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Context and objectives

Additive manufacturing (AM) is a key enabler in the space sector, particularlywithin the “New Space”

or “Space 4.0” paradigm, which promotes satellite miniaturization, reusable launchers, and innova-

tion. AM allows for groundbreaking structural designs that are optimized and built as a single piece.

Figure 1. Two different 3D printed parts from mottcorp.com. Different microstructures of AlSi10Mg alloys obtained by

additive manufacturing [1]: as built (a) and after stir friction processing (b).

ä Meanwhile, new opportunities and challenges emerge from the microstructure resulting from AM

processes and post-processing (e.g. gaps, porosities, inclusions, etc.), affecting the material’s

strength and behaviors.

ä However, considering the microstructure with all its subtleties and potential effects on the

macroscopic scale, still remains a significant challenge, especially in numerical simulations such as

the finite element method.

While multiscale methods such as homogenization attempt to address these challenges, they

remain impractical for industrial applications due to their high computational cost.

ä Hence, a key objective of this thesis is to explore the potential of machine learning for multiscale

thermomechanical simulations. The goal is to substitute the microscopic scale with a neural

network surrogate.

All developments are implemented in Metafor [2], our in-house nonlinear finite element solver.

Non-linear finite element analysis

Finite Element Method (FEM) is a numerical technique used to solve differential equations by

dividing the domain into smaller, simpler sub-domains known as finite elements.

The latter aims to predict and analyze the behavior of mechanical structures and components

under different loading conditions to ensure structural integrity and optimize design.

ä The user must define how the material responds to applied forces or deformation, i.e. choose

the right constitutive equations at macroscale.

Figure 2. Examples of finite element analysis done with Metafor [2].

Why should we care about the microstructure?

Traditional numerical methods often overlook small-scale effects or assume homogeneity,

which does not reflect real-world materials. Multiscale analysis integrates microscale details,

leading to more accurate and realistic predictions.

Understanding the link between microstructure and macroscale behavior helps engineers

optimize designs by considering how small-scale features influence overall performance.

In additive manufacturing, numerical studies can help define optimal microstructures tailored for

specific printing strategies.

ä This is particularly crucial for aeronautical and space structures, where an optimized material

representation enables lighter and more efficient designs, ultimately reducing costs.

Multiscale analysis: the finite element squared (FE2)

Taking into account all length scales in a conventional finite element analysis (FEA) is unfeasible.

As always, there is the classical trade-off between accuracy and computation cost.

ä This thesis is currently based on the finite element squared concept [3]:
– Both macro and micro scales are considered seperatly in the FE simulation.

– There is no constitutive equation at the macroscale; instead, the behavior of the material is obtained from a

representation of its microstructure (RVE).

– Although the two scales seem separated, the homogenization principle manages the scale transition, i.e. the

communication between them.
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Figure 3. Finite element squared.

References

[1] Juan Guillermo Santos Macías.

Laser powder bed fusion AlSi10Mg damage and fatigue resistance

improvement by post-processing.

PhD thesis, Université catholique de Louvain, 2021.

[2] MN2L Uliège Non-Linear Computational

Mechanics Laboratory.

Metafor, an object-oriented finite element code for the

simulation of solids submitted to large deformations, 2024.

http://metafor.ltas.ulg.ac.be/.

[3] R.J.M. Smit, W.A.M. Brekelmans, and H.E.H. Meijer.

Prediction of the mechanical behavior of nonlinear

heterogeneous systems by multi-level finite element modeling.

Computer Methods in Applied Mechanics and Engineering,

155(1):181–192, 1998.

NEW: FE2 in our in-house FEM code Metafor

Over the past year, significant progress has been made in implementing an efficient FE2 paradigm in

Metafor, with key features including:

Large deformations.

Parallelization at the macroscale, enabling

multiple microscale FEA to be solved

simultaneously.

Material tangent moduli ∂σ
∂ε can be obtained

either through static condensation of the RVE

FEA or numerical perturbation.

Fully operational in 3D.

The FE2 simulation presented below consists of 700 elements with four integration points at the

macroscale and, 2200 elements at the microscale. The Representative Volume Element (RVE) consists

of an elasto-plastic matrix with embedded elastic particles. A total of 120 states were computed,

requiring 165 iterations, which took 1h50 on 64 cores.

Figure 4. Finite element squared simulation from Metafor.

Replacing the microscale by a neural network

A neural network (NN) can be viewed as a powerful function that has been trained to produce

specific outputs given particular inputs by adjusting its internal parameters.

Correct predictions only occur if the data—sets of inputs and outputs—have already been seen

by the NN during its training. Therefore, neural networks rely on large amounts of (quality) data.
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Figure 5. Training a neural network.

ä One could use such a tool to accelerate multiscale simulations, i.e. the neural network has been

trained with data from the microscale. In other words, the neural network emulates the

behavior of the microstructure.

ä While it does reduce computation time compared to vanilla FE2, it is important to consider the

“offline resources” invested in generating the data and training the neural network.

NEW: Toward a hybrid approach combining FE2 & FE-NN

Instead, a simpler neural network, such as a feedforward neural network, can be used. Trained on

a limited dataset of path-dependent microscale simulations, it efficiently handles known loading sce-

narios. When the NN encounters an unseen loading path evolution, Metafor seamlessly switches

from the NN to a finite element analysis of the microstructure, i.e. FE-NN → FE2. This process is

performed independently at each Gauss point of the macroscale when needed.

The hybrid FE2 simulation presented below includes 1440 elements with four integration points at

the macroscale and 2200 elements at the microscale. A total of 40 states were computed. The hybrid

approach completed the simulation in 40 min (offline: 30 min for data generation and 50 min for training),

compared to 140 min for the classical approach on 10 cores. In this proof of concept, the NN is used

for the elastic part of the RVE from Figure 4. This resulted in a 3.5× speed-up. Even accounting for

the one-time training cost, the hybrid method remains more efficient than classical FE2.

Figure 6. Finite element squared simulation from Metafor with a hybrid approach.
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