromes (CPS), digenic inheritance cases can exhibit 

unusual phenotype-genotype correlations. In an 11-year-old girl diagnosed with metastatic 

osteosarcoma, researchers identified two simultaneous monoallelic germline PVs in BRIP1 and HIPK2 

using trio WES. BRIP1 PVs were previously linked to breast cancer but not to osteosarcoma. Notably, 

the girl's mother, who passed on the BRIP1 variant, was diagnosed with breast cancer at age 46. The 

HIPK2 PV, inherited from the father, affects a critical regulator of the DDR pathway and plays a key role 

in DNA double-strand break repair (306). 

In a comprehensive review, it was estimated that 14.6% of patients with 2 PVs with one outside the 

BRCA1/BRCA2 genes (13 out of 89) had at least one tumor type not typically associated with the relevant 

CPGs, such as clear cell RCC in a patient with variants in both BRCA1 and MLH1 PVs. In a second cohort, 

an atypical tumor phenotype was observed in 15.8% (12 out of 76) of non-BRCA1/BRCA2 tumor cases. 

However, not all studies provided individual patient-level data (304). 

Four examples of atypical MINAS phenotypes included a woman diagnosed with breast cancer and 

Waldenstrom’s disease at 58 years old, carrying PVs in BRCA1 and BLM (319), and another woman 

diagnosed with breast cancer, melanoma, and CRC, with a PV in FANCC and a P/LP variant in TYR (320). 

Additionally, there was a woman diagnosed with lobular breast cancer at 51 years, followed by follicular 

adenoma and thyroid micropapillary carcinoma at 52 years, carrying PVs in PMS2 and CDH1 (321), and 

a woman diagnosed with cutaneous leiomyomas at 40 years, followed by colorectal polyposis at 52 

years, found to be heterozygous for P/LP variants in FH and BARD1 (322). In these cases, Waldenstrom 

disease, colorectal cancer, thyroid carcinoma, and colorectal polyposis occurred despite not being 

associated with any of the relevant MINAS CPGs. Each case involved MPCs and rare CPGs 

combinations, making it unclear whether these were manifestations of synergy between the CPGs or 

coincidental. The presence of MPCs of unusual types might have prompted genetic testing in these 

patients (304). Additional examples of oligogenic conditions and their associated causative variants are 

available in the Oligogenic Diseases Database (OLIDA) (323). 

 



 

69 

Polygenic risk scores and mutational signatures  

In the context of complex diseases such as cancer, both polygenic risk scores (PRS) and mutational 

signatures are tools used to understand and predict disease risk with potential clinical applications. It 

has been demonstrated that strong connections exist between PRS derived from germline genetic data 

and mutational signatures from the somatic mutational patterns in tumors. These correlations likely 

signify the roles of hormone regulation and immune responses in cancer development and progression, 

shedding light on the underlying mechanisms driving these processes (324). 

Polygenic risk scores 

The germline genome holds the code for susceptibility or resistance to cancer. Studying it unveils 

variants in genes associated with cancer predisposition and susceptibility. Each cancer type and 

subtype exhibit a distinct genetic architecture comprised of very rare variants with substantial effects, 

more common moderately impactful variants, and common variants with minor effects (see Figure 14). 

These common variants can be combined in polygenic scores for cancer susceptibility (325–327). 

Sometimes not PVs, but the combination of many common variants contributes to cancer development 

risk. 

Figure 14. Spectrum of distribution of susceptibility alleles according to their frequency and strength of 

genetic effect 

 
High penetrant mutations (very low-frequency alleles with a high effect size) have been the easiest to identify as 

causing Mendelian disease using standard genetic techniques, while common susceptibility alleles (high frequency 

with a low effect size) were discovered in genome-wide association studies (GWAS). Note: adapted from (1) 
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Numerous fields within genetics now employ combinations of variants that collectively account for a 

significant portion of disease risk variation. Combining variants into PRS can explain a larger proportion 

of disease risk compared to single high penetrance variants. For instance, PRS derived from genome-

wide association studies (GWAS) have identified loci used for cancer screening, risk prediction, and risk 

stratification purposes (328,329). PRS combine all the SNVs identified in a GWAS, giving greater weight 

to the SNVs more strongly associated with cancer, creating a single score. Individuals with higher PRS 

are anticipated to have higher disease risk than those with lower PRS (330,331). PRS have been 

described in breast cancer (327,332), prostate cancer (333), CRC (334), lung cancer (335) and ovarian 

cancer (336).  

PRS effectively stratify breast cancer risk in the general population (327). Studies have shown that for 

some breast cancer predisposition genes, the risk associated with a P/LP variant combines 

multiplicatively with the risk derived from the PRS (337,338). In the case of single genes with a more 

moderate effect, the adjustment by the PRS alone can alter an individual’s final risk classification and 

guide their corresponding clinical management. As data on polygenic risk has been primarily derived 

from studies restricted to populations of European ancestry, its applicability to people from other ethnic 

backgrounds remains uncertain (339). However, recent research suggests that the established PRS may 

offer some value, at least within Asian populations (340). 

In population health, PRS application can identify groups at risk for cancer, enabling early interventions 

to decrease disease burden. These interventions include earlier or more frequent screening for disease 

biomarkers, lifestyle modifications, dietary adjustments, or preventive medical interventions. 

Additionally, PRS testing can identify individuals who could benefit from participation in new treatment 

trials (341). 

Mutational signatures 

Cancer arises from the accumulation of somatic mutations, distinct from the germline variants that are 

present in every cell. These somatic mutations, occurring in all human cells and persisting throughout 

life, result from various mutational processes, including inherent inaccuracies in DNA replication, 

exposure to external or internal mutagens, enzymatic DNA modifications, and impaired DNA repair 

mechanisms, giving rise to distinctive combinations of mutation types known as mutational signatures 

(324,342). 

Mutational signatures are indicators of the mutational processes that were active throughout an 

individual's lifespan. Over recent years, various studies have unveiled more than 50 mutational 

signatures across different cancer types. However, the underlying causes of many of these signatures 

remain unknown. Mutational signatures encompass both processes commonly occurring across 

various cancer types and those specific to particular cancers. Signatures like SBS2 and SBS13 that are 
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linked to the enzymatic activity of the APOBEC family are present across multiple cancer types. On the 

contrary, signature SBS12 of an unknown etiology predominantly manifests in liver cancers. Another set 

of signatures reflect lifestyle choices and environmental exposures. Signatures like SBS4 correlate with 

tobacco smoking, while signatures SBS7a/b/c/d are influenced by exposure to ultraviolet light. Finally, 

some signatures arise from endogenous exposure. The clock-like signature SBS1 results from 

endogenous deamination of 5-methylcytosine (324,342–344). 

MPCs without familial predisposition  

Outside of a familial context, MPCs may be linked to germline de novo PVs, low-penetrance PVs or 

mosaicism in predisposing genes. In a study of 100 patients with multiple primary melanoma (MPM) 

and no family history of melanoma, 9% were found to have germline PVs in the CDKN2A gene. The 

results indicated that six of the seven sporadic MPM cases shared a common ancestral PV. Therefore, 

de novo CDKN2A germline PVs associated with MPM are rare, but not non-existent (345). 

PVs in the TP53 gene have been described as both de novo and mosaic variants in Li-Fraumeni syndrome 

patients. Among 328 unrelated patients with TP53 PVs identified by Sanger sequencing or Quantitative 

multiplex PCR, 40 cases were confirmed as de novo, with no correlation to parental age. Additionally, 

two mosaic PVs were identified: one in a child with adrenocortical carcinoma and the other in the 

unaffected father of a child with medulloblastoma. A re-analysis using NGS of 108 patients suspected 

of Li-Fraumeni syndrome but without detectable TP53 PVs revealed six additional mosaic TP53 variants 

in children and adults with adrenocortical carcinoma, choroid plexus tumors, breast cancer, 

osteosarcoma, and sarcoma. This study estimated that de novo PVs account for at least 14% of Li-

Fraumeni syndrome cases, with around 20% of these variants occurring during embryonic development 

(346). In BRCA1- and BRCA2-Associated HBOC, de novo variants have been reported in ≤5% of cases 

(347,348), and inheritance of a PV from a mosaic parent has also been documented (349).  

If a cancer risk variant is mosaic, it may evade detection by clinical tests due to their limited sensitivity. 

For instance, mosaicism has been identified in cases where activating HIF2A variants were present in 

multiple tumors but not in the blood of patients with multiple paragangliomas. This phenomenon could 

account for some individuals with MPCs who have no relevant family history. Genetic studies in such 

cases may still offer important insights, even without a family history suggestive of inherited 

predisposition (350,351). 
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Overview of the project and aim of the thesis 

Project structure 

Genetic cancer predisposition can be viewed as a continuous condition, starting with monogenic 

inheritance, and going through digenic, oligogenic and PRS (See Figure 15). In monogenic inheritance, 

very rare variants with very high effect in a single CPG predispose an individual to a tumor or a specific 

set of tumors. However, some patients may present with types of cancer that are unusual for a specific 

gene. When an individual has two low-frequency variants with high effects in two CPGs, this is known 

as digenic inheritance. Next, there are oligogenic combinations, typically involving 3-20 genetic loci 

(352) with variable allele frequencies and moderate effect sizes. These loci can interact in various ways, 

including as a dominant gene with its modifiers or as genes with similar effects in the disease. Finally, 

PRS involve hundreds or even thousands of genetic variants, each with a relatively high allele frequency 

but very low effect size, collectively increasing the risk of an individual developing cancer.  

Figure 15. Cancer predisposition spectrum 

 

Genetic counseling for cancer patients represents numerous challenges, particularly as genomic 

technologies evolve. The advent of NGS has shifted the landscape from single-gene testing to panel 

sequencing and even WES and WGS. These advancements have made testing more affordable and 

faster, leading to an increase in genetic testing outside the tumor phenotype. This has resulted in the 

discovery of previously unknown tumor-gene associations (Part 1. Uncommon cancer-gene 

associations). Additionally, enhanced surveillance and follow-up in families with known cancer 
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predisposition variants have uncovered further PVs, revealing complex inheritance patterns such as 

digenic inheritance (Part 2. Digenic inheritance). Moreover, testing patients with MPCs who lack known 

PVs in CPGs holds promise for expanding our understanding of the genetic basis of cancer (Part 3. 

Multiple primary cancers).  

Objectives 

MPCs can be explained through monogenic, digenic, oligogenic or undetectable causes. This project 

focuses on three main MPCs mechanisms: monogenic (Part 1. Uncommon cancer-gene associations), 

digenic (Part 2. Digenic inheritance), and oligogenic (Part 3. Multiple primary cancers) aiming to refine 

genetic mechanisms behind high cancer susceptibility and enhance personalized care. 

Uncommon cancer-gene associations  

This part investigates the controversial role of BRCA1 in CRC. While BRCA1's involvement in 

homologous recombination deficiency (HRD) and its importance in targeted cancer treatments are well-

documented, its role in CRC remains unclear. This case series aims to clarify whether pathogenic 

BRCA1 variants contribute to early-onset CRC development, besides its known role in breast and 

ovarian cancer risk. 

Digenic inheritance  

This section explores the tumor risk associated with digenic inheritance involving known CPGs such as 

BRCA1, BRCA2, ATM, and CHEK2. The study describes six patients from five families who inherited 

combinations of pathogenic variants in these genes, including four patients with BRCA2 and ATM variants, 

one with BRCA2 and BRCA1 variants, and one with BRCA2 and CHEK2 variants. These people had a wide 

range of tumors, including early cancers, multiple tumors or the absence of any malignant disease. 

Multiple primary cancers  

This part explores the novel genetic mechanisms underlying tumor development in patients with MPCs 

diagnosed before the age of 45, particularly those who do not have a germline molecular genetic 

diagnosis after initial evaluation. This research aims to uncover additional CPGs and provide insights 

into the genetic factors contributing to high cancer susceptibility in these patients. 

By investigating MPCs, rare cancer-gene associations, and digenic inheritance, the project aims to 

expand our understanding of genetic cancer predisposition. The findings will contribute to improved 

genetic counseling, early detection, and the development of personalized treatment strategies for 

patients with hereditary cancer risk.  
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General methods 

This section provides an overview of the general methodologies employed across the studies. For 

detailed methodologies specific to each study, please refer to the corresponding sections within the 

respective publications. 

 

Patient selection and data collection 

The studies included cancer patients who underwent evaluation at the genetic department of the CHU 

of Liege. The inclusion criteria differed for each study (see Table 15). Patient clinical and genetic data 

was gathered from their medical charts. 

Table 15. Inclusion criteria for the studies 

Inclusion criteria 
Uncommon cancer-

gene associations 
Digenic inheritance 

Multiple primary 

cancers 

Young age Young age at first 

cancer diagnosis 

Yes Yes 

Cancer characteristics Aggressive cancer Breast cancer, 

multiple cancers 

Multiple cancers 

Cancer family history Yes Yes No 

 

Genetic evaluation 

The studies involved the evaluation of both germline DNA, obtained from the patients’ blood samples, 

and somatic DNA extracted from Formalin-Fixed Paraffin-Embedded (FFPE) tumor samples (See Table 

16). 
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Table 16. Genetic evaluation in the studies 

 Uncommon cancer-

gene associations 

Digenic inheritance Multiple primary 

cancers 

Germline DNA Targeted NGS 

WES 

Sanger sequencing 

Targeted NGS 

MLPA 

Sanger sequencing 

WES 

CMA 

Sanger sequencing 

Somatic DNA Targeted NGS 

WES 

CMA 

- WES 

Bioinformatic 

evaluation 

Mutational 

signatures 

- Mutational signatures 

CNV detection in WES 

data 

CMA – Chromosomal Microarray Analysis, CNV – Copy Number Variation, MLPA – Multiplex Ligation-dependent Probe 

Amplification, NGS – Next Generation Sequencing, WES – Whole Exome Sequencing.  

Ethical approval 

The study was conducted in accordance with the Declaration of Helsinki and approved by the Comité 

d’Ethique Hospitalo-facultaire Universitaire de Liège (protocol code 2019/245, 28/10/2019 date of 

approval) 

  



 

77 

Part 1. Uncommon cancer-gene associations 

BRCA1, a gene encoding a multifunctional protein integral to many cellular pathways, has been linked 

to various neoplasms, including hereditary breast and ovarian cancers. However, its connection with 

CRCs remains debatable. The scarcity of data on young patients with BRCA1 variants developing CRCs 

underscores the need for a deeper understanding of the role of these variants in early-onset CRCs. 

This case series presents three patients diagnosed with aggressive early-onset CRC, each harboring 

heterozygous BRCA1 PVs. Comprehensive molecular analyses, including WES, targeted NGS and CMA, 

unveiled the genetic landscape of these tumors. Notably, all tumors exhibited elevated HRD scores, 

with HRD-related mutational signatures contributing significantly to the somatic variant profiles. 

Contradictory findings characterize existing data on the association between BRCA1 variants and CRC 

risk. While some studies suggest an increased risk, others fail to establish a definitive link. However, 

emerging evidence hints at a potential correlation, as evidenced by the presence of BRCA1 variants in 

CRC patients and high HRD scores in their tumors. These observations highlight the need for BRCA1 

testing in young patients with microsatellite-stable CRC and advocate for personalized treatment 

strategies, such as PARPi, in select cases. 

The findings of this case series highlight the potential involvement of BRCA1 germline PVs in CRC 

development through HRD. Incorporating BRCA1 testing into the diagnostic workup of young CRC 

patients could facilitate tailored treatment approaches, potentially improving clinical outcomes in this 

subset of patients. 
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Objective: The link between BRCA1 and homologous recombination deficiency (HRD) in 

cancer  has  gained importance with the emergence  of  new  targeted  cancer  treatments, 

while the available data on the role of the gene in colorectal cancer (CRC) remain 

contradictory.   The   aim   of  this  case  series  was  to   elucidate  the  role  of  known 
pathogenic BRCA1 variants in the development of early-onset CRC. 

Design: Patients were evaluated using targeted next generation sequencing, exome 

sequencing  and  chromosomal  microarray analysis of the paired germline and tumor 

samples. These  results  were  used to calculate the HRD score and the frequency of 

mutational signatures in the tumors. 

Results:  Three  patients with metastatic CRC were heterozygous for a previously known 

BRCA1 nonsense variant. All tumors showed remarkably high HRD scores, and the HRD-
related signature 3 had the second highest contribution to the somatic pattern of variant 

accumulation in the samples (23% in 1 and 2, and 13% in sample 3). 

Conclusions:   A   BRCA1   germline   pathogenic   variant  can  be  involved  in   CRC 

development   through   HRD.   Thus,   BRCA1  testing  should   be  considered  in  young 

patients with a personal history of microsatellite stable CRC as this could further allow a 

personalized treatment approach. 

Keywords:  colorectal  (colon)  cancer,  BRCA1,  homologous  recombination  deficiency  (HRD),   exome  sequencing 
(ES), case report 
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INTRODUCTION 

BRCA1 is a tumor suppressor gene encoding a large protein that 

coordinates several cellular pathways including DNA repair, 

transcriptional regulation, cell-cycle control, centrosome 

duplication, and apoptosis (1). Pathogenic germline variants in 

BRCA1 gene have been associated with familial risk of breast and 

ovarian cancers (OMIM: 604370) (2, 3). As early as in 1994, it 

was observed that women with a history of breast, endometrial, or 

ovarian cancer presented a statistically significant although small 

risk for subsequent colorectal cancer (CRC), suggesting the 

existence of common etiologic factors for the development of 

these tumors (4). 
Data concerning young patients with BRCA1 variants that 

develop CRC have been scarce. Germline pathogenic variants in 

BRCA1 gene have not been causally linked to an increased risk of 

familial colorectal cancer, but the reports on the subject are 

contradictory (5–9). Indeed, patients carrying a germline BRCA1 

variant can develop a sporadic tumor, independently of BRCA1 

loss of function, highlighting the need to demonstrate the causal 

role of the variant in the cancer development (10). 
The aim of this case series was to gain insight into the role of 

known pathogenic BRCA1 variants in the development of early 

onset CRC 

. 

CASE DESCRIPTION 

Three patients were diagnosed in 2020 and 2021 with aggressive 

early-onset CRC. The demographic, familial, clinical, 

histopathological, and molecular characteristics, as well as the 

treatment regimens of these patients are presented in Table 1. 
The first case was referred to oncogenetic consultation due to 

the young age of presentation of an aggressive disease without 

evidence of Lynch syndrome (no mismatch repair deficiency or 

microsatellite  instability)    and  history  of  a   BRCA1 pathogenic  

TABLE 1 | Patient characteristics.   
Parameter Case 1 Case 2 Case 3 
Age (year) 31 56 35 
Sex Female Female Male 
Medical history None Breast cancer at 36 y/o, contralateral 

breast cancer at 
41 y/o 

Ulcerative colitis 

Family history Maternal side: aunt breast cancer, grandmother 
CRC, great-grandmother uterine cancer 

Paternal side: aunt CRC, grandmother 
ovary cancer, grandmother’s sister breast 
cancer 

Maternal side: five aunts breast cancer, 
grandmother ovary cancer. Paternal 
side: grandmother CRC 

CRC localization and type Right colon moderately differentiated 
adenocarcinoma 

Well to moderately differentiated rectum 
adenocarcinoma 

Mucinous appendix adenocarcinoma 

TNM tumor staging pT4aN2aM1a cT3N1M1b pT4bN0M0 at diagnosis, peritoneal relapse at 
month 5 

IHC and molecular tests on the tumor 

MSI-H  
MLH1, MSH2, MSH6 and PMS2 
protein expression 

No 
Normal 

No 
Normal 

No 
Normal 

Identified variants 
Somatic pathogenic variants 
(heterozygous) 

KRAS c.35G>A (p. Gly12Asp) 
TP53 c.524G>A (p.Arg175His) 

KRAS c.35G>A (p. Gly12Asp) – 

Germline pathogenic variants 
(heterozygous) 

BRCA1 c.1016dup (p.Val340Glyfs*6) BRCA1 c.3756_3759del 
(p.Ser1253Argfs*10) 

BRCA1 c.3841C>T (p.Gln1281*) 

Somatic CMA array results Partial gains and losses on Chr 1-3, 5- 9, 12, 
13, 15-20 and X 

Entire and partial gains and losses on Chr 
1, 7, 8, 12, 13 and 18-20 

Normal 

HRD evaluation 
HRD score 59 61.15 66 
Proportions of mutational signatures with a proposed etiology 

SBS1 
SBS3 
SBS5 

24% 
23% 
0% 

28% 
22% 
0% 

14% 
13% 
20% 

    

Treatment 
Surgical 

Right colectomy with lymph node dissection, 
ileocolonic anastomosis and metastasectomy of 
liver segments 

Anterior rectum resection and hepatic 
surgery Ileocolectomy with a lymph node dissection firstly 

and a posterior debulking surgery with IPCH after 
discovery of a peritoneal carcinomatosis 

Chemotherapy Pseudo-adjuvant chemotherapy with 
capecitabine-oxaliplatin followed by 7 cycles of 
chemotherapy with FOLFOX-bevacizumab 

6 cycles of FOLFOXIRI Adjuvant chemotherapy with capecitabine-
oxaliplatin regimen (Xelox) 

CMA, chromosomal microarray analysis; FOLFOX, folinic acid; fluorouracil and oxaliplatin; FOLFOXIRI, fluorouracil; folinic acid; oxaliplatin; and irinotecan; HRD, homologous recombination deficiency; 
IHC, Immunohistochemistry; IPCH, Intraperitoneal chemohyperthermia; MMR, mismatch repair; MSI, microsatellite instability; SBS, Single Base Substitution; TNM, TNM Classification of Malignant 
Tumors; y/o, years old. Reference transcripts: BRCA1 NM_007294.3; KRAS NM_004985.5; TP53 NM_000546.6.  
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variant in the family. Given the age at the diagnosis of CRC, genes 

associated with familial polyposis (NTHL1, RNF43, SMAD4, 

BMPR1A), CRC (POLE, POLD1) and Li-Fraumeni syndrome 

(TP53) were analyzed. However, the patient only carried the 

heterozygous BRCA1 pathogenic variant 

NM_007294.3(BRCA1_v001):c.1016dup (p.Val340Glyfs*6) 

identified in her maternal aunt. 
To further evaluate the disease, targeted next-generation 

sequencing (NGS) and a high-resolution (180K) chromosomal 

microarray analysis (CMA) were performed on the DNA 

extracted from the tumor (estimated proportion of tumor cells in 

the sample - 50%). After sequencing, the familial pathogenic 

variant BRCA1 c.1016dup was identified at an allele frequency 

(AF) of 70%, suggesting a loss of heterozygosity at the BRCA1 

locus. Further analysis revealed a somatic variant of TP53 

NM_000546.6(TP53):c.524G>A (p.Arg175His) at an AF of 40%. 

The CMA showed multiple rearrangements indicating genomic 

instability (chromosomal partial gains and losses on 

chromosomes 1-3, 5- 9, 12, 13, 15-20 and X). 
The personal and family history of cancer in case 2 already led 

in 2011 to the identification of the pathogenic BRCA1 germline 

variant NM_007294.3(BRCA1_v001):c.3756_3759del 

(p.Ser1253Argfs*10). Taking this information into account, a 

CMA and NGS of the tumor DNA (estimated tumor infiltration – 

30%) were performed, identifying the known germline BRCA1 

variant with an AF of 35% and an additional NM_004985.5 

(KRAS_v001):c.35G>A variant with an AF of 23%. The CMA 

results were monosomies 18 and 19, trisomies 1q, 7, 8, 12, 13 and 

20, partial chromosomal losses in the 1p region and partial 

chromosomal gains in the 1p region. 
In case 3, CRC was diagnosed from a surgical specimen 

obtained after an appendectomy with the subsequent identification 

of a tumor-like lesion with low-grade dysplasia at the base of the 

cecum. Considering that the patient’s mother carried a BRCA1 

germline variant, the patient DNA was tested, confirming the 

presence of the heterozygous BRCA1 pathogenic variant 

NM_007294.3(BRCA1_v001):c.3841C>T (p.Gln1281*). 

Subsequently, BRCA1 sequencing and CMA array on tumor DNA 

(sample estimated tumor infiltration – 20%) showed the BRCA1 

c.3841C>T family variant with an AF of 43%, while the CMA was 

normal. 
The three variants are predicted to cause truncation of the 

translation in exon 10 (out of a total of 23) which will result in a 

severely shortened or absent protein due to nonsense-mediated 

decay of the mRNA. BRCA1 protein truncations downstream of 

this position have been described as pathogenic (11, 12). BRCA1 

c.1016dup and BRCA1 c.3841C>T variants were absent in 251174 

control chromosomes in gnomAD, whereas BRCA1 

c.3756_3759del was present at an AF of 1.267e-05. BRCA1 
c.1016dupA has been reported in the literature as a founder variant 

in Norway and Canada (13, 14) and also in multiple individuals 

affected with hereditary breast and ovarian cancer syndrome in 

other populations (15–18). Case 2 four-nucleotide deletion was 

widely reported in the literature in Polish and French-Canadian 

gynecological cancer patients (19, 20). The BRCA1 variant present 

in case 3 has been reported as a France, Belgium, and Holland 

founder variant (21). ClinVar submitters including an expert panel 

(ENIGMA) cite the three variants as pathogenic. These data 

indicate that the three variants are highly likely to be associated 

with high breast and ovarian cancer risk. 
Homologous recombination deficiency (HRD) evaluation can 

be performed using HRD score, an aggregate score of loss of 

heterozygosity (LOH), telomeric-allelic imbalance (TAI) and 

large-scale state transitions (LST). To confirm the HRD score in 

the CRC samples we used an alternative method of HRD detection 

by investigating single base substitution 
(SBS) signatures. 

To assess homologous recombination deficiency (HRD) in 

CRC samples, a paired germline and tumoral DNA exome 

sequencing using Twist Comprehensive Exome Panel and Twist 

Human RefSeq Panel (according to the manufacturer’s 

instructions) from all three patients was performed. We used 

Sequenza (22) to detect and quantify copy number variation and 

estimate tumor cellularity and ploidy. These results were used as 

an input to calculate the HRD score with a threshold of positivity 

≥33 (23). Mutational signatures in the samples were analyzed 

Using MutationalPatterns R package (24) and COSMIC v2 

signatures (25), taking only the somatic variants into account. 
Through Sequenza, the estimated tumor cellularity was of 95% 

in the case 3 sample, while this value was lower for cases 1 and 2 

– 22% and 27%, respectively. All three samples showed 

remarkably high HRD scores (59, 61.15 and 66, respectively), 

while no somatic copy number alteration was identified in PALB2, 

BRCA1 and BRCA2. 
The three most frequent SBS signatures with a proposed 

etiology in the samples were SBS1, 3 and 5 (see Figure 1). 

Signature 3 was the second most frequent signature with a 

contribution to 23% of the somatic pattern of variant accumulation 

in samples 1 and 2, and 13% in sample 3. While signature 1 and 5 

reflect clock-like accumulation of somatic variants, signature 3 

has been directly related to HRD (25). 

DISCUSSION 
 

The existing data linking germline pathogenic variants in the 

BRCA1 gene to an increased risk of CRC are scarce. Two large 

studies reported that BRCA1 variants conferred approximatively a 

fivefold increased risk for CRC, especially in young patients from 

high-risk families (6, 26). Out of three recent metaanalyses, one 

of them found an increased risk of colorectal cancer associated 

with BRCA1 variants (odds ratio = 1.49, 95% CI = 1.19 to 1.85, P 

< 0.001) (8), while the other two did not identify any increase in 

CRC risk among patients carrying a BRCA1 variant (7, 9). A study 

evaluating a cohort of BRCA1 or BRCA2 pathogenic variant carriers 

mostly of Ashkenazi ancestry concluded that they may be prone 

to developing anal carcinoma and left-sided mucinous histology 

CRC (27). One single publication reported a young male patient 

with a BRCA1 germinal variant who presented with rectal 
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adenocarcinoma and showed an excellent response to oxaliplatin-

containing neoadjuvant therapy (28). These data thus remain 

contradictory and do not allow to recommend to screen for CRC 

in BRCA1 variants heterozygotes, or to consider BRCA1 

pathogenic variants as a factor predisposing to familial CRC. 
Given the frequency of CRC and of BRCA1 variant 

heterozygotes in European populations (29), co-occurrence may 

be incidental rather than indicative of a causal relationship, as 

suggested previously (30). However, a few lines of evidence 

indicate that co-occurrence might be relevant. 
Recently, a large report investigated the frequencies of various 

cancers, including CRCs, in 6902 men with BRCA variants (31). 

The probability for developing a CRC was, according to this 

report, two times lower in men with BRCA2 variants than in 

BRCA1 variant heterozygotes. As it seems unlikely that BRCA2 

variants had a protective role against CRCs, these data could 

indicate a slightly but significantly increased risk of these cancers 

in men with BRCA1 variants. 
In our samples, we did not evaluate BRCA1 protein expression. 

Although we describe patients with aggressive metastatic cancer, 

the presence of low levels of BRCA1 protein had a worse 

prognosis even in early-stage CRC (32). 
In our study, we not only confirmed that the BRCA1 germline 

variants were still present in the tumor (with evidence of positive 

selection in case 1), but we also demonstrate scars of HRD in the 

three tumors. Indeed, the presence of germline variants in HRD-

associated genes alone is not sufficient to predict clinically 

relevant HRD. We highlighted the presence of specific mutational 

signatures (COSMIC signature 3) (33) and genomic instability 

characteristics (LOH, TAI and LST) (34–36), reflecting 

significant HRD, comparable with that observed in ovarian 

cancers with a BRCA1 or BRCA2 pathogenic variants. 

Interestingly, the initial somatic NGS analysis of cases 2 and 3 

was not conclusive, possibly because of low tumor infiltration, but 

it could also be indicative of an epigenetic event leading to loss of 

BRCA1 function and demonstrates the role of HRD testing even 

in cases where the mechanism driving HRD is not fully 

elucidated. Taken together, these observations indicate that 

germline BRCA1 variants may, in a small proportion of variant 

carriers, play a driver role in CRC development or progression 

and that these patients might thus benefit from a treatment with 

poly (ADP-ribose) polymerase-inhibitors (PARPi). Indeed, 

clinical trials clearly demonstrated the efficacy of platinum-based 

chemotherapy and PARPi to treat BRCA mutated and/or HRD 

positive cancers inside the spectrum of BRCA-related cancers 

(37). Further evidence demonstrating that some CRC could be 

linked to BRCA deficiencies could open new perspectives for 

treatment with PARPi of these rare aggressive tumors. 
The small number of patients and the bias in recruitment are 

the main limitations of our study, precluding to justify any specific 

surveillance or screening program in the absence of a personal or 

family history. 
In conclusion, our data indicate that a BRCA1 germline 

pathogenic variant can be involved in CRC development through 

HRD. Thus, BRCA1 testing should be considered in young 

patients with a personal history of microsatellite stable CRC. This 

could further allow a personalized treatment approach with a 

PARPi. 
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Part 2. Digenic inheritance 

Digenic inheritance, characterized by the simultaneous presence of PVs in two different CPGs, could 

have significant implications for cancer risk and management. Patients with digenic inheritance, 

specifically those harboring PVs in established cancer predisposition genes such as BRCA1, BRCA2, 

ATM, and CHEK2, exhibit a markedly elevated risk of developing multiple cancers at an earlier age 

compared to those with a single pathogenic variant. Despite extensive research on these individual 

genes, the cancer risk associated with simultaneous PVs in multiple CPGs remains largely unexplored. 

This study aims to elucidate the cancer risk in patients harboring combined PVs in HR CPGs examining 

six patients from five families, all of whom have multiple cancer diagnoses. 

Family 1: This family presented with pathogenic variants in both BRCA2 and ATM genes. The affected 

individuals included a patient with kidney cancer, prostate cancer and pancreatic adenocarcinoma, and 

his daughter with breast cancer. 

Family 2: The proband in this family had a pathogenic variant in BRCA2 and ATM and was diagnosed with 

breast cancer at a young age. 

Family 3: This family also carried pathogenic variants in BRCA2 and ATM. The male proband had a history 

of prostate cancer, gastric cancer, and pancreatic cancer. 

Family 4: Pathogenic variants in both BRCA2 and BRCA1 were identified. The affected male had 

pancreatic cancer. 

Family 5: This family exhibited pathogenic variants in BRCA2 and CHEK2, with a female proband 

diagnosed with breast cancer. 

The observation of MPCs at an early age of diagnosis in these patients shows the elevated cancer risk 

in individuals who are double heterozygous for PVs in HR-related CPGs. This study suggests that in 

families where patients show phenotypic diversity, early-onset, or unusual cancer types compared to 

other relatives, comprehensive genetic testing should include screening for additional CPGs beyond the 

initially identified variant. The findings advocate for a more inclusive cascade testing strategy to 

accurately assess and manage cancer risk in these high-risk families. By identifying multiple PVs, 

healthcare providers can implement more tailored surveillance and prevention strategies, thereby 

improving patient outcomes in those with a high genetic predisposition to cancer.  
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Abstract: Background/Objectives: BRCA1, BRCA2, ATM, and CHEK2 are known cancer predisposition 

genes (CPGs), but tumor risk in patients with simultaneous pathogenic variants (PVs) in CPGs remains 

largely unknown. In this study, we describe six patients from five families with multiple cancers who 

coinherited a combination of PVs in these genes. Methods: PVs were identified using NGS DNA 

sequencing and were confirmed by Sanger. Results: Families 1, 2, and 3 presented PVs in BRCA2 and ATM, 

family 4 in BRCA2 and BRCA1, and family 5 in BRCA2 and CHEK2. PVs were identified using NGS DNA 

sequencing and were confirmed by Sanger. The first family included patients with kidney, prostate, and 

breast cancer, in addition to pancreatic adenocarcinomas. In the second family, a female had breast cancer, 

while a male from the third family had prostate, gastric, and pancreatic cancer. The fourth family included 

a male with pancreatic cancer, and the fifth family a female with breast cancer. Conclusions: The early age 

of diagnosis and the development of multiple cancers in the reported patients indicate a very high risk of 

cancer in double-heterozygous patients associated with PVs in HR-related CPGs. Therefore, in families 

with patients who differ from other family members in terms of phenotype, age of diagnosis, or type of 

cancer, the cascade testing needs to include the study of other CPGs. 

Keywords: digenic inheritance; double heterozygosity; familial cancer; BRCA1; BRCA2; ATM; CHEK2 

 

1. Introduction 

Cancer predisposition syndromes (CPS) are now extensively studied, with an increasing 

proportion of cancer patients undergoing genetic testing [1]. This testing is based on the type 

of cancer, the number of cancer occurrences during the patient’s life, the age at diagnosis, and 

the family history [2,3]. It is expected that 3 to 5% of cancers are linked to a causal variant in a 

cancer predisposition gene (CPG) [4]. As most CPS are transmitted in an autosomal dominant 

way, once a pathogenic variant (PV) is identified in a family, the geneticists propose a family 

cascade testing to search for the variant, and start with first-degree relatives [5].
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Within the frame of inherited cancer predisposition, carriers of pathogenic variants (PVs) 

in a single gene have been extensively represented in the literature, and an ever-growing 

accumulation of data on the single gene-related cancer risk, based on multiple family histories, 

is available [6,7]. These data have led to gene-specific screening and follow-up 

recommendations for these carriers [3]. However, the coinheritance of heterozygous PV in two 

CPGs is a poorly studied event restricted to small case series and single case reports [8-10]. The 

exact frequency of double heterozygotes remains unknown, as is the case for their cancer risk 

and associated follow-up strategies [11]. Therefore, empirically, most genetic centers propose 

to apply the guidelines defined for the most dangerous gene to the follow-up of patients with 

two PVs in two different CPGs. However, the BRCA1 and BRCA2 PVs coinheritance, in the 

population-based Israeli national breast cancer cohort, was described in 2.2% of all carriers [12], 

and 17 double heterozygotes for CPGs were detected in a breast cancer cohort of people of 

Slavic ancestry which included 5391 patients [13]. 

Breast cancer gene 1 (BRCA1), breast cancer gene 2 (BRCA2), checkpoint kinase 2 (CHEK2), 

and ataxia-telangiectasia mutated (ATM) are CPGs, part of the homologous recombination 

(HR) pathway for double stand break (DSB) repair. This pathway preferentially uses the sister 

chromatid for error-free repair, and both the DNA damage response and the cell cycle 

checkpoints are crucial for initiating and regulating HR [14]. ATM participates in HR initiation 

and phosphorylation of CHEK2; BRCA1 facilitates DNA end resection [15], while BRCA2 aids 

in the formation of a DNA D-loop through the invasion of the nearby duplex DNA [16]. Finally, 

the BRCA2 protein is post-translationally modified by ATM [17].  

HR is crucial for repairing severe replication lesions at replication forks, and can repair or 

bypass DNA lesions remaining due to inactivation of other pathways. Consequently, mutations 

in HR genes result in genomic instability, fueling further mutations that lead to cancer 

development [14,18]. This deficiency in the HR pathway makes tumor cells more sensible to 

poly-(ADP-ribose)-polymerase inhibitors, platinum derivatives, alkylating agents, mitomycin 

C, and other antitumor drugs that are used for the treatment of cancer patients [19-22]. 

PVs in BRCA1, BRCA2, CHEK2, and ATM have been linked to a wide variety of cancers 

[15]. BRCA1 and BRCA2’s PVs were associated with breast cancer, ovarian/fallopian cancer, 

pancreas cancer, prostate cancer, and melanoma, while breast, prostate, thyroid, kidney, colon 

and stomach cancers were related to PVs in CHEK2 [23]. Germline heterozygous PVs in ATM 

increase the risks of breast, pancreatic, gastro-esophageal, colorectal, ovarian, prostate, thyroid, 

gastric, and head and neck cancers, as well as melanoma [24]. Given the frequencies of PVs in 

these genes, it is expected that cancer patients carrying two PVs should be rarely, but not 

exceptionally, observed. Moreover, as these genes act on the homologous recombination 

pathway, these double heterozygote patients might have a higher risk of HR dysfunction and 

thus a more severe cancer risk. 

In this study we describe six patients from five families with multiple cancers who 

coinherited PVs in BRCA2 and other HR genes—four patients with variants in BRCA2 and 

ATM, one patient with BRCA2 and BRCA1, and one patient with BRCA2 and CHEK2 PVs. 

2. Materials and Methods 

2.1. Ethical approval 

The study was conducted in accordance with the Declaration of Helsinki and approved 

by the Comité d’Ethique Hospitalo-facultaire Universitaire de Liège (protocol code 2019/245 

and date of approval 28 October 2019). 

2.2. Data collection 

Patient sex, age, age at diagnosis for each tumor, and personal and family history were 

extracted from the medical records. Data on cancer diagnosis and treatment were gathered from 

the institution’s database. All of the patients read and signed an informed-consent document.
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2.3. Genetic analysis 

Genetic analysis was performed on DNA extracted from blood samples using QIAcube 

(QIAGEN Hilden, Germany) and STARlet (Seegene Inc. Seoul, South Korea) extraction 

instruments (See SupplementaryMaterials: DNA extraction methods). DNA purity and 

concentration were measured with NanoDrop (Thermo Fisher Scientific Waltham, 

Massachusetts, United States), and DNA underwent NGS panel sequencing (See 

Supplementary Data: Table S1). The bioinformatic analysis was performed using in-house 

demultiplexing pipelines and the in-house Humanomics pipeline (as described in [25]). Variant 

classification was performed according to the ACMG “Standards and guidelines for the 

interpretation of sequence variants” [26]. The in silico analysis of missense and splicing variants 

was performed using the aggregated score of the Franklin by Genoox tool 

(https://franklin.genoox.com, accessed on 17 May 2024), which includes the scores of SIFT, 

FATHMM, DANN, MetaLR, REVEL, MutationAssessor, PolyPhen-2, MutationTaster, 

PrimateAI, BayesDel, SpliceAI, dbscSNV, GERP, GenoCanyon, fitCons, MitoTip, and 

APOGEE. For the splicing variants, Human Splicing Finder [27] was used. Two databases, 

gnomAD (https://gnomad.broadinstitute.org/, accessed on 17 May 2024) and ALFA 

(https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa, accessed on 17 May 2024), were used to 

retrieve the Minor Allele Frequency (MAF) data. The identified PVs were confirmed by Sanger 

sequencing (See Supplementary Data: Table S2). 

3. Results 

3.1. Frequency of double heterozygotes 

Over the past 28 months, following the introduction of the new Hereditary Breast and 

Ovarian Cancer (HBOC) panel at our institution, a total of 2152 panels have been conducted in 

cases of cancer patients (1929 13-gene panels and 223 26-gene panels). In total, 121/1929 13-gene 

panels (6.27%) and 22/223 (9.8%) 26-gene panels were positive, containing a pathogenic or likely 

pathogenic result. Three patients (3/2152 patients, 0.14%) were double-heterozygous for CPG 

PVs. Two samples had two PVs in the 13-gene panel (2.2% of the 91 samples with PVs) and one 

in the 26-gene panel (5.6% of the 18 samples with PVs, see Table 1). Heterozygous variants in 

genes associated with a recessive instance of CPS, such as the MUTYH gene, were excluded 

from this analysis. 

Table 1. Double heterozygote statistics in the institution. 

 13-Gene Panel 26-Gene Panel 

 
Likely 

Pathogenic 

(n = 30) 

Pathogenic 

(n = 91) 

Likely 

Pathogenic 

(n = 4) 

Pathogenic 

(n = 18) 

1 variant per sample, n 

(%) 
30 (100.0) 89 (97.8) 4 (100.0) 17 (94.4) 

2 variants per sample, n 

(%) 
0 (0.0) 2 (2.2) 0 (0.0) 1 (5.6) 

In this study, we report two of the three double-heterozygous patients from whom we 

obtained informed consent, and one additional patient whose double-heterozygous state was 

diagnosed based on family history. The three additional included patients were previously 

observed by the genetics department and/or had a relevant family history. 

3.2. Clinical history 

Six patients from five families underwent genetic consultation in the context of multiple 

cancers or early-onset disease, leading to the identification of two heterozygous PVs in the HR 

genes of each patient (see Table 2).

https://franklin.genoox.com/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa
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Table 2. Characteristics of the patients included in the study. 

 Family 1 Family 2 Family 3 Family 4 Family 5 

 
Patient 1 

II:5 

Patient 2 

III:2 

Patient 3 

IV:2 

Patient 4 

II:1 

Patient 5 

IV:3 

Patient 6 

III:2 

Sex Male Female Female Male Male Female 

Age (years) 67 34 28 65 58 29 

Medical 

history 

Childhood asthma, 

gouty arthritis, 

hypercholesterolemia, 

and hypertrophic heart 

disease 

None None 
Essential 

thrombocytopenia  

Type 2 diabetes, 

volvulus 

Glucose 

intolerance 

Oncological 

history 

Renal cancer at 50, 

prostate cancer at 51, 

and metastatic 

pancreatic cancer at 66 

years 

Breast cancer at 29 

years (ER positive, 

PR positive, Ki67 

60%, HER2 ++, SISH 

−) 

Metastatic breast 

cancer at 28 years 

(ER positive, PR 

positive, Ki67 40%, 

HER2 ++ SISH −) 

Prostate cancer at 49, 

gastric cancer at 60, 

and metastatic 

pancreatic cancer at 

64 years 

Metastatic 

pancreatic cancer 

at 57 years 

Ductal breast 

cancer at 28 

years (ER 

positive, PR 

negative, Ki67 

50%, HER2 ++, 

SISH −) 

Treatment 

Renal cancer–surgery, 

prostate cancer–

brachytherapy, 

pancreatic cancer–

chemotherapy, and 

targeted therapy 

Neoadjuvant 

chemotherapy, 

surgery, and 

radiotherapy 

Chemotherapy 

Prostate and gastric 

cancer–surgery, 

pancreatic cancer–

chemotherapy 

Chemotherapy 

Surgery, 

adjuvant 

chemotherapy, 

radiotherapy, 

and hormonal 

therapy 

Identified germline heterozygous pathogenic and likely pathogenic variants 

BRCA2 
c.3865_3868del 

p.(Lys1289Alafs*3) 

c.3865_3868del 

p.(Lys1289Alafs*3) 

c.5057T>A 

p.(Leu1686*) 

c.4284dup 

p.(Gln1429Serfs*9) 

c.8243G>A 

p.(Gly2748Asp) 

c.537dup 

p(Ile180Tyrfs*3) 

ATM 
c.8494C>T 

p.(Arg2832Cys) 

c.8494C>T 

p.(Arg2832Cys) 
c.7516-2A>G 

c.6326G>A 

p.(Trp2109*) 
-  

BRCA1 - - - - 
c.1121del 

p.(Thr374Asnfs*2) 
- 

CHEK2 - - - - - 
c.499G>A 

p.(Gly167Arg) 

ER—estrogen receptor; PR—progesterone receptor; SISH—silver in situ hybridization. Reference transcripts: 

ATM NM_000051.3, BRCA1 NM_007294.3, BRCA2 NM_000059.3, and CHEK2 NM_007194.3. 

The first family included a 67-year-old male with a medical history of multiple cancers 

whose daughter had been diagnosed with breast cancer (see Figure 1). The male patient 

presented kidney and prostate cancer and pancreatic adenocarcinoma at the ages of 50, 51, and 

66, respectively. 

The patient’s daughter was diagnosed with breast cancer at 29 years. A tumorectomy 

showed grade 3 invasive ductal carcinoma with axillary and mediastinal lymph node extension 

(ypT1cN2aMx). Two years after the diagnosis, she presented a first relapse with one 

successfully treated bone metastasis. The subsequent relapses included liver metastasis, lymph 

node invasion, and finally brain metastasis in 2021. 

In the second family, a 28-year-old female underwent an exploratory laparoscopy due to 

persistent non-specific abdominal pain with nausea and vomiting, showing endometriotic 

lesions and multiple hepatic lesions described as angiomas. A month later, after a week of 

hyperthermy and a positive COVID-19 test, the thoracoabdominal computed tomography scan 

demonstrated a large breast lesion with a highly suspicious right axillary lymph node, necrotic 

hepatic and bone lesions, and possibly-COVID-19-related pulmonary foci. A grade 3 infiltrating 

ductal carcinoma was diagnosed and treated.
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Figure 1. Pedigree of the five families reported: (a) family 1, (b) family 2, (c) family 3, (d) family 4, and (e) family 
5. The probands are marked with arrows. ca., cancer; CRC, colorectal cancer; d., death; dx., diagnosis; y., years; 

+/−, heterozygous genotype; −/−, homozygous wild type genotype; ?/?, unknown genotype.
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A 65-year-old male from the third family was diagnosed with a Gleason 3 pT2bNxM0 

prostate adenocarcinoma at the age of 49, well-differentiated pT1N0M0 enteric 

adenocarcinoma one year later, and finally metastatic pancreatic cancer. His older sister was 

first diagnosed with breast cancer at 60, and then pancreatic cancer at 70 years old. 

The fourth family included a 58-year-old male who presented a 15 kg weight loss, fatigue, 

nausea, and transfixing abdominal pain for 2 weeks. In a tomography, an isthmus pancreatic 

mass of 4 cm infiltrating peripancreatic fat with hepatic metastasis was discovered (CTxNxM1). 

In this patient, a familial BRCA1 variant was found 15 years earlier at the time of a breast cancer 

diagnosis for his sister at the age of 35 (she developed a second breast cancer 15 years later, and 

pancreatic cancer at the age of 67). The male patient was known to carry this familial BRCA1 

variant, inherited from their father. As the BRCA1 familial variant was not sufficient to explain 

both pancreatic cancers, those in the patient and his sister, as well as their mother’s breast 

cancer, we re-initiated a CPG analysis and this showed that he carried two pathogenic variants: 

the known familial BRCA1 PV, and a BRCA2 PV. 

The 29-year-old female from the fifth family discovered three mobile, not painful masses 

in her right breast while performing self-palpation. The biopsy of one of the masses revealed a 

ductal breast adenocarcinoma (cT2N0M0). After a right mastectomy with sentinel ganglion, an 

infiltrating tubular adenocarcinoma (pT2mN1mi) was diagnosed. During genetic evaluation, a 

BRCA2 and a CHEK2 PV were identified in the patient. Both PVs were absent in the mother, 

while the father was not available for testing. The patient has two sisters, one of whom is 

underage and has not been tested. 

3.3. Genetic characteristics 

In the patients from families 1 to 3, genetic analyses showed BRCA2 and ATM PVs. The 

patients from family 4 and 5 carried PVs in BRCA1/BRCA2 and BRCA2/CHEK2, respectively. 

Three of the identified BRCA2 nonsense variants were located in exon 11/27 

(c.3865_3868del, c.5057T>A, c.4284dup), while the fourth was located in exon 7/27 (c.537dup), 

leading to the existence of a severely truncated or absent protein due to nonsense-mediated 

mRNA decay (NMD) [28]. BRCA2 c.3865_3868del, c.5057T>A, and c.537dup variants were 

absent from the gnomAD (v2.1.1) and ALFA databases, while BRCA2 c.4284dup had a 

frequency of 1 out of 244426 alleles in the total population of gnomAD (v2.1.1) and was absent 

from the ALFA database (see Table 3). BRCA2 c.8243G>A had a frequency of 2/249060 in the 

total population of gnomAD (v2.1.1) and 1/25340 in ALFA. Various functional studies show a 

loss of function and/or protein stability linked to the BRCA2 c.8243G>A variant [29,30]. All of 

the BRCA2 variants were previously described as pathogenic [22,31—33].  

The missense ATM c.8494C>T variant was located in exon 58 out of 63, was present in 7 

out 236730 alleles in the total population in gnomAD (v2.1.1), and has been previously 

described as pathogenic and associated with an increased cancer risk [34]. The ATM c.7516-

2A>G variant located in intron 50 out of 62 has not been previously reported, and was not 

present in the gnomAD (v2.1.1) or ALFA databases. However, the variant was located in a 

region of the gene where other variants have been described as pathogenic, affecting a 

conserved splice site [35]. ATM c.7516-2A>G in silico evaluation results showed splicing 

alteration by wild-type acceptor site breakage. The nonsense ATM c.6326G>A variant in exon 

43 out of 63 was predicted to cause loss-of-function by premature protein truncation or NMD. 

This variant was not found in the gnomAD (v2.1.1) or ALFA databases and has been previously 

reported as pathogenic [36]. 
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Table 3. Characteristics of the variants identified in the patients. 

Gene Variant Type MAF 
In Silico Predictors’ 

Results 

ACMG 

Classification 

BRCA2 
c.3865_3868del 

p.(Lys1289Alafs*3) 
Deletion 

gnomAD: - 

ALFA: - 
F: not applicable Pathogenic 

BRCA2 
c.5057T>A  

p.(Leu1686*) 
Nonsense 

gnomAD: - 

ALFA: - 
F: not applicable Pathogenic 

BRCA2 
c.4284dup 

p.(Gln1429Serfs*9) 
Duplication 

gnomAD: 0.0004% 

ALFA: - 
F: not applicable Pathogenic 

BRCA2 
c.8243G>A 

p.(Gly2748Asp) 
Missense 

gnomAD: 0.0008% 

ALFA: 0.0039% 
F: deleterious Pathogenic 

BRCA2 
c.537dup 

p(Ile180Tyrfs*3) 
Duplication 

gnomAD: 0.0004% 

ALFA: - 
F: not applicable Pathogenic 

ATM 
c.8494C>T 

p.(Arg2832Cys) 
Missense 

gnomAD: 0.0030% 

ALFA: - 
F: deleterious Pathogenic 

ATM c.7516-2A>G Splicing 
gnomAD: - 

ALFA: - 

F: deleterious 

HSF: Site acceptor broken 
Likely pathogenic 

ATM 
c.6326G>A 

 p.(Trp2109*) 
Nonsense 

gnomAD: - 

ALFA: - 
F: not applicable Pathogenic 

BRCA1 
c.1121del 

p.(Thr374Asnfs*2) 
Deletion 

gnomAD: - 

ALFA: - 
F: not applicable Pathogenic 

CHEK2 
c.499G>A 

p.(Gly167Arg) 
Missense 

gnomAD: 0.0024% 

ALFA: 0.0030% 
F: deleterious Pathogenic 

F—Franklin by Genoox, MAF—Minor Allele Frequency, ACMG—American College of Medical Genetics and 

Genomics, HSF—Human Splicing Finder. Reference transcripts: ATM NM_000051.3, BRCA1 NM_007294.3, 
BRCA2 NM_000059.3, and CHEK2 NM_007194.3. 

Nonsense BRCA1 c.1121del variant caused a frameshift with a predicted stop codon two 

amino acids after the deletion, which could result in loss of normal protein function through 

protein truncation or NMD. This variant was absent in gnomAD (v2.1.1) or ALFA, but was 

present in several individuals suffering from breast and/or ovarian cancer [37]. This variant was 

also known as c.1240delC in the literature. 

Missense CHEK2 c.499G>A variant leads to a substitution of a highly conserved amino 

acid. This variant was present in the total population of gnomAD (v2.1.1) in 6 out of 251424 

alleles, and 3/100662 alleles in ALFA. Additionally, functional analysis showed a loss of 

function of the protein due to structural instability [38] or phosphorylation anomaly [39]. The 

in silico analysis of the variant predicted a deleterious effect on the protein, and CHEK2 loss-

of-function variants are known to be pathogenic [40]. 

4. Discussion 

PVs in BRCA1, BRCA2, CHEK2, and ATM increase the lifetime cancer risk of breast 
cancer [41]. In women carrying BRCA1 and BRCA2 PVs, the cumulative risk of breast cancer 

was 4% before the age of 30 for each gene, and reached 72% for BRCA1 and 69% for BRCA2 by 

age 80 [42]. For ATM variants, there was an estimated breast cancer relative risk of 2.8, and the 

absolute breast cancer risk reached 27% by 80 years. The CHEK2 breast cancer risk was variable 

for different PVs. Common CHEK2 truncating variants conferred a greater than twofold relative 

risk, while a less common I157T variant was associated with a 1.4-fold risk [43]. Similarly, in a 

study that included 65 057 women with breast cancer, the age of diagnosis of CHEK2 PV´s 

carriers was 47.7 years [41]. However, there is a lack of epidemiological data on BC risk in 

patients carrying PVs in two of these genes. Our study indicates very precocious and even 

metastatic BC in women with PVs in BRCA2 and ATM (patients 2 and 3) or BRCA2 and CHEK2 
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 genes (patient 6), while a previous study evaluating 17 double-heterozygous patients with 

breast cancers failed to demonstrate a younger age at presentation in this group [13]. A similar 

trend could be expected when PVs in BRCA1 are associated with PVs in other CPGs. 

The risks of other cancers are also elevated in BRCA1-, BRCA2-, and ATM-variant carriers. 

BRCA1 and BRCA2 PVs confer increased risks of prostate, pancreatic, and ovarian cancers [44], 

while moderate-to-high risks of pancreatic (OR 4.21), prostate (OR 2.58), and gastric (OR 2.97) 

cancers were estimated for ATM-variant carriers [24]. In our observations, two male patients 

were treated for a prostate cancer diagnosed at an early age, which might suggest that the 

BRCA2-linked risk is further increased by the presence of the ATM PV.  

The reported pancreatic cancer risks in BRCA1 and BRCA2 carriers by the age of 70 years 

were 1.16% and 4.1% in men [44]. As BRCA1, BRCA2, and ATM proteins interact in the HR 

pathway, an additive effect on HR deficiency could be expected, giving a further increased risk 

of pancreatic cancer, as observed in patients 1, 4, and 5. Indeed, in a recent case report of a 

female patient carrying two heterozygous pathogenic variants in BRCA2 and ATM, breast 

cancer was diagnosed at 34 and pancreatic cancer at 48 years [45]. This raises the question of 

whether the previously-described reported young women with breast cancer (family 1) will 

need additional monitoring for their pancreatic cancer risk. 

Therefore, our observations suggest that patients carrying a PV in BRCA2 plus another 

HR gene should be carefully monitored for BC, pancreatic cancer, and prostate cancer. 

However, incomplete penetrance and variability of the age of onset of the disease are also 

observed in double-heterozygous patients. In the second reported family, the proband’s father 

also carried both BRCA2 and ATM PVs (see Figure 1) but did not have any history of cancer, 

indicating that both genetic and non-genetic factors can influence cancer risk in variant carriers 

[44], while in the third family, the proband´s sister developed cancer at an older age, supporting 

the variable expressivity of these mutations. Further studies and larger cohorts are thus of 

course needed to better define the cancer risk associated with having two PVs in HR genes.  

PVs in BRCA1 and BRCA2 have frequencies of 0.21% and 0.31% in the European 

population [46], while the frequencies of ATM and CHEK2 PVs reach 1% [47] and 1.4% [48]. 

These estimations, taken together, and given the scarcity of double-heterozygotes reports, 

indicate that the prevalence of digenic coinheritance is likely underestimated. Recently, even a 

patient with breast cancer and concurrent PVs in three cancer-related genes (BRCA1, BRCA2, 

and CHEK2) has been reported [49]. Therefore, given the high variability of phenotypes within 

families and between different families, when a cascade testing is performed after the 

identification of a familial PV, the assessment should not stop at the single known familial PV, 

at least in individuals with precocious breast, pancreatic, or prostate cancers; in those with 

multiple cancers; and in cases of cancers that are not frequently associated with the identified 

PV, as the possibility of co-segregation of another PV should not be neglected.  

The size of the genetic panels used for cancer patients´ evaluation has progressively 

increased in recent years [50]. Consequently, the findings derived from these expanded panels 

are still in the preliminary stages, and it is impossible to directly compare the new data with 

previous results from shorter panels. Nonetheless, instances of double mutations are expected 

to remain relatively rare. After introducing multi-gene panel testing in 2014, by 2023, in the Fox 

Chase Cancer Center Risk Assessment Program Registry, 70 patients were found to carry at 

least two PVs in CPGs (excluding biallelic MUTYH PVs) [51]. In a review of 55,803 patients 

screened with a 25-gene hereditary cancer panel, 106 individuals (0.19%) showed PVs or likely 

pathogenic variants in two or more genes [52], a frequency of double heterozygotes very similar 

to that observed in the present study.  

With the increase in patient numbers and the utilization of larger cohorts for analysis, 

more robust data will be available soon. Furthermore, the criteria for recommending genetic 

studies have undergone multiple revisions over time. Only recently has genetic testing for 

pancreatic and prostate cancer been included as part of the standard practice [53]. 

Consequently, the reports of larger cohorts of patients with diverse primary tumors will 

increase the likelihood of identifying cases with double mutations.
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The small number of patients, the bias in recruitment, and the inability to evaluate the 

segregation in all of the families are the main limitations of our study. Additionally, we did not 

address the associated treatment strategies—platinum-based chemotherapy or PARP 

inhibitors—and the patients´ responses. With only six patients, we lack the data for meaningful 

comparisons or response-rate calculations. A larger study involving double-heterozygous 

patients is necessary to address these questions effectively.  

Therefore, in young cancer patients from a family with a single known CPG PV, it could 

be useful to evaluate other genes to identify the potential transmission of several PVs and 

double-heterozygous carriers with a specific high cancer risk. Moreover, our data suggest that 

the surveillance of patients carrying two PVs in HR genes should include at least breast, 

pancreas, and prostate cancer screening, starting early. From our limited study, we would 

recommend starting a screening in those patients, at the latest, from the ages of 25, 40, and 50 

for breast, prostate and pancreas cancer, respectively. 

5. Conclusions 

In conclusion, the early age of diagnosis and the development of multiple cancers in the 

reported patients indicate a very high risk of cancer in double-heterozygous patients associated 

with PVs in HR-related CPGs. Therefore, when a CPG PV is identified in a family, the usual 

cascade testing needs also to consider a study of other CPGs in patients with specific 

phenotypes, even distinct from other family members, either based on the age at diagnosis or 

the type of cancer. 

Supplementary Materials: The following supporting information can be downloaded at: : 

https://www.mdpi.com/article/10.3390/jpm14060584/s1, Figure S1: Chromatograms of the variants identified in 
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Part 3. Multiple primary cancers 

MPCs occur when a patient develops more than one cancer, either simultaneously (synchronous) or 

sequentially (metachronous). Definitions and identification criteria for MPCs vary among regulatory 

agencies, and the threshold for defining synchronous versus metachronous tumors also differs. 

In recent years, advancements in screening tests and cancer therapies have significantly improved 

patient survival rates. Their risk of subsequent cancers is influenced by factors such as the type of first 

primary site, age at diagnosis, environmental exposure, and genetic factors. Patients with MPC are more 

likely to carry germline pathogenic variants in cancer-related genes. 

The study aimed to identify novel genetic mechanisms associated with tumor development in MPC 

patients, particularly those without a germline molecular genetic diagnosis after initial evaluation. 

Ten patients were included with a range of tumors including melanomas, seminomas, thyroid cancer, 

and gynecological tumors. The identified variants included missense, nonsense, and splicing SNVs, as 

well as CNVs. Most SNVs were variants of uncertain significance (VUS), with only two classified as 

pathogenic. Tumor sequencing revealed that all germline variants were present in the somatic samples, 

with no additional hits identified in the same genes. Mutational signature analysis highlighted common 

etiological factors like DNA mismatch repair alterations and chemotherapy-related signatures. 

The study found that only two out of ten patients had clearly pathogenic SNVs. Previous studies showed 

similar results, indicating that undetected germline pathogenic variants could account for MPC in a 

small number of cases. The presence of multiple low penetrance SNVs suggests an oligogenic effect, 

where combinations of genetic events influence cancer risk. 

The study suggests that multiple germline variants can increase cancer risk, and comprehensive 

genetic testing, including SNVs, CNVs, and chromosomal rearrangements, is essential for accurate risk 

assessment. Further research is needed to understand the interactions between genetic, epigenetic, 

and environmental factors in MPC. The limitations of this study included the small sample size and 

challenges in correlating VUS with disease, emphasizing the need for larger studies to explore these 

complex genetic interactions. 
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Abstract. Regarding inherited cancer predisposition, single 

gene carriers of pathogenic variants (PVs) have been 

extensively reported on in the literature, whereas the 

oligogenic coinheritance of heterozygous PVs in cancer-

related genes is a poorly studied event. Currently, due to the 

increased number of cancer survivors, the probability of 

patients presenting multiple primary cancers (MPCs) is higher. 

The present study included patients with MPCs aged ≤45 years 

without known PVs in common cancer predisposition genes. 

This study used whole exome sequencing (WES) of germline 

and tumoral DNA, chromosomal microarray analysis (CMA) 

of germline DNA (patients 1‑7, 9 and 10), and a karyotype test 

of patient 8 to detect variants associated with the disease. The 

10 patients included in the study presented a mean of 3 cancers 

per patient. CMA showed two microduplications and one 

microdeletion, while WES of the germline DNA identified 1‑3 

single nucleotide variants of potential interest to the disease in 

each patient and two additional copy number variants. Most of 

the identified variants were classified as variants of uncertain 

significance. The mapping of the germline variants into their 

pathways showed a possible additive effect of these as the 

cause of the cancer. A total of 12 somatic samples from 5 

patients were available for sequencing. All of the germline 

variants were also present in the somatic samples, while no 

second hits were identified in the same genes. The sequencing 

of patients with early cancers, family history and multiple 

tumors is already a standard of care. However, growing 

evidence has suggested that the assessment of patients should 

not stop at the identification of one PV in a cancer 

predisposition gene. 
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Introduction 

Multiple primary cancers (MPCs) are defined as the 

occurrence of more than one synchronous or metachronous 

cancer in a patient. For reporting purposes, the identification 

of MPCs is variable across the regulatory agencies. The 

Surveillance, Epidemiology and End Results (SEER) program 

considers the histology, site, laterality, and time since initial 

diagnosis of the tumor, while for the International Agency for 

Research on Cancer (IARC) only one tumor is registered for 

an organ, irrespective of time. The definition of synchronous 

and metachronous tumors also varies, having a threshold of 2 

months in SEER and 6 months in IARC (1,2). 

The development of screening tests and new cancer 

therapies improved cancer patient survival. By 2005, almost 

900,000 of the 11 million cancer survivors were diagnosed 

with more than one cancer. The risk of developing subsequent 

cancers varies with regards to the type of first primary site, age 

at diagnosis, environmental exposure and genetic factors (3). 

The identification of genes associated with hereditary 

cancer risk started 25 years ago with the discovery of BRCA 

pathogenic variants in families with breast and ovarian 

cancers. Since then, more than 80 cancer predisposition 

syndromes and 100 cancer‑related genes were identified (4). 

For each syndrome, the most commonly associated cancers are 

defined but the exact risk profile remains often unknown. One 

common characteristic of these conditions is the young age at 

cancer diagnosis in most patients, although a considerable 

heterogeneity is observed. Additionally, it is widely stated that 

patients with multiple primary cancers are more likely to carry 

germline pathogenic variants in cancer‑related genes (5). 

For patients with MPCs without a germline molecular 

genetic diagnosis after initial evaluation, single‑nucleotide 

variants (SNVs), copy number variants (CNVs), or de novo 

chromosomal rearrangements could be the cause of the 

disease. Another possibility could be the additive effect of 

multiple genetic events influencing a single biochemical 

mechanism. The aim of this study was to identify novel genetic 

mechanisms associated with risk of tumor development in 

patients with MPCs. 
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Patients and methods 

Patient selection. We selected patients with ≥2 tumors before 

45 years old, who were evaluated by the genetic department of 

the CHU Liège. The routine genetic assessment and testing 

with targeted next-generation sequencing (NGS) failed to 

establish a germline molecular genetic diagnosis. Additionally, 

the patients lacked family history suggestive of a cancer 

predisposition syndrome. Tumors in the same tissue or organ 

were considered separate primary tumors if, in the case of 

paired organs, they presented bilaterally or if the clinical 

history clearly indicated that they were different. All 

participants gave informed consent to participate in the study. 

Data collection. Patient sex, age, age at diagnosis of each of 

the tumors, personal and family history were extracted from 

the medical records. Data regarding cancer diagnosis and 

treatment was collected from the institution's database.  

Germline analysis. Whole exome sequencing (WES, 

Novogene) and a high-resolution (180K) chromosomal 

microarray analysis reference (CMA, Agilent) were performed 

on the DNA extracted from the blood of the patients. The WES 

data was analyzed using our own Humanomics pipeline (as 

described in (6)) and two interpretation software (Illumina 

BaseSpace Variant Interpreter and Diploid Moon). The 

variants were filtered according to their quality (allele depth 

and genotype quality), population frequency, the effect on the 

gene and the classification of the variant in databases. Variant 

classification was performed according to ACMG Standards 

and Guidelines for the Interpretation of Sequence Variants (7). 

The identified variants were confirmed by Sanger sequencing. 

CNV analysis was conducted on the BAM file (mapping 

with bwa version v0.7.17 and cleaning with elprep version 

v4.1.5) arising from the identical sequencing batch using the 

Humanomics BED file, which enabled the detection of CNVs 

bigger than one whole exon. The depth of coverage was 

calculated specifically on exons within these files, and the 

normalization set comprised 400 patients (200 males and 200 

females). The CNVs were detected by implementing of our in-

house pipeline (StueckFinder v2.2) that integrates the well-

established tool CANOES (8) and code modifications to 

enable CNV detection on the gonosomes. Variant 

classification was performed according to the ACMG/ClinGen 

technical standards for the interpretation and reporting of 

constitutional copy number variants (9). The detected CNVs 

were confirmed by nanopore sequencing. 

Tumor analysis. WES of the tumoral DNA (using Mechanical 

Fragmentation and the Twist Universal Adapter System) was 

performed on the DNA extracted from the available Formalin-

Fixed Paraffin-Embedded (FFPE) patient samples. The data 

analysis was performed using QIAGEN Digital Insight 

Software Genomics Workbench 21 for data preparation, 

mapping, variant calling and annotation. The tumoral WES 

results were analyzed separately and as a tumor-normal pair. 

Variant classification was performed according to ACMG 

Standards and Guidelines for the Interpretation of Sequence 

Variants in Cancer (10) and the ClinGen specification when 

available. Mutational signatures in the samples were analyzed 

Using Mutational Patterns R package (11) and COSMIC v2 

signatures (12), taking only the somatic variants into account. 

 

Results 

Patients' characteristics. Ten patients with multiple cancers 

were included in the study. The mean age was 40.7±5.4 years, 

7 patients were female and 3 were male. None of the patients 

had family cancer history suggestive of a cancer predisposition 

syndrome. Before enrolment, by targeted NGS sequencing a 

CHEK2 and ATM variant was identified in two patients, 

however they could not explain the full phenotype observed. 

The CMA results included two microduplications and one 

microdeletion (Table I). 

We observed a mean of 3.2 tumors per patient. The tumors 

included melanomas, seminomas, thyroid cancer, 

gynecological tumors, and others (Table II). 

Germline WES results. CNVs and missense, nonsense and 

splicing SNVs were identified in the patients included in the 

study (See Table III). The variants were classified according to 

the ACMG criteria and ClinGen specifications whenever 

available. Most of the identified SNVs were variants of 

uncertain significance (VUS), and only two variants were 

classified as pathogenic (See table IV). One of the pathogenic 

variants, an ATM splicing variant (c.8988-1G>A) that affected 

a canonical splice site, was not present in GnomAD, was 

predicted as deleterious by SIFT, Mutation taster, Provean, and 

the splicing in silico analysis. The second pathogenic variant 

in the MUTYH gene was previously described in patients with 

MUTYH-Associated Polyposis, an autosomal recessive disease 

that predisposes to colorectal cancer (13). Furthermore, 

heterozygous deleterious MUTYH variants were described as 

drivers in various types of cancer (adrenocortical carcinoma, 

esophageal carcinoma, sarcoma, prostate adenocarcinoma, and 

kidney renal clear cell carcinoma) (14). 

Two CNVs were detected when evaluating WES data in the 

patients (Table III). One included an MSR1 gene heterozygous 

deletion of exons 7-10. This CNV was classified as variant of 

unknow significance according to the ACMG/ClinGen 

criteria. The second was a heterozygous deletion of the whole 

APOBEC3B gene, which was classified as pathogenic as for a 

full gene deletion a pathogenic classification is warranted (15). 

Tumor WES results. Twelve somatic samples were available 

for sequencing, a seminoma and thyroid cancer from patient 1, 

four melanomas from patient 3, an ovary cancer from patient 

4, a thyroid cancer, dermatofibroma and dysplastic nevus from 

patient 6, and breast and thyroid cancer from patient 7. All the 

germline variants were also present in the somatic samples, no 

second hits were identified in the same genes. The mutational 

signature analysis aimed to identify common etiological 

factors for the development of the multiple cancers in the 

patients. The most frequently presented Single Base 

Substitution (SBS) signatures with a proposed etiology were 

the DNA mismatch repair alteration signature, and the 

signatures  related to chemotherapy  treatment (Table SI). The
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Table II. Tumor characteristics. 

Characteristic 

First  

tumor 

Second 

tumor 

Third  

tumor 

Fourth 

tumor 

Fifth 

tumor Total 

(n=10) (n=10) (n=6) (n=4) (n=2) (n=32) 

Mean±SD age at presentation, years 26.9±8.5 30.8±6.0 33.8±4.0 35.3±1.5 35±1.4 
 

Tumor type, n (%) 

  Melanoma 3 (30.0) 3 (30.0) 3 (50.0) 2 (50.0) 2 (100.0) 13 (40.6) 

  Seminoma 1 (10.0) 1 (10.0) 1 (16.7) 0 (0.0) 0 (0.0) 3 (9.4) 

  Thyroid cancer 1 (10.0) 3 (30.0) 0 (0.0) 1 (25.0) 0 (0.0) 5 (15.6) 

  Breast tumor 3 (30.0) 1 (10.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (12.5) 

  Ovarian tumor 0 (0.0) 1 (10.0) 1 (16.7) 0 (0.0) 0 (0.0) 2 (6.3) 

  Neuronal tumors 1 (10.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 

  Muscle tumors 0 (0.0) 0 (0.0) 0 (0.0) 1 (25.0) 0 (0.0) 1 (3.1) 

  CRC 1 (10.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 

  Renal and urinary tract tumors 0 (0.0) 1 (10.0) 1 (16.6) 0 (0.0) 0 (0.0) 2 (6.3) 

CRC, colorectal cancers, SD, standard deviation 

 

Table III. Genetic alterations identified in the patients. 

Patient Gene Variant Type 

P1 CHEK2  c1100delC (p.Thr367Metfs*15) Nonsense SNV 

EME2 c.964C>T (p.Gln322*) Nonsense SNV 

ATRIP c.1637T>G (p.Leu546Trp) Missense SNV 

BUB1 arr[hg19] 2q13(111,408,390-113,098,686)x1 CNV 

P2 HNF1A c.92G>A (p.Gly31Asp) Missense SNV 

TSC2 c.5383C>T (p.Arg1795Cys) Missense SNV 

 MSR1 c.(956+1_957-1)_ 3618del CNV 

P3 ATM c.8988-1G>A Splicing SNV 

APC c.295C>T (p.Arg99Trp) Missense SNV 

P5 ERCC2 c.2260G>C (p.Glu754Gln) Missense SNV 

P6 RASA2 c.865T>C (p.Tyr289His) Missense SNV 

P7 RIF1 c.1475A>G (c.1475A>G) Missense SNV 

 APOBEC3B g.(?_ 39378444)_( 39388168_?)del CNV 

P8 CHEK2 c.434G>A (p.Arg145Gln) Missense SNV 

P9 ATM c.2057T>A (p.Leu686His) Missense SNV 

P10 MUTYH c.536A>G (p.Tyr179Cys) Missense SNV 
 

Reference transcripts: APC NM_000038.6, APOBEC3B NC_000081.7, ATM NM_000051.3, ATRIP NM_130384.2, BRCA1 

NM_007294.3, CHEK2 NM_007194.4, EME2 NM_001257370.2, ERCC2 NM_000400 HNF1A NM_000545.5, MSR1 

NM_138715.2, MUTYH NM_012222.2, RASA2 NM_006506.5, RIF1 NM_018151.4, TSC2 NM_000548.5.4,  

only obvious correlation between the patient´s signatures was 

observed between three of the four patient 3 melanomas. 

Discussion 

In this study only two out of 10 patients with MPCs presented 

clearly pathogenic SNVs. Previous reports showed similar 

results. When performing a whole-genome sequencing (WGS) 

of a cohort of patients with MPC who had undergone genetic 

assessment, undetected germline pathogenic variants were 

identified in 15.2% cases (16). In another study, 21% of 

patients  with MPC had at least one PV identified (17). The 

rest of our patients  had  one  or  more VUS  that  could  

potentially act together to cause the disease,  supporting  the  

hypothesis of an oligogenic effect, which has been described 

before (18). 

The  oligogenic  effect  of  combinations  of  low  

penetrance  SNVs   in   cancer-related  genes  has  been 

suspected  for  a  long  time,   including   in   young  patients  

with   breast    and    lung  cancers.  In   a   case-control   study   

of   631    women   with    breast   cancer   diagnosed   under   

the age   of   53,   it  was   proposed   that    SNVs     in    ten 
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genes with known or predicted roles in breast cancer interact to 

affect a woman’s cancer risk in a way unpredictable from single 

gene effects (19). On the other hand, sets of germline SNVs were 

identified in young non-smokers with lung adenocarcinoma that 

underwent WES (20). 

The additive effect of multiple genetic events influencing a few 

biochemical mechanisms was observed in patient 1, where the 

identified variants were mapped into the cancer-related pathways. 

The SNVs affected genes of the DNA repair pathways (double-

strand break repair and Fanconi anemia: CHEK2, ATRIP) and cell 

cycle checkpoints (EME2), while the genes involved in the 

microdeletion were mapped into the cell cycle checkpoints (BUB1). 

The pathogenic variant observed in CHEK2 could explain each of 

the cancers observed in the patient separately due to the reports that 

CHEK2 can be associated with risk of melanoma (21), seminoma 

(22), and other cancers (23). However, each of these reported 

patients showed a narrower spectrum of cancer, therefore the 

contribution of other pathogenic variants cannot be ruled out to 

explain multiple cancers in a single patient. The study of this single 

patient with a very significant number of precocious malignant 

tumors thus suggests an oligogenic effect. This patient, now healthy 

at the age of 46, benefits from a regular clinical and imaging 

surveillance. However, genetic counselling for his 5 children is very 

difficult; so far, family testing was not proposed as patient 1 had his 

first diagnosis at the age of 18 (a melanoma), a clinical follow-up 

from the age of 13 should probably be proposed. 

Patient 2 in addition to two SNVs presented a deletion of the four 

last exons in MSR1 gene. Germline variants in these gene have been 

linked to prostate cancer (24) and esophageal carcinoma (25). The 

importance of this gene in breast cancer and melanoma is yet to be 

identified. The second CNV was a complete deletion of APOBEC3B 

gene in patient 7. Germline deletions of this gene have been 

associated with breast cancer risk (26). The CNVs identified in 

patient 2 and patient 7 were confirmed by nanopore sequencing. 

Three of the patients presented 

microdeletions/microduplications that could alter micro-RNA 

expression. However, none of the micro-RNA included in the CNVs 

has been associated with germline risk of cancer. 

The other patients from our cohort showed limited numbers of 

variants or not any identified variant (patient 4). Of course, we 

cannot exclude PVs in non-coding areas. Other explanations could 

include epigenetic or environmental factors. Interestingly, there 

were not any variants identified in patient 4, who presented with a 

medulloblastoma at an early age, and a bilateral mucinous ovarian 

borderline tumor later in life, while her monozygotic twin sister 

never had a tumor, which suggested a non-genetic cause or low 

penetrance factors that we could not detect. 

In five patients, we could analyze the tumors to search for second 

hits and confirm the involvement of germline variants in tumor 

suppressor genes. We could not identify such somatic genetic 

events. However, for further studies, a simultaneous analysis of the 

germline and tumor DNA should be done, including epigenetic 

analysis of the tumor DNA. 

On  the  tumors,  we  investigated  the  mutational  signatures,  

as   they   could  orient  the  investigation  toward   specific   

oncologic mechanisms,   such   as   DNA   repair   defects.   We   

could   not  identify  a  recurrent   signature   in  the  different  tumors
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from a single patient, except for a defective DNA mismatch 

repair (MMR) signature observed in the three cancers from 

patient 6, in which we have not identified any PV in the MMR 

genes. Interestingly, several tumors showed a signature 

indicating exposure to chemotherapy. Although these patients 

were not previously exposed to chemotherapy nor radiotherapy, 

exposure to therapeutic or environmental DNA-damaging 

agents could contribute significantly to cancer risk if there is any 

constitutional defect in DNA-repair pathways (27). 

Our study thus suggests that the simultaneous presence of 

multiple germline variants can confer a significant cancer risk. 

We also observed three families with multiple early cancers in 

patients carrying BRCA2 and ATM mutations (28) and other 

reports showed similar data (29,30). Moreover, the polygenic 

risk scores can identify a small population with high cancer risk, 

as demonstrated for breast cancer (31). Finally, rare recessive 

conditions could also induce a significant cancer risk as 

indicated for MCM9 mutations associated with primary ovarian 

insufficiency and cancer risk (32). Taken together these studies 

indicate that: i) investigations should not be limited to single 

gene studies in patients/families with multiple and/or early 

cancers; ii) In order to identify all the genetic events that could 

be associated with cancer genes, SNVs, CNVs, and 

chromosomal rearrangements including gene fusions should be 

tested combining different techniques such as NGS and optical 

genome mapping; iii) further studies are needed to investigate 

the respective role of genetic and epigenetic events in these 

patients; iv) the exact role of the observed variants and their 

cumulative effect should be addressed by functional studies. 

The limitations of the study include the small number of 

participants, the challenges of correlating VUS with the disease 

and the limited availability of somatic samples. The limited 

number of participants restricts the generalizability of the 

findings, and makes impossible a mutation frequency analysis to 

identify common mutation patterns or recurring PVs. At the 

moment, it will be not possible to reclassify the VUS into other 

categories, as the information on the variants is limited, these 

variants are not recurrent in several patients and consequently 

there is not enough evidence of pathogenicity to initiate 

functional validation of the variants. Further studies such as 

dynamic variant analysis, data integration and bioinformatic 

analysis can provide insights into the variant role in MPCs, and 

discover potential biomarkers, signaling pathways, and 

therapeutic targets. Furthermore, it will be necessary to evaluate 

the effect of gene‑gene, gene‑environment and protein‑protein 

interactions, and the role of genetic modifiers and environmental 

factors in MPCs. Indeed, it will be a real challenge to study the 

role of oligogenic variants in cancer predisposition. Among 

possibilities, it could be envisioned to inactivate several genes 

in cell models and study specific biochemical pathways, 

controlling for instance cell proliferation, apoptosis or DNA 

repair mechanisms. In these cell models, and in human tumors 

studied in parallel, proteomic and transcriptomic studies will 

evaluate simultaneous loss of gene or protein expression as well 

as protein‑protein interactions. In animal models, one could 

cross heterozygous or homozygous knock‑out animals and 

evaluate spontaneous or induced cancer development. 
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General Discussion 

Genetic counseling for cancer patients presents numerous challenges, particularly with the rapid 

advancements in genomic technologies. This project sought to understand how novel genetic findings 

from NGS could enhance our knowledge of cancer predisposition and improve patient management. 

With the shift from single-gene testing to more comprehensive methods such as panel sequencing, 

WES, and WGS, testing became more affordable and faster. Our primary goal was to investigate patients 

with MPCs and to evaluate the role of monogenic or oligogenic predisposition in these patients. This led 

to observation about rare cancers in monogenic conditions, such as CRCs linked with BRCA1 

pathogenic variants, the evaluation of tumor risks associated with digenic inheritance involving known 

CPGs, and uncovering novel genetic mechanisms in patients with MPCs diagnosed before age 45. The 

methodology involved selecting cancer patients based on specific inclusion criteria, collecting clinical 

and genetic data from medical charts, and performing both germline and somatic DNA evaluations 

using various genomic techniques. 

Key findings from this study underscore the significance of BRCA1 germline pathogenic variants in the 

development of CRC through HRD, advocating for BRCA1 testing in young patients with microsatellite 

stable CRC to enable personalized treatment with PARPi. Additionally, the early onset and multiplicity 

of cancers in double-heterozygous patients with PVs in HR-related CPGs highlight a substantial cancer 

risk. This necessitates comprehensive cascade testing in families with identified PVs in CPGs, 

considering the evaluation of additional CPGs in patients exhibiting specific phenotypes. The data also 

suggest that the presence of multiple germline variants significantly increases cancer risk. Collectively, 

these results advocate for broader genetic investigations beyond single-gene studies in patients or 

families with early or MPCs, employing techniques such as NGS and optical genome mapping to detect 

SNVs, CNVs, and chromosomal rearrangements. 

In a recent study, in individuals with a broad spectrum of non–breast or ovarian malignancies and 

germline pathogenic variants in BRCA1 and BRCA2, BRCA1/2 deficiency and genomic instability 

features were found in 27% and 23% of patients, respectively. These malignancies had a higher genomic 

instability score than BRCA1- or BRCA2-proficient malignancies (P < 0.001 in both cases) . In tumors 

with a confirmed absence of a wild-type allele, the effectiveness of PARPi should be evaluated (353). 
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The population frequency of the PVs in certain genes can play a role in their identification in rare cancers 

and digenic inheritance. In a cancer patient cohort, germline PVs in certain genes, primarily associated 

with breast cancer and other common cancers, such as BRCA2, ATM, and PALB2, were found in a broad 

range of patients with rare tumors (309). On the other hand, in another study double hits were 

particularly frequent in the TP53 and FA/BRCA pathways. However, it is not clear yet to what extent such 

functional perturbations of key cancer pathways by at least two co‐inherited heterozygous digenic 

mutations are translated into the clinics (354). 

BRCA1 germline variants can be involved in CRC development through 
HRD 

Evidence linking BRCA1 germline pathogenic variants to an increased risk of CRC is limited. Two large 

studies indicate that BRCA1 variants may confer a fivefold increased risk for CRC, especially in young, 

high-risk patients (355,356). Among three recent meta-analyses, only one identified an increased CRC 

risk with BRCA1 variants (odds ratio = 1.49, 95% CI = 1.19 to 1.85, P < 0.001) (121), while the other two 

did not (357,358). Another study suggested that BRCA1 or BRCA2 variant carriers, mostly of Ashkenazi 

ancestry, might be prone to anal carcinoma and left-sided mucinous CRC (359). A large study found that 

men with BRCA1 variants had a slightly higher risk of CRC compared to those with BRCA2 variants, 

suggesting a potential increased risk (360). 

The presence of BRCA1 germline variants in tumors was confirmed in our study and HRD signatures like 

those in ovarian cancers with BRCA variants were found. This indicated that BRCA1 variants may drive 

CRC development or progression in some cases, making these patients potential candidates for PARPi. 

Clinical trials have demonstrated the efficacy of PARPi and platinum-based chemotherapy in BRCA-

mutated and HRD-positive cancers (361). 

Double heterozygous patients with PVs in HRD-related CPGs have a 
very high risk of cancer 

PVs in BRCA1, BRCA2, CHEK2, and ATM significantly elevate the lifetime risk of breast cancer. There is 

limited epidemiological data on breast cancer risk in individuals with PVs in two genes. However, this 

study and others suggest an increased risk of early-onset and metastatic breast cancer in such cases 

(362,363). 
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BRCA1, BRCA2, and ATM variant carriers also face higher risks of other cancers. BRCA1 and BRCA2 PVs 

are linked to elevated risks of prostate, pancreatic, and ovarian cancers, while ATM variants are 

associated with increased risks of pancreatic (OR 4.21), prostate (OR 2.58), and gastric (OR 2.97) 

cancers (364,365). This study suggests that the combination of BRCA2 and ATM PVs might further 

heighten these risks, as seen in the two male patients with early-onset prostate cancer. Pancreatic 

cancer risks for BRCA1 and BRCA2 carriers are reported to be 1.16% and 4.1% by age 70, respectively 

(365). Given the interaction of BRCA1, BRCA2, and ATM proteins in the HR pathway, an additive effect 

on HR deficiency—and consequently, an increased pancreatic cancer risk—could be expected. This 

was observed in several of the patients, raising the question of additional monitoring for young breast 

cancer patients with these PVs. 

Double heterozygous PVs may go unnoticed in clinical settings when each PV is inherited from a 

clinically unaffected parent. However, it remains uncertain to what extent this phenomenon could 

initiate or alter malignant transformation. The likelihood of such events occurring randomly depends 

heavily on the mutation frequency within the population and may vary among different populations and 

genes (306). 

The present findings indicate that patients with PVs in BRCA2 and another HR gene should be closely 

monitored for breast, pancreatic, and prostate cancers. Despite the rarity of double heterozygotes, as 

genetic testing becomes more comprehensive, the detection of multiple PVs will likely increase.  

Moreover, when a single PV in a CPG is identified in a family, geneticists propose a cascade testing, 

searching for this single PV, starting with the index case first degree relatives. Our study indicates that, 

in case of very precocious or unexpected cancers, the possibility of another variant should be 

considered and investigated. 

The simultaneous presence of multiple germline variants can confer a 
significant cancer risk 

In the study of patients with MPCs, only two out of ten individuals were found to have clearly pathogenic 

SNVs. This aligns with previous research, which identified undetected germline PVs in 15.2% of MPC 

cases via WGS and found pathogenic variants in 21% of MPC patients in another study (366,367). Most 

patients exhibited several VUS, suggesting the hypothesis of an oligogenic effect, where combinations 

of low-penetrance SNVs in cancer-related genes may collectively cause disease. It remains unclear 

whether these VUS represent hypomorphic mutations with potential additive effects or merely benign 
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variants. Functional studies are required to clarify this distinction; however, conducting such studies is 

particularly challenging in the case of hypomorphic mutations. 

The mapping of the identified variants into cancer-related pathways suggested that multiple genetic 

factors influencing a few biochemical mechanisms might influence cancer risk. Despite identifying 

various SNVs and CNVs, some patients showed no detectable genetic variants, suggesting potential 

roles for non-coding mutations, epigenetic, or environmental factors. This study highlights the 

importance of comprehensive genetic testing and of further research into the combined effects of 

multiple germline variants, their functional impacts, and the roles of genetic and epigenetic events in 

cancer susceptibility. 

Genetic cancer predisposition is a spectrum 

Genetic cancer predisposition can be conceptualized as a continuous spectrum, beginning with PRS 

and progressing through oligogenic, digenic, and monogenic inheritance patterns (See Figure 15). At the 

broadest end of this spectrum, PRS involves the contribution of hundreds or even thousands of genetic 

variants. Each variant typically has a relatively high allele frequency but exerts minimal individual effect 

on cancer risk. Collectively, however, these variants can significantly elevate an individual's 

susceptibility to cancer. 

Among the common low penetrance variants implicated by WES in the risk of several cancer types are 

5p15 (TERT-CLPTM1L) (368), 6p21 (HLA) (369,370), 8q24 (371), and other loci. Various studies have 

investigated pleiotropy in these regions and characterized cross-cancer susceptibility variants 

(372,373). The rare pleiotropic variant HOXB13 G84E has been described as more strongly associated 

with MPC risk development than with single cancer risk (374). Multiple studies have demonstrated that 

PRS can generate informative predictions for heritable traits and diseases (375), however, there is not 

any “universal” PRS for any cancer risk prediction. 

Moving along the spectrum, we encounter oligogenic inheritance, which generally includes 3 to 20 

genetic loci combinations. The allele frequencies of these loci can vary widely, and they typically have 

moderate effect sizes. These genetic loci may interact in different ways, such as a dominant gene being 

modified by other loci, or multiple genes having additive effects on the same pathway (303). 
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Further along the continuum is digenic inheritance, where an individual carries two low-frequency 

variants with high effect sizes. These variants are in two distinct CPGs. The interaction of these two 

variants substantially increases the risk or severity of cancer compared to any single variant alone. 

At the opposite end of the spectrum is monogenic inheritance. Here, the predisposition to cancer is 

driven by highly uncommon variants with very high effect sizes in a single CPG. These variants are strong 

enough to predispose an individual to developing a tumor or a specific combination of tumors. However, 

it is important to note that some patients might develop cancer types that are atypical for the particular 

gene involved, suggesting a complex interplay of genetic and environmental factors. 

This continuous spectrum model underscores the multifaceted nature of genetic cancer 

predisposition, ranging from the subtle influences of numerous common variants to the profound 

impacts of rare, high-effect mutations. Moreover, the combination of PVs and PRS can have an even 

higher effect on the MPC risk than any of those factors separately. The cancer predisposition spectrum 

also highlights the importance of considering the entire genetic landscape when assessing cancer risk, 

rather than focusing solely on single genes or variants. 

Genetic counseling for multiple primary cancers 

Individuals with hereditary cancer syndromes often face an elevated risk of developing cancer at a 

young age and may be susceptible to more than one type of cancer. An estimated 5–10% of all cancers 

are hereditary, and about 20% of primary care patients have family histories indicating a higher risk of 

developing a hereditary cancer (376–379). 

 To address these risks, both the National Comprehensive Cancer Network (NCCN) and the American 

College of Medical Genetics (ACMG) have developed sets of hereditary cancer clinical practice 

guidelines. These guidelines based on family history were designed to aid medical professionals in 

assessing hereditary cancer risks (57,380).  

The NCCN and ACMG guidelines share overlapping criteria, but there are key differences between them. 

One major distinction is that the NCCN guidelines are continuously updated, whereas the ACMG 

guidelines have not been revised since their publication in 2015. Additionally, the ACMG guidelines 

include criteria for several cancers that are not covered by the NCCN guidelines. These differences 

present both strengths and weaknesses in the effectiveness of identifying patients at risk. Frequent 

updates to the NCCN guidelines ensure that the criteria remain current, while the ACMG guidelines may 
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identify at-risk patients for cancers not addressed by the NCCN (381). However, a significant gap exists 

in clinical guidelines for patients and families dealing with MPCs. 

Efforts to improve hereditary cancer risk assessment have included reinterpreting the phenotypic 

spectra of well-characterized hereditary cancer predisposition syndromes (382–384), defining high and 

moderate cancer risk genes through case-control studies (385–387) and pedigree analysis  (388), and 

using WES/WGS to discover novel genes (389,390). As a result, genetic testing guidelines now include 

multigene panel testing for hereditary cancer in clinical practice. 

For instance, the NCCN Guidelines provide information on cancer risks and management 

recommendations for various genes included in multigene panel tests. Despite significant progress in 

understanding the clinical relevance and implications of multiple CPGs, testing criteria remain largely 

limited to those associated with historically established cancer syndromes, such as BRCA1/2, TP53, 

and mismatch repair genes (380). Precision oncology studies on patients with common cancers have 

shown that these restrictive criteria result in about half of the patients with LP/P germline variants 

remaining undiagnosed (391–393). 

Clinician preference for broader panels of genes is increasing, even though explicit testing criteria for 

genes recently associated with cancer risk and cancers falling outside the traditional phenotypic 

spectra for established hereditary syndromes are lacking (391). This is particularly relevant for patients 

with MPCs, who can fall outside the phenotypic spectra of established hereditary syndromes. The 

guideline gap necessitates clinicians to rely on empirical data and personal judgment when counseling 

these patients. The absence of specific genetic counseling guidelines for MPCs highlights the need for 

ongoing research and updates to ensure comprehensive risk assessment and management of these 

patients. 

Limitations and future directions 

Sample size 

The main common limitations of the three studies were the recruitment bias and the small number of 

individuals. Even though approximately 5–10% of cancers are hereditary, these studies included very 

specific and rare populations — patients with uncommon tumor-gene associations, double 

heterozygous mutations, and individuals with MPCs without P/LP variants in common cancer 

predisposition genes. The limited number of patients caused a lack of data to make meaningful 
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comparisons, and these limitations highlighted the need for more studies with larger and more diverse 

populations to draw definitive conclusions and develop effective screening and treatment strategies. 

Segregation evaluation 

Another common limitation was the inability to evaluate the segregation of the identified variants in all 

the patients, due to limited access to the genetic material of the proband´s relatives. Assessing the 

family allows the determination of inheritance patterns and the potential for recurrence risk among 

other relatives. Utilizing a progenitor-proband (trio) approach is essential because parents may appear 

clinically unaffected due to factors like phenotypic variability, incomplete penetrance, gender-specific 

cancer risks, and environmental exposures. Furthermore, recognizing familial predispositions provides 

the chance for early cancer surveillance in at-risk relatives (306). 

Functional validation of variants of unknown significance 

The studies on uncommon tumor-gene association and digenic inheritance included patients with P/LP 

variants, whereas the multiple cancer study did not. Following the evaluation of MPCs patients, the high 

number of identified VUS posed challenges in correlating these VUS with the disease. Since no VUS was 

common among MPCs, the functional validation of the variants was not justified. However, future 

functional studies could potentially help to link VUS to MPCs. The identified VUS that could explain the 

patient´s phenotype, without a functional validation, cannot be used for genetic counseling and family 

predictive testing. 

Availability of somatic samples 

Another significant limitation was the limited availability of tumor samples from the patients. 

Understanding the impact of germline PVs in CPGs requires distinguishing between their causal role in 

cancer development and their coincidental presence. A thorough analysis of individual tumors along 

with germline sequencing should be performed to make this distinction. Key steps include identifying a 

second hit such as somatic mutation, LOH, or epigenetic silencing, leading to biallelic inactivation of 

the gene harboring the germline PV; assessing tumor characteristics such as HRD, MSI, and tumor 

mutational burden; and analyzing somatic mutation patterns using mutational signatures, among other 

methodologies (354). These comprehensive analyses are essential for elucidating the precise role of 

germline PVs in tumorigenesis. However, they are limited if the tumor samples are not available. 
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Treatment evaluation 

The studies did not address the patients' treatment strategies because of an insufficient sample size to 

draw meaningful conclusions, and the studies' focus on genetic analysis rather than treatment 

approaches. 

Concluding remarks 

In conclusion, this project highlights the importance of comprehensive genetic testing in understanding 

and managing cancer risks. Key findings show the significance of BRCA1 variants in CRC, the higher 

cancer risk in double heterozygous patients with HR-related gene mutations, and the additive effect that 

multiple germline variants can have. These results suggest that integrating advanced genomic 

techniques into clinical practice can detect a broad spectrum of genetic anomalies. Despite limitations 

such as small sample sizes and recruitment bias, the study emphasizes the need for larger, more 

diverse research to improve cancer risk assessment and personalized treatments. Ultimately, the 

evolving genetic counseling guidelines must adapt to encompass the full spectrum of genetic 

predisposition, ensuring comprehensive risk assessment and management for individuals with 

hereditary cancer syndromes. 
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Perspectives 

Sample size 

The sample size was the main limitation in all the studies. Including a larger population through 

international cooperation in future research could enable more definitive conclusions and the 

development of effective screening and treatment strategies for cancer patients. 

Variants of unknown significance 

Correlating VUS with disease is a challenge that requires functional studies to reclassify these variants 

into the LP/P or benign/likely benign category. While nonsense variants are typically considered 

pathogenic, the significance of frequent missense variants may often be unclear, potentially occurring 

by chance in cancer pathways containing numerous genes. For example, the Exome Aggregation 

Consortium (ExAC) database includes a substantial number of missense variants in key FA/BRCA 

pathway genes—567 in BRCA1, 1186 in BRCA2, 46 in RAD51, and 385 in PALB2—detected among 

60,000 healthy individuals. Interestingly, some missense variants may even exert more harmful effects 

than truncating variants, particularly if they produce an additional dominant-negative effect (394). 

Therefore, rigorous functional validation of the identified variants is essential but presents significant 

challenges in clinical practice, especially since not all changes in protein function result in complex 

clinical conditions (306).  

The development of databases containing functional analyses of variants in genes associated with 

cancer pathways is expected to address this issue in the future. A notable example of ongoing efforts in 

this field is the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) 

consortium, an international collaboration of researchers focused on evaluating the clinical 

significance of sequence variants in genes such as BRCA1, BRCA2, and other known or suspected 

breast and ovarian cancer predisposition genes. Through its contributions to global database and 

classification initiatives, ENIGMA provides expert insights and explores effective strategies for 

communicating this critical information to both healthcare providers and patients (395). 

Over time, it is essential to reevaluate the VUS identified in the patients because new information is 

continually published, and some VUS may be reclassified into benign or pathogenic categories.  
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Negative test results 

In the MPC cohort, there were patients without any identified germline variant. The possible 

explanations include the limitation of the current analysis methods (CMA and WES). These might be 

addressed by using other techniques, such as WGS, for future patient evaluation. Additionally, other 

pathogenic mechanisms should be considered, including an evaluation of epigenetics, regulatory 

elements, non-coding regions, and microRNAs. Negative genetic tests should also be reanalyzed every 

few years because new genes are constantly being associated with disease and variants reclassified. 

Absence of identified somatic second hits 

The MPC study evaluated both germline and somatic DNA. In the pathogenesis of hereditary cancer 

predisposition LOH or a second somatic hit are expected. However, no second hits were observed in the 

somatic samples from the cohort. Epigenetic silencing of the wild-type allele in the tumor has been 

described as a second hit. This opens the possibility of evaluating in the future the tumoral epigenetics. 

Future patient evaluation strategies 

Technological advancements should be leveraged to capture the full spectrum of genetic events 

associated with cancer. Combining NGS with optical genome mapping and other advanced techniques 

can detect SNVs, CNVs, and chromosomal rearrangements, including gene fusions. This 

comprehensive approach will enhance our understanding of the genetic underpinnings of cancer. 

Furthermore, exploring the interplay between genetic and epigenetic events is crucial. Future studies 

should investigate how epigenetic modifications contribute to cancer development and progression, 

alongside genetic mutations. Understanding these interactions may reveal new therapeutic targets and 

strategies for cancer prevention. 

Functional genetics evaluation in oligogenic inheritance 

Addressing the observed variants' cumulative effects through robust functional studies will be 

essential. Such research could provide insights into the combined impact of multiple genetic 

alterations, paving the way for more personalized and effective treatment options for cancer patients. 

By addressing these future perspectives, the field can move towards more comprehensive and accurate 

cancer genetics research, ultimately improving patient outcomes. 

 



 

121 

Treatment perspectives 

The digenic and oligogenic inheritance of PVs in the same pathway holds significant clinical implications 

for the patients and their families, including early diagnosis, cancer risk assessment, and surveillance. 

In the era of advancing precision medicine, which encompasses early tumor detection, 

immunoprevention, and innovative approaches such as analyzing circulating cell-free DNA, molecular 

markers for premalignant lesions, and deep sequencing for clonal hematopoiesis, these considerations 

are particularly relevant (396). Recent years have witnessed the approval of new FDA drugs and vaccines 

for cancer prevention, alongside the development of combinatorial chemopreventive strategies. These 

advancements suggest future opportunities for enhanced cancer prevention and detection methods, 

including surveillance programs (306). 

Potential of polygenic risk scores 

PRS have potential implications for improving the understanding of the shared mechanisms of 

carcinogenesis. With further replication, they may also enable prevention (e.g., smoking cessation) and 

screening strategies that prioritize individuals at risk for developing additional cancers (102). Accurate 

population-calibrated estimates of lifetime risks are needed for incorporation of PRS into risk-based 

screening. In patients with tumors of suspected genetic origin and without PVs that could explain the 

disease, PRS could potentially explain the observed phenotype.  
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Conclusions 

In conclusion, this project aimed to explore how the use of NGS could deepen our understanding of 

cancer predisposition and enhance patient care. The objectives included clarifying the role of BRCA1 in 

CRC, assessing tumor risks linked to digenic inheritance involving known CPGs, and uncovering new 

genetic mechanisms in patients with MPCs diagnosed before age 45. The methodology involved 

selecting cancer patients based on specific inclusion criteria, gathering clinical and genetic data from 

medical records, and conducting both germline and somatic DNA analyses using various genomic 

techniques. 

Key findings from this study emphasize the importance of BRCA1 germline pathogenic variants in the 

development of CRC through HRD. This supports BRCA1 testing in young patients with microsatellite 

stable CRC to enable personalized treatment with PARPi. Additionally, the early onset and multiplicity 

of cancers in double-heterozygous patients with PVs in HR-related CPGs indicate a significant cancer 

risk. In families with identified PVs in CPGs comprehensive cascade testing is needed, and additional 

CPGs should be considered in patients with specific phenotypes. The data also showed that the 

presence of multiple germline variants significantly increased cancer risk. Collectively, these results 

advocated for broader genetic investigations beyond single-gene studies in patients or families with 

early-onset or MPCs, using techniques like NGS and optical genome mapping to detect SNVs, CNVs, 

and chromosomal rearrangements. 

The clinical conclusions applicable for patient management included: 

▪ BRCA1 testing should be considered in young patients with a personal history of microsatellite 

stable CRC 

▪ When a CPG PV is identified in a family, additionally to the usual cascade testing, we should also 

consider a study of other CPGs in patients with specific phenotypes, even distinct from other 

relatives, either based on the age at diagnosis or the type of cancer 

▪ Investigations should not be limited to single gene studies in patients or families with multiple 

and/or early cancers 
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Annexes 

Digenic Inheritance of Mutations in Homologous Recombination Genes 

in Cancer Patients. Supplementary data 

DNA extraction methods 

STARlet 

Germline DNA was extracted from 200 µl of peripheral blood using the NucleoMag Blood kit (Macherey-
Nagel) according to the manufacturer’s instructions. The NucleoMag® Blood 200 μL procedure is based 
on reversible adsorption of nucleic acids to paramagnetic beads under appropriate buffer conditions. 

Finally, highly purified DNA was eluted with low-salt Elution Buffer MBL5 (100 µl) and directly used for 
downstream applications. The protocol was automated on a Starlet (Hamilton) robot. 

 QIAcube 

Germline DNA was extracted from 200 µl of peripheral blood using the QIAamp DNA Blood Mini Kits 
(QIAGEN) according to the manufacturer’s instructions. The QIAamp DNA Blood Kit provided silica-
membrane-based DNA purification. During the DNA purification procedure, DNA bound specifically to 
the QIAamp silica-gel membrane while contaminants passed through. PCR inhibitors, such as divalent 
cations and proteins, were completely removed in two efficient wash steps, leaving pure DNA to be 
eluted in water (100 µl). The protocol was automated on a QiaCube (Qiagen) robot. 

Genes´ accession numbers  

Gene SureMASTR Twist 

BRCA2 NM_000059.3 NM_000059.4 
BRCA1 NM_007294.3 NM_007294.4 
ATM NM_000051.3 NM_000051.4 
CHEK2 NM_007194.3 NM_007194.4 

Software used  

SeqPilot V4.3.1 (JSI, Ettenheim, GmbH, Germany) was used for Sanger and MLPA. 

SeqPilot, module SeqNext v4.3 (JSI, Ettenheim, GmbH, Germany) was used for NGS with Agilent 
technologies. 

ALISSA Interpret v5.4 (Agilent technologies, Santa Clara, CA, USA) was used for NGS with Twist 
Bioscience.
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Table S1. DNA extraction. 

 
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 

 
Sample 1 Sample 2 Sample 1 Sample 1 Sample 2 Sample 1 Sample 1 Sample 2 Sample 1 Sample 2 

Type of sample Blood Blood Blood Blood Blood Blood Blood Blood Blood Blood 

DNA extraction 

method 

QIAcube STARlet QIAcube STARlet QIAcube QIAcube QIAcube STARlet STARlet QIAcube 

Spectroscopic 

analysis 

NanoDrop NanoDrop NanoDrop NanoDrop NanoDrop NanoDrop NanoDrop NanoDrop NanoDrop NanoDrop 

Purity (260/280 

ratio) 

1.62 2.00 1.80 1.98 1.77 1.62 1.79 2.13 1.91 1.71 

Concentration 

(ng/ul) 

25.45 67.76 52.95 208.98 89.13 43.36 56.70 95.46 80.45 50.58 

Sequencing kit SureMASTR 

Hereditary 

Cancer 

Agilent kit, 26 

genes 

Sanger SureMASTR 

Hereditary 

Cancer 

Agilent kit, 

12 genes + 

MLPA. 

Sanger 

SureMASTR 

Hereditary 

Cancer 

Agilent kit, 12 

genes + MLPA 

Sanger SureMASTR 

Hereditary 

Cancer 

Agilent kit, 12 

genes + 

MLPA. 

Sanger 

High-

throughput 

Breast 

cancer panel 

26 genes + 

MLPA 

Sanger 13-gene 

Breast 

cancer panel 

+ MLPA 

Sanger 

Panel 

manufacturer 

Agilent 

technologies, 

Santa Clara, 

CA, USA 

- Agilent 

technologies

, Santa 

Clara, CA, 

USA 

Agilent 

technologies, 

Santa Clara, 

CA, USA 

- Agilent 

technologies

, Santa Clara, 

CA, USA 

Twist 

Bioscience, 

San 

Francisco, 

CA, USA) 

- Twist 

Bioscience, 

San 

Francisco, 

CA, USA) 

- 

Sequenced 

genes 

BRCA1, 

BRCA2, 

BRCA2, 

ATM 

BRCA1, 

BRCA2, 

BRCA1, 

BRCA2, 

BRCA2, 

ATM 

BRCA1, 

BRCA2, 

BRCA1, 

BRCA2, 

BRCA1, 

BRCA2 

BRCA1, 

BRCA2, 

BRCA2, 

CHEK2 



 

XV 

PALB2, 

CHEK2, 

BARD1, 

BRIP1, 

RAD51C, 

RAD51D, 

TP53, 

MRE11A, 

RAD50, NBN, 

FAM175A, 

ATM, STK11, 

MEN1, PTEN, 

CDH1, 

MUTYH, BLM, 

XRCC2, 

MLH1, 

MSH6, PMS2 

and MSH2 

and the 3’ 

UTR of 

EPCAM 

PALB2, 

TP53, 

CHEK2, 

MLH1, 

MSH2, 

MSH6, ATM, 

BRIP1, 

RAD51C and 

RAD51D 

PALB2, TP53, 

CHEK2, 

MLH1, MSH2, 

MSH6, ATM, 

BRIP1, 

RAD51C and 

RAD51D 

PALB2, TP53, 

CHEK2, 

MLH1, 

MSH2, 

MSH6, ATM, 

BRIP1, 

RAD51C and 

RAD51D 

PALB2, TP53, 

CHEK2, 

CDH1, 

STK11, PTEN, 

MLH1, 

MSH2, 

MSH6, 

MTYH, 

EPCAM, 

MEN1, 

BRIP1, 

RAD51C, 

RAD51D, 

ATM, BARD1, 

RAD50, BLM, 

FAM175A, 

MRE11A, 

NBN, 

XRCC2, 

PMS2 

PALB2, TP53, 

CHEK2, 

MLH1, 

MSH2, 

MSH6, ATM, 

BRIP1, 

RAD51C, 

RAD51D, 

BARD1 

MLPA - - BRCA1, 

BRCA2 

BRCA1, 

BRCA2 

- BRCA1, 

BRCA2 

BRCA1, 

BRCA2, 

MLH1, 

MSH2, MSH6 

- BRCA1, 

BRCA2, 

CHEK2 

c.1100del 

- 
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Amplicon or 

enrichment 

method 

Amplicon - Amplicon Amplicon - Amplicon Enrichment 

method 

- enrichment 

method 

- 

Reference 

genome 

hg19 hg19 hg19 hg19 hg19 hg19 hg19 hg19 hg19 hg19 

Bioinformatic 

pipeline 

Inhouse 

demultiplexi

ng pipeline 

- Inhouse 

demultiplexi

ng pipeline 

Inhouse 

demultiplexin

g pipeline 

- Inhouse 

demultiplexi

ng pipeline 

Inhouse 

Humanomic

s pipeline 

- Inhouse 

Humanomic

s pipeline 

- 

 

Table S2. Primer sequences used. 

Patient Gene Exon Forward primer sequence Reverse primer sequence 

Patient 1 
BRCA2 11-05 AAGTGCCTGAAAACCAGATG CAACAAAAGTGCCAGTAGTCA 

ATM 58 GCTTCCCTGTCCAGACTGTT CACTATCATCCCCCTGCAAC 

Patient 2 
BRCA2 11-05 AAGTGCCTGAAAACCAGATG CAACAAAAGTGCCAGTAGTCA 

ATM 58 GCTTCCCTGTCCAGACTGTT CACTATCATCCCCCTGCAAC 

Patient 3 
BRCA2 11-08 TGAGACCATTGAGATCACAGC TAGTCACAAGTTCCTCAACGCA 

ATM 51 TGCATTAATCTAGAGTACCCATTAG GAAATCCTAGGCCTCCCA 

Patient 4 
BRCA2 11-07 TTGTCAGATTTAACTTTTTTGGAAG CAACTGGGACACTTTCTTTCAG 

ATM 43 TCAAACTCCTGGGCTCAAGT CAGTTGTTGTTTAGAATGAGGAGAGA 

Patient 5 
BRCA1 10.3-4 (11-03) GGGCTGGAAGTAAGGAAACAT ACGCTCTTGTATTATCTGTGG 

BRCA2 18 CAGTGGAATTCTAGAGTCAC GAAAGATCTCTGGACCTCC 

Patient 6 
BRCA2 7 GCAATTCAGTAAACGTTAAGTG GTCAGTTACTAACACACTTATC 

CHEK2 4 GGAGAGCTGGTAATTTGGTCA CGCCTCAGCCTCCCAAAG 
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Figure S1. Chromatograms of the variants identified in the patients. 

 

Patient 1 
BRCA2 c.3865_3868del ATM c.8494C>T 

 
 

Patient 2 
BRCA2 c.3865_3868del ATM c.8494C>T 

  
Patient 3 

BRCA2 c.5057T>A ATM c.7516-2A>G 
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F – forward primer, MUT – Mutant, R – reverse primer WT – wild type 

Patient 4 
BRCA2 c.4284dup ATM c.6326G>A 

 

 

Patient 5 
BRCA2 c.8243G>A BRCA1 c.1121del 

  
Patient 6 

BRCA2 c.537dup BRCA1 c.499G>A 
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Genetic evaluation of patients with multiple primary cancers. Supplementary data 

Supplementary Table I. Mutational signatures analysis of the tumors 

Signature 

P1 P1 P3 P3 P3 P3 P4 P6 P6 P6 P7 P7 

Proposed etiology 

Se
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a 
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om
a 

D
ys

pl
as

tic
 n

ev
us

 

Br
ea

st
 c

an
ce

r 

Th
yr

oi
d 

ca
nc

er
 

SBS1 (%) 3.23 3.7 0 0.25 0 0.5 0.43 2.05 9.79 0 5.4 4.4 Clock-like 

SBS5 (%) 1.96 0 0 0 0 0 0 0 8.56 0 0 0 Clock-like 

SBS4 (%) 3.39 0 18.8 13.4 1.7 19 21.7 4.48 0 24.9 2.4 3.2 Tobacco smoking 

SBS7b (%) 1.75 2.77 6.01 4.54 3.4 3.6 6.76 1.65 3.79 7.25 0.1 0 UV light 

SBS6 (%) 10.8 3.74 12 8.57 2.4 5.7 11.2 13 12.5 11.8 2.1 7.3 Defective DNA mismatch repair 

SBS43 (%) 4.05 3 6.94 6.57 4 5.8 3.39 4.39 1 4.62 3.7 4.4 Defective DNA mismatch repair 

SBS26 (%) 3.51 0 0 0 0 0 0 0 0.75 0 5.2 4.9 Defective DNA mismatch repair 

SBS18 (%) 0 0 0 0 5.5 0.1 0 0 0 0 0 0 Damage by ROS 

SBS30 (%) 3.35 2.15 0 0 0.2 1.3 0 0 0 0.44 7.8 5.3 Defective BER 

SBS84 (%) 1.73 11.8 0.25 2.28 1.4 1.7 0 2.86 0 0.37 0 1.7 
Activity of activation-induced cytidine 

deaminase 

SBS24 (%) 0 0 1.51 0.15 5.8 3.5 5.08 0 1.73 4.56 1.7 0 Aflatoxin exposure 

SBS25 (%) 4.47 6.34 0.44 6.77 5.2 4.7 1.38 0 0 0.72 6.5 5.8 CT treatment 

SBS31 (%) 5.13 3.82 3.74 4.81 0.9 1.4 0.54 6.29 1.67 1.05 2.2 5.4 Platinum CT treatment 

SBS87 (%) 7.82 4.83 9.47 6.89 3.7 3.8 8.76 10.9 14.2 7.19 8 8.6 Thiopurine CT treatment 

BER – base excision repair, CT – chemotherapy, ROS –   reactive oxygen species. Mutational signatures with values >5% are in bold. 
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Gene panel. Cancer-related genes  

A1CF 

ABI1 

ABL1 

ABL2 

ACKR3 

ACSL3 

ACSL6 

ACVR1 

ACVR2A 

AFDN 

AFF1 

AFF3 

AFF4 

AKAP9 

AKT1 

AKT2 

AKT3 

ALDH2 

ALK 

AMER1 

ANK1 

APC 

APOBEC3B 

AR 

ARAF 

ARHGAP26 

ARHGAP5 

ARHGEF10 

ARHGEF10L 

ARHGEF12 

ARID1A 

ARID1B 

ARID2 

ARNT 

ASPSCR1 

ASXL1 

ASXL2 

ATF1 

ATIC 

ATM 

ATP1A1 

ATP2B3 

ATR 

ATRX 

AXIN1 

AXIN2 

B2M 

BAP1 

BARD1 

BAX 

BAZ1A 

BCL10 

BCL11A 

BCL11B 

BCL2 

BCL2L12 

BCL3 

BCL6 

BCL7A 

BCL9 

BCL9L 

BCLAF1 

BCOR 

BCORL1 

BCR 

BIRC3 

BIRC6 

BLM 

BMP5 

BMPR1A 

BRAF 

BRCA1 

BRCA2 

BRD3 

BRD4 

BRIP1 

BTG1 

BTK 

BUB1B 

C15orf65 

CACNA1D 

CALR 

CAMTA1 

CANT1 

CARD11 

CARS 

CASP3 

CASP8 

CASP9 

CBFA2T3 

CBFB 

CBL 

CBLB 

CBLC 

CCDC6 

CCNB1IP1 

CCNC 

CCND1 

CCND2 

CCND3 

CCNE1 

CCR4 

CCR7 

CD209 

CD274 

CD28 

CD74 

CD79A 

CD79B 

CDC73 

CDH1 

CDH10 

CDH11 

CDH17 

CDK12 

CDK4 

CDK6 

CDKN1A 

CDKN1B 

CDKN2A 

CDKN2C 

CDX2 

CEBPA 

CEP89 

CHCHD7 

CHD2 

CHD4 

CHEK2 

CHIC2 

CHST11 

CIC 

CIITA 

CLIP1 

CLP1 

CLTC 



 

XXI 

CLTCL1 

CNBD1 

CNBP 

CNOT3 

CNTNAP2 

CNTRL 

COL1A1 

COL2A1 
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