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ABSTRACT

Modern power systems face massive integration of distributed energy resources (small and
modular energy generation or storage) interfaced with electrical distribution networks
through power electronic converters. Active distribution networks are the result of this
integration, where the distribution network is no longer a passive load sink, but actively
participates in the power system operation. Power converters are electronic devices that
enable the integration of renewable energy resources in power systems by converting
electrical energy from one form to another. The increased integration of these devices
alters the power system dynamics; the fairly slow electromechanical phenomena driven
by synchronous machines are now dominated by the complex fast-response of power
converters. Traditional control strategies are not able to cope with the new dynamics,
and may fail at guaranteeing the safe operation of the electrical network. Furthermore,
power converters usually interface renewable energy production, or flexible loads with the
grid, and their intermittent nature requires new fast control strategies to continuously
track the time-varying grid conditions.

In the first part of this thesis, we derive new modelling tools to represent the dynamic
behavior of power converters. In particular, we focus on models that are particularly well-
adapted to system-level studies. They are designed to analyze the system’s dynamics in
different operating conditions. Also, they are computationally lightweight compared to
detailed models, which allows for simulations of large systems with many different assets.

In the second part, we consider the problem of controlling inverter-interfaced dis-
tributed energy resources to ensure voltage regulation in a distribution network while
minimizing resource usage. Voltage issues can occur due to the massive integration of
renewable energy resources. In particular, excessive production of solar energy in residen-
tial low voltage networks can lead to overvoltages. We first propose a centralized online
feedback optimization method that drives controllable power setpoints to a solution of an
optimization problem, while ensuring anytime satisfaction of voltage constraints. We then
propose a decentralized incremental Volt/Var control strategy, where the gains are de-
rived in order to minimize resource usage and satisfy voltage constraints with a prescribed
probability. The optimization problem is solved centrally, but the method requires only
occasional communication. Finally, we propose a distributed controller where an optimiza-
tion problem is decomposed and solved node by node, with only local communication
between neighboring nodes.

Finally, we conclude this manuscript with a discussion on why modelling tools are re-
quired to validate new control strategies for active distribution networks. New advanced
control strategies run at a faster timescale, so that there is no longer a timescale separa-
tion between the plant dynamics and the controller dynamics. This can lead to unstable



closed-loop systems that should be investigated with care. Theoretical guarantees can
not always be provided, and one has to rely on simulation results. The first part of this
manuscript focuses on modelling tools that are computationally lightweight, and well
suited for large-scale systems simulations. These modelling tools help to validate new
control strategies that are considered in the second part of this thesis. These are crucial
aspects for the integration of new control strategies in the operation of active distribu-
tion networks, that would allow for a greater integration of renewable energy resources
in distribution networks.
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INTRODUCTION

1.1 MOTIVATION

Modern power systems face massive integration of distributed energy resources (DERs)
because of rising energy costs or for locally enhancing electric power reliability. The term
DERs refers to small and modular energy generation or storage, that can be connected
to a local electric power grid through power electronic converters. Their increasing pene-
tration drives a paradigm shift in distribution networks, moving away from a centralized
power generation scheme and embracing decentralized production systems. Historically,
the power flowed from the high-voltage transmission system, down to the end customers
connected to the distribution networks. Nowadays, the flexibility of DERs and the vari-
ability of renewable energy resources create reversed power flows, challenging the stability
and reliability of distribution networks. Traditional regulation techniques may become
insufficient to guarantee an acceptable power quality. For instance, for the voltage regula-
tion in distribution networks, load tap changers or capacitor banks are no longer adapted
as the increasing variability of renewable-based DER, production can shorten their lifes-
pan and render them ineffective. On the other hand, the versatility of DERs paves the
way for new regulation techniques to ensure the reliable and secure operation of distri-
bution networks and provide ancillary services to the high-voltage transmission system.
Active distribution networks are the result of the integration of DERs into traditional
distribution networks, and illustrate the shift from passive distribution networks acting
as load sinks toward distribution networks with operation and control capabilities.

In recent years, extensive research has been conducted on optimal control of DERs
to achieve operational and performance goals within distribution networks. Operational
goals are related, e. g., to power quality or hardware limits of the grid infrastructure and
the devices connected to it, while the performance goals usually consider resource usage
minimization, e.g., minimizing active power curtailment, or reactive power compensa-
tion. Designing a system-level controller that would steer and coordinate DERs power
setpoints to achieve these goals is challenging. The controller must be able to cope with
the fast changing grid conditions that come from the variability of renewable-based DER
production. Furthermore, the increased electrification of our energy needs that is fore-
seen in the coming years will cause additional variability and greater uncertainty in the
load consumption. Finally, the penetration of power converters and their complex fast-
response can soon completely dominate the slow electromechanical phenomena driven
by synchronous machines, altering the power system dynamics. Traditional control tech-
niques that rely on solving complex optimization problems offline can fail at tracking the
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fast time-varying conditions of distribution networks, and dispatch outdated and subopti-
mal power setpoints to DERs. For instance, solving an AC optimal power flow (AC-OPF)
problem in an open-loop fashion and dispatching new power setpoints to DERs is not
suitable for real-time control of distribution networks for three reasons. First, it requires
measuring the net power injections at every node, which might be hard to achieve in
distribution networks. Second, the distribution network dynamics can be faster than the
time required to solve the AC-OPF because of the computational complexity, thus lead-
ing to outdated setpoints. Finally, the AC-OPF is solved in an open-loop fashion and is
therefore prone to modelling errors. There is a need to develop new control algorithms
that can operate in real-time, leveraging the flexibility of DERs to ensure operational
constraint satisfaction in distribution networks while minimizing the usage of resources.

Active distribution networks integrate many different assets and form complex systems
with new dynamics. The complexity stems from the variety in power electronic converter
topology since every manufacturer can develop its converter which, to some extent, inter-
acts differently with the underlying distribution systems. Modelling and simulation tools
are crucial to validate new control strategies, and guarantee the safe operation of the
system in every possible scenario. Generic models of power electronic converters exist,
but they miss some important dynamics of some particular topologies, which leads to
significant simulation errors. On the other hand, detailed models are too computationally
expensive to perform system-level simulations. Also, they may not be readily available
because of data privacy. Indeed, manufacturers do not want to disclose some information
required to derive a model of the power electronic converter. There is a need for simple
models of power electronic converters, with limited computational burden, describing
accurately some dynamics based on the type of simulation needed. These models should
not rely on detailed information about the topology of the power electronic converter,
since these may not be available.

In this thesis, the first contribution is (¢1) a new system identification technique for
power electronic converters, to derive models compatible with system-level simulations,
i.e., sufficiently computationally light and targeting specific dynamics. In particular,
these models are derived based on measurements collected on the power electronic con-
verter, and do not require a-priori knowledge about the internal structure of the power
electronic converter. The second contribution is (¢2) to develop new control algorithms
to perform voltage regulation in distribution networks that are suitable for real-time
applications, and that leverage DERs capabilities.

1.2 CONTRIBUTIONS

In the following, we summarize the two main contributions of this thesis, and present the
corresponding works.



1.2 CONTRIBUTIONS

1.2.1  Modelling power electronic converters

Power electronic converters play a major role in the energy transition. Various manufac-
turers develop versatile devices to integrate renewable energy resources more efficiently.
Power electronic converters are complex time-varying and most often non-linear systems,
and in modern power systems, these devices bring new types of dynamic interactions.
There is a need for modelling and simulation tools to guarantee the system’s integrity in
the presence of power converters. Based on the following observations:

- Detailed models of power electronic converters are not available due to data privacy,

- Even if detailed models were available, they are not appropriate to run system-level
studies as they are computationally expensive,

- Generic models are not able to represent specific dynamics when we consider large-
signal perturbations,

we seek to solve the following problem:

Problem 1.1. Developing power electronic converters’ models that (i) do not require a-
priori knowledge about their internal structure, (ii) are computationally lightweight, and
(#ii) are valid for system-level studies. O

To tackle this problem, we focus on data-driven models of power converters. The goal
is to develop measurement-based models capable of representing the non-linear dynamics
of the converters. Figure 1.1 illustrates the type of model we aim to develop; models of
power converters that are appropriate to perform system-level studies. In the following,
we summarize the associated works.

In Colot et al. [2023c¢]|, we proposed PM-net, a multimodel approach combining linear
models’ responses using a neural network-based function, and that can capture the non-
linear system behavior over a large operating range.

In a multimodel approach, the idea is to decompose the non-linear system operating
space into operating regions. We consider that the operating space of the non-linear
system corresponds to the closed set of values the inputs, outputs and states of the
system can take and that the operating regions correspond to subsets of the operating
space. For each operating region, we identify a linear model that estimates the system’s
behavior within this region. A weighting function is used to determine which linear model
to use depending on the state of the system, i.e., the weighting function determines the
validity of the linear model at a given point in the operating space. Essentially, this
weighting function can take a maximum value of one, when the system’s behavior is
perfectly represented by one linear model, and a value between zero and one otherwise.
This approach permits to combine multiple linear models responses when one linear
model is not capable of accurately describing the system’s behavior.
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Figure 1.1: Illustration of Problem 1.1; component and system modelling.

Two problems arise when applying this to power converter modelling. First, the math-
ematical description of complex power converters involves multiple states, thus a broad
operating space. It increases exponentially the number of required operating regions to
cover the operating space. Second, gathering the measurements to identify the linear
models can be challenging. For instance, consider a non-linear system in which one state
corresponds to the derivative of an inductor current. An operating region is defined as a
given range of values for this derivative, let us say between 1A /s and 2A/s. It is difficult
to set up an experiment in which the derivative of the inductor current is kept between
1A /s and 2A/s.

In PM-net, the operating space consists only of the closed set of values the system
inputs can take. It makes the experiments simpler than if we were considering the non-
linear system states, e. g., the derivative of the inductor current. It also limits the size of
the operating space, thus the number of operating regions needed. However, one challenge
remains on how to construct the model, i.e., what are the inputs and outputs. This is
a modelling choice that has to be carefully thought, in particular when the model has
to be embedded in a larger system. For instance, one cannot combine two models that
would impose a voltage magnitude at the same point.

In PM-net, we start with an orthotope-based partition of the operating space. We
perform experiments on the converter to gather appropriate measurements for each oper-
ating region. Those experiments’ design allow us to get rich measurements and identify
linear models mimicking the converter’s behavior over a wide frequency spectrum. Since
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our interest is to develop models for system-level studies; we focus on the low-frequency
dynamics of the converters. Actually, we aim to derive averaged models, we do not con-
sider the switching nature of power converters. Notice that it is a common assumption,
in particular when one wants to design the control algorithm of a power converter. In
general, one considers an averaged and linearized model of the power converter, derived
based on its topological equations.

The PM-net structure embeds the linear models associated with the operating regions
and a neural network-based weighting function. In a traditional polytopic model frame-
work, the user must choose the weighting function and the operating space partitioning.
In PM-net, we train an artificial neural network to minimize the discrepancies between
the converter’s dynamics and the model response by appropriately tuning the weighting
function, we aim to find the optimal combination of the linear models responses to fit
the converter’s response. The weighting function depends only on the inputs to improve
the model’s interpretability.

Since no prior information is given to the neural network regarding the partitioning of
the operating space, the weighting function may have unexpected outputs. For instance,
some linear models can have constant small weights over the entire operating space, while
others may see sharp changes when slightly changing the inputs.

Based on the analysis of those weighting functions, we can delete linear models with
small weights (small impact on the overall model response) and create new partitions
of the operating space where we have sharp changes in the weighting function. It allows
PM-net to be computationally lightweight while capturing the behavior of the non-linear
system over a large operating range, thus making it suitable for system-level studies.

In Colot et al. [2023b], we proposed a C-HIL application to obtain synthetic mea-
surements of a power converter, and then derive a black-box model. One application of
PM-net models is to create a shareable black-box model of a product. It is useful when
sharing models with third parties without disclosing trade secrets. We thus have access to
the topology of the converter, but we want to derive a black-box model for data privacy
issues. On the other hand, we might not have access to measurement devices that would
allow us to develop a data-driven model. In Colot et al. [2023b] we built a digital twin
of the converter and use it to generate synthetic measurements. We can then derive a
PM-net model based on those measurements. The digital twin used is a C-HIL model
interfacing the actual controller of the converter with a real-time simulator of the con-
verter’s electrical circuit. We showed that the PM-net model successfully represented the
converter’s behavior when connected to different electrical devices, and forming a small
system.

In Colot et al. [2023a], we worked on an industrial system consisting of a battery, PV
inverters, and a three-port converter. Our task was to develop a model of the system to
perform system-level studies. The topologies of the PV inverters were unknown. Thus,
we developed a PM-net model for the PV inverters. We aggregated the PM-net model
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with other models for the battery and the three-port converter. The overall system model
successfully represented the behavior of the industrial system.

In Colot et al. [2025b], we summarized the PM-net methodology and extended the
framework to a state-space model formulation. We also introduced a state update tech-
nique to enhance the performance when the input signals change abruptly, and illustrated
the technique on a Single-Machine Infinite Bus system.

1.2.2  Voltage regulation in distribution networks

The second part of this thesis focuses on the design of control algorithms for voltage reg-
ulation in distribution networks with massive integration of distributed energy resources.
It is motivated by the following observations:

- Increased integration of renewable energy resources and load management strategies
lead to operational and reliability challenges,

- The underlying dynamics of distribution networks are too fast to regulate power
setpoints based on traditional AC optimal power flow techniques,

- Limited information is available at the distribution side, and there is a lack of
communication infrastructure,

that we seek to solve the following problem:

Problem 1.2. Develop control algorithms that (i) leverage DERs’ flexibility to ensure
operational constraint satisfaction in distribution networks while minimizing the usage of
resources, (ii) operate in real-time to ensure proper operation of the network, (iii) do not
require extensive monitoring of the distribution network. O

Distribution networks typically have a meshed topology but are operated radially. Sub-
stations connect high-voltage networks to low-voltage networks through transformers.
Multiple feeders connect the substation with the distribution nodes. Depending on the
network voltage level the distribution nodes can be medium to large industries or house-
holds. Previously, active power flowed unidirectionally from the substation to the dis-
tribution nodes, which led to a progressive decrease in the voltage magnitudes along
the feeder. The tap changers were used to maintain consistent voltage levels along the
feeders by appropriately regulating the voltage at the substation. The rise of prosumers,
electrical consumers who can inject or draw power at their connection point, creates bidi-
rectional power flows, challenging voltage regulation. The voltage level at the substation
is no longer always greater than the voltage level along the feeders, and it changes mul-
tiple times during the day as a function of unpredictable renewable energy production.
Regulating the voltage at the substation with tap changers is no longer a viable solution
to maintain consistent voltages along the feeders. On the other hand, DER integration,
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Figure 1.2: Illustration of voltage issues in distribution networks with high penetration of DERs,
and how DERs’ flexibility can mitigate them.

Transmission
System
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although being the root cause of voltage issues in distribution networks, offers some op-
portunities for regulation. In Figure 1.2, we illustrate the voltage regulation problem in
distribution networks with increased penetration of DERs, and how DERs’ flexibility can
mitigate these issues. For this part of the thesis, we have investigated three different con-
trol structures; centralized, decentralized and distributed. These methods have different
requirements in terms of communication infrastructure, and computational power.

Centralized. In Colot et al. [2025a], we proposed a feedback-based safe gradient flow
algorithm to solve OPF problems. The safe gradient flow leverages the theory of control
barrier functions to ensure constraints are satisfied at any time. In Colot et al. [2025a,
we incorporated feedback into the initial formulation of the safe gradient flow, so that the
algorithm continuously pursues the optimal solution as the network conditions change.
It is a centralized method; an aggregator collects measurements over the network, then
solves the optimization problem and dispatches the new decision variables. Notice that
compared to traditional techniques based on solving the AC-OPF problem offline, in our
method the number of constraints depends on the number of nodes where we perform
voltage regulation, which significantly reduces the complexity of the algorithm. Further-
more, traditional AC-OPF techniques require load power measurements and a system
model to compute the voltages. In our method, the feedback comes from the voltage
measurements, which means there is no need to measure load power consumption and a
system model to compute the voltages. This is the main idea behind feedback-based op-
timization; the system model and measurements of disturbances are replaced by directly
measuring system states. The optimization problem to be solved is a quadratic program-
ming problem for which efficient solving techniques exist. Although the method applies
to general AC-OPF problems, we showed numerical results for the voltage regulation

7
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problem in a single-phase equivalent 93-node medium voltage network. In Colot et al.
[2024a], we extended the methodology proposed in Colot et al. [2025a] to the three-phase
unbalanced IEEE 37-node test system. Distribution networks are most often unbalanced
due to the different types of connections; wye or delta-connected and to which phase
the device is connected; single-phase or three-phase connection. We also introduced the
concept of Virtual Power Plant (VPP) which we defined as an aggregation of DERs in
a distribution network, capable of providing ancillary services to the bulk power system
while satisfying operational constraints within the distribution network such as voltage
constraints.

Decentralized. In Colot et al. [2024Db], we proposed a decentralized control algorithm
for voltage regulation within distribution network. In particular, we aim to use reactive
power compensation, provided by DERs, to mitigate voltage issues. The control is fully lo-
cal, there is no need for communications in real-time. We require minimal communication
days/hours ahead to dispatch gains for an incremental Volt/Var controller. The gains are
obtained by solving a multi-period chance-constrained optimization problem. We seek to
optimize the gains of the Volt/Var control in order to satisfy, with a prescribed probabil-
ity, the voltage constraints while minimizing the reactive power usage. The methodology
has been tested on a single-phase equivalent 42-node distribution network, and on the
three-phase unbalanced IEEE 123-node test system. In Colot et al. [2024¢|, we extended
the approach proposed in Colot et al. [2024b]| by formulating a robust controller. The
controller considers worst-case scenarios to always ensure voltage limits satisfaction. This
is based on a heuristic to determine the worst-case scenario.

Distributed. In Colot et al. [2023d], we investigated how to distribute the optimal power
flow (OPF) problem using the alternating direction method of multipliers (ADMM). Dis-
tributing OPF problems brings several advantages, such as minimizing computational
burden, less requirements in terms of communication infrastructure compared to a cen-
tralized controller and ensuring data privacy by sharing information with neighbours
only. One cannot distribute the OPF problem by construction because of the power flow
equation constraints. The voltage at one node depends on the net power injections at
every node, creating a dependency among all the nodes. ADMM breaks down large op-
timization problems into smaller ones and the procedure coordinates the small problem
solutions to find the global problem solution. Furthermore, ADMM benefits from the
advantages of dual decomposition techniques and the convergence rate of augmented La-
grangian techniques. We used the consensus version of the ADMM to distribute our OPF
problem and the branch flow model for modelling the power flow equations. ADMM is
an iterative procedure, and at every iteration, each electrical node solves its optimization
problem with local variables, but in order to satisfy power flow equations, one needs
to ensure that local variables of different subproblems representing the same quantities
(such as branch currents) converge toward a global value. A consensus variable is built
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by averaging local variables at every iteration, and the deviation from this consensus is
penalized in each subproblem. In our formulation, we leveraged the iterative procedure
of ADMM to derive a convex surrogate of our initial global optimization problem. We
proposed to use the iterative procedure of ADMM to estimate branch currents and re-
move the non-linear equality constraints, considering the branch currents as parameters
of the optimization problem. We used ADMM in an online setting since electrical network
conditions always change, thus, we apply the decision variables found after each inter-
mediate iterate. However, the intermediate iterates of ADMM do not satisfy power flow
equations. Therefore, we penalized the discrepancy between the local voltage measure-
ments and the local voltage variables to enhance the convergence of our algorithm toward
solutions satisfying power flow equations. We illustrated our method on a single-phase
equivalent 122-node system.

1.2.3  Other works

In addition to the two main contributions, in Colot et al. [2024d] we analyzed the stability
of a transmission system subject to cyber-attacks. In particular, we considered transmis-
sion systems composed of frequency-responsive DERs, and we investigated non-periodic
cyber-attacks targeting the damping coeflicient of the DERs. We proposed sufficient con-
ditions on the average activation time of the attacks to ensure the stability of the system.
The theoretical bound on the average activation time is obtained by solving a class of
bilinear matrix inequalities. We illustrated our results on the IEEE39-bus test system.
This work is not presented in this manuscript, as it focuses on transmission systems, and
analyzes the impact of cyber-attacks on the system’s stability.

1.3 REFERENCES AND AUTHORSHIP

The works presented in this thesis are the result of collaborations with other researchers.
In this section, we detail the authorship of those works.
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BACKGROUND AND PRELIMINARIES

Power electronic converters convert electrical power using controllable electronic de-
vices [Bacha et al., 2014]. Essentially, they are composed of passive components; inductors,
resistors, capacitors, and controllable active components acting as switches. In particular,
power-switching converters alternate between different electrical configurations based on
the state of the switches. A local control algorithm drives the switches to process the
raw input power effectively. Notice that in this part of the manuscript, when we men-
tion local control algorithms, we do not consider algorithms that steer power setpoints
to achieve system-level operational performance. We consider local controllers, such as
proportional-integral controllers, that are responsible for driving the switches of power
converters. Also, in the following, when mentioning power converters, we consider the
combination of the electrical configuration and the local controller responsible for driv-
ing the active components.

There are different types of converters: DC-DC, DC-AC, AC-DC, or AC-AC converters,
which are used depending on the input voltage and the desired output voltage. Among
those different types, thousands of configurations exist based on the number of switches
or the configuration of the passive components.

In the following, we introduce three modelling techniques for power converters. The
switched model, which focuses on the switching nature of the converter, is capable of
describing the high and low-frequency dynamics, but, it is computationally expensive.
On the other hand, the averaged model reduces the computational burden, but can only
describe the low-frequency dynamics since it considers averaged signals. We also introduce
the small-signal model, which is a linear model often used to design controllers for power
converters. We emphasize the poor performance of linear models of power converters for
system-level studies.

2.1 SWITCHED MODELS

A power converter naturally switches among different configurations to achieve target
performance (inverting, redressing, amplifying output voltages, etc.). If one denotes x €
RY the state vector and u € RY the input of a state-space model, a power converter
with N configurations of switches can be mathematically described as:

N

X(t) = Y si()(Ai(t)x(t) + Bi()u(t)), (2.1)

i=1
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Figure 2.1: Tllustration of a DC-DC boost converter, and the different conduction configurations.

where each configuration i € {1, ..., N} is described by the state model with matrix pairs
(Ai, B;), and s; is a time-varying signal that takes a value of 1 or 0, such that at every
time t, Zf;l si(t) = 1. The signal s; is called the switching signal. The switching signal
is generated by a control algorithm that drives the switches.

The system (2.1) is linear, but time-varying as the signal s; changes the dynamics
of the system. Furthermore, the matrix pairs are also time-varying since some passive
components can exhibit a time-varying behavior. For instance, the heat generated by
Joules losses can impact the resistive properties of some passive components. Also, in the
most general case, passive components behave non-linearly because of saturation effects,
and the switches or generators are not ideal, which renders the switching model of power
converters non-linear and time-varying.

For the sake of simplicity, in the following we consider ideal switches, linear and in-
variant passive elements, and perfect generators (voltage and current sources). That is a
common assumption in the literature, and it allows us to focus on the switching nature
of the converter.

Consider the DC-DC boost converter represented in Figure 2.1 as an example. The
state vector x = [if, UC]T represents the inductor current and the capacitor voltage, and
the input u = v the input DC voltage. If the switch is closed, then s = 1, and the matrix
pair (A1, By) is:

A = <0 0 ),31: <i> (2.2)
0 —5 0



2.1 SWITCHED MODELS

— Switched Model — Averaged Model — Linear Model
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Figure 2.2: Comparison between a switched model, an averaged model, and the linearized aver-
aged model for a DC-DC boost converter.

If the switch is open, then s = 0, and the matrix pair (A, Bs) is:

0 _1 1

Ao = L), By=|(T]. (2.3)
1 1 0
C RC

We consider the converter to be operated in continuous conduction mode, i.e., the in-
ductor current never reaches 0. Therefore, there exist only two conduction configurations
(switch closed or open). In discontinuous conduction mode, the inductor current reaches
0 at some point, and the converter operates in three conduction configurations.

Notice that one can write the state-space model of our DC-DC boost converter as:

X(t) = A(t)x(t) + B(t)u(t), (2.4)

with A(t) := s(t)A1 + (1 — s(t)) A2, and B(t) := s(t)B; + (1 — s(t))Ba. Figure 2.2 shows
the evolution of the state variables of the boost converter when the input voltage is set
to 10V and the switch is operated to increase the capacitor voltage from 20V to 25V.
One can notice the ripples in the inductor current and the capacitor voltage. The ripples
are due to the switching nature of the converter, and are high-frequency signals that are
not captured by an averaged model.
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2.2 AVERAGED MODELS

We define the average of a signal x(t) over a period T as:

1 t+T/2
x(t) = / x(7)dr. (2.5)
T Ji—1)2
We also define the periodic switching signal s(t) with T the switching period and d the
duty cycle € [0, 1] the ratio of time the switch is closed over T as:

sy =41 HOst<dl s(t—T) = s(t) V. (2.6)

0 ifdT’'<t<T

Notice that d = §(t) corresponds to the average of the switching signal over a period 7.
The averaged model is obtained by averaging the state model over the switching period
T of the power converter:

x(t) = Ax(t) + Bul(t), (2.7)
with:
t+T/2
= / A(T)dr, (2.8)
T/2

t+T/2
= / (T)dr, (2.9)

T/2

where the time-varying matrices A(t) and B(t) become time-invariant. For our DC-DC
boost converter, the averaged model is:

o T2
A= / s(T)A1 + (1 — s(1))Aadr, (2.10a)
T Ji—1/2
1 t+T/2
= Ay + (A1 —Ag)/ S(T)ClT, (2.10b)
T Ji-1/2
= Az + (A1 — Ag)d. (2.10c)

Following the same reasoning, one obtains B = By + (B — Bs)d. As shown in Figure 2.2,
the averaged model captures the low-frequency dynamics of the converter, but not the
high-frequency ripples. The system (2.7) becomes time-invariant. However, notice that
the duty cycle is most often a function of the state variables and the input, as one wants
to drive the switches to steer the converter outputs. Therefore, d varies with time. The
system (2.7) then becomes non-linear due to the product of the matrices A and B with
the duty cycle d. If the duty cycle is constant, the system is linear. Averaged models are
most often non-linear and time-invariant systems.
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2.3 SMALL-SIGNAL MODELS

In practice, if one wants to design a controller for a converter, it is often preferred to

consider a linear model since one can then rely on control theory for linear systems.

A linear small-signal model is obtained by linearizing the averaged model around an
operating point (X, u., d.), where d, is the duty cycle at the operating point. For instance,
in the case of a DC-DC boost converter, one may want to control the voltage across the
resistor R. Let us consider we want it equal to x.2 = 20V where z.2 is the capacitor
voltage at equilibrium, x = [33671,33672]1— = [iL7e,vC7e]T. Given ue = 10V, and using the
state-space models defined in equations (2.2), (2.3), we have:

-1 1 1
(L + deL) Te,2 + Zue =0 (211&)
1 1 1
(&) 7er ~ pigmea =0 (2.110)

Using z¢2 = 20V and u, = 10V, we obtain:

—Ue 10
de = 1=1—-—=0.5 2.12
¢ Te2 + 20 ( )
Notice that the relationship between output voltage and input voltage is d. = 1 —

input voltage
output voltage’
cycle.

such that, to increase the output voltage, one needs to increase the duty

Let us now derive a small-signal model, starting from the averaged model defined
in (2.7). For that purpose, we define the following small-signal variables: X(t) = x(t) — X,
u(t) =u(t) — ue, and d(t) = d(t) — de. The averaged model (2.7) can be written as:

X = (AQ + (Al — Ag)d) X+ (BQ + (Bl - Bg)d) u (2.13&)
%4 %, = <A2 + (A — Ag)(d+ de)) (% + %)+ (2.13b)
(32 4 (By — By)(d + de)) (i + u,) (2.13¢)

X = (A2 + (A1 — Ag)de) X+ <A2 -+ (A1 — A2)<d~+ de)) Xe+
(Bs + (B1 — Bo)d,) @ + (B2 +(By — By)(d + de)) w,  (2.13d)

where we omit to write the time dependency t of some variables for clarity. If we discard
the second-order term dx and dua, we obtain the following linear model:

)E(t) = Assi(t) + Bssﬁ(t) + Essd(t) +H (214)

where Ass = A2 + (Al — Az)de,Bss = B2 + (Bl - B2)d€7ESS = (Al - A2)Xe + (Bl -
Bo)ue, H = (Ay + (A1 — Ag)de) X+ (Be + (B1 — B2)d.) u,. Figure 2.2 shows the perfor-
mance of the linearized averaged model with respect to the averaged and the switched
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Figure 2.3: Illustration of a closed-loop system.

models. As the averaged model, the linearized averaged model is not capable of represent-
ing the high frequency dynamics. One can also observe that the linearized averaged model
is not accurate when simulating the behavior of the converter on a different operating
point than the one used to linearize the averaged model.

Despite this drawback, those small-signal models are very useful to design the controller
to operate the switches, as one can rely on control theory for linear systems. For instance,
one can consider a feedback controller of the form:

d(t) = kg (x(t) — (1)) — K] (%(t) - x(1)) (2.15)

where k,, = [kp1,kp2] ", ki = [ki1, ki 2] . In practice, using the small-signal model (2.14),
on can derive values for k,,, k; such that the closed-loop system is stable, and the controller
achieves the desired goal. The task of developing a controller based on the non-linear aver-
aged model (2.7) is much more complex, and requires advanced control techniques. Since
the topic of designing controller for operating switches in power converters is outside the
scope of this thesis, we refer the reader to [Bacha et al., 2014] for detailed explanation. In
the following, we consider the closed-loop system that is composed of the power converter
and its controller, and introduce the challenges of modelling the closed-loop system for
system-level studies.

2.4 CLOSED-LOOP SYSTEM MODELLING

In practice, for system-level studies, one wants to model the closed-loop system. The
power converter closed-loop system is illustrated in Figure 2.3 and is composed of the
converter, the modulation, and the control law. The control law drives the active com-
ponents of the converter to achieve a desired output, and produce a signal d that is sent
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Figure 2.4: Comparison between a switched model, an averaged model and the linearized averaged
model for a voltage-regulated DC-DC boost converter.

to the modulation. The modulation is responsible for generating the switching signals
s(t). The output of the plant is then fed back to the control law. As explained above, the
control law can be designed using the small-signal model of the converter, and classical
theory for linear control systems. In this manuscript, we are interested in deriving a model
of the closed-loop system that is simple enough to be used for large scale system-level
studies, but accurate enough to capture the desired dynamics of the system.

Let us consider our boost converter, the goal of the controller defined by equation (2.15)
is to regulate the voltage across the capacitor. To achieve this objective, we set k, =
[0,0.01]T,k; = [0,100] " in (2.15). The reference is r = [0,20] ", where the first element
of r does not play any role since the associated controller gains correspond to 0.

In Figure 2.4, we compare the response of the closed-loop system modelled using the
switched model, the averaged model, and the linearized averaged model. One can observe
that the closed-loop system is not accurately represented by the linearized averaged model.
That is because the closed-loop system is non-linear.

When it comes to system-level studies, and in particular, modelling systems with differ-
ent components, as illustrated in Figure 1.1, linear models are not suitable. First, because
the closed-loop system that is the power converter can be highly non-linear, and because
the power converter can be operated around various operating points. In the following, we
introduce a multimodel approach to model the closed-loop system of power converters.

21






LARGE-SIGNAL BLACK-BOX MODELS

Outline

This chapter introduces a multimodel approach to develop system-level
models of power converters to tackle Problem 1.1 introduced in Sec-
tion 1.2.1. Our approach combines a set of linear models’ responses using
a neural-network based weighting function to simulate the input-output
behavior of a power converter. The chapter is organized as follows: Sec-
tion 3.1 presents different large-signal models of power converters, and
the contributions of this thesis with respect to the existing literature,
Section 3.2 introduces the multimodel approach, and in particular, some
inherent drawbacks of this approach, Section 3.3 introduces our method-
ology that aims at mitigating the major drawbacks of the multimodel
approach, Section 3.4 provides practical examples of our approach on real
test cases, both for modelling power converters and to perform system-
level studies, and Section 3.5 proposes a modified state update technique
to enhance performance of multimodel approach with input-dependent
weighting functions.

3.1 LITERATURE REVIEW

Power electronic converters are often non-linear, time-varying systems [Bacha et al., 2014].
We showed in Chapter 2, that one can remove the time-variance by applying some aver-
aging techniques. However, averaged models remain non-linear if the initial time-varying
system is non-linear, and can actually become non-linear because of the averaging tech-
nique. Therefore, to identify averaged models of power converters, one has to rely on
non-linear system identification techniques.

Non-linear system identification is much more challenging than linear system identifica-
tion as far as the number of possible model structures, and experiment design, as well as
the difficulty of parameter estimation are concerned [Schoukens and Ljung, 2019]. Before
diving into the tedious task of identifying non-linear systems, one has to wonder if the per-
formance of a linear model is sufficient for the target application. As shown in Chapter 2,
and in particular in Figure 2.4, linear models have some limitations when considering
power converters, as they cannot adequately capture their large-signal behaviors. Linear
models are not appropriate for system-level studies since converters’ dynamics may de-
pend heavily on the operating point. Referring to Problem 1.1 introduced in Section 1.2.1,
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we want to derive a model that is simple enough to be used for system-level studies, but
accurate enough to capture the dynamics of the system to be modelled.

3.1.1 Motivations

There exist many different model structures for non-linear system identification, therefore,
it is important to define what we expect from the model. We want simulation models,
since the goal is to ensure the good behavior of the system under different operating con-
ditions. Furthermore, modern power systems often incorporate Off-The-Shelf converters
from different manufacturers [Valdivia et al., 2013, Francés et al., 2016a] with limited
available data provided to the user that calls for the development of black-boxr mod-
els [Arnedo et al., 2008]. Finally, we do not want to represent fast dynamics, as the goal
is to model the power converters for system-level studies, and not at a component-level,
our focus is on averaged models of power converters capable of representing dynamics up
to several hundred Hz.

3.1.2  Multimodel approach

In this thesis, we introduce a multimodel approach to derive large-signal black-box mod-
els for power converters. Our modelling technique is suitable for system-level design and
analysis because of its low computational burden and inherent interpretability. The mul-
timodel approach computes the global model output as a weighted combination of some
linear submodel responses. The weighting function represents the linear submodel’s va-
lidity within a specific operating range [Adeniran and El Ferik, 2016]. This approach is
simple, mathematically tractable, and built upon the well-known theory of linear system
identification. The multimodel framework accommodates different type of models, i.e.,
input-output or state-space models, therefore, several paradigms can be found in the lit-
erature. For instance, in Takagi-Sugeno fuzzy models [Takagi and Sugeno, 1985|, a linear
membership function and a model are associated with each fuzzy set, and the final model
output is inferred from the weighted sum of the model outputs of the different fuzzy sets.
On the other hand, linear parameter-varying models can also be cast as a multimodel
approach as the model parameters are function of a scheduling variable |[Zhu and Xu,
2008],[Sadeghzadeh and Garoche, 2023].

Multimodel approaches have already been investigated for modelling large-signal black-
box models of power converters. In Francés et al. [2016a], authors propose a black-box
polytopic modelling approach for system-level design of DC-based nanogrids. The DC-
based nanogrid is composed of Off-The-Shelf converters, for which one does not have
access to topological information. Different modelling methodology are compared; block-
oriented structure such as Wiener-Hammerstein models, small-signal G-parameters mod-
els and a polytopic model. It is shown that polytopic models exhibit the best perfomance
for system-level studies. In Frances et al. [2017], a review of different modelling techniques
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is proposed for system-level studies of DC microgrids. In Arnedo et al. [2008], and Francés
et al. [2016b], authors propose a polytopic model with a double sigmoid weighting func-
tion for power converters, and with pre-defined partitioning of the operating space.

Notice that full neural-network based models have been proposed for power convert-
ers modelling. In Rojas-Duenas et al. [2021], authors compare polytopic models with a
wavelet convolutional neural network trained to represent the power converter behavioral
response. In Rojas-Duenas et al. [2020], authors use a recurrent neural network to ap-
proximate the power converter’s dynamics. Although full neural network-based models
lead to a better representation of the behavioral response of the converter, they may
lack interpretability and rely heavily on data quality [Sahoo et al., 2021]. Ensuring suffi-
cient data quality and availability may be challenging for power converter applications,
and the lack of physical insights behind those full neural network-based models may
challenge the analysis of systems composed of different converters. We note that model
interpretability might be crucial for some applications. Indeed, interpretability makes the
model transparent, and allows the user to trust the model outputs. Also, it allows the
user to understand the model’s behavior, and to make decisions based on the simulation
results.

Other modelling techniques exist [Al-Greer et al., 2018|, such as Hammerstein mod-
els [Alonge et al., 2007]. Those methods are block-oriented structures and combine static
non-linear blocks with dynamical linear systems. They are very convenient when the
non-linearity stems from saturation, sensors and actuators, etc. [Francés et al., 2016a].
However, when the non-linearity comes from the switching nature of the converter, the
range of applicability of these methods is limited since the dynamics of the system be-
comes dependent on the operating point.

3.1.3  Contributions

For a given multimodel structure, one can identify four challenges: (i) how to identify the
linear submodels, (i7) how to design the weighting function that is used for obtaining the
global model output, (4i) how to partition the operating space into different operating
regions, and (i) how to combine the different linear submodels.

In our approach, we propose:
(c1) to derive linear submodels using input-output data collected by measuring con-
verter’s response around a given operating point and using linear system identification
techniques,
(c2) to design the weighting function using a neural network that is trained based on
measurements collected on the converter,
(c3) to partition the operating space by applying post-analysis of the trained neural
network,
(c¢4) and to derive the global model output using a weighted sum of the linear submodels’
responses.
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3.2 OVERVIEW OF OUR MULTIMODEL APPROACH

In the following, we present the multimodel structure considered in this manuscript, and
we illustrate the rationale behind our choice of input-dependent weighting function.

3.2.1 Model structure

We consider a discrete-time non-linear dynamical system of the form:

x(k+1) = f(x(k),u(k)), (3.1a)
y (k) = h(x(k),u(k)), (3.1b)

where x € R™ u € R", y € R™ are the system state, input and output, respectively,
[ R™ X" s R" ig the state update function, h : R®>*™ 5 R™ is the output function
and x(k),u(k) and y (k) are the state, input and output values at continuous time k7 with
7 € R the time step considered. We want to approximate the dynamics of the non-linear
system (3.1) using a multimodel approach. To this purpose, we combine the outputs of
the linear submodels through a weighting function [Adeniran and El Ferik, 2016]. This
allows us to have heterogeneous submodels compared to other multimodel approaches
where, for instance, the state of the global system is a weighted sum of the states of each
submodel. In the latter case, the different linear submodels have to share the same state
space dimensionality as in some LPV systems [Sadeghzadeh and Garoche, 2023|.

Let us consider the set N := {1, ..., N} of indices of the different linear submodels. The
linear submodel ¢ € N, obtained around the operating point (uf,y$), for instance, via
linearization techniques, is described by the following state-space equation:

yi(k) = Cixi(k) + Diui(k) + H;, (3.2b)

with @; := u —uf € R™, x; € Ry, € R™, and A; € R"i*"=i B € R"ixXMu
C; € Rw>Xnai D, € R™W*"™  H; € R™
The polytopic model considered in this thesis combines different linear submodels

Y

outputs as follows:

yeu(k) =D wiu(k)y;(k), (3.3)

ieN

with w; : R™ +— R a weighting function for the linear submodel 4, such that w;(u(k)) €
[0,1] and ),y wi(u(k)) = 1 at every step k.

We claim that our approach is interpretable because our multimodel structure combines
linear models, and those are inherently interpretable (intuitive meaning of its parameters,
they are additive, etc.) [Raz, 2024].
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Furthermore, the weighting functions w;(-) depend on u(k) only. For one constant input
u*, the linear submodel * mostly responsible for the global model behavior has the largest
associated weight w;«(u*). On the other hand, it leads to a suboptimal combination
of submodel responses during "jumps" in the inputs. In Frances et al. [2019], authors
propose dynamic weighting functions to mitigate this drawback. Another approach is
discussed later in Section 3.5. In the following, we introduce a common non-linear system
that appears in power systems, and for which we want to derive a large-signal model.

3.2.2  lllustration on the Single-Machine Infinite Bus system

Some challenges related to the modelling of non-linear dynamical systems with our mul-
timodel approach and the rationale behind the input-dependent weighting function used
in (3.3) are illustrated with the Single-Machine Infinite Bus (SMIB) system.

The SMIB system consists of one equivalent synchronous machine connected to an
infinite bus through a line of reactance X. The dynamics of the equivalent synchronous
machine are described with the swing equations. Although simple, this system is often
used in power system practices through one-machine infinite bus transformation of the
equivalent system for both large-signal [Pavella et al., 2000] and small-signal stability
problems [Rezace et al., 2020].

Consider the SMIB system:

Ik+1)=0(k) + TwsAw(k), (3.4a)

V Vi sin ((5(k))> |

b (3.4D)

Aw(k +1) = Aw(k) + ﬁ (Pm — DAw(k) —
where § is the rotor angle of the single machine, Aw the deviation of the angular speed
from the nominal angular speed of the machine in per unit, P, is the mechanical power
in per unit, D the damping parameter, X the reactance of the line connecting the single
machine to the infinite bus system, M the moment of inertia of the machine, V' the voltage
magnitude of the single machine, and V, the voltage magnitude of the infinite bus system
(phase to ground). For this system, let us consider the input u = V., the output y(k) =
[6(k), Aw(k)]T, the state vector x(k) = [06(k), Aw(k)]", and the parameters ws = 2760
[rads~!], P = 0.5 [pu], D =5 [pu], V =1 [pu], X = 1.5 [pu], M = 8 [s]. Finally, let us
consider 7 = le — 2 [s].

One equilibrium point x® = [0¢, Aw®] " of the system (3.4) is:

PaX

§¢ = arcsin (&) € [0,7/2] (3.5a)

Aw® =0 (3.5b)
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Now, let us consider that Vo, € [0.85,1.15] pu, and we define N = 3 linear systems
around the equilibrium points ¢ = [6¢,0] " as follows:

1 TW 0
A= s B; = : ] (3.6a)
v V'V, cos (65) D [ Vsin (65) | 7
—T—ux -~ “Tatl ~TTXM
1 e
Ci= 0 ,D;i = 0 yHi = 0 ; (3.6b)
01 0 0

where Vo1 = 0.9pu, Voo 2 = 1.0pu, Voo 3 = 1.1pu and 6F Vi € N are obtained from
equation (3.5a).

3.2.2.1  Weighting functions

We consider two types of weighting functions (w; : R™ — R defined in equation (3.3))
that are shown in Figure 3.1. The first type is a piecewise-affine function, and the second
type is a double sigmoid function.

Piecewise-Affine (PWA): We consider the case where only one linear submodel is ac-
tive for a given input u. We define d = 0.1, that is the difference between two input
linearization points, i.e., Voo — Voo i1 Vi € {2,3}. In this simple example, notice that
the input operating space u € [0.85,1.15] is divided into three similar operating regions,
i.e., linear submodel LMO should be valid for u € [0.85,0.95], linear submodel LM1 for
u € [0.95,1.05] and linear submodel LM2 for u € [1.05,1.15]. Now, we write:

1 f Voo — Voo,i < d7
wilw) = wi(Vae) = 4 | il <3 (3.7)

0 else.

Notice that for Vo, = 0.95 and V, = 1.05, there are two weights equal to 1. In practice,
we activate only one linear submodel to ensure that ), w;i(u(k)) = 1.

Double Sigmoid (DS): The second type of weighting function proposes a smooth tran-
sition from one linear submodel to another when the input is slowly changing. We write:

1 1
T ltexp (=5 (Voo — (Voo — ) 1+ exp (=5; (Voo — (Voosi + d)))

, (3:8)

where s;” € R and s, € R are the slopes of the double sigmoid, and shou e sufliciently
here s € Rand s; € R he sl f the double sigmoid, and should be sufficient]

large such that w;(V i) = 1+exp(1_8_+d) - 1+exp1(s.*d) ~ 1.
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Figure 3.1: PWA and double sigmoid weighting functions.

3.2.2.2  Numerical experiments

We consider a slowly time-varying input u(k) = 1 4+ 0.15sin(0.37k7), and compare the
performance of a linear model identified for V., = 1 pu, denoted L(V5, = 1.0), and that of
two polytopic models with PWA and DS weighting functions. To evaluate the estimation
accuracy, we use the coefficient of determination defined as:

ly; =3,

R2 =l—g—5
ly; — ;12

5 (3.9)
where y; is the vector including the samples y;(k) of the 4t output of the approxi-
mate model, while y; corresponds to the 4t output of the true non-linear system and
y; the mean value of y;. For the SMIB system, recall that y(k) = [y1(k),yo (k)T =
[6(k), Aw(k)]T. The R?* = [R2, R% )] scores for the linear model, the PWA polytopic
model and the DS polytopic model are [0.928,821], [0.993, 0.901], [0.993, 0.908|, respec-
tively. The simulation results are shown in Figure 3.2 where NL is the output of the true
nonlinear system.

We then consider a piecewise constant input signal. The R? scores for the linear model,
the PWA polytopic model and the DS polytopic model are [0.673,0.047]|, [0.924,0.768],
[0.924,0.768], respectively. Notice that PWA and DS polytopic models have the same R?
scores. In this simulation we want to emphasize the behavior of the multimodel approach
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Figure 3.2: Comparison between a linear model and polytopic models with two different weighting

functions.
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Figure 3.3: Comparison between a linear model and polytopic models with two different weighting
functions

during "jumps" in the inputs. Therefore, the simulation results have been zoomed in over

a small acquisition window, which can introduce some bias in the performance indicators.
For a full analysis of this study case, one should consider a larger acquisition window.

The simulation results are shown in Figure 3.3.

Overall, one can observe better performance of the polytopic models compared to the
linear model. One can improve performance of polytopic models by adding more linear
models in order to better cover the operating space. Also, although in the case of the
SMIB system the weighting function does not play a significant role, for more complex
systems with multiple inputs, the choice of the weighting function is crucial. In the
following, we introduce our neural network-based weighting functions and a partitioning
procedure to improve the performance of our polytopic models.
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3.3 PM-NET: ENHANCED NEURAL NETWORK-BASED POLYTOPIC MODEL

Our PM-net model is a multimodel structure that combines linear submodels’ responses
using a neural network-based weighting function. The neural network is trained using
measurements of the non-linear system response to time-varying inputs to address the
challenge of how to design weighting functions. We propose a partitioning procedure to
improve the performance of the polytopic model that is based on the post-analysis of
the trained neural network, which addresses the partitioning problem of the multimodel
approach.

3.3.1 Neural network-based weighting functions

Figure 3.4 shows the overall architecture of the proposed polytopic model (PM-net)
including the neural-network based weighting functions (NN-WF). It is composed of
one dense neural network for each input v; that is called a premise variable. For every
discrete time k, NN WF takes as input the value of v(k) = [v1(k),...,v,, (k)] and
returns a weight value w;(k) comprised in [0, 1] for each linear submodel i € A. The
premise variables v may differ from the actual system inputs u if one wants to normalize
the inputs fed to the neural network through a function f(-) : R™ +— R™. The output
of NN WF corresponding to each input v;(k) is B;j(k) = [ﬁ;(kz), ...,BJN(k)}T € RV, each
element corresponding to one linear submodel. The end layer of each neural network is
a Softmaz function such that the weights for each submodel i € A for one specific input
vj(k) sum to one:

D Bi(k) =1. (3.10)

ieN

The non-normalized weight corresponding to linear submodel ¢ is computed as follows:

Yilk) = T 8- (3.11)
j=1
Then the weight associated with each linear submodel ¢ is computed as:
7i(k)
wi(k) = =——"—. (3.12)
>ien i(k)

To train the neural network, we used measurements of the non-linear system response
to time-varying inputs taking values in the pre-defined operating space. The non-linear
system is perturbed with time-varying inputs that would correspond to a normal oper-
ation of the system. For instance, for the SMIB system, typical values of the input Vi
can be between 0.8 and 1.2 pu, but it would not make sense to have a value of Vo, = 10
pu, i.e., that cannot happen in a normal operation of the system. The time-varying in-
put signal also has to be rich enough in order to extract meaningful information, i.e.,
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Figure 3.4: Structure of PM-net: NN WF topology and its interconnection with the linear sub-

models.
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Pseudo-Random Binary Sequence (PRBS) signal is a great choice since it can span a wide
frequency spectrum. Finally, we use an RMSE as a loss function to train the neural net-
work. In the following, we propose a partitioning procedure to improve the performance
of the polytopic model that is based on the post-analysis of the trained NN WF.

3.3.2  Partitioning procedure

We propose the methodology shown in Algorithm 3.1 for deriving a model PM-net for any
kind of non-linear system, although this model structure is particularly adapted to power
converters. It takes as input the desired operating space S on which the resulting black-
box model should be valid. We start with an orthotope-based partition and identify the
linear submodels on the resulting operating points (the centers of the orthotopes) using
specifically designed experiments. Then, we train the neural network over a large dataset
that excites the system dynamics over its entire operating space. Finally, we analyze the
weighting functions associated with each submodel. The latter is divided into two steps:
a pruning and a segregation procedure.

The pruning procedure removes submodels to reduce the overall model complexity. If
the weight associated with a submodel is always below a specified threshold «, it can
be removed since it does not significantly impact the overall model response. This may
happen if two submodels have similar parameters as the system behaves linearly along one
input, or if one submodel was badly identified. The threshold value is a tuning parameter
to achieve the desired overall model complexity.

If no model can be removed, we enter into the segregation procedure. First, one needs
to identify the submodel which performs the worst, so that we can identify an operating
region where the overall model response can be improved. For each submodel i € N, we
compute the value of a weighted loss function. Let us consider a mean squared error loss
function. The weighted loss L; associated with submodel 7 can be written as:

l
Li= 3 3 les(u(®)y (k) — v, (3.13)
k=1

with [ being the number of measurements and y(k) the output of the non-linear system.
The worst submodel i has the largest weighted loss value, that is

1" = arg max;en L, (3.14)
where i* is the index of the worst submodel. In operating regions where the submodel ¢
is not expected to perform well, the weight w; is close to 0, and the loss associated does
not significantly increase. The weighted loss function is also used in Nelles [1997], where
authors described the Local Linear Model Trees methodology (LOLIMOT). The working
principle of LOLIMOT is to analyze every feasible re-partitioning in the operating region
associated with the worst model. Then, after identifying the new submodels, they select
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the best partitioning and continue the procedure. In an n-dimensional operating space,
this would imply n re-partitionings and 2 x n submodels to be identified. For complex
systems with multiple inputs and outputs, the process of identifying new submodels is
time-consuming. Achieving a successful identification of a submodel implies the design of
new experiments and the measurements of the system response, which requires human-
in-the-loop. This part should be minimized to speed up the modeling. Thus, in this work,
we analyze the NN WF to find one cutting direction that can lead to good partitioning.
At every step of the procedure, one must identify only two submodels based on new
measurements, which significantly reduces the number of new experiments that have to
be carried out on the system.

The cutting direction index j* is found by looking at the evolution of 6;-* for every
j =1,...,ny. Through the normalization function f(-), the values of the premise variables
vj are bounded within [-1,1]. Thus, we compute the values of B]’* for every j = 1,...,ny
and for values of v; between -1 and 1, and then numerically compute the gradients using
finite differences. The index of the cutting direction is computed as:

%; } . (3.15)

avj
Let us consider a multi-input system with a linear behavior with respect to one input

e
JT = argmaxj—i, . n, {maXUjE[Ll]

u. Two submodels LM1, LMs identified around two different values of input u have the
same parameters. Therefore, the weight associated with LM (3L) or with LMy (82) along
various values of u does not vary, as no improvement can be gained by promoting one
submodel over the other when u changes. One of the two submodels may be dropped
during the pruning procedure. If a system strongly behaves non-linearly along one input,
one submodel quickly performs better than the others and the weight associated with
that model varies steeply. We thus decide that the best cutting direction corresponds to
the input along which the weight varies the steepest.

Let us consider the submodel LM}, identified around the operating point corresponding
to the input ¢* = [c{‘, e ,cﬁu]T. We can define an operating region Sy C S in which
the submodel LM} is supposed to perform better than the other submodels. Once we
found the cutting direction index j*, we define three new orthotopic regions, S)_1,S) and

A= M1 from which we can build

Syt1. We can compute two new operating points, c
two perturbation signals to be applied on the system to extract its response. Based on
those measurements, we can identify two linear models, LMy_; and LM, that will be
associated with operating regions Sy_1 and Sx4+1. The operating regions for one model
1 can change from one step to another, as it depends on the number of linear models
identified on operating points close to the operating points used to identify model i.

The algorithm terminates when a desired accuracy € is reached.
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Algorithm 3.1: Operating space partitioning for a non-linear system with n,
inputs. In red, steps that require human-in-the-loop.

input :S
Initialization: N = 2"+, Orthotope partition: S; Vi € N, Identify LM; valid in
S;VieN.

while Loss (PM-net)> ¢ do
Train (NN WF);
// Pruning procedure
for i < 1 to N do
if max (w;) < a then

L Remove model LM;;

if no model removed then

// Segregation procedure

i* < from (3.13),(3.14);

J* « from (3.15);

Define S;«_1,S;+11 — along direction j*;
Identify LM« 1, LM;xy1;

3.3.3  lustration on a toy example

We compare the performance of classic polytopic models (with traditional weighting
functions and no partitioning procedure) and PM-net at estimating the behavior of the
following non-linear system:

y(k) = 0.95y(k — 1) — 0.5p(k — 1) + 0.1u(k) + 0.5 arctan(u(k — 2)?), (3.16)

where y is the output, and p,u are inputs of the system. Assuming we want our model
to be valid on p € [~2,2],u € [-5,5], we identified 4 linear models at points [p;, u;] | €
{[-1,-2.5]",[1,-2.5] ", [~1,2.5] ", [1,2.5] T }. A linear model valid around operating point
[pi,ui] " is defined in the z-domain as:

.
e 1 —0.5271 P(2)
Y= T hgs ( 0.1+0.5f(ui)z_2> (U(z)) ’ (317

where Y (z), P(z),U(z) are the z-domain representation of the output and input signals,
respectively and with

2ui

)= —. 3.18
We consider two weighting functions, the Piecewise-Affine (PWA) function, and the
Double Sigmoid (DS), and we train the neural network-based weighting function NN WF

to combine the linear models.
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Figure 3.5: Results after 6 iterations of Algorithm 3.1.

Figures 3.5 illustrates the different steps of Algorithm 3.1 for our non-linear system.

In the first iteration, the operating space S is split into four operating regions. Two of
the four models can be dropped as the system behaves linearly along p. In the third
iteration, we train the NN WF and compute the weighted loss L; for the two remaining
linear models. The operating region associated with the worst performing model measured
based on (3.14) is re-partitioned. We analyze the gradient of the weighting function to
identify the cutting direction following (3.15), and observe that the gradient along u is
the largest. Two new linear models are added to enhance the model’s performance, and
new operating regions are defined. The algorithm stops after six iterations after reaching
the prescribed accuracy.

Figure 3.6 compares the performance of the polytopic models with different weighting
functions (Piecewise-Affine: PWA, Double Sigmoid: DS and PM-net). The mean squared
error (MSE) is used to compare their performance at estimating the non-linear system
defined in (3.16). The system is simulated for 500 seconds, with a sampling frequency
of 20Hz, and the MSE is computed based on the error between the actual output of
the system and the estimate at the sampling points. The PM-net model has improved
performance compared to the other techniques for the same number of linear models,
even though no information about the identification process of the linear models or the
structure of the non-linear system has been given to NN WF.
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Figure 3.6: Performance of the polytopic models and a linear model (LM) on estimating the
response of the non-linear system (3.16). MSE for LM: 1.5264, PWA: 0.9426, DS: 0.9210, PM-
net: 0.1060
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3.4 NUMERICAL EXPERIMENTS

In the following, we present three DC-DC converters, with different local controllers and
different topologies, modelled with PM-net, and compare their performance with other
modelling techniques.

3.4.1 PID-voltage-requlated DC-DC' boost converter

Figure 3.7a illustrates a PID-voltage-regulated DC-DC boost converter with a simple
topology, but non-linear dynamics that strongly depend on the operating point [Frances
et al., 2019].

The Pulse-Width Modulation (PWM) produces a binary signal s that triggers the
switch. We consider an ideal switch and an ideal diode, i. e., there are no losses or forward
voltage drop. We also do not consider saturation of the magnetic cores. When the switch is
open, the diode is conducting and the governing dynamical equations for the converter are
equations (3.19). On the other hand, when the switch is closed, the dynamical equations
are equations (3.20).

di  v—v,— Rpi

— = 3.19a
dt L ( )
dv, 1 -1 C C C
o _ “ReZ ) vo+ (1= RRL= )i+ Ro—v
dt C(1+RC/RLoad) Rioud ‘L ° © L ‘L
(3.19b)
di v—Rpi
_—= 3.20a
dt L ( )
dv, —v,
— = 3.20b
dt ¢ (RLoad + Rc) ( )
RIoad Inductor L 0.5 mH
Inductor losses Ry, 0.1 Q
Capacitor C 470 puF
Equivalent series resistor R¢ 0.01 Q
s Uref Switching frequency fs 100 kHz
| é Proportional term P 0.005 V1
U, Integral term I 120 V—1s—1
Sanuclicy Derivator term D 1075 V—1ls
(a) Power converter topology. (b) PID-voltage-regulated DC-DC boost con-

verter parameters.

Figure 3.7: PID-voltage-regulated DC-DC boost converter feeding a resistive load, and with a
reference voltage vy set to 48V.
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Figure 3.8 shows a typical operation of the boost converter, and Table 3.7b the con-
verter’s parameters.

We will derive a PM-net model of the converter and compare its performance with
the switching model, and other polytopic models. Notice that the switching model of the
power converter is capable of representing ripples. One major advantage is that our black-
box model can be run with a larger time step, leading to less computational burden. One
drawback however, is that averaged models cannot represent high frequency dynamics of
the converter, i.e., it cannot represent voltage and current ripples for instance.

3.4.1.1 Ezperiments design and model structure

Model structure

We consider the inputs u = [v, Rreq] | and outputs y = [i,v,] . In the following, we
assume that v € [20,30] V and Rprqq € [20,50] €, that is the operating space of the
power converter.

Simulation setup

We simulate in PYTHON the power converter using the switching equations (3.19)—
(3.20). A digital implementation of the PID controller as well as the PWM are responsi-
ble for producing the signal s, which selects whether equation (3.19) or equation (3.20)
simulates the dynamical system.

Linear model identification

We simulate the switching equations of a power converter, and use the simulation
results as synthetic measurements. However, the methodology proposed to identify the
linear submodels can easily be reproduced on a real power converter. The steps in the in-
put voltage can be performed with a controllable DC voltage source, while the steps in the
load resistance can be performed by connecting and disconnecting a parallel resistor to
the converter. In practice, the dynamics of external devices such as voltage sources or sen-
sors may interfere when taking measurements to identify the system. However, there exist
techniques to remove undesired dynamics by post-processing measurements [Cvetkovic
et al., 2011].

We identify four state-space linear models based on an orthotope partitioning of the
operating space, i.e., u; = [22.5,27.5], ug = [22.5,42.5], us = [27.5,27.5],uq = [27.5,42.5].
For each setpoint u; Vi € {1,---,4}, we design an experiment to gather some measure-
ments on the converter. The experiments are realized with PRBS signals as shown in
Figure 3.9. The linear models are state-space models estimated using subspace method
with time-domain data (N4SID [Van Overschee and De Moor, 2012]).

Neural network-based weighting functions

The neural network is trained using measurements gathered on the converter for inputs
ranging the operating space by connecting/disconnecting parallel resistors and varying
the input voltage source. The normalization function used in NN WF is

Flui(k)) = vi(k) =2 (mai‘;(zz (;)Iiirziz;(iz Gl 0.5> , (3.21)




3.4 NUMERICAL EXPERIMENTS 41

25 |

T
sl

20 ) ) L L Il - - 1

40
30

L AR RAJ
slaaalyy

[A]
TTTT[TTT
(

o

d [pu]
(@)}
lllllll

1 1 1 1 | 1 1 1 1 | 1 1 1 1 I

0.00 0.01 0.02 0.03 0.04 0.05

Time [s]

Figure 3.8: Typical operation of the PID-voltage-regulated DC-DC boost converter simulated
using the switch equations, where we recall that d is the duty cycle.
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Figure 3.9: Identification of linear models for the PID-voltage-regulated DC-DC boost converter.
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where the operators min; and max; correspond to minimum and maximum values over all
the samples k, ensures that every input v;(k) € [-1,1] Vi € {1,--- ,n,}. Also, the MLP
layers for each input v;(k) correspond to a linear layer R + R19, an hyperbolic tangent
activation function, and another linear layer R — RY where N denotes the number
of linear submodels. The weights obtained are shown in Figure 3.10 and compared with
weights produced by the Piecewise-Affine function.

3.4.1.2 Results

We use the coefficient of determination (3.9) to compare the different modelling tech-
niques. We compare in Figure 3.11 the performance of the polytopic model with the neu-
ral network-based weighting functions and the PWA weighting functions illustrated in
Figure 3.10 and a linear model. The R? = [RZ , R?] scores are [0.887,0.906],(0.794, 0.848]
and [0.727,0.652] for the polytopic model with the neural network-based, PWA weighting
function and the linear model, respectively. It shows that the polytopic model with the
neural network-based weighting function outperforms the other models, even after the
first stage of the Algorithm 3.1.

We then follow the Algorithm 3.1, and set the target accuracy € as an R? score greater
than 0.9 for both output variables. After 6 iterations, we reached an R? = [0.907,0.925]

with 7 linear submodels. The results are shown in Figure 3.12.
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Figure 3.10: (a) PWA and (b) neural network-based weighting functions.
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3.4.2  PI-Voltage-regulated DC-DC' boost converter

We analyze another voltage-regulated DC-DC boost converter regulated with a PI con-
troller and feeding a current sink that is represented in Figure 3.13a. One can find the
converter’s parameters in Table 3.13b.

3.4.2.1 Ezxperiments design and model structure

Model structure

The converter has three inputs and two outputs. We consider G-parameters models
for the linear submodels. The G-parameters model is a two-port representation of a
converter. Each block in the two-port representation corresponds to a transfer function,
mapping one input to an output. The inputs and outputs of the G-parameters models are
U = [Vin, Pout, k| T and ¥ = [Vout,iin] |, Tespectively, with k = % the reference output
to input voltage ratio and pous = ’U;Z{ iout the reference load power. The operating space
considered is v;y, € [30,40]V, pour € [10,210]W, k € [1,2]. The G-parameters model of the

converter defined in the z-domain represented in Figure 3.13a is given by:

(fiout)_(G(z) Z(2) vaef(Z)> ﬁ::t (3.22)
Lin Y(Z) H(Z) Gi—vref(z)

k

The control loop that sets the duty cycle, as well as the PWM modulator providing
the switching signal, are included in the two-port model (Gy—yref(2), Gimvref(2)). The
inputs of the G-parameters model are small deviations from a specified operating point,
i.e., Uy = Vi — Vi, where Vj, is the value of the input voltage for the specified operating
point. v;;, corresponds to the input DC voltage, vy is the output DC voltage and UZ,Z{

the reference setpoint for the output DC voltage. i;, is the inductor current, and 7y,

iin R L + Inductor L 1 mH
Ro i
out Inductor losses Ry, 0.1 Q
Vin L > C) Vout .

" \7 Capacitor C 810 pF
Equivalent series resistor R¢ 0.01 2
il i ) Switching frequency fs 50 kHz

PWM n OXQ Vout ,
' Proportional term P 0.006 V1

: T Tef :
l___C_O_nii)l__________________v_‘"_‘t__: Integral term [ 0.436 V—1s—1

(a) Power converter topology. (b) Pl-voltage-regulated DC-DC boost converter

parameters.

Figure 3.13: PIl-voltage-regulated DC-DC boost converter feeding a current sink.
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corresponds to the load current. In steady-state, vy = U;Z{ if there is no saturation and
lin = %ﬂfzut, where 7 is the converter efficiency, which depends on the operating point.
Simulation setup

A detailed model of the converter is built in TYPHOON HIL, a real-time digital simu-
lator of power converters. We use the simulation results as synthetic measurements.
Linear model identification

Each transfer function composing the G-parameters model (3.22) is identified by setting
all the values of u to zero except one where we apply a small-disturbance. The small
disturbance corresponds to a PRBS signal. Each transfer function corresponds to Output-
Error (OE) models. The parameters’ identification of the OE models depends on the
user choice. In this work, we use the function OE in MATLAB. The order of each transfer
function is then reduced using the function BALRED based on the Hankel singular values,
i.e., states with low energy are dropped.
Neural network-based weighting functions

The normalization function used in NN WF is the same as in (3.21). The MLP layers for
each input v;(k) correspond to a linear layer R + R% an hyperbolic tangent activation
function, and another linear layer R +— R where N denotes the number of linear
submodels.

3.4.2.2 Results

Figure 3.14 compares performance of a single linear model, a polytopic model with a
double sigmoid weighting function and PM-net. The loss function:

! N 2 . ~ 2
1 Vout,i — Vout z) Yin,g — Ying
Loss = — _— ] 4+ = , 3.23
l lz; < V;)ase Ibase ( )

where Viuse and Ip,se correspond to base values defined as the maximum value of vy i
and 7;;, ; calculated over the number of measurements [ of the dataset, respectively, where
1 = 0,..,0 is the index of the measurement, is computed for the different modelling
techniques with the true response of the system. The linear model scores 2.071, the
polytopic model with double sigmoid weighting function (DS) scores 0.666 while the
PM-net outperforms the two other modelling techniques and get a loss value of 0.155.
Furthermore, PM-net only needs five linear models while the double sigmoid (DS) uses
eight. It can be observed that, while the input current response (I;;,) matches well the
ground truth, the output voltage response (Vo) is less accurate. This probably stems
from the design of the loss function that promotes the current response over the voltage
response. The loss function can be modified to give more weight to the output voltage
response.
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3.4.3 Industrial DC-DC power converter

The power converter illustrated in Figure 3.15 is a DC-DC two-port bidirectional power
converter, i.e., the power can flow in both directions. The DC-DC converter has been
designed to regulate a power transfer in order to balance each port voltage around 380
V. If the voltage is greater on the input port than on the output one, the power should
flow from the input toward the output and conversely. This behavior is designed for DC
microgrid applications where some bus voltages have to be regulated to stay close to a
specified nominal voltage. The user can provide some threshold voltages to the control
algorithm that define the direction of the power flow, and a deadband where there is no
power flowing.

3.4.3.1 Ezperiments design and model structure

Model structure

The DC-DC converter has two inputs and two outputs. We consider G-parameters
models for the linear submodels. The G-parameters model in the z-domain for the DC-
DC converter represented in Figure 3.15 is given by:

<f),mt> _ <G(z) Z(z)) (@-n) (3.24)
iin Y(z) H(z2)) \Gow

The inputs of the G-parameters model are small deviations from a specified operating
point. The operating space is vy, € [360,390]V, ipy € [—6, 6]A.
Simulation setup

We do not have access to the control algorithm directly, but we have access to the actual
controller board with the associate firmware already loaded on the chip. Furthermore,
we know the topology of the power converter. In order to collect measurements for the
identification of the linear models, we use C-HIL simulation techniques, which interface

I in 1 out

Figure 3.15: Industrial DC-DC power converter.
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the local controller with a real-time digital simulator. Compared to what we presented in
Section 3.4.2 where the controller and the electrical circuit were modelled in TYPHOON
HIL, in this case, only the electrical circuit is implemented in TyPHOON HIL, while the
controller is the actual one. C-HIL simulations have been used in Liu et al. [2009] to
help to tune the parameters of a new controller or in Tarraso et al. [2021] to validate the
architecture of a grid resynchronization algorithm for grid forming inverters. The fidelity
of the C-HIL simulation compared to a complete hardware system has been studied and
confirmed in Chai et al. [2013]. C-HIL simulations are therefore accurate, and ease the
process of collecting measurements for the identification of the linear models.
Linear model identification

To collect measurements, controlled current and voltage sources are added in the C-
HIL emulator to excite the inputs with external PRBS signals. Each transfer function
corresponds to Output-Error (OE) models identified using the function OE in MATLAB.
The order of each transfer function is then reduced using the function BALRED based on
the Hankel singular values.
Neural network-based weighting functions

The normalization function used in NN WF is the same as in (3.21). The MLP layers for
each input v;(k) correspond to a linear layer R + R2°, an hyperbolic tangent activation
function, and another linear layer R?® — RY where N denotes the number of linear
submodels. Notice that the architecture of the neural network differs from one application
to another. A common practice is to start with a small number of neurons and layers
and increase the complexity of the neural network if the performance is not satisfactory
during the first step of the procedure. Then, once the structure is fixed, it is kept the
same for the rest of the procedure.

3.4.3.2 Results

We compare the performance of our PM-net with that of C-HIL modelling (controller
interfaced with a digital simulation of the electrical circuit) and true measurements col-
lected during a specific experiment. The converter is supplied with a constant input
voltage, and its output port is connected to an R-L series circuit at time 0s. The output
current I,,; is the response of the R-L series circuit to a voltage V.

In Figure 3.16, we observe that PM-net exhibits a greater voltage nadir than in mea-
surements and C-HIL modelling. However, the overall behavior is similar, and the steady-
state values are less than one volt apart for output voltage V,,; and superpose for the
input current I;,. We also see that PM-net is not capable of representing fast transients
caused by quick changes in the duty cycle as it is an averaged model. Nevertheless, the
primary objective of PM-net is rather to describe the general behavior of converters when
connected to various system configurations, and not predicting fast transients that are
irrelevant for system-level studies.

o1
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Figure 3.16: Comparison between the measurements and two different modelling techniques when
the industrial DC-DC converter is connected to R-L series circuit.
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3.4.4  System-level studies

In the following, we present three different models of small systems composed of different
components where a PM-net model has been integrated.

3.4.4.1 Battery-DC-DC converter-DC motor system

The first system is composed of a battery, the PM-net model developed in Section 3.4.1,
and a DC motor that is illustrated in Figure 3.17. The battery is modelled using Trem-
blay’s model Tremblay and Dessaint [2009]:

Ey— Ri — Kﬁ(f idt + ifitered) + Aexp(—B [ idt) if discharging,

EO — Ri — Kﬁ([@dt) — Kw%(iﬁltered) + AeXp(*B f ’l/dt) if Charging,
(3.25)

where R is the internal resistance, ) the battery capacity, igiered the filtered current,
f idt the discharge capacity and Ey, K, A, B parameters that are identified to match a
nominal voltage of 48V and a given discharge curve [Colot et al., 2023a|. The DC motor
is modelled as in Konstantopoulos and Alexandridis [2015]:

La% = v, — Raio — Kew, (3.26a)
Jw = Kgi, — bw — T, (3.26b)

where L,, R, are the armature inductance and resistance, respectively, K. is the motor
constant, J the motor inertia, b the friction coefficient and 77, the load torque. This
system is solved sequentially. The system is initialized with a value for v and Rpqq. The
converter outputs the input current ¢ and the output voltage v,. The input current ¢ is
used in the battery model (3.25) to obtain the input voltage v, while the output voltage
is used in the DC motor model (3.26) to obtain the output current i,. One can then
build an equivalent resistance R qq = ;’—Z that is fed into the DC-DC boost converter
model. Assuming proper initialization of the state variables, the sequence is described in
the following:

vo(k), z(k:) Converter(v(k), Rroad(k)) (3.27a)
v(k + 1) = Battery(i(k)) (3.27b)
io(k + ) Motor (v, (k)) (3.27¢)

Vo (k)
Rpoad(k +1) = kD) (3.27d)

In Figure 3.18, we show the simulation results of the small system, when the PID-
voltage-regulated DC-DC boost converter is modelled using the switching model, and
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Figure 3.17: Hlustration of the small system.

when it is modelled using our multimodel approach. One can see that our multimodel
approach describes accurately the dynamics of the small system. Notice that, compared
to the switching model, the multimodel approach is less computationally expensive. The
switching model requires a time step of 1us (the switching frequency of the converter
is 100kHz) to accurately represent the dynamics of the system, while the multimodel
approach can be run with a time step of 20us. This is a significant improvement in terms
of computational burden. However, our multimodel approach cannot represent the ripples
since this is an averaged model.
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Figure 3.18: Performance of the PM-net model developed in Section 3.4.1 for system-level analysis:
small DC system with a battery, a converter and a DC motor.
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3.4.4.2  Battery-DC-DC' converter-RL load system

We compare the PM-net model developed in Section 3.4.2 with the C-HIL model on
a system comprising the converter illustrated in Figure 3.15, a lithium-ion battery, a
variable current source and a variable R-L series load. The battery is modelled using
Tremblay’s model (3.25). The system is represented in Figure 3.19.

We conduct a test where we vary the values of three components over time and observe
the voltage and current responses. Initially, we consider a simple R-L series circuit with
varying values, followed by setting the inductance to zero to obtain a pure resistance load.
Then, we add a current source to reverse the power flow to simulate battery charging.
Finally, we reconnect a R-L series. Results are shown in Figure 3.20. The only slight
discrepancy is observed in the time interval between 4 and 5 seconds, where PM-net
slightly underestimates the transient rise of the output voltage but eventually reaches
the same steady-state value. As for the input current I;,, PM-net follows the general
trend perfectly. Despite not being trained with data from the converter response when
connected to a R-L series circuit and a battery, PM-net accurately describes the general
behavior. This indicates that the model performs reliably under different conditions,
confirming it as a viable option for system-level studies.
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Figure 3.19: Small test system comprising the converter illustrated in Figure 3.15, a lithium-ion
battery, a variable current source and a variable R-L series load.
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Figure 3.20: Comparison between PM-net and the C-HIL modelling technique when the DC-DC
converter of Section 3.4.2 is integrated into a small DC system.
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3.4.4.3 HyPoSol system

The HyPoSol (for Hybrid Power Solution) system illustrated in Figure 3.21 is a multi-
component system designed to maximize the use of renewable energy. It uses the battery’s
flexibility and solar production to feed electrical loads. When both sources are insufficient,
the system can connect to the electrical grid with the AC-IN port of the three-port con-

verter (Sierra).

The challenge here is to ensure the stable operation of the complete system while
each component has its own constraints for continuous operation or stabilizing after a
contingency event. The HyPoSol system may be set in many different configurations that
can be met at customer sites. The modelling tool helps to investigate the stability of
the different possible configurations without relying on time-consuming and expensive

real-world tests.

PV y
inverter -~
Sierra jAC l
out
P — €
p ~ 'rv —
~ = = ~n
¢ L
iPC s
—7~ 2 -

Figure 3.21: HyPoSol system representation with the physical system on the left and the

schematic of the overall model on the right.
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The HyPoSol system is composed of three different components: a photovoltaic (PV)
inverter, a Lithium-Ion battery, and a three-port converter (Sierra). The Inview controller
is in charge of sending setpoints to the three-port converter and acts as a supervisory
controller.

PV inverter

For the PV inverter, we do not have inside details of the inverter’s structure or the
control algorithm. Therefore, we will derive a PM-net model. We are interested in how
the inverter’s current (i4%) changes when the AC out frequency (fA¢) changes. The

following equation, defined in the z-domain, expresses the transfer function relating i2.¢
with fAC:

-AC AC

Lout = F(Z) out » (328)

where F(z) is a single input, single output (SISO) system. There is a non-linear depen-
dency between 4G and fA¢. Indeed, if f2¢ increases and goes above 50Hz, i49 decreases
until it eventually reaches zero. A further increment in fout has no impact on .G as the
current cannot be negative. If fA¢ goes below 50Hz, i2 does not change. We collect
measurements on the PV inverter to identify a linear system G(z) as an estimate of
F(z) around a given operating. However, G(z) can only be valid in the neighborhood
of the operating point at which the measurements were collected. The aim of the Hy-
PoSol system is to control the battery current by modulating the AC-OUT frequency.
A local estimation of F'(z) is therefore not accurate enough, and one needs to rely on a
large-signal model such as our multimodel approach.

The linear models G;(z) Vi € N are identified using the OE function in MATLAB.
To create the perturbation signals, we use a grid simulator connected to the output
port of the PV inverter to modulate the frequency while we measure the inverter’s
current. We identified five linear models around five different operating points fﬁg €
{47.5,50,51.5,52.5,53}. The results comparing the measurements with our PM-net model
are shown in Figure 3.22.

Battery

The battery is modelled according to the equations (3.25) and the parameters are
tuned to match the discharge curve of the actual battery.
Three-port converter (Sierra)

The Sierra converters impose an AC- OUT frequency fA¢ for reducing the inverter’s
We assume that f settles much faster than iAC

Sut» as the Sierra
quickly modulates the frequency. Therefore, we can neglect the Sierra dynamics. However,

output current 72} Out

we implement the control algorithm embedded in the Sierra and postulate that once the
new frequency setpoint is computed, it is directly applied to the AC-OUT port. The
control algorithm has the following form:

fout - (vfl(cltt’vdc) (329)

where v, is the voltage setpoint provided by the supervisory controller (Inview).
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Figure 3.22: Comparison between the PM-net PV inverter model and measurements for different

values of fA¢.

The DC current i”¢ is computed based on the assumption of energy conservation from
AC-OUT port to DC port:

i€ = il .30
where v/}¢ is assumed to be constant and equal to 230V.

Supervisory controller (Inview)

The Inview algorithm is emulated and sends a command signal (v}.) to the Sierra
converter. The AC-OUT frequency setpoints are sent every second after receiving the
measured battery’s terminal voltage. The battery’s terminal voltage is updated every
millisecond after the system state is computed.

Control logics and results

PV inverters and AC loads are connected to the AC-OUT port in the HyPoSol system.
The battery, connected to the DC port, charges if the solar production exceeds the load
consumption. The battery can also be discharged to feed the AC loads if the solar output
is insufficient. The Sierra modulates the AC-OUT frequency to control the battery charges
and discharges. Two control logics exist to control the power going into the battery:
one can set a constant current (CC) or a constant voltage (CV). The following results
introduce these two controls (CC and CV) and how Sierra modulates the frequency f45.

Constant voltage mode (CV): It is possible to set a constant voltage to control the power
entering the battery. The DC voltage at the battery’s terminal rises during charging
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Figure 3.23: Comparison between HyPoSol model and measurements. (a) Constant voltage set-
point of 52V and maximum active power from PV inverter of 3kW. (b) Constant current setpoint
of 30A and maximum active power from PV inverter of 3kW.

until it reaches the constant voltage setpoint. Then, the Sierra converter modifies the
frequency f;}g to curtail solar production. Since the PV inverters have a certification for
grid interaction, their power output are reduced if the frequency is higher than 50Hz. To
compare the model outcomes with the measurements, Figure 3.23a displays the frequency
and active power entering the battery (Phqy) in that particular scenario. It also shows
the DC voltage at the battery’s terminal.

The DC voltage at the battery terminal equals 51.2V when there is no solar production.
The DC voltage setpoint for the constant voltage mode is set to 52V. After 200 seconds,
the PV panels start injecting power into the battery (Pye; on Figure 3.23a). The battery’s
terminal voltage rises due to the inrush current and exceeds the DC voltage setpoint. The
Sierra converter modifies the frequency to reduce the power injection. The initial portion
of the frequency curve has a strong slope because the solar output is promptly reduced
to lower the DC terminal voltage. After that, the frequency slowly rises to reduce the

solar power gradually and to maintain the battery voltage at 52 V.
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In Figure 3.23a, one can see the quick DC voltage rise once active power enters the
battery. This is due to the battery’s internal resistance, which causes a voltage rise due
to the inrush current. Because of that, the DC voltage passes above the voltage setpoint
imposed by the Inview control algorithm, which forces the Sierra to increase the AC-OUT
frequency. In this case, the Inview controller did not play a significant role since the DC
voltage setpoint is constant throughout the simulation. In the second case in which we
consider a constant current, the Inview controls the system by dynamically adjusting the
DC voltage setpoint.

Constant current mode (CC): In the second test, we set the maximum current to 30A
on the DC side (around 1500W); the other parameters remain the same. The Inview
controller computes v}, which is applied by the Sierra converters. To take into account
the current limit, Inview estimates the battery impedance and compute v, based on this
impedance and the maximum current.

Since the current in the battery is controlled by a dynamic DC setpoint computed by
the Inview controller, the frequency increases to limit the current flowing into the battery.
Due to dynamic changes in the DC voltage setpoint, the f4¢ oscillates before reaching
an equilibrium. While the frequency oscillates, it induces oscillations in the active power
and DC current.

The results of the simulations and measurements on the real system are presented in
Figure 3.23b. The model outcome predicts the system response, but some inaccuracies
can be observed during transient. However, the final steady-state value is the same. It
is explained by some missing dynamics in the Sierra converters model which should be
refined.

3.5 MODIFIED STATE UPDATE TECHNIQUE

In this section, we propose a modified state update technique to improve the performance
of the polytopic model when abrupt changes in the input occur.

3.5.1 Limitations of input-dependent weighting functions

One inherent drawback with our approach, and more specifically, our input-dependent
weighting function is that it leads to a suboptimal combination of submodel responses
during jumps in the inputs. This can be illustrated with the SMIB system introduced
earlier. When the input signal switches rapidly, the weights associated with each linear
submodel also changes quickly since the weighting function only depends on the input.
Hence, the state of the non-active linear model, when it becomes active, might be far
away from the operating region where the linear submodel was identified. This creates
jumps in the states and the outputs of the global model, as shown in Figure 3.24.

This drawback is well-known, and techniques such as dynamic weighting function [Frances
et al., 2019], in which the input is filtered, has been proposed to mitigate this issue. How-
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Figure 3.24: Phase portrait comparison between different modelling techniques.

ever, it can come at the cost of losing interpretability, as the weighting function is no

longer a static function of the input, but also incorporates the dynamics of the input.

Therefore, for a given operating point, it might be challenging to clearly identify which
linear submodel is mostly responsible for the global model response. In the following,
we proposed a different approach to mitigate this issue by introducing a modified state
update technique.

3.5.2  Proposed approach

In our framework, the weighting function only depends on the inputs u. This makes
the partitioning in different operating regions, and the realization of experiments on the
system, much easier. However, the polytopic model may perform poorly when the input
changes quickly, as shown in Figure 3.24. In the following, we investigate a state update
technique to smooth out the response of the polytopic model for abrupt changes in the
input.

The idea is to find the state X°(k) at every step k such that the distance between the

output trajectory of the linear submodel and the one of the polytopic model is minimized.
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First, define zpys(k — 1) € RT"™ z;(k — 1) € RT™ as the vectors that contain the T
previous outputs of the polytopic model and of the linear submodel i, respectively:

ypu(k—=T) yi(k=T)
aong(b—1) = [YPMETHD Ly [y T (3.31)
ypu(k—1) yi(k—1)

We consider the sequence {X;(k —T),%X;(k—T+1),...,X;(k— 1)} obtained via (3.2) that
yields the output sequence z;(k —1). We obtain the initial state X{*(k—T') by minimizing
the difference between the output vector of the linear submodel 7 and the output vector
of the polytopic model:

5 (k—T) = arg _ r(%inT) lzpar(k — 1) — zi(k — 1)||%, (3.32)

7

where z;(k — 1) is a function of X;(k — 7). Using (3.2), we have

Cz D; ﬁi(k - T) H;
C;A; . CiB; D a;(k—T+1 H;
Zz(k_l) = Xi(k—T)+ ) u ( + )
Ci(A)T1 C;AT2p; D; a;(k — 1) H;
(3.33)

that can be written as
Zl‘(k — 1) — Ri = Oziz(k‘ — T), (3.34)

with O; € RT"™*"e.i the observability matrix and R; € RT™ is easily obtained from (3.33).
Therefore, we estimate X; by replacing z; with zpy; in (3.34) and then solving for x;. This
gives:

-1
x5k —T) = (0]0;) O] (apu(k —1) - Ry), (3.35)
provided that O, O; is invertible, which allows one to obtain (k) as:

T
%P°(k) = ATRS(k—T) + > A7 Bidti(k — ). (3.36)
J=1

The estimated state X5°(k) is then used to obtain the next state X;(k + 1) following the
update equation:

Xi(k +1) = Ai (1 — wi(u(k)))x5 (k) + wi(a(k)xi(k)) + Biti(k). (3.37)



3.5 MODIFIED STATE UPDATE TECHNIQUE

Notice that, for weighting functions that can take any values between 0 and 1, two
linear submodels may have weights equal to 0.5. In that case, there is no clear active
linear submodel, rather two partially active linear models. Hence, equation (3.37) might
badly impact the overall dynamics of the polytopic model. For that reason, we perform
the state update (3.37) if the weight associated to one specific linear submodel is below a
threshold value. The threshold value is set to 0.1, i.e., if the linear model participates to
only 10% of the global model output, its state is updated using equation (3.37). Notice
that the value of T should be large enough such that the observability matrix O; is full
rank. Increasing the value of T' will increase the computational burden, and tends to
smooth the response of the polytopic model. However, if T' is too large, the state update
technique will not be able to follow the dynamics of the system.

In Figure 3.24, we show the state trajectories in a phase portrait of the polytopic model
with the PWA weighting function with and without the proposed state update technique.
One can observe that the state update technique prevent jumps from happening.

The R? scores for the linear model, the DS polytopic model and the DS polytopic
model with state update are [0.673,0.047], [0.924,0.768], [0.963,0.891], respectively. The
simulation results are shown in Figure 3.25, when the simulation time step is set to 0.01s.
The modified state update technique helped improve the performance of the polytopic
model.

Notice that, by applying the state update technique, we also lose interpretability
as equation (3.37) becomes difficult to interpret. However, compared to the technique
proposed in [Frances et al., 2019], the input-dependent weighting function remains un-
changed, and one can easily apply our partitioning procedure.
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Figure 3.25: Comparison between a linear model and polytopic models with and without the
modified state update technique.



CONCLUSION AND PERSPECTIVES

4.1 CONCLUSION

In this part, we have presented a novel approach to derive models of power converters
that are valid for system-level studies. The proposed multimodel approach (PM-net) com-
bines linear models responses with neural network-based weighting functions. It tackles
two major challenges of the multimodel approach; how to design the weighting functions,
and how to partition the operating space. The weighting functions are feedforward neural
networks that are trained based on measurements collected during the operation of the
converter, and they depend only on the inputs. They are designed without any prior
knowledge of the power converter topology. The multimodel can be further improved by
applying a partitioning procedure based on the post-analysis of the trained neural net-
work. Linear submodels can be removed if the associated weights never reach a specified
threshold values when screening over inputs belonging to the operating space. On the
other hand, the analysis of the weighting functions can suggest in which operating regions
of the operating space one can add new linear submodels to increase the performance
of the multimodel. Compared to other partitioning procedure such as LOLIMOT, our
procedure is less computationally expensive as it requires identifying maximum only two
new linear models at each iteration. We first tested and validated our approach at mod-
elling three different power converters. Then, we validated our approach for simulating
small systems, as the goal is to derive large signal models valid for system-level studies.
The proposed approach has been validated on three different power converters, and the
results show that the proposed approach outperforms other modelling techniques. We
also emphasized that our multimodel approach is interpretable, since it is based on linear
models and the weighting function depends only on the inputs. Interpretability is an im-
portant aspect when analyzing and simulating small systems, as it gives intuition on how
the system behaves around different operating points, and can help to identify causes of
instability.

4.2 PERSPECTIVES

The scope of this part was to solve Problem 1.1. Power converters are most often non-
linear and time-varying systems. We take care of the time-varying characteristic by
considering averaged models of power converters, i.e., models that are not capable of
representing ripples. The proposed model can capture the non-linear response of the sys-
tem, and we illustrate better performance compared to linear models at simulating the
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power converter response. However, power converters are complex electronic devices, and
their controllers can contain advanced logics in order to properly drive the switches to
reach target performance. Those controllers often contain if-else rules to properly drive
the converter in some specific situations (during start-up, if the converter overheats, if
something is happening in the network, etc.). Since we aim at modelling the closed-loop
system (the electrical circuit and the associated controller), the overall system can exhibit
very different dynamics caused by some specific control logics, or saturation of electri-
cal components, and may even change depending on the network conditions. It is very
challenging to derive a model that is capable of representing all those dynamics, and one
needs to carefully think about the structure of the overall model, the inputs and outputs,
the order of the system, etc., to properly represent the behavior of the power converter.
Our multimodel approach can fail at properly representing the behavior when facing
some of these particular converter’s dynamics, in particular some static non-linearities.
It is something we have observed in Figure 3.20, where the industrial DC-DC power con-
verter was integrated into a small system. The controller of the converter has a deadband
that is not properly represented by the multimodel. On the bright side, our approach can
be combined with other modelling approaches. For instance, considering block-oriented
structure such as Wiener-Hammerstein model, one can imagine combining our PM-net
structure with saturation blocks to represent static non-linearities. Our multimodel ap-
proach is also versatile. We emphasized the importance of having an input-dependent
weighting function for obtaining an interpretable model. However, the framework can
also accommodate a weighting function that depends on the state of the system. But,
this comes at a cost, as it increases the model complexity, and the interpretability is
lost. Furthermore, the partitioning procedure becomes difficult to implement in practice
as the operating space will consist in, not only the inputs, but the states of the system as
well. Although we have shown that our approach is capable of modelling the dynamics
of power converters, it is important to note that the proposed approach is not limited
to power converters, and can be applied to any non-linear system. The choice of an
input-dependent weighting function particularly suits power converters as these systems
have fast dynamics and quickly converge to a steady-state. However, other systems share
similar characteristics, and the proposed approach can be applied to them as well. For
instance, this approach could be applied to model the dynamics of an entire distribution
network at the point of connection with the transmission network. It can also be applied
to represent the behavior of an aggregation of wind turbines at the point of connection
with the electrical network. It is also important to keep in mind that the design choices
for our multimodel approach have been driven by the application. We wanted an inter-
pretable, computationally lightweight and measurement-based model because the power
converters’ models are intended to be used in system-level studies, and it is challenging to
gather detailed information about the converter’s structure. For a different application,
the same multimodel approach can be used, but some of these constraints can be relaxed
which could enhance the performance of the model.
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VOLTAGE REGULATION IN DISTRIBUTION NETWORKS






NOTATIONS

X Column vector
X Matrix
X Set
(.) Transpose of a vector or a matrix
(), % Time derivative
()l Euclidean norm
zero vector of appropriate dimension
all-ones vector of appropriate dimension
Identity matrix

Real numbers

Set of indices for voltage-regulated nodes
Set of indices for DERs
vector of complex powers

0

1

0

R

N Set of indices for nodes
M

g

S

P

q; vectors of active and reactive powers consumed by non-controllable devices

P.q vector of active and reactive powers injected by controllable DERs
v,V voltage phasor (magnitude and angle), voltage magnitude
v, U approximate voltage magnitude, voltage magnitude measurement

vector of decision variables

u
VA% lower and upper voltage bounds






BACKGROUND AND PROBLEM STATEMENT

The power system is commonly classified into three different subsystems; the transmis-
sion system, the subtransmission system and the distribution system [Kundur, 1994|. The
transmission system forms the backbone of the power system; it operates at the high-
est voltage level, and is responsible for transmitting bulk power from the power plants
to the subtransmission level. The subtransmission system is operated at lower voltage
levels and supply large industrial consumers and distribution substations. Notice that,
in some systems, there is no clear differentiation between the subtransmission and the
transmission system. Finally, distribution systems are the medium-low voltage networks
supplying small industries to residential and commercial customers.

The development and improvement of power converters, coupled with environmental
policies and carbon emission reduction targets, have led to the integration of distributed
generation into the distribution systems. Distributed energy resources are small-scale
power generation technologies that are located close to the load they serve. Distributed
energy resources can span from renewable energy sources such as solar photovoltaic
(PV) systems, wind turbines, or fossil fueled engines [Hidalgo et al., 2010]. This inte-
gration brings some challenges for the operation and the planning of distribution net-
works [Walling et al., 2008|,[Alam et al., 2020]. In particular, the penetration of renew-
able energy resources creates bidirectional power flows raising voltage and current issues
that traditional control techniques can no longer solve. These challenges have led to the
development of active distribution networks; distribution networks embedding systems
to control a combination of distributed energy resources (DERs) in order to guarantee
the safe operation of the network [D’Adamo et al., 2009].

In this thesis, we focus on voltage regulation in distribution networks, and propose dif-
ferent control architectures to steer DERs power setpoints in order to maintain voltages
within admissible limits across the network. In the following, we provide some illustra-
tions of the voltage issues that one can encounter in distribution networks with high
penetration of DERs, and why the traditional control techniques may fail at resolving
those issues.

We aim at studying the voltage magnitudes throughout a distribution network and
analyse the impact of DERs and how the traditional voltage regulation methods work.
We are interested in power flow analysis that involves the calculations of the power flows
and voltages for specific node configurations. This is a steady-state analysis, and it does
not take into account the dynamics of the different system’s components. In this part,
we assume that dynamics of system’s components are much faster than the dynamics
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responsible for voltage issues, typically, load patterns and renewable energy productions.
This assumption will be discussed in the final conclusion.

5.1 POWER FLOW ANALYSIS

Let us consider an electrical distribution system with N + 1 nodes and hosting G
DERs; these may include inverter-interfaced photovoltaic systems, energy storage sys-
tems, variable-speed drives, and electric vehicles, or small-scale generators if any. We
consider a balanced three-phase system, this allows us to use a single-phase equiv-
alent. The node 0 is taken to be the substation or the point of common coupling,
while N := {1,..., N} is the set of remaining nodes. We consider a steady-state model
where voltages and currents are represented in the phasor domain. Accordingly, let
v, = el € C, vy, := |k, and iy, = |ig|e/¥* € C the line-to-ground voltage and current
injected at node i, respectively. Moreover, the voltage at node 0 is set to vy = Vpel®.
Using Ohm’s Law and Kirchhoff’s Laws, one has the usual phasor relationship that can
be written in terms of the nodal admittance matrix:

)=o) ()

where v € C¥ collects the nodal voltages {vi}renr, i € CVV collects the nodal injection
currents {iy }ren, and Y € CVXN € CV, and yy € C are based on the series and shunt
admittances of the distribution lines represented by a standard IT-model [Kersting, 2007].
Using (5.1), it is possible to relate complex powers at the nodes N with voltages as

Sner = diag(v) (705 + Y7v°) (5.2)

where Spet = Ppet + jAnet € CV, with p and que vectors collecting the net active
and reactive power injections at nodes N. Note that p,. and g account for both
the powers (injected or consumed) of the DERs and the aggregate powers of the non-
controllable loads that are connected to each of the nodes N. In particular, let p; :=
P11, oin]T € Wooqp == [q1,---an] € W, with compact sets W, € RY and
W, C RY ., be vectors collecting the net active and reactive power consumed at the nodes
by non-controllable devices (positive when the power is consumed). For the G DERs,
consider the vector u = [p1,p2, ..., DG, q1, G2, ---s qg]T collecting their active and reactive
powers (with a positive sign denoting generation). Moreover, let G := {1,..., G} be the
index for the DERs, and define a function w : G — A which maps a DER index to the
node where the DER is connected to. With this notation, note that G, :={i € G:n =
w(i)} is the set of DERs connected at node n € A. Then, the net active and reactive
powers are given by ppetn = Zjegn Pj — Pin and Gnet.n = Zjegn ¢; — qi.n at each n and

Pret *= {pnet,n}ne./\/’a Anet = {QHet,n}neN-
The goal of the power flow analysis is to determine, from equation (5.2), a relation-

ship of the form v = f(Ppet, Anet), Where f : R2V s CV. Such explicit formulation of



5.2 IMPACT OF DISTRIBUTED ENERGY RESOURCES ON NETWORK VOLTAGES

the voltages does not always exist as the system of equations (5.2) may have no, one,
or many solutions. Therefore, we make the following assumption when restricting to a
neighborhood of the nominal voltage profile.

Assumption 5.1 (Mapping in a neighborhood of the nominal voltage profile). There

exists a unique continuously differentiable function H : U x W, x W, — RN such that,
. . OH (u;

Hi(w;p;,q;) = v = |vil, for i € N. The Jacobian Jg(u;p;,q;) := w

Lipschitz continuous. ]

is locally

If multiple solutions exist, we only consider the practical solution, i.e., in the neigh-
borhood of the nominal voltage profile, we restrict the attention to the solution that
leads to high voltages and small line currents. The existence of the map H is based on
the Implicit Function Theorem and the results of, e.g., [Bolognani and Zampieri, 2015,
Bernstein et al., 2018, Wang et al., 2017] for single-phase and multi-phase distribution
networks. Notice that one cannot find an explicit formulation of the map H(u;p;,q;),
therefore, one has to rely on iterative numerical methods such as Gauss-Seidel or Newton-
Raphson |Kundur, 1994] to solve the power flow equations and obtain the voltages and
currents, or use a linear approximation. In this chapter, we will mainly discuss linear ap-
proximations to obtain a voltage model, and will not rely on iterative numerical methods
to resolve power flow equations.

5.2 IMPACT OF DISTRIBUTED ENERGY RESOURCES ON NETWORK VOLTAGES

To illustrate the voltage issues in distribution networks, we consider a simple example
shown in Figure 5.1. The network is composed of 4 different nodes, the substation node 0
which imposes a voltage reference, one industrial node, and two residential nodes where
DERs are connected.

We consider two scenarios that correspond to two different time of the day; in the
morning (P}) when the solar irradiance is low and households consume energy, and
around midday (P?), when solar irradiance is high and the residential nodes act as energy
producers. We consider that the behavior of the industrial node is constant throughout
the day, i.e., always consumes the same amount of power, and that there is no reactive
power consumption or injection.

Traditionally, voltage regulation in distribution networks was achieved using load tap
changers or switchgears. By altering the number of turns of the substation transformer,
the load tap changer can increase or decrease the reference voltage vyg. However, the in-
creasing variability introduced by DERs can shorten their lifespan, and they may become
insufficient to resolve voltage issues [McDonald, 2013].

In Figure 5.2, we show the results of a power flow analysis for the two scenarios
considered, and when a load tap changer (LTC) is used to regulate the voltages through-
out the feeder. When there is no solar production (No PVs), the power flows unidirec-
tionnally from the substation toward the end of the feeder. Distribution network lines
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Figure 5.1: Illustrative example for voltage problems in distribution networks.

are mainly resistive (R/X ratio = 6 in our case study), and active power flows impact
voltage magnitudes. The voltage magnitudes progressively decrease along the feeder, to
reach its lowest point at node 3. If one considers the admissible voltage limits being
[V,V]T =[0.95,1.05], then nodes 1, 2 and 3 present undervoltages. The LTC can in-
crease the voltage at the substation vy to 1.05 by appropriately selecting the turn ratio of
the substation transformer, and increase the voltage level throughout the feeder to ensure
admissible voltage levels everywhere. This type of control works effectively without the
massive integration of renewable-based DERs, since the load pattern is predictible, and
the power is flowing unidirectionnally. On the other hand, when we have solar produc-
tion (PVs), the voltage drops at the first node but increases toward the end of the feeder,
since node 2 and 3 are injecting active power into the network. The power flows in two
directions; from the substation to node 1 and from node 2 and 3 to node 1. The voltage
profile is no longer monotonic along the feeder, and the LTC can no longer resolve the
voltage issues, since we have both undervoltage at node 1 and overvoltage at node 3.
Additionally, even if the LTC can effectively resolve the voltage issue, the increasing vari-
ability of renewable-based DERs impacts the directions of the power flow and requires
many tap changes along the day. This intense usage of LTC can shorten their lifespan
and increase the cost of operating the distribution network.

On the other hand, continuous improvements in power electronics converters cre-
ate new possibilities for the control of DERs, enabling new tools for voltage regula-
tion [Antoniadou-Plytaria et al., 2017]. For instance, reactive power support can be pro-
vided by PV inverters to regulate voltages [Alam et al., 2014|. Reactive power support
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Figure 5.2: Power flow analysis: impact of DERs on voltage magnitudes in a small distribution
network.

does not work well in distribution networks because of the high R/X ratio. However,
it can improve voltage profile at a very low cost. If reactive power support is not suffi-
cient, one can control active power that consists in curtailing active power production to
mitigate overvoltages [Howlader et al., 2020]. This solution comes at higher costs than
reactive power control, but it is also more efficient as we will show in the following.

In Figure 5.3, we compare the voltage profiles without any type of control, with Volt /-
VAR control (reactive power control) and with Volt/Watt control (active power curtail-
ment). In this case, we control only the PV inverter located at node 3. To ensure voltage
profiles are within the admissible values, 12kvAr of reactive power had to be produced by
the PV inverter located at node 3 for the Volt/VAR control, and 3.5kW of active power
had to be curtailed for the Volt/Watt control. Although Volt/Watt control is more expen-
sive, as it requires limiting the active power production and induces profit losses, this is
more efficient and has a bigger impact on voltage profiles compared to Volt/VAR control.

Remark 5.1 (Fairness in optimization schemes of active power curtailment for volt-
age regulation). Notice that, if we control the PV inverter at node 2, we need 4kW of
active power curtailment or 15kvAr of reactive power compensation. This is because the
power injections have a stronger impact on voltage magnitudes for nodes electrically dis-
tant from the substation compared to nodes electrically close to the substation. When it
comes to solving optimization problems to minimize the total usage of resources (active
power curtailment, or reactive power support), this raises fairness concerns as some PV
plants may experience more significant curtailment depending on their locations in the
network [Gupta and Molzahn, 2024]. This fairness can be taken into account by adding
a fairness objective along the main objective function of the optimization problem. This
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Figure 5.3: Power flow analysis: impact of DERs on voltage magnitudes in a small distribution
network.

topic is not covered in this thesis, however, some of the methods proposed naturally embed
fairness in their objective functions.

5.3 PROBLEM STATEMENT

In this thesis, we propose different algorithms to solve the voltage regulation problem
in distribution networks using DERs’ flexibility, i.e., by either providing reactive power
support, curtailing active power or both of them.

We seek to solve an OPF problem for distribution systems to obtain power setpoints
for the DERs that minimize the operational cost (or maximize performance objectives)
for the utilities and the customers, subject to operational constraints that include volt-
age limits, and hardware limits [Capitanescu, 2016]. The cost associated with the util-
ity companies may favor the minimization of system losses or the usage of controllable
resources (e.g., including cost of active power curtailment or reactive power compen-
sation [Dall’Anese and Simonetto, 2016]); on the other hand, customers may want to
minimize the power curtailed by renewables or maximize their revenue by providing an-
cillary services. In what follows, we consider a set of nodes M C N with cardinality
M = | M| where voltages are to be regulated (if the operator would like to monitor and
regulate all the voltages, then M = N). Finally, let &; C R? be a compact set of admis-
sible power setpoints, such that (p;,q;) € U; for i € G. We define U := Uy x Uz X ... X Ug
so that u € U, where u collects the controllable active and reactive power injections of



5.3 PROBLEM STATEMENT

DERs. We propose the following formulation of the OPF problem, which focuses on the
voltage regulation problem:

min Cy(v) + Cp(u)

VvERM ucR2G

vi = Hi(u;p;,q) Vie M
(pis @) € U Vieg

where the functions C, : RM — R and Cp: R2¢ — R have locally Lipschitz continuous
gradients, V and V are predefined voltage bounds that the operator wants to enforce at
nodes i € M, H;(u;py,q;) is the ith component of the function H(u;p;,q;) (specifying
the voltage magnitude v;).

In practice, solving problem (5.3) is challenging since the map H does not have an an-
alytical formulation, and the power flow equations are non-linear, which makes the prob-
lem non-convex. Furthermore, solving problem (5.3) requires collecting non-controllable
power injections at every nodes, which might not be feasible with current distribution
network technology. Hence, in this thesis, we aim at finding algorithmic solutions of
problem (5.3), such that one can obtain DERs setpoints in a time that is consistent
with the distribution network dynamics. We distinguish three different architectures to
find algorithmic solutions for problem (5.3): centralized, decentralized, and distributed
controllers [Morstyn et al., 2018|, that are illustrated in Figure 5.4. Decentralized control
strategies only require local information, and therefore, do not rely on a communication
infrastructure. However, due to the limited information each asset has access to, these
control strategies cannot fully utilise the flexibility of DERs. Centralized control strate-
gies require a complex communication infrastructure, such that each asset communicates
with an aggregator. The aggregator usually requires full knowledge about the system,
and solves complex optimization problems to optimally coordinate DERs power outputs.
Finally, distributed strategies rely on peer-to-peer communication, and leverage problem
decomposition in order for each controller to solve a small optimization problem instead of
a complex optimization problem. Each of these strategies has advantages and drawbacks;
one can obtain better performances if one increase the complexity of the communication
infrastructure and the problem to be solved. In distribution networks, communication in-
frastructures may be non-existent, or data privacy concerns could prevent using control
strategies that require communicating information with neighbors or an aggregator. On
the other hand, in some applications, one may want to prioritize performance over cost of
implementation. In other applications, the size of the system may prevent implementing
a centralized architecture, and distributed strategies may be preferred.

In the following, we propose a centralized, a decentralized and a distributed control
strategy to solve the voltage regulation problem in distribution networks.
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Figure 5.4: Control strategy architectures



CENTRALIZED CONTROLLER

Outline

In this chapter, we present a centralized controller that solves the AC-OPF
problem in real-time to tackle Problem 1.2 introduced in Section 1.2.2. We
leverage the theory of control barrier functions to design a feedback-based
optimization algorithm that ensures anytime satisfaction of operational
constraints. We illustrate the performance of our algorithm through nu-
merical experiments on a single-phase distribution network and for the
optimal regulation of a virtual power plant on a three-phase unbalanced
distribution network. The chapter is organized as follows: in Section 6.1,
we review the literature on centralized control strategies for voltage regu-
lation in distribution networks and introduce feedback-based optimization
algorithms. In Section 6.2, we introduce the feedback-based safe gradient
flow algorithm and illustrate its performance on a single-phase distribu-
tion network. In Section 6.3, we extend our feedback-based safe gradient
flow to solve the problem of optimal regulation of a virtual power plant.

Finally, in Section 6.4, we provide a short summary.

6.1 LITERATURE REVIEW

Traditionally, offline algorithms have been widely used in power system applications
[Molzahn et al., 2017]. In offline algorithms, given some cost function, and model of the
system and some estimates, one can compute the decision variables that are then ap-
plied to the system. In particular, in problem (5.3), one would require a voltage model
H(u;p;,q;), and estimates of the power consumptions p;, q;. Solving an AC-OPF prob-
lem to ensure that the system operation satisfies the operational constraints (branch
currents and node voltages) |Capitanescu, 2016] is not adequate for real-time operation;
it is usually used for day-ahead operational planning, since it requires running an iterative
method and rely on problem decomposition which comes along with long computation
times. Traditional techniques solving an AC-OPF problem for voltage regulation are
not adequate for real-time operation of modern distribution networks for the following
reasons:

- Conventional generators are replaced by intermittent and distributed generation
located in modern distribution systems, which shrinks all timescales [Taylor et al.,
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2016]. Control algorithms must operate fast enough to guarantee a secure operation
of the network in real-time [Kroposki et al., 2020].

- Traditional techniques solving an AC-OPF problem require collecting information
of all non-controllable powers. Collecting measurements of non-controllable powers
in distribution networks in real-time (e.g., at the second level) is challenging as
distribution systems are historically measurement-scarce, as discussed in Cheng
et al. [2023].

- Moreover, collecting load measurements in real-time from each meter and distribu-
tion transformer is impractical and economically unfeasible [Muscas et al., 2014],
and the time required to collect the measurements of the non-controllable powers
(if available in real time) and run an iterative method to convergence may be long
compared to the fast changing conditions of a modern distribution system |[Taylor
et al., 2016, Kroposki et al., 2020].

Although recent work on neural networks for AC-OPF can alleviate the computational
burden (see, e. g., the representative works [Baker, 2020, Nellikkath and Chatzivasileiadis,
2022|), they still require measurements of all the non-controllable powers p;, q;, and they
often rely on heuristics to return a feasible solution.

On the other hand, online algorithms work in closed-loop with the system. They usually
need a model of the grid (some online applications are actually model-free), and are based
on optimization algorithms that continuously update the control actions based on real-
time measurements of the system states. This allows the controller to adapt to changes
in the system and maintain optimal performance despite uncertainties and variations
in the grid conditions. Practically, the model of the system is replaced with system’s
measurements, and the optimization algorithm effectively acts as a feedback controller,
steering the system towards solutions of an optimization problem. Figure 6.1 compares
offline and online methods.

In this chapter, we focus on centralized online or real-time AC-OPF methods, and seek
new strategies that exhibit strong performance in terms of achieved operational cost and
voltage limit satisfaction (both from analytical and numerical standpoints), while using
limited measurements.
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Figure 6.1: Offline and online algorithms

6.1.1 Feedback-based optimization algorithms

Several approaches have been explored to develop real-time OPF algorithms. In general,
existing solutions leverage online optimization techniques, and incorporate measurements
of some network quantities to bypass the need of a system-level model. In Bolognani
et al. [2014], authors solve an optimal reactive power flow problem, where they com-
pute reactive power setpoints of microgenerators to minimize system losses and to guar-
antee voltage constraints satisfaction. Authors consider a linear approximation of the
map H(u;p;,q;), and use a dual-ascent algorithm that can be implemented in a dis-
tributive manner and which uses voltage and reactive power measurements as feedback.
In Dall’Anese and Simonetto [2016], authors consider an AC-OPF problem where they
minimize active power curtailment and reactive power usage, and the voltage model is
approximated using a linearized version of the bus injection model. They use a primal-
dual gradient method to solve a time-varying regularized saddle-point problem, and use
voltage and power measurements as feedback. Model-free counterparts were proposed
in Chen et al. [2020], where the primal step in the primal-dual gradient method is re-
placed by a zero-order approximation with two function evaluations using a deterministic
perturbation signal, and in Olives-Camps et al. [2022] where authors use a perturb-and-
observe method to approximate a sensitivity matrix. Continuous-time projected gradient
flows were used in Hauswirth et al. [2016] while discrete-time projected gradient algo-
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rithms for the OPF problem are employed in Gan and Low [2016] where authors use the
simplified DistFlow model to derive approximate gradients and reduce the computation
time. Online quasi-Newton methods were used in Tang et al. [2017], that are based on
an approximation of the Hessian of the cost function.

6.1.2 Contributions

Compared to the works in the context of real-time OPF methods mentioned above, the
contributions of our centralized algorithm can be described as follows:

(c1) We propose a new approach for the design of real-time OPF algorithms that is
grounded on the theory of control barrier functions (CBFs) [Ames et al., 2019]. We
leverage a continuous approximation of projected gradient flows [Allibhoy and Cortés,
2024|, appropriately modified to accommodate voltage measurements from the power
network. Inheriting the properties of CBF methods, the proposed algorithm — here termed
feedback-based safe gradient flow (SGF) — ensures anytime satisfaction of the voltage
constraints, while reaching solutions of the OPF.

(c2) From a theoretical standpoint, we show that the proposed feedback-based SGF ren-
ders isolated optimal solutions of the AC-OPF problem locally exponentially stable and
ensures the anytime satisfaction of the voltage constraints. On the other hand, existing
feedback-based optimization methods for distribution systems [Dall’Anese and Simon-
etto, 2016, Hauswirth et al., 2016] do not guarantee anytime satisfaction of the voltage
constraints.

(¢3) We provide results in terms of practical exponential stability and practical forward
invariance when voltage measurements are affected by errors and when the Jacobian
matrix of the AC power flow equations is computed only approximately (for example,
when a linear approximation of the power flow equations is used).

6.2 FEEDBACK-BASED SAFE GRADIENT FLOW

We note that (5.3) can be equivalently re-written as:

min  Cy(H(u; p;, qp)) + Cp(u)

ueR26G
st. V< Hj(wp,q)<V VieM (6.1)
(pi> i) € Us Vieg
where u is the only optimization variable. Hereafter, we assume the set Uf; can be ex-
pressed as
Us = {(pi, @) € R? : Li(pi, ¢:) < 0} (6.2)

where ¢; : R? — R is a vector-valued function modeling power limits, and the inequality
is taken entry-wise. For example, if the ith DER is an inverter-interfaced controllable
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2 2 2 T

renewable source, then ¢;(p;, ¢;) = [p; +¢; — Spr i+ Pi — Pmax,is —pi
denote the inverter rated size and the maximum available active power, respectively; that

is, Uy = {(pi,qi) ER? : p? + ¢ < Si,ppi < Pmax,i>Pi > 0}.
We want to design a feedback-optimization algorithm to solve problem (6.1). In par-

, where s, ; and pmax.i

ticular, we seek to solve the following problem:

Problem 6.1. Designing an online feedback-optimization algorithm that drives the DERs’
power setpoints to solutions of an AC-OPF problem, such as the one presented in (5.3),
without requiring a complete non-linear AC model and knowledge of all the non-controllable
powers throughout the nodes of the system.

From a practical standpoint, we focus on algorithms that are implemented in a cen-
tralized unit; for instance, these algorithms can be integrated into a Distributed Energy
Resource Management System (DERMS) for distribution operators. We also assume that
the unit implementing our feedback-based online algorithm has access to synchronized
voltage measurements at nodes where voltage constraints are enforced, and can transmit
new power setpoints to the DERs. This can be done by leveraging existing communication
and metering infrastructure or through a SCADA system.

6.2.1 Design principles

Let us define the function g:

g(u) = [{V — Hi(w;py, @) biem, {Hi(w; Py qp) — Vieats {4i(0ir ai) bieg) (6.3)

such that the admissible set of problem (6.1) is F := {u : g(u) < 0} and problem (6.1)
can be written:

i 4
min  f(u), (6.4)
with f(u) = Cy(H (u;p;, qp)) + Cp(u).
We impose the following assumption on (6.4), which is typical in the AC-OPF context.

Assumption 6.1 (Regularity of isolated solutions). Assume that (6.4) is feasible and
let u* be a local minimizer and an isolated Karush-Kuhn-Tucker (KKT) point for (6.4),
for given p;,q;. Assume that the following hold:

i) Strict complementarity slackness [Fiacco, 1976] and the linear independence constraint
qualification (LICQ) [Hauswirth et al., 2018] hold at u*.

ii) The maps u — Cp(u), u— Cy(H(u;p;,q;)) and u— H(u;p;,q;) are twice continu-
ously differentiable over some open neighborhood B(u*,r1) :={u: |ju—u*|| <71} of u*,
and their Hessian matrices are positive semi-definite at u*.

iii) The Hessian V?Cy(u*) is positive definite. O
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Assumption 6.1 imposes some mild regularity assumptions on a neighborhood of a
strict locally optimal solution. If (6.4) is formulated based on the linearized AC power
flow equations [Bolognani et al., 2014, Dall’Anese and Simonetto, 2016] and the cost is
strongly convex, then Assumption 6.1 is satisfied. For the most general nonlinear AC
OPF problem, Assumption 6.1 is supported by the results of Hauswirth et al. [2018],
where LICQ is investigated.

If u € Fis alocal optimizer of problem (6.4) and assuming regularity assumptions (6.1)
hold at u, then it exists y such that the Karush-Kuhn-Tucker (KKT) conditions hold:

Vf(a)+ agg;)T y =0, (6.5a)
g(w) <0,y >0,(y) g(u) =0. (6.5b)

As proposed in Allibhoy and Cortés [2024], for solving problem (6.4), one can consider
the following control-affine system:

. dg(u) "

u=-Vf(u) - ——— 6.6
that can be interpreted as the standard gradient flow, with a drift term depending on
the control actions y. The general idea is to find the control actions y such that the
admissible set F is forward-invariant; if the system states u start inside the set F,
the state trajectories are confined in that set at all times. Furthermore, if the system
states start outside the admissible set F, the system trajectories should converge to the
admissible set F. One can obtain the control actions y* by solving:

- ogT |1®
f— 6.7
YT K | ou 6.7)
where the drift term is minimized, and the admissible set for y:
Kow) i= |y s =299y < 9950y gg(a) (69
PW=3Y Thuau Y = au g ’

is defined such that the set F is forward-invariant, with 5 > 0 a design parameter.
The set Kg(u) is inspired by Control Barrier Functions arguments [Ames et al., 2019],
and obtained considering F as the safe set, and g as a vector-control barrier function
(see Allibhoy and Cortés [2024] for further details). In Allibhoy and Cortés [2024], it is
shown that (6.6) with the control actions obtained solving (6.7) is equivalent to dynamics
of the form u = Fpg(u) with

1
Fy(u) i= argmin - 0+ f(w)

dg(u) "
ou

s.t. 6 < —Bg(u).
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Recall that the vector function g(u) contains the map H (u; p;, q;) (see (6.3)), therefore,
equations (6.9) requires (i) the Jacobian of the map H : Jy(u;p;,q;), (#) and the
knowledge of power consumptions since the function evaluation g(u), appears explicitly
on the right-hand side of the inequality term. Following Assumption (5.1), the map H
exists, but we do not have an explicit formulation. Hence, for (¢), we rely on a linear
approximation of the power flow equations. For (i), the voltage model H(u;p;,q;), is
appropriately replaced by voltage measurements, which allows us to avoid collecting
power consumptions. In the following, we introduce the linear approximation of the power
flow equations that we use for our approach, and then show how feedback from the system
can be appropriately integrated in the formulation of the feedback-based safe gradient
flow.

6.2.2 Linear approximation

We start with the power flow equations (5.2) that we linearize around a given voltage
profile v = [v1,...,0x] . Let us consider d € RV capturing the deviations around the
linearization point. We have:

s = diag(v +d) (¥ vy + Y*Vv") + diag(v) (Y*d") + diag(d) (Y*d"). (6.10)

If we discard the second-order terms diag(d) (Y*d*), and considering the following choice
for the nominal voltage profile:

v = —Y !y, (6.11)
equation (6.10) becomes:
diag(v*)Yd = s". (6.12)

Let p € RY be the vector collecting the magnitudes of voltages v, and define a :=
{cos(0,) Ynenr, b := {sin(0,) }nenr with 6; the angle of the nominal voltage @;. A solution
of (6.12) can be expressed as d = Y~ !diag™!(¥*)s*. Expanding this expression, and
defining matrices:

R = Zp ding(a) (diag(p)) " — Z; diag(b)(diag(p)) o1
B = Z; diag(a)(diag(p)) " + Zr diag(b)(diag(p)) ",

where Zp := R{Y '} and Z; := S{Y '}, one can write:
v & (R+JB) Pyet + (B = JR) Aot + V. (6.14)

If the entries of v dominate those in d, then p+%R{d} serves as a first order approximation
for the voltage magnitudes. Thus, one can write:

H(u;p, q) = R(Tru+p;) + B(Tpu+q)) + p, (6.15)
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with T'p € RV*2¢ and T'p € RV*2¢ matrices filled with 0 and 1 such that Tru+p; = pyet
and I'pu + q; = q,¢. Effectively, the approximate Jacobian J; = RI'z + BI'z no
longer depends on u and the non-controllable powers p;, q;; accordingly, it needs to be
re-computed only if there are some topological changes in the network.

The linear model is based on the bus admittance matrix Y and has constant ma-
trices. This approximation is accurate for lightly loaded systems [Bolognani and Dérfler,
2015]. For heavily loaded system, [Ortmann et al., 2020, Dall’Anese and Simonetto, 2016]
showed that feedback-based methods are robust against model mismatch because of the
closed-loop implementation; this feature is also pointed out in Molzahn et al. [2017], and
will be shown later on.

The bus admittance matrix may be hard to obtain because it requires knowledge of the
feeder characteristics, i.e., the line impedances, and the network configuration. However,
one can assume that the system operator can obtain some estimates. Furthermore, in
the case of network reconfiguration, the bus admittance matrix changes, leading to an
incorrect linear model. However, this is not a frequent event and the system operator can
update its linear model approximation when such reconfiguration occurs.

6.2.3 Proposed approach

To solve our regulation problem, we propose the following feedback-based algorithm:
i = nEs(u, ) (6.16a)
; SN ~ T ~ 112
Fg(u,p) := arg Juin, 16 + VCp(u) + J,VC, (V)]

st. —VH'0< -8V —i) VieM (6.16b)
VH'0<-3(5; V) VieM
Jo,(w) "0 < —Bli(pi,q) Vieg

where ; is a measurement of |v;| (the voltage magnitude) at node i, & = [i, ..., on] T,
J g and {I;Q}ze M are estimates or approximations of Jy and {H;}iea, respectively,

VH;(u;p;,q) = {(Jg(u;py, )i tjeg] " is a 2G x 1 vector collecting the entries of
Jg(u;py, qp) in the ith row and columns corresponding to nodes in G, Jy, (ps, gi) is the
Jacobian of (p;,q;) — 4i(pi,q;), 8 > 0 is a design parameter, and 1 > 0 is the controller
gain and is a design parameter. For given u and &, problem (6.16) is a convex quadratic
program (QP) with a strongly convex cost; it can be efficiently solved using standard
or high-performance embedded solvers for QPs. We make the distinction between the
map Fj(u, &) and Fs(u, H(u;p;, qp)) illustrated in equation (6.9), because (i) we con-
sider an approximate voltage model H (u; p;, q;) and in particular, its associated Jacobian
s
cuss the stability analysis and the constraint satisfaction guarantees of our approach in

and because (ii) we replace the voltage model by voltage measurements . We dis-

Appendix A.1.1, and prove practical local exponential stability and practical forward
invariance.
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Figure 6.2: Closed-loop implementation of the proposed online feedback optimization algorithm.
A central unit (blue box) receives measurements of voltages (from measurement units, green
box) and of the DERs’ output powers from inverters (red box); based on these measurements, it
updates the DERs’ setpoints based on the proposed controller u(t) = nFj(u(t), #(t)). Once the
setpoints u(t) are computed, the central unit transmits u(t) to the DERs’ inverters. Through

this closed-loop scheme, the proposed controllers drive the distribution system to solutions of
the AC OPF problem (6.1).

The algorithm (6.16) is designed to steer the power setpoints of the DERs u to optimal
solutions of the AC OPF, while continuously guaranteeing feasibility (i. e., satisfaction of
voltage limits). As shown in Figure 6.2, (6.16) effectively acts as a feedback controller by
replacing the voltage model H(u;p;, q;) with measurements v of the voltage magnitudes
that automatically satisfy the power flow equations [Tang et al., 2017, Molzahn et al.,
2017|. This is a key modification that allows one to avoid collecting measurements of
p;, q; [Bolognani et al., 2014, Dall’Anese and Simonetto, 2016, Bernstein and Dall’ Anese,
2019].

The proposed feedback-based SGF is summarized in Algorithm 6.1 and illustrated in
Figure 6.2.

In terms of implementation of the Algorithm 6.1, we highlight the following practical
aspects:

- The main step [S2a| is performed at a central unit (i.e., the blue box in Figure 6.2).
This central unit can be integrated, for example, into an advanced distribution
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Algorithm 6.1: Feedback-based safe gradient flow
Initialization: Compute .J; and {ﬁi,i € M}. Set >0, n>0.
Real-time operation: for ¢t > 0, repeat:

[S1a] Measure output powers {p;(t),q;(t),i € G}

[S1b] Measure voltage magnitudes {7;(t),i € M}

[S2a] Update power setpoints via u(t) = nFj(u(t), &(t))
[S2b| Implement setpoints u(t)

Go to [Sla] and [S1Db]

management system for distribution operators. After performing step [S2al, the
central unit sends the updated setpoints to the DERS’ inverters.

- Step [Sla| is performed at the DERs (a DER is represented by a red box in Fig-
ure 6.2); the inverters measure the output powers {p;(t),¢;(t),7 € G} and send the
measurements to the central unit. The inverters also implement step [S2b| after
they receive the setpoints from the central unit.

- The safe gradient flow (6.16) relies on measurements of the voltages at the network
locations M, as required in the step [S1b]. It is assumed that those measurements
are obtained in real-time using sensing devices communicating with the central-
ized controller, e.g., uPMUs [Sun et al., 2017| or through the advanced metering
infrastructure (a meter is represented by a green box in Figure 6.2).

In practice, the proposed measurement-based SGF (6.16) can be implemented with
discretization (similar to well-established CBF-based methods [Ames et al., 2019]). The
discretization interval depends on the time required to collect voltage measurements
and to solve the QP. Linearly-constrained convex QP programs are known to be solved
efficiently (e.g., in milliseconds) by both existing open-source solvers (such as IPOPT)
and commercial solvers. Synchronized voltage measurements can be obtained via SCADA
at fast scale (i.e., second or sub-second level) [Cheng et al., 2023, Sun et al., 2017]. We
implement the following controller:

u(t + 1) = u(t) + AtnFs(u(t), (1)), (6.17)

where the gain 7 is adapted based on the sampling time At. Notice that the proof for
practical local exponential stability of our approach discussed in Appendix A.1.1 does
not necessarily hold for the discretized version of the controller. However, one can derive
a local asymptotic stability result for the discretized controller.

Our framework is applicable to the case where the system operator may utilise a
mix of actual voltage measurements and pseudo-measurements [Angioni et al., 2015].
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For example, suppose that the system operator can measure voltages at some nodes
Meter C M and relies on pseudo-measurements at the other nodes. Then,

Di _ Hi(u; Py ql) + ni, S Mmeter (618)

Hi,pseudo(u; [P ql)a ieM \ Mneter

where n is a bounded measurement noise, and H; pseudo(U; Py, q;) represents a model used
to generate the pseudo-measurements (i. e., using a state-estimator).

Finally, notice that if the embedded controllers of inverters are guaranteed to imple-
ment the power setpoints, in principle, the step [Sla| in Algorithm 6.1 is not needed.
However, the operator may want to measure current setpoints {p;(t), ¢i(t) }icg for verifi-
cation purposes and to monitor the state of the DERs’ inverters.

6.2.4 Illustration on a single-phase distribution network

We consider the medium voltage network (20 kV) shown in Figure 6.3a. We used a
modified network from Sarajlic and Rehtanz [2019], in which photovoltaic power (PV)
plants have been randomly placed, with inverter-rated size picked randomly among
{490,620, 740} kVA. The dynamics of the output power for the inverters are not im-
plemented, as they are much faster than the controller dynamics; see, e.g., [Eggli et al.,
2020]. Accordingly, when the controller updates the power setpoints, the inverter imple-
ments them instantaneously. In the numerical experiments, we consider a system with
PV plants; however, we note that any type of inverter-interfaced DERs can be consid-
ered. Figure 6.3b shows the aggregated loads and maximum available active power for
PV plants throughout the day. The data is from the Open Power System Data', and
have been modified to match the initial loads and PV plants nominal values present in
the network. The reactive power demand is set such that the power factor is 0.9 (leading).
This would represent a typical summer day, with high PV production. We will show that,
under these conditions, the electrical distribution network would undergo overvoltages.

6.2.4.1 Simulation setup

We compare the proposed measurement-based SGF with: (i) no control (NC); (ii) the
online primal-dual method (PDM) proposed in Dall’Anese and Simonetto [2016]; and,
(iii) a Volt/Var control (VVC). We also compute the solution of a batch optimization
(BO) method, where the AC-OPF problem, with the power flow equations modelled using
the nonlinear branch flow model [Baran and Wu, 1989], is solved. The AC-OPF problem
with the branch flow model can be written as:

min  Cy(H(u;p;,qp)) + Cp(u) (6.19a)

ucR2¢

1 Data available at https://data.open-power-system-data.org/household_data/2020-04-15

91


https://data.open-power-system-data.org/household_data/2020-04-15

92 CENTRALIZED CONTROLLER
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Figure 6.3: (a) Distribution network used in the simulations. (b) Aggregated load consumption
(Pr,Qpr) and PV production profiles (Pp,q,) used in the simulations.
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Figure 6.4: (a) Operational set compared to grid code requirements inspired from the IEEE Std
1547-2018, where s,, is the inverter rated power. (b) Implementation of IEEE standard IEEE
Std 1547-2018 with @ the reactive power injection, .S the nominal apparent power of the DER,
Q/S represents the ratio between ) and S, and |v| is the voltage magnitude at the node.
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st pi—py= Y Pin— (Poj—rel2;) VjEN (6.19b)

neC;
G—qi= Qin—(Qaj—zajlz;) VjEN (6.19¢)

TLEC]'
Vi = 1) — 2(rajPaj + 2ajQaj) + (re; + a2) i ViEN (6.19d)

P+ Q2

2 _ T aj -

I = o VjieN (6.19)
(pi,qi) €Uy VieG (6.19f)
VZ<2<V?  VieM (6.19g)

where we consider a single-phase and radial feeder represented by a tree graph, such that
node j has only one ancestor a, and children n € C;. Furthermore, we denote P;j;, Q;j, I;;
the active and reactive power, and the current flowing through the branch (ij), and
Tij, T;j its associated resistance and reactance, respectively.

Remark 6.2 (Comments on the non-linear AC-OPF based on the branch flow model).
In practice, one usually considers a change of variables, such that o; = V? Vi € N
and fBi; = Il-zj V(i,j) € € where £ is the set of edges of the graph, which renders all
the constraints except equation (6.19¢) linear for problem (6.19). A second-order conic
programming approzimation of problem (6.19) can be derived by replacing equation (6.19¢)
by the following inequality: Bq; > Pf%aQij Vj € N. However, in order to have a tight
inequality, one would need to minimize the branch currents in the objective function, which
might conflict with other terms in the objective function. In this section, we consider the
non-linear, non-conver AC-OPF formulation, and solve it with an interior point method.
Recall that this is not adequate for real-time operation, and it is used in this manuscript

only for comparison purposes.

The voltage service limits V and V are set to 1.05 and 0.95 p.u., respectively. The
load and PV production profiles have a granularity of 10 seconds, i.e., active/reactive
power consumption and maximum available active power for PV plants change every 10
seconds. For the SGF, it means that every 10 seconds, we pursue a new optimal solution.
The SGF (using a forward Euler discretization), PDM and VVC algorithms are run every
second.

Based on the IEEE standard IEEE Std 1547-2018, we consider the feasible set for the
PV plants shown in Figure 6.4a. Although the inverter feasible set consists of a semicircle,
there is no interest for PV owners to operate the PV plant at low power factors, i. e., large
reactive power absorption/consumption and low active power production. Usually, PV
plants are operated at unity power factor, i. e., on the vertical line passing through 0. The
distribution system operator (DSO) often imposes grid requirements when a PV plant
is connected to its network in order to provide support if needed. The grid requirements
vary from one DSO to another. In this thesis, we consider that the maximum reactive
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power the inverter can produce/consume is set to 44% of its nominal apparent power.
The vector-valued function modelling power limits is therefore

Ci(pi, @) = [P + @ — 82 4, Di — Pmaxyis —Pir —0.4480; — g5, ¢; — 0.44s,3] . (6.20)

It is assumed that pmax,; is known at the DERs. For example, one can use the method
proposed in Hussain et al. [2018] to estimate the maximum power point of PV arrays,
and therefore, the maximum available power pmax . Finally, we consider the following
cost function for the SGF, PDM, and BO:

Cow) =Y ¢, (S";_pzf +eg ( q"'>2 (6.21)

S
e n,t n,i

with ¢, = 3 and ¢; = 1, and C,(H (u;p;,q;)) = 0. This cost function seeks to minimize
active power curtailment and inverter power losses. The first part minimizes the active
power curtailment, the second part the reactive power usage, which is also related to the
inverter losses as less reactive power usage means less currents and thus, fewer Joules
losses.

Volt/Var control: The Volt/Var control is inspired by the IEEE standard [EEE Std
1547-2018. The parameters of the Volt/Var control have been adapted to match the volt-
age service limits considered in this thesis. The maximum reactive power consumed /ab-
sorbed is set to 44% of the nominal apparent power of the PV plant. The maximum
power absorbed/produced is reached for voltages 1.05/0.95 pu, respectively. Finally, we
implemented a dead-band for voltages between 0.99 and 1.01 pu. Our implementation of
the IEEE standard IEEFE Std 1547-2018 is shown in Figure 6.4b.

No control: For the no-control test case, we consider an overvoltage protection of PV
plants, i.e., the plant is disconnected if the voltage level is too high. We consider three
different status for the PV plant: running, idling, and disconnected. When the PV plant is
in status idling or disconnected, it does not inject active power or provide reactive power
compensation. The disconnection scheme is inspired from the CENELEC EN50549-2
standard [EN50549-2, 2019], and has been adapted considering the voltage service limits
used in this thesis. The PV plant changes status from running to disconnected if: (i) the
voltage at the point of connection goes above 1.06 pu, (i) the root-mean square value
of the voltages measured at the point of connection for the past 10 minutes goes above
1.05 pu (the voltages are measured every ten seconds).

The PV plant switches to status idling if the voltage at the point of connection stays
below 1.05 pu for 1 minute. To switch back to running status, the PV plant has to
be in idling status. The switching to running status occurs randomly in the interval
[lmin, 10min] (random, uniformly distributed).

6.2.4.2 Results

In the following, we compare the different methods in terms of their cost function values,
the system losses, and the voltage levels. Notice that system losses are not integrated in
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the cost function (6.21), since they conflict with the term that considers active power
curtailment. In this thesis, we design the cost function to promote renewable energy
resources, hence maximizing the solar production while keeping voltage levels within pre-
defined bounds. However, the DSO is also concerned by the system losses. Thus, one
needs to look how the different methods perform with respect to them.

In Figure 6.5, one can see the maximum voltage (phase-to-ground) observed at every
time step, as well as the number of impacted nodes where we observed a voltage greater
than V. It can be seen that only the SGF method does not lead to voltage violations. This
is precisely because our approach is based on the theory of control barrier function. PDM
leads to voltage violations not only because of the transient of the dual variables, but also
because it is designed based on a regularization of the Lagrangian function as explained
in Dall’Anese and Simonetto [2016]. VVC performs well, although as shown hereafter,
it leads to larger system losses and a greater cumulative cost than SGF or PDM. The
overall voltage profile is also shifted downward due to its proportional feedback control.
One can observe the spikes in the NC method due to multiple disconnections of DERs
because of a prolonged overvoltage duration. Finally, one can see that with PDM, the
voltages oscillate around the threshold voltage of 1.05 pu.

In Figure 6.5¢, we show the duration of overvoltages. We define T%,.; as a vector
containing the number of consequent time steps during which node i sees his voltage
above the value a. The value max 7%, corresponds to the maximum value among all
T>q;i for i € N and corresponds to the maximum consequent time duration during
which one nodal voltage was above «.. The value mean 7>, is the maximum of the mean
absolute values of every vector T>q; for i € N, representing the average time duration
of overvoltage. Since SGF algorithm does not yield overvoltages, it does not appear
on this graph. One can see that the NC method does not perform well, as the active
power curtailment is activated only for large overvoltage (above 1.06pu) or for prolonged
overvoltage (above 1.05pu).

We show the cumulative cost function in Figure 6.6a, i.e., the cumulative sum of the
cost function at every time step. It is clear that the NC method leads to the largest
cumulative costs, as its implementation leads to full curtailment of solar production and
no usage of reactive power. The VVC shows the second-highest cost because of its ineffi-
cient usage of reactive power reserves. We have to bear in mind that these two solutions
cannot practically achieve the optimal solutions of the BO method since they can only
play with either the active or reactive power output of solar inverters. Furthermore, they
are, by design, decentralized control algorithms, and do not have full information of the
system state. We observe that PDM has the lowest cumulative cost, which comes at the
detriment of voltage violations, as observed in Figure 6.5c. The SGF cumulative cost
superposes the BO cost.

The cumulative system losses for the different methods are shown in Figure 6.6b. The
NC method leads to the lowest system losses as it drastically reduces the amount of
active power flows in the network by fully curtailing solar production. The VVC leads to
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the highest system losses as it over-uses reactive power compensation to mitigate voltage
issues. This results in larger power flows throughout the network, hence larger power
system losses. We can observe that PDM, SGF, and BO have similar system losses.

Finally, Figure 6.5f shows the error between the linear approximation of the power flow
equations and the non-linear power flow equations, validating our choice for the linear
map. It also shows the error between the approximate Jacobian (which is constant), and
the true Jacobian computed numerically.

Our method was experimentally tested on a 93-node distribution system with realis-
tic load and production profiles and it exhibited a performance significantly superior in
terms of voltage regulation to existing online primal-dual methods and Volt/Var strate-
gies. Notice that our feedback-based safe gradient flow can be extended to solve other
optimization problems, and deal with more complex power system models. Actually,
distribution networks are most often highly unbalanced, and considering a single-phase
equivalent is a strong assumption. In the following, we aim at solving the problem of regu-
lating a virtual power plants consisting in a three-phase unbalanced distribution network
with DERs integration.
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6.3 AN APPLICATION TO REGULATION OF VIRTUAL POWER PLANTS

At the transmission level, large-scale synchronous generators provide voltage and fre-
quency support. However, the replacement of conventional power plants by inertia-less
power converters alters power system dynamics and weakens the system by removing
resources that support voltage and frequency. On the other hand, the continuous im-
provements in power electronic converters pave the way for new regulation techniques.
Distributed energy resources (DERs) can now provide ancillary services to the bulk power
system while mitigating voltage issues within distribution networks [Stanojev et al., 2022].
A wvirtual power plant (VPP) [Dall’ Anese et al., 2017] is an aggregation of DERs in a distri-
bution network that provides ancillary services to the bulk power system while satisfying
operational constraints within the distribution network. A traditional VPP regulation
approach involves solving an AC optimal power flow (AC-OPF) problem in an open-loop
fashion to dispatch DER power setpoints. Such an approach is inadequate for real-time
optimization as mentioned in Bernstein and Dall’Anese [2019], and in Chapter 5. In
the following, we leverage our feedback-based algorithm and extend it to a 3-phase un-
balanced distribution network, with wye and delta-connected sources. We consider the
problem of regulating a VPP such that it can track power references at the substation
while meeting voltage constraints within the distribution network. Figure 6.7 illustrates
the working principle of the algorithm.

We consider a generic three-phase distribution network with N 4+ 1 nodes and a combi-
nation of wye-connected and delta-connected sources. The node 0 is taken to be the sub—

station node, while N := {1, ..., N} is the set of remaining nodes. Let sj = {s], A

denote the vector of net complex phase-to-ground power injections on each phase {a, b, ¢}
at node j. Similarly, let sjA = {sj , ;’C, ;a T denote the vector of net complex phase-
to-phase power injections at node j on each phase connections {ab,bc,ca}. Let us de-
note v; = (vj,vé’,vj)—r,ij = (zj,i?,z])T,le = (?b, ?C, 5(1)7— the vectors collecting

the phase-to-ground voltages, the phase current injections, and the phase-to-phase cur-
rents for node j, respectively. We define the following quantities v i= { \Z] T};e Aol =

-A s A
{(IJ)T jTeNa = {(lj )T ]TG/WSY = {(Sy)T ;FGN, = {( ) w to express the
power flow equations in matrix form [Bernstein et al. 2018]
diag (BT(iA)*> v +s¥ = diag(v)i*,
i=Yrovo+Yrrv,
sy = diag(vo) (Ypv + Yo,v").

where Yy, Y70, Yor,, Y11, denote the submatrices of the three-phase bus admittance matrix

Yoo Yor
Yo Yoo

Y e € OOV X3(N+1) (6.23)
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that can be derived from the network topology and the m-model of the distribution lines,
and B is a block-diagonal matrix defined by

1 -1 0
B:=diag(l'), ''={0 1 -1|- (6.24)
-1 0 1
One can find the solution v of the set of equations (6.22), with known s¥,s® and vy,
using the following fixed-point equation |Bernstein et al., 2018|:
v=w+Y; (diag(v*)*l(sy)* + BT diag(Bv*)*l(sA)*> , (6.25)
where w := —YL_LIYLOVO is the zero-load voltage.
For convenience, we define the algebraic maps V := C3N+3N+3 y €3N and § =

C3N+3N+3 1y C3 such that v = V(sY,s?,vg) and sg = s} = S(s¥,s,vg). These maps
correspond to the practical solution —high voltage, low line currents solution— of the
power flow equations described in (6.22).

The goal is to coordinate DERs injections to regulate voltage magnitudes within the
distribution network while tracking power reference setpoints at the substation Sget :=
{P¢,Set,Q¢7set}¢T)€ (abeh where Pp get, Q¢ set Tepresent the active and reactive power set-
point at the substation for each phase ¢, respectively. We formulate the following opti-
mization problem:

min f(syv SAa VO)

sY s8 vq
st. V< |V(sY,s?, v)| <V, (6.26)
—FE< S(SY,SA,VO) - Sset < E7
sV s2 es,

where V,V denote the vectors of maximum and minimum voltage magnitudes, E is a
scalar that can be arbitrary small to track power reference setpoints and S represents
the hardware limits of DERs, i.e., maximum and minimum power injections. One can
design the objective function f(.) to minimize the usage of reactive power compensation
or active power curtailment or may favor the minimization of system losses or voltage
deviations from a nominal voltage profile. Also, one can consider other constraints, such
as maximum line ampacity. Solving problem (6.26) is challenging because it contains
non-linear constraints and is known to be non-convex. Furthermore, the solution to prob-
lem (6.26) heavily depends on the model parameters (e.g., the elements of Y'), and there
is no guarantee one can satisfy operational constraints under model uncertainties. In the
following section, we use our feedback-based safe gradient flow algorithm to provide an
algorithmic solution of problem (6.26).
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6.3.1 Proposed approach

YA

Our feedback based safe gradient flow requires the jacobian of the maps |V (s , Vo)

and S(s¥,s%, vq). Unfortunately, explicit formulation of maps V(.) and S(.) do not exist.
Therefore, we leverage the linear approximations proposed in Bernstein et al. [2018]:

V(sY,s%,vo)| ~ KYx¥ + KA%® +b,

6.27
S(sY, s®, vo) ~ G¥xY + G2x® +c, (6:27)

where x¥" == ((p") ", (¢")7)" and x® := ((p*) 7, (q®)")" with p == R{s"}, q" =
Z{sV}, p? := R{s®}, ¢® := T{s?} collecting the active and reactive power injections.
The different matrices presented in (6.27) (see Bernstein et al. [2018] for detailed deriva-

aY AA)

tions), where we define (v,8",8%) as a given solution of the fixed-point equation (6.25),

can be written as:
MY = (YL_L1 diag(ff*)_ly —jYL_Ll diag(f/*)_l) )
M2 = <YL’LlBT diag(Bv*)!, —jY BT diag(Bff*)‘l) )
K" = | diag(w)|R{diag(w) " M" }, b := w],
K" = | diag(w)|R{diag(w) ' M*},
GY = diag(vo) Y, (MY)*, G™ = diag(vo) Vg (M2)",
c := diag(vo) (Yoovo + Yo w") -

(6.28)

In the following, we consider constant matrices obtained from (v,8,§%) = (w, 0,0), that
is a solution of (6.22). However, one can improve the quality of the linear approximation
by constructing the matrices based on the current operating conditions (v,8Y,§%), which
requires measuring the voltages and power injections at every node in real-time.

First, let us define the vector u = ((xY)7,(x2)T) € RY, where x¥,x2 contain the
power injections of the DERs. The number U depends on the number of DERs, and their
connection type (1-phase or 3-phase connection). For the sake of clarity, let us consider
that the voltage at the substation vy cannot be controlled and is held constant to 1 pu.
Furthermore, we consider that, for each controllable source, the feasible set describing
the hardware limits is defined as S := Y US2, with

Y Y Y Y Y Y Y Y
={0< ijs < Pj pmaxs (P1.6)° + (A 6)7 < (87.6.n0m) 6] < 04485 4 nom }jeg¥ pe by
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A \2 A A
= {0 < Pfy < Piipmax (P70) + (Aip)” < (7pmom) s [A7] < 04485 wom }jega gefabbecas

(6.29)

where GY G2 are the set of nodes to which wye-connected, delta-connected DERs are
connected, respectively. The feasible set S is such that each phase is constrained inde-
pendently. Finally, let us denote the vector-valued function ¢(u) such that we can write
S :={u € RY | £(u) < 0} for simplicity. Using appropriate measurements, one can con-
struct an optimization-based feedback controller that naturally tracks the time-varying
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grid conditions. Let us define & the vector collecting the voltage measurements at each
node, and § the vector collecting the three-phase apparent power at the substation, one
can write our feedback-based safe gradient flow as:

I 1 2
F = i —|10+V
p(u,0,8) :=arg min o |6+ VF(u)];

B(E =5+ Sset) < GIO < —B (58— Seet — E)
Vi(u)' o < —pL(u).

We implement the following controller:
u(t+1) = u(t) + AtnFg(u(t), v(t),s(t)), (6.31)

which is the forward Euler discretization of the feedback controller = nFs(u, ,§), with
1 as controller gain.

6.3.2 FExperimental results

6.3.2.1 Simulation setup

We consider the IEEE37-node feeder shown in Figure 6.8a with a 4.8 kV operating voltage.

We modified the original benchmark, which contained only delta-connected loads, to
incorporate delta and wye-connected DERs. We did not implement DERs’ dynamics as
they are considered much faster than the controller dynamics |[Eggli et al., 2020]. The
power setpoints are instantaneously implemented by the DERs. We only consider PV
plants as DERs, with the hardware limits defined by the set S and pmax representing
the available power derived from the solar irradiance. We also define the following cost
function:

Y Y 2 Y \2 A A 2 A 2
> > Pl Ploma) Taldie) D D (Pl Plsman) Hea(ary)”,
J€GY pe{a.b,ct J€GH pefabbe,cal

(6.32)

such that the active power curtailment and the usage of reactive power are penalized,
with ¢, = 3 and ¢, = 1. The load profiles and maximum available power aggregated for
each phase with a granularity of 10 seconds are shown in Figure 6.8b. The network is
strongly unbalanced.

The results obtained with the feedback-based safe gradient flow (SGF) are compared
with the results when we solve the problem (6.26) with the linear model of the 3-phase
power flow equations (6.27). The latter corresponds to a linear formulation of the AC-
OPF (L-AC-OPF) solved in an open-loop fashion. We consider that the SGF receives
new measurements, computes new power setpoints and DERs deploy the new power
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setpoints every second, while the grid conditions change every 10 seconds. We enforce
voltage limits, V. = 0.95,V = 1.05, only on a subset of nodes, highlighted in green in
Figure 6.8a. These nodes have been selected such that the voltage magnitudes of the other
nodes stay within the lower and upper voltage limits. We also enforce power tracking at
the substation from hours 9 : 00 to 11 : 00 and from hours 14 : 00 to 15 : 00. Finally, we
consider two scenarios, one with accurate estimation of line impedances, and the other
with the line impedances underestimated by 20%. It influences the admittance matrix,
and therefore the linear model parameters.

6.3.2.2 Results

Results with no error in the admittance matrix

In Figure 6.9a, we compare the voltage magnitudes for different phases when the power
setpoints are obtained from the L-AC-OPF and SGF algorithms. One can see that the
voltage magnitudes of voltage-regulated nodes stay within the limits. However, while the
voltage constraints are tight for SGF, the L-AC-OPF yields lower voltage magnitudes.
This is due to the linear model, which overestimates the voltage magnitudes for the
L-AC-OPF algorithm, while the SGF algorithm uses voltage measurements.

Figure 6.10b shows that both algorithms can track the power setpoints at the sub-
station from hours 9 : 00 to 11 : 00 and from hours 14 : 00 to 15 : 00. However, the
error for the L-AC-OPF is larger than the error for the SGF because of the linear model
inaccuracy.

We show both algorithms’ DERs active power injections in Figure 6.10a. There is
more active power curtailment with L-AC-OPF than with SGF because the linear model
overestimates the voltage magnitudes, forcing the L-AC-OPF to produce a greater effort.
This is also reflected in the value of the cost function as the total cumulative cost over
the day is 44.030 for the SGF and 65.201 for L-AC-OPF.

Results with error in the admittance matrix

In Figure 6.9b, we compare the voltage magnitudes for the two algorithms when the
linear model is constructed based on underestimated line impedances. The voltages stay
within the limit for the SGF, while the L-AC-OPF induces voltage magnitudes excursions
outside the admissible values. This shows that feedback-based algorithms are more robust
to modeling uncertainties than traditional algorithms solved in an open-loop fashion.

Remark 6.1 (Discussion on error in the measurements). One may say that feedback-
based controllers are sensitive to measurement errors, which is true. However, traditional
approaches to solving the AC-OPF also require measurements of load consumption, which
are also subject to errors. The major difference is that for the proposed SGF algorithm, one
can assess the maximum error on voltage measurements, and adapt the voltage thresholds
to guarantee safe voltages throughout the network, e. g., if the voltage measurements are
perturbed with a mazimum error e, one can tighten the voltage limits such that [V, V]
becomes [V + ¢,V —¢]. For the L-AC-OPF, the error affects the load consumption, and
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Figure 6.9: (a) Voltage magnitudes with SGF and L-AC-OPF algorithms. (b) Voltage magnitudes
with SGF and L-AC-OPF algorithms with line impedances underestimated by 20%.
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6.4 SUMMARY

one needs to propagate this error through the power system model to analyze the effect of
those errors on voltages.

6.4 SUMMARY

In this chapter, we have presented a feedback-based safe gradient flow controller to pursue
a solution of an AC-OPF problem. The controller is based on the theory of control
barrier functions, and it guarantees anytime satisfaction of operational constraints. We
have shown that the controller is robust against modelling errors due to the feedback
addition. We tested the controller on a single-phase equivalent distribution network, and
showed that it leads to no operational constraint violation, while accurately tracking
an optimal solution of the AC-OPF problem. The controller has also been tested on the
three-phase unbalanced ITEEE37-node feeder for the optimal regulation of a virtual power
plant, and compared with a linearized version of the AC-OPF. The results show superior
performance of the feedback-based safe gradient flow controller compared to the linear
AC-OPF, and constraint satisfaction even in the presence of modelling errors due to the
feedback addition.
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Outline

In this chapter, we propose a decentralized controller to solve the Prob-
lem 1.2 introduced in Section 1.2.2. We consider a two-level control strat-
egy, where the controller gains are determined centrally and then broad-
casted to the controllable DERs. The controller gains are computed by
solving an optimization problem that contains specifications on the maxi-
mum amount of voltage violation that is tolerated. We illustrate the perfor-
mance of the proposed controller on a single-phase equivalent distribution
network and on the unbalanced three-phase IEEE 123-node test feeder.
The chapter is organized as follows. In Section 7.1, we review the liter-
ature on decentralized controllers for voltage regulation in distribution
networks. In Section 7.2, we introduce the proposed incremental Volt/Var
controller and illustrate its performance on a single-phase distribution net-
work. In Section 7.3, we present a robust formulation of our decentralized
controller. In Section 7.4 we illustrate the performance of the proposed
controller on the unbalanced three-phase IEEE 123-node test feeder. Fi-
nally, in Section 7.5, we provide a summary.

7.1 LITERATURE REVIEW

In the previous section, we proposed a centralized approach, where a central aggregator
determines the DERs’ power injections by solving a quadratic programming problem.
Usually, the central controller needs a precise knowledge of the network, which may
be hard to obtain in practice [Srivastava et al., 2023|. We showed that recent feedback-
based methods do not require perfect knowledge of non-controllable power injections, but
they rely on a communication infrastructure that is not present in existing distribution
networks. In particular, it requires collecting voltage measurements and communicating
setpoints in real-time. In this section, we focus on decentralized strategies, which offer
simplicity and low implementation cost since they rely only on local measurements in
real-time to perform control actions [Zhu and Liu, 2016, Zhou et al., 2021|. The overall
idea is illustrated in Figure 7.1, where an offline algorithm computes the gains of the
local controllers based on forecasts of load consumption and generation days or hours
ahead, and dispatches the computed gains to the DERs. The DERs then implement the
controller locally, without the need for real-time communication.
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Figure 7.1: Proposed decentralized voltage regulation strategy. The controller gains are computed
centrally and then broadcasted to the controllable DERs.

We make a distinction between active and reactive power control. As mentioned in
Section 5.2, active power control, such as Volt/Watt strategies [Kashani et al., 2017,
Howlader et al., 2020], are well adapted for voltage regulation in distribution networks
because of the high R/X ratio. However, they induce higher costs because of the inherent
active power curtailment. Therefore, reactive power control is often preferred, even if
it is less effective. Notice that Volt/Var control strategies can also induce active power
curtailment if reactive power is prioritized over active power.

Volt /Var controllers determine reactive power injections from, e. g., a static function of
the local voltage measurements. One example is illustrated in Figure 6.4b, that is based
on IEEE standard IEEFE Std 1547-2018. The slopes of individual Volt/Var curves can be
tuned to achieve various objectives by solving appropriate optimization problems [Baker
et al., 2018]. A static Volt/Var controller for a DER g € G connected to node n € N can
be written as:

qg,k+1 = fg(Dn,k)a (71)

where f, is a function of the local voltage magnitude 7, at time index k, and gg 11 is
the reactive power setpoint implemented at the next time step (k + 1). However, these
static feedback laws can lead to oscillatory behaviors [Jahangiri and Aliprantis, 2013].
Incremental strategies have the following structure:

4dg,k+1 = hg(ﬁn,ka Qg,k), (72)

such that the reactive power at the next time step (k+ 1) is gradually adjusted based on
the previous reactive power setpoint and the voltage magnitude (time index k) |Farivar
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et al., 2015]. These are generally favored since they can prevent oscillatory behaviors
and offer more flexibility. Notice that in Baker et al. [2018], authors optimize both static
Volt/Var and static Volt/Watt curves to minimize voltage deviations, and to ensure a
controller stabilizing the system. However, stability constraints for static Volt/Var control
are more restrictives than for incremental strategies, and thus, incremental strategies can
provide better reactive power compensation Farivar et al. [2015].

Notice that purely local reactive power control strategies can fail at keeping the voltage
within prescribed limits even if a solution exists due to improper dispatch of the reactive
power available [Bolognani et al.; 2019]. On the other hand, local control strategies are
perfectly adapted to current distribution network technology since they do not rely on
advanced communication infrastructures.

Chance-constrained approaches to design optimal rules for non-incremental Volt/Var
control are proposed in [Wei et al., 2023, Nazir et al., 2019]. These works consider a
separate set of gains for each DER. This may be challenging in practice, as it requires
knowledge of each DER location and an advanced offline communication infrastructure
to properly dispatch the gains. We also mention some representative works in the con-
text of data-driven methods to learn a Volt/Var controller [Karagiannopoulos et al.,
2019]. For learning-based strategies, it is often difficult to analyze the closed-loop stabil-
ity |[Eggli et al., 2020]. Some exceptions are, e.g., [Gupta et al., 2023, 2024]; however,
the controllers in these works do not minimize reactive power usage, potentially causing
additional losses in the distribution network. In Yuan et al. [2024], closed-loop stability
for a general class of Volt/Var controllers is guaranteed but historical data are needed
for training the learning-based controllers. The work presented in Cui et al. [2022], in-
vestigates the use of reinforcement learning to derive local Volt/Var control policies in
distribution networks. Lipschitz constraints are established to guarantee exponentially
stabilizing controllers. A cost function combining voltage deviations and control actions
was considered. In the context of learning-based Volt/Var, it is difficult to account for
network topology changes. Indeed, changes in topology may require collecting new data
and re-training learning-based controllers, which is time-consuming. In Serna Torre and
Hidalgo-Gonzalez [2022], authors propose a linear Volt/Var controller and a methodology
for adapting the controller to varying network topologies. However, this requires solving
multiple instances of the optimal power flow problem.

7.1.1  Incremental Volt/Var control

Leveraging the inverters’ capabilities, we propose a two-level Volt/Var control strategy,
driven by the following practical and architectural considerations:

(a) Piecewise linear droop Volt/Var rules, as suggested by the IEEE standard IEEE Std
1547-2018, offer fast response to deviations of local voltage magnitude [Zhu and Liu, 2016,
Zhou et al., 2021].
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Figure 7.2: (a) Proposed voltage regulation strategy. Based on the forecast p and the probability
€ to violate voltage limits, the controller gains x are computed centrally and then broadcasted to
the controllable DERs. (b) Illustrative explanation of the impact of the parameter € on the total
amount of voltage violations. A smaller € results in a more constrained optimization problem
and therefore in fewer voltage violations.

(b) Local incremental Volt/Var methods offer advantages over the piecewise linear droop
Volt/Var rule in terms of utilization of reactive power resources and avoidance of possible
oscillations [Jahangiri and Aliprantis, 2013, Farivar et al., 2015].
(c¢) Local Volt/Var methods often do not guarantee voltage regulation; communication
and coordination are typically required [Bolognani et al., 2019].

The proposed method enjoys the advantages of the local incremental controllers (acting
at a fast time scale locally), with regulation performance ensured by designing the control
parameters via an optimization-based task (solved occasionally at the higher level). In
particular, the optimization-based task allows us to specify the maximum amount of
voltage violation that is tolerated. The only communication needed is between a central
aggregator where the controller parameters are computed and the inverters, which receive
the updated controller parameters from the aggregator. In particular, we do not require
real-time communication as the controller parameters are obtained using forecasts for
which uncertainties are taken into account in the optimization-based task. In Figure 7.1,
the structure of the local controllers is given by (7.2), and the controller parameters are
determined by solving an optimization problem at the central aggregator. In terms of
parameters, we also consider a prescribed probability for voltage violations.

The proposed approach is illustrated in Figure 7.2. This approach can be viewed as
a two-level control where: (i) the coefficients and gains of the local controllers are com-
puted centrally and then broadcasted to the local controllers (the coefficients and gains
are updated at a slow time scale, for example at hourly intervals); and (%) the DERs
implement the controllers, with the received coefficients and gains, for real-time voltage
regulation. In real-time, the control is fully decentralized, in the sense that the controller
is implemented locally at each DER without DER-to-DER, communications.



7.2 PROPOSED INCREMENTAL VOLT/VAR CONTROLLER

7.1.2  Contributions

The proposed decentralized controller has the following contributions:

(c1) A chance-constrained optimization problem is formulated to ensure that voltage
violations cannot occur more often than according to a given probability.

(¢2) A single set of gains suitable for all DERs is determined, thus simplifying the opti-
mization problem to be solved at the upper level and keeping the communication infras-
tructure requirements low. Furthermore, fairness in sharing control efforts is implicitly
embedded by having the same gains for all DERs.

(¢8) With respect to a standard Volt/Var controller, this approach aims to minimize
the generator’s reactive power injections. The controller gains are determined in advance
based on forecast data for power generation and loads. To account for a variety of pos-
sible distributions of the forecasting errors, a conservative approximation of the chance
constraints is derived [Nemirovski and Shapiro, 2007].

(c4) Compared to data-driven methods that require historical data to train the local
controllers, our local controllers have a generic structure that can accommodate any
topology of distribution network. Therefore, not only can this approach easily handle
planned topology changes but, even in case of unplanned changes, it is still reliable since
network conditions are taken into account as feedback.

(¢5) This approach uses an algorithm based on Successive Convex Approximation (SCA)
methods proposed in Scutari et al. [2014] to derive a convex, and therefore tractable
formulation of our chance-constrained problem.

7.2 PROPOSED INCREMENTAL VOLT/VAR CONTROLLER

Ideally, one wants to minimize the total reactive power usage while maintaining voltages
inside a given feasible set. In the following, we consider the problem of providing reac-
tive power compensation to regulate voltage magnitudes in a distribution network. We
consider a single-phase distribution network to streamline the notation. The extension
to a three-phase unbalanced distribution network, and the stability analysis of the pro-
posed controller is illustrated later on. We re-write as follows our OPF problem defined
in (5.3) as an optimal reactive power flow problem, i.e., only the reactive powers of the
controllable generators can be controlled:

min  Cy(v) + Cp(q)

qERC
st. V<uy, <V VieM (7.3)
vi = Hi(Q; Pay, Py qy) Vi€ M
q; € Ql Vie g
where Q := Q1 X Oy X ... X Q¢ 1is the set of feasible values for the reactive powers

of the generators, p,, € R collects the non-controllable active power of the generator
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and q € R collects the controllable reactive power injection of the generators. As previ-
ously discussed, collecting data, solving the non-linear and non-convex problem (7.3) and
broadcasting the setpoints to the inverters every second is challenging. In this chapter,
we aim to solve the following problem.

Problem 7.1. Design feedback controllers to approximate the solution of an optimal
reactive power flow problem (7.3) with limited computational resources and in a decen-
tralized fashion, i. e., each controller uses only local voltage measurements to compute its
reactive power output and the operation does not necessitate continuous communications
with neighbors or a centralized entity. ]

To outline the proposed framework, we consider the case where there is one DER per
node in the network and the map H does not change over time. Recall that H represents
the practical solution of the power flow equations. Additionally, we make the following
assumption.

Assumption 7.1 (Feasibility). For any q € Q, there exists a solution such that V. <
H(q; Pay, Prray) < V. O

This assumption ensures that there is enough reactive power reserve to regulate the
voltages. We will review this assumption and our setup choices later, and discuss how
they could be relaxed.

We identify three different time scales for our proposed method to perform voltage
regulation in distribution networks. In order from the shortest to the longest, they corre-
spond to the time scales that characterize the following events: (i) controller law updates,
(ii) forecast updates and (%ii) controller gains updates.

7.2.1  Controller design

To begin with, we consider only the shortest time scale, which is related to the controller
law updates. Let us discretize the temporal domain as t = k7, where k € N, and
7 € Ry is a given time interval, small enough to resolve variations in the time-dependent
disturbances, i. e., less than a second. We consider the following feedback controller:

Qi1 = g +1(1 — Dg) — (1 — n)aqy, (7.4)

where a € R>g, n € [0,1], and &, = H(q;2zr) = Xqi, + py, with z := (p,,, p;,q;) that
represents the uncontrollable power injections, and X € RV*¥ is a linear approximation
of the power flow equations. Finally, p, = H(0,z;) denotes the voltage profile obtained
by setting the controllable reactive powers to 0. The linearized power flow equations
can be derived from the bus injection model [Dall’Anese and Simonetto, 2016], see equa-
tion (6.12), or from the branch flow model |Li et al., 2014]. In the following, we consider
the linearized power flow equations based on the branch flow model [Baran and Wu,
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1989, since it guarantees X being positive definite [Farivar et al., 2013|. This approx-
imation has been used in [Li et al., 2014, Eggli et al., 2020|, and its quality has been
discussed in [Farivar et al., 2013|. Notice that p, = H(0,z) is derived from the true
power flow equations, i. e., by solving (5.2) using a fixed-point method. Substituting this
approximation in (7.4), the controller can be written as:

di+1 = A(nv a)qk + B(na pk:)? (75)
where A(n, a) := (1 — (1 = n)a)l =X and B(n, py) := n(1 — py).
Existence and uniqueness of the equilibrium: Denoting p = p; for a given k, the

equilibrium for (7.5) is defined as:

q" =X+ (1-n)al 'y - p)

. o (7.6)
vr=XnX+ (1 -0l nl-p)+p.

Since X is positive definite and a € R>g, 7 € [0, 1], the matrix nX + (1 —n)al in (7.6) is
always invertible and the equilibrium is unique. One can check that for n = 0 and a > 0,
q*=0and 0" = p, whileforn>0and a=0orn=1,q* = X !(1 - p) and o* = 1.
Increasing the gain « decreases the use of reactive power, while increasing the gain 7
steers the voltage magnitudes to the nominal voltage profile.
Stability analysis: The controller (7.5) is asymptotically stable if and only if p(A(n, o)) <
1, where p(-) denotes the spectral radius. This condition is verified if:

0<(1-nal+nix <21, (7.7)

where Ay € RY is the vector containing the eigenvalues of the matrix X. Moreover the
matrix X is positive definite by construction, and since 7, « satisfy o € R>g, n € [0, 1],
we always have (1 — n)al + nAx > 0. The equality holds only if n = o = 0, which
guarantees a stable controller since q;; = qy.

7.2.2  Controller gains design

The performance of the controller (7.5) depends on the choice of n and «. In the following,
we introduce an optimization-based method to design the gains.

Given a matrix X, a time-varying vector p, = H(0,z), and the feasible set Q, we
formulate the following problem at time k7:

. 2
, 7.8
aeRiﬂli?e[o,u lag(a,n)ll (7.8a)
st. qpla,m) € Q (7.8b)
V< Xqpla,n)+p, <V (7.8¢)

(I=n)al+nAx <21 (7.8d)
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where q(a, 1) = X + (1 — n)al]~*n(1 — p;) is a non-linear function of 1 and «. For
a given time k7, the goal is to minimize the reactive power usage ||qx(c,n)||?, while

satisfying operational constraints, by appropriately selecting the gains n and «.

Remark 7.2 (Convergence to equilibrium). We make a slight abuse of notation as the
function qi(a,n) represents the equilibrium of the controller (7.4) for given gains and
voltages py,. We assume that the time constant T is sufficiently small to cope with the
dynamics of the distribution networks. Therefore, the controller reaches its equilibrium
before p changes. In practice, p changes continuously, so the controller always pursues
a new equilibrium. Howewver, it is reasonable to assume that, given a sufficiently small T,
the controller is always close to its equiltbrium. O

An alternative formulation of problem (7.8) can be derived using an appropriate change
of variable. This facilitates the application of the successive convex approximation strat-

egy presented next. Therefore, we introduce the optimization variable x = [%, —oz]T €

R>0 % R<q, rewrite qy(x) = [X + 17 xI] ! (1—py,), specify Q in terms of box constraints,
and reformulate the problem (7.8) as
min A% (x)
X (7.9)
st. hE(x) <0 Vie{l,..8}

where

ho(x) = llax(x)[%,  hT(%) = qe(%) = dmaxs h5(X) =~ (%) + Ayin,
h5(x) = Xaqp(x) + pp =V, h(x) = =Xap(x) = pp +V, (7.10)
hs(x) = (].TX — 2) 1+ Ay, he(x) = —-1Tx, hg(x) = —z1, hg(x) =12,

with x1, x5 scalar components of x and 1 = [1, 1]T € R2. The objective function hg
is a scalar function, as well as hg, hy and hg. All other constraint functions h; with
i €{1,...,5} are vector-valued. Another advantage of performing the change of variables
is that function hs(x) gives a tighter bound on (7.8d) with respect to the old formulation,
with the equality reached for n = 1. The controller gains derived from (7.9) ensure
asymptotic stability of the controller defined in (7.4) as long as 7 < 1. The conditions
n < 1 is always verified as n = 1 implies #* = 1 which leads to a suboptimal solution
(unless V. =V = 1).

The problem (7.9) can be solved in real-time, using directly voltage measurements py,
or non-controllable power measurements z; and then recovering p, = H(0,zj) at time
k7. For each time k7, new controller gains 7, can be computed and broadcasted to
controllable DERs. However, collecting measurements at every nodes, solving (7.9) and
then dispatching the controller gains to the controllable DERs in real-time is unfeasible
because of the communication burden and the computational time required to solve the
problem. One could envision solving (7.9) for every time k7 using forecasts of p,. However,
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it is not realistic to have such frequent forecast updates, since 7 should be sufficiently
small to cope with the distribution network dynamics. Furthermore, p;, is affected by large
uncertainties as it inherits them from z; through p, = H(0, zx). Moreover, we would like
to find optimal controller gains 17 and « over a longer time period, to avoid broadcasting
new values at every time k7, or to avoid storing a large number of gains in each controller.
In the following, we introduce a chance-constrained formulation which takes into account
uncertainties in the forecast zj, and consider a multi-period optimization problem to
update the controller gains occasionally.

Remark 7.3 (Choice of the coefficients). In principle, we could use a grid search ap-
proach for n and a in order to find the optimal pair of values that satisfies the constraints
and minimize the cost. However, we choose to take an optimization-based approach since
it is not straightforward how to select the granularity to perform the screening over the
values of o and n. Moreover, while 1 is in the closed interval [0, 1], the only requirement
on the coefficient « is to be non-negative. Therefore, one key question pertains to how to
select an interval [0, @] for a when building a grid for [0,1] x [0, &]. Setting & requires an
apriori knowledge of the locations of the minima of the function to be minimized, which
we assume s not available. O

7.2.3  Multi-period chance-constrained formulation

Given that our forecast p, = H(0,zy) is subject to uncertainty in the vector zj, we imple-
ment probabilistic constraints in our optimization problem in order to enforce voltage reg-
ulation with prescribed probability. The available DERs’ powers at time k7 are modelled
bY Pay i = Pav,k + 9av,k, While the active and reactive load consumptions are expressed as
Pix = Prit0p1k and qq , = Qg +0q1 k, respectively. Writing &y, := (Oavk» Opl ks Oqi k), and
2y, := (Pav.k» Prg> A x)> We have p, = H(0, 2y, + &5) where §j, follows a given distribution
function.

It is reasonable to assume that a new forecast for p, will be available after a certain
time interval A7 with A € N; (for example, A could be such that A7 = 15 minutes).
In practice, this means that within a time window of duration A7, p, will be the same,
regardless of the value of the index k. Therefore, we will drop the index & in the following,
and consider p™ instead to underline that the forecast p™ will be updated at each time
t = mAT with m € N,. This introduces a longer time scale, whose magnitude is related
to how often forecast updates occur.

Ultimately, our goal is to determine controller gains to be deployed over an even longer
time interval T'7 where T' = bA with b € N, e. g., b is such that T'r = 1 hour. Figure 7.3
provides a visual representation of the relationship between the three different time scales
relevant to this problem.
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Figure 7.3: Comparison between different time scales of the problem, assuming 7 = 1s.

We consider an extension of (7.9) as a chance-constrained multi-period optimization
problem:

b
min > Efho(x; p™)}
m=1

st. Pr{hin(x;p™) <0} >1-—¢ Vie{l,2,3,4},ne N, me{1,..,b}
hi(x) <0 Vie{5,6,7,8)

(7.11)

where we sum over b intervals of magnitude A, corresponding in total to a period of
time T'r. Notice that for b = 1, we recover a single-interval formulation. Pr{A} denotes
probability of an event A to happen, meaning that in problem (7.11) the constraints
hi(x; p™) < 0 for i = 1,2, 3,4 are satisfied with a probability 1 — ¢;, where ¢; € (0,1).
Solving problem (7.11) for the optimization variable x, we can retrieve the values of the
gains « and 7 to be deployed during a time interval of length T'r. When following this
approach we lose optimality in exchange for convenience: problem (7.11) can be solved
using a coarser forecast and controller gains are designed to cover wider time windows,
which is a great advantage from a practical point of view. Finally, notice that the objective
function ho(x; p™) also depends on p™, thus we minimize its expected value.

We seck a tractable approximation for the chance constraints in (7.11) since we do
not know the probability distribution function of &g, neither the map H. The chance
constraints to be approximated are of the form Pr{h(x; p) <0} > 1 — ¢, where the func-
tion h(x, p) depends on the optimization variable x and the random vector p. Consider
a so-called generating function ¢ : R — R nonnegative, nondecreasing, and convex that
satisfies the conditions ¥ (z) > ¢(0) V2 > 0 and ¢ (0) = 1. Given a positive scalar z > 0,
we have that the following bound holds for all z > 0 and x [Nemirovski and Shapiro,
2007):

Pr{h(x; p) > 0} < E,{v(=""h(x,p))}. (7.12)

As a consequence, the inequality

;I;fo{zEp{@b(Z_lh(xa p))} —ze; <0 (7.13)
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is a conservative approximation of the foremention chance constraint Pr{h(x; p) < 0} >
1 — e. Finally, we choose the generating function as ¥ (x) = [1 4+ x|4+, where [z]; :=
max{z, 0}, and rewrite the approximate constraint (7.13) as:

inf {Bp{[a(x, p) + 2)1 } — 2¢} <0, (7.14)

where replacing inf,~ with inf,cg does not affect the final expression.
Each probabilistic constraint in (7.11) will be replaced by the approximation (7.14):

Epm {[hin(x; p™) + uilnl4} — uine <0, (7.15)

where v} are real and positive auxiliary optimization variables. Moreover, since the max
operator [.]+ is not differentiable, we replace it with a smooth approximation and define:

i (X, Ui; p7) =

1

3 (hi,n(x) + uipn + \/52 + (hin(x) + ui,n)2) —ujne Vie{l,.,4},ne N,m e {1,.,b}
(7.16)

with & small and non-zero. Differentiability of the functions g; will be required later where
we will convexify problem (7.17) introduced below. The expected values in (7.15) can be
estimated empirically via sample averaging for a sufficiently large number of samples Ny,
leading to a new formulation of the optimization problem:

b N,
: 1 m
min > A > ho(x; p™[s]) (7.17a)
L om=1 s=1
1 o
st 3 D gin(xult; pMs]) <0 Vie{l,.,4},ne N, me{l,.,b} (7.17b)
5 s=1
hi(x) <0 Vi€ {5,..,8) (7.17¢)
where we will draw Ny samples p™[s]2*, of the random vector p™. Problem (7.17) con-

stitutes a conservative approximation of the initial chance constrained problem (7.11),
meaning that an optimal solution to (7.17) is a feasible suboptimal solution to (7.11).

Remark 7.4 (Conservative approximation). Our constraints have been rewritten in a
form that is in line with the concept of conditional value at risk (CVaR). A slightly
different approach would have been to reformulate the chance-constrained problem (7.17)
into a convex approrimation without demanding it to be conservative, as in e.g., Wei
et al. [2023]. Recall that for a random variable x, we have that

E[Lp, o) (#)] = Pr{z > 0}, (7.18)
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where 14 denotes the indicator function of a set A, i.e., 1a(z) =1ifx € Aand1y(x) =0
otherwise. In order to construct a conservative approximation we introduce the auxiliary
variable z > 0 and the generating function ¥(x) for which we can derive the following
upper bound.:

B[ (2)] > ELjp 400 (2)] = Pr{w > 0}, (7.19)
which is the same as (7.12) when changing z to z~ 1. O

At first one might try to solve problem (7.17) with any software package for nonlin-
ear optimization. However, it is not straightforward to implement the inverse matrix
contained in q(x) in a computationally efficient way. Therefore, we seek a different strat-
egy that may be computationally more affordable. In particular, we will leverage the
algorithm proposed in Scutari et al. [2014] which follows the ideas of Successive Con-
vex Approximation (SCA) methods. More specifically, the method solves a sequence of
strongly convex inner approximation of an initial non-convex problem. In particular, each
intermediate problem is strongly convex and can be written as:

b N

. 1 =
Jin > i > ho(x; p™[s], %)
’ m=1 s=1
1 N 3 o ) (7.20)
s.t. A Gin(X,ui; P 8], %xp) <0 Vie {1,..,4},n e N, m e {1,..,b}
S s=1

hi(x) <0 Vi€ {5,..8}

where g n(x, uf,; p™[s], Xp) approximates gin(x,u,; p™[s]) around x = x,. For given
samples p™[s], the problem (7.20) is solved for successive values of x, until convergence.
The surrogate functions in (7.20) are defined as:

- . d

Ro(oxs P [5],%5) = llay) + (x = x) T V()2 4+ 5 [ — 5 (7.21)
and
gi,n (X, uzzn; pm [S]a Xp) =

1 /- =
= (hi,n(x) + uiy, + \/52 + (hin(x) + u;”n)2) —ujpe Vie{l,.,4},ne N,m e {1,.,b}

2
(7.22)

with

hi,n(x§ pm[s]jxp) :hi,n(xp) + (x — Xp)TVhi,n(Xp) +(x— Xp)TMi,n(X - Xp)

7.23
Vie{l,.,4},ne N,me {1,..,b} (7.23)

where M;,, € R?>*? is derived to ensure that ﬁi,n(x; p"[s],xp) is a global majorizer of
hin(xp; p) (see Appendix A.2.1). To lighten the notation, we omit the p” dependence on
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the right-hand side of equations (7.21-7.23) but recall that q(x; p) = [X + 17 xI] - (1-
p) with p = H(0,z), and the functions h;,(x;p) are defined in equation (7.10). The
surrogate functions ho, g; and h; defined in equations (7.21-7.23) satisfy the assumptions
listed in Scutari et al. [2014], and are therefore suitable for the SCA method.

Next we present our algorithm to solve (7.20). First, let us define the set K defined by
equations (7.17¢), i.e., the set defined by the convex constraints of problem (7.17). Let us
also define the set X' defined by equations (7.17¢) and (7.17b), such that X C K. Then,
Algorithm 7.1 is guaranteed to converge towards a stationary solution of problem (7.20)

under the assumptions specified in Scutari et al. [2014] and presented in Appendix A.2.2.

Algorithm 7.1: Optimal Gain Design (OGD) via SCA
Initialization: v, € (0,1], xo € X. Set p = 0.
[1.] Compute the solution x*(x,) of (7.20).
[2.] Set xpy1 = xp +7p(x"(%p) — %)
[3.] If [|xp+1 — Xp|| < e with e > 0, then STOP.
[4.] p < p+ 1 and go to step 1.

Remark 7.5 (Choice of the initial point). Notice that the initial point xo must belong
to the set X. In order to obtain a feasible xg, we first start with a small n and a large o
(0.5 and 3.5, respectively). The equilibrium q* for x = x¢ corresponds to small reactive
injections/consumptions such that reactive powers are within the DERs’ limits and the
stability constraints are met. If the voltage constraints are met, then one can keep xg and
does not need to go to step 1 of Algorithm 7.1, since it corresponds to a solution with
negligible reactive power usage. If the voltage constraints are not met, we slightly increase
the value of n and decrease the value of a, then check the voltage constraints again. We
repeat these steps until we find a feasible xo. If we cannot find a feasible xq, 1i.e., the
set X is empty, one should modify the prescribed probability € to allow for more voltage
wolations. g

7.2.4  Controller implementation

We assume that each controller is equipped with sensing capabilities, i.e., it is capable
of measuring the voltage magnitudes at the node where it is located. For any given
DER g € G connected to node n € N, the following incremental Volt/Var control is
implemented:

Qgk+1 = Projg, [agk + n(1 — Ing) — (1 — n)agg,] (7.24a)

Pg,k+1 = min (ngﬁ \ 55— qz,k+1)> (7.24b)

with s, the nominal rated size of DER g. Equation (7.24a) represents the reactive power
update of DER ¢ connected at node n. The projection operation ensures that g, is
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always in the feasible set Qg of reactive powers for DER g. The approximated voltage
Un i, written in the initial controller formulation (7.4) has been replaced by the voltage
measurement o, ,, which makes this controller fully decentralized (we no longer rely on
the matrix X, and the impact of other DERs’ reactive power is implicitly taken into
account through the network feedback). Equation (7.24b) indicates that we prioritize
reactive power over active power. By prioritizing reactive power over active power, we
further mitigate overvoltage issues as the active power injection is reduced and reactive
compensation is used. However, this induces active power curtailment which is costly.
We will investigate this issue in the next section, where we will present our numerical
results. The good behavior of the controller with reactive power prioritization is verified
throughout simulations.

Note that even if the stability analysis does not consider the projection operation of
(7.24), our conclusions in terms of stability are unchanged as long as we consider a single-
phase model. Note that the projection map can be decoupled on a per-node basis since
Q= 091 X...x Qu with Q; the set of admissible reactive powers for the ith inverter;
thus, computed locally at each inverter. Assuming that we have enough reactive power
to regulate voltages, at equilibrium we have that

q" = projg[A(n, )q* + B(n, p)] (7.25)

where A(n, ) and B(n, p) were defined in (7.5). This means that q* is a fixed point of
the map q — projg[A(n, a)q* + B(n, p)]. Then, we have that

ki1 — o[l = [lprojo[Aqy, + B] — projgl[Aq” + B||
< ||Aqy + B - Aq™ - B||
= || Aq; — Aq”||
< Allllax — q”|

(7.26)

where we used the non-expansiveness property of the projection map in the first inequality,
along with standard inequalities of the norms. We thus obtain:

lay, — @[l < 1 A(n, @)1 llao — a’|. (7.27)

Therefore, the controller is stable if the induced ¢3 norm of the matrix A(7n, ) satisfies
the condition [|A(n, )| < 1.

We recall that if A is symmetric, then [|A|| = /Amax (A*A) = /p(A)2 = p(A). Since
X is positive definite and symmetric by construction |[Farivar et al., 2013|, it follows
that A(n, «) is symmetric too. Therefore, we can conclude that if p(A(n,«)) < 1, then
the projected controller renders the equilibrium q* globally asymptotically stable. This
condition is verified if (7.7) holds.

Figure 7.4 illustrates the different stages of the framework proposed in this work. We
compute the gains 1 and « for a given time interval T'7 by solving the problem (7.20)
until convergence based on forecasts of z;. The samples p™[s] are generated by solving
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Figure 7.4: Block diagram of the proposed framework.
multiple power flows for different values of zp = 2z + &, where §; follows a given

probability distribution function. In practice those forecasts can be obtained from typical
load and production profiles for different times of the day. The gains can be computed
the day before deployment or hours in advance depending on the availability of the
forecast and the computational time required to solve (7.20) until convergence. They are
then broadcasted to the controllable DERs. Notice that we do not need to differentiate
between DERs as the gains are the same for any DER connected to the network.

In the following, we address the previously introduced assumptions. First, our current
framework enforces one and only one DER per node. This requirement is rather restrictive,
even though it has already been adopted in the literature, e.g., Li et al. [2014]. We
can easily relax this assumption by considering only the entries in the matrix X that
correspond to the nodes where a controllable DER is located. The drawback is that we
can only guarantee voltage satisfaction for a subset NM;eq C N of nodes. However, the
effect of other controllable devices can be embedded in the map H. For instance, on-load
tap changers (OLTC) or switched capacitor banks can drive the forecast voltage profiles
p = H(0, z) inside the admissible voltages. Our methodology can be combined with other
traditional regulation methods, and an optimal combination of slow acting controllers,
such as OLTC, with our fast acting controllers can be envisioned. Furthermore, if multiple
DERs are connected to the same node, one can aggregate the DERs and model them as
one single device associated with one controller. The reactive power setpoint produced
by controller (7.4) is then appropriately dispatched to the different DERs.
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Second, in the present setup the network topology does not change with time. However,
in our current framework, topological changes that can be forecast (because of mainte-
nance or planned operation) can easily be integrated. Indeed, those changes impact the
matrix X. By appropriately choosing the time interval T'r and recomputing X, one can
derive gains that would be well adapted to this new network topology. This assumption is
much harder to relax for learning-based methods since it requires building new datasets,
and learning new equilibrium functions, which can be time-consuming. When it comes to
unplanned changes, e.g., sudden line tripping or unplanned operations, our controllers
take into account the network conditions as feedback, and do not worsen the situation.
Nevertheless, evaluation of the robustness with respect to unplanned changes remains to
be investigated.

Finally, Assumption 7.1 tackles the feasibility issue of the optimal reactive power flow
problem. It may happen that, under our controller architecture, there is not enough reac-
tive power reserve to satisfy the voltage constraints. This problem is implicitly addressed
through our chance-constrained formulation. Indeed, increasing the value of € enlarges
the feasible set. For € = 1, the problem (7.20) is always feasible.

7.2.5  Ezrperimental results

7.2.5.1 Simulation setup

We consider the low voltage network (0.4 kV) shown in Figure 7.5a. We used a modified
network from Sarajlic and Rehtanz [2019], in which photovoltaic power (PV) plants have
been placed at each node, with inverter-rated size picked randomly among {20, 25,31}
kVA. The DERs dynamics are not implemented, as they are considered to be much faster
than the controller dynamics [Eggli et al., 2020]. As such, when the controller update
law produces a new reactive power setpoint, it is instantaneously implemented by the
controllable DER. In this thesis, we only consider PV plants as DERs, but any type of
inverter-interfaced generation for which the reactive power can be controlled could be
considered. Figure 7.5b shows the aggregated loads and maximum available active power
for PV plants throughout the day. The data is from the Open Power System Data, and
have been modified to match the initial loads and PV plants nominal values present in the
network. The reactive power demand is set such that the power factor is 0.95 (leading).
This represents a typical summer day, with high PV production. We will show that,
under these conditions, the electrical distribution network undergoes both overvoltages
and undervoltages.

In the following, we assume the controllable DERs to be equipped with an overvoltage
protection for PV plants inspired by the CENELEC EN50549-2 standard EN50549-2
[2019] that we already discussed in Section 6.2.4.

In the simulation, the voltage service limits are set to 1.05 and 0.95 p.u., respectively.
The load and PV production profiles have a granularity of 1 second, i.e., active/reactive
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Figure 7.5: (a) Low-voltage 42-node network. (b) Aggregated non-controllable active power in-
jections, and active/reactive power consumption.

power consumption and maximum available active power for PV plants change every 1
second. The time horizon T'7 is set to 1 hour, and the forecast update A7 to 30 min-
utes. The reactive power setpoints update 7 is set to 100 ms. We compare our proposed
controller, based on Algorithm 7.1 (OGD-CCO), with: (a) a static Volt/Var control (Volt-
Var); and, (b) no control (ON/OFF).

Static Volt/Var control: It is inspired by the standard IEEE Std 1547-2018 that is
illustrated in Figure 6.4b, with maximum reactive power consumed /absorbed set to 44%
of the nominal power of the DER and reached for voltages 1.05/0.95 pu, respectively. The
deadband ranges between 0.99 and 1.01 pu. Active power prioritization is implemented.
Therefore, the maximum reactive power that can be produced or consumed corresponds
to the minimum between 44% of the nominal apparent power s, and the reactive power

reserve of the inverter , /sg — pg, with py the active power injection of DER g.

No control: Set controller gains 7 = o = 0, and reactive powers to 0.

7.2.5.2 Results

In Figure 7.6, we illustrate the dynamics of the controllers associated with DER connected
to two different nodes and the corresponding voltage magnitudes.

We compare the voltage magnitudes resulting from the deployment of different con-
trollers against the case without controllers and without overvoltage protection. We fixed
T'1 to 1 hour, i.e., the controller gains change every hour. It is clear that the VoltVar
control overuses reactive power, as there is no need to control the voltages between hours
16:00 — 17:00, or after 22:00. The ON/OFF strategy sees large fluctuations in voltages
due to constant connection and disconnection of DERs.
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Figure 7.6: DER reactive power (¢) and measurement of voltage magnitudes (v) for two given
nodes: (a) node 34 and (b) node 20.
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The cumulative distribution functions (CDF) for maximum and minimum voltages
during the simulation are shown in Figure 7.7a. At each time ¢ between hours hy and ho,
we pick the maximum and minimum voltages throughout the network and store them into
two distinct vectors. We then plot the cumulative distribution functions of those vectors.
We define the vectors Viyax = {maxv; i bien ke and Vi = {min7; 1 }ien ke, where
Tho—n1 is the set of time indices between hour A0 and hour hl. For Tg_a4, i.e., for the
entire duration of the simulation, our proposed method crosses the 1.05 p.u. line above
95% for the maximum voltage, and lower than 5% for the undervoltage. This means that
the voltage constraints are satisfied at least 95% of the time, which is consistent with
our choice of € = 0.05 and € = 0.2. We also show the CDF during two other intervals,
between hours 7:00 — 8:00 for overvoltages and 18:00 — 19:00 for undervoltages. Notice
that a larger € allows for more voltage constraint violations. The VoltVar control sees
overvoltages more than 10% of the time while performing similarly to our method for
undervoltages. The ON/OFF strategy sees overvoltages more than 20% of the time.

Figure 7.7b displays, from top to bottom, the energy lost in the lines, the energy lost
because of active power curtailment, and the cumulative reactive energy usage for the
different strategies considered in this work. The line losses are computed based on the
line currents squared times the line resistances. Although the usage of reactive power
is practically free, it induces larger line currents, hence larger power losses. We make a
distinction between losses caused by active power curtailment and line losses since the
former are covered by the network user while the latter are covered by the system operator.
However, the system operator can in turn increase network tariffs to compensate for line
losses due to overuse of reactive power compensation.

Our controller applies reactive power prioritization, which naturally induces active
power curtailment if the DER injects a large amount of active power into the network.
On the other hand, the VoltVar and ON/OFF strategies may experience active power
curtailment because of prolonged overvoltage violations. Taking all these competing fac-
tor into consideration, the total energy loss is much more important for the ON/OFF
strategy, while it is equivalent for our controller and the VoltVar control.

These results emphasize the advantages of having gains that are updated to take into
account forecast changes in the network conditions. For instance, based on the forecasts,
one can observe in Figure 7.6 that the voltages are close to the nominal voltage early in
the morning. When computing the gains for that time period, one obtains gains such that
the reactive power compensation is almost deactivated as there are no voltage violations
forecasted. On the other hand, the constant gains of static VoltVar curves are set such
that reactive power compensation is provided as soon as the voltage magnitudes deviate
and leave the controller deadband, leading to an overusage of reactive power. One can
also see that the parameter € acts as a lever on the total usage of reactive power. If the
reactive power is very expensive, and voltage violations are not extremely important, one
could increase the value of € to reduce the total usage of reactive energy.
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In Figure 7.8, we show the maximum duration of voltage violations. The vector I'y
is built such that, if an overvoltage or undervoltage occurs in the network at a given
time step k7, we count and add up every voltage violations for the subsequent time
steps. When, at a subsequent time step, no voltage violation occurs, the total number of
voltage violation is appended to the vector, and the counter is reset to 0. The vector I'y,
indicates the duration of voltage violations. This is an important number, since usually
electrical devices can cope with short and limited over or under voltages, but may be
damaged during prolonged, large excursions from nominal voltages. The parameter € sets
the maximum time the voltage can exceed the voltage limits. Figure 7.8 shows that a
smaller € leads to shorter voltage violations, while both ON/OFF and VoltVar strategies
lead to substantially longer voltage violations.
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Figure 7.8: Cumulative distribution function for voltage violations.

7.3 A ROBUST FORMULATION

In this section, we consider a robust formulation of our chance-constrained optimization
problem. The overall idea is to consider the worst-case scenario such that, for given
controller gains, the voltage and reactive power constraints are always satisfied for any
pi, with k € Tp1_po. In particular, we consider solving the problem:

maXp, kETh1_n2 < min ) ”qHz)a (7.28)

a€C(py,
with C(py,) :={a:aq € Q,V < Xq+ p, < V}. Let p};_,, denote an optimal solution
to (7.28). The proposed heuristic (7.28) gives the py,_,, that leads to the largest objective
value ||q||?. We claim that if q € C(p};_ 1), then q € C(p;) Yk € Thi—no-

The validity of our heuristic (7.28) is illustrated using a simple example. Consider a
two-node network; the voltage magnitude of node 1 is set to 1 pu, and node 1 is connected
to node 2 through a line of inductance 1 pu. The linearized power flow equation gives
U = q + p, where the quantities are defined for node 2. We consider three different
values of p, for different & € {1,2,3}; p1 = 1.04,p2 = 1.06,p3 = 0.93 and infinite
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reactive power reserve. Solving the ORPF problem mingcc(,,) q? for k € {1,2,3}, one
gets: g1 = 0,2 = —0.01,¢g3 = 0.02. Following (7.28), we have p* = p3 = 0.93. The
equilibrium function of our controller is:
_ 1
n+(1-n)a
Replacing p by p*, fixing n = 0.8, and knowing that ¢* = g3 = 0.02 minimizes the reactive
power usage and satisfies the voltage constraints, we have o = 10. The expression (7.29),
with the fixed controller gains, becomes ¢* = 0.2857(1—p). Then, we can plug py in (7.29)
with the fixed controller gains, and we have ¢* = —0.017, and 7* = 1.043 < 1.05. The
voltage constraint is also verified for p1, and shows that the constraint is satisfied for all
pr with k& € {1,2,3} by picking p* = ps according to (7.28) to design the controller gains.
Now let us consider some reactive power constraints with gy, = —0.015 and g¢pax =

*

q n(l—p). (7.29)

0.03. Nothing changes; p* = ps and the equilibrium function for ps gives ¢* = —0.017.
Notice that ¢* < gmin: the reactive power constraint is not satisfied. However, in the
real implementation of our controller, the DER will inject ¢ = —0.015, which ensures
v = 1.045 < 1.05. In the case where gunin > —0.01, then the initial ORPF for ps is
not feasible, since go < —0.01 is required to meet the voltage constraint. We make the
following remark about the feasibility of the ORPF problem:

Remark 7.1 (Feasibility of the robust formulation). When solving problem (7.28), one
first needs to make sure that the set C(py) is not empty for some values of k. In that
case, one can either consider (i) a larger set V = {0 : V. < © < V}, or (ii) pick
Pi1_pa following equation (7.28) for all k € {k : k € Thi—n2,C(py) # 0}. This guarantees
feasibility of the ORPF problem for a given py,_;,, however, notice that in the case (ii)
the worst-case scenario might be excluded and one cannot guarantee that they will be no
voltage violations between hours hl and h2. Notice that, given our controller architecture,
the feasible set of (7.9) may still be empty even after applying (i) or (ii). In such cases,
one should pick a different value of py,_;o to ensure that the set X, that also considers

the constraints related to our controller architecture, is not empty.

In Figure 7.9a, we show the cumulative distribution functions (CDF) for maximum
and minimum voltages for the entire duration of the simulation. Our method slightly
exceeds the voltage limits because of some transients, while the VoltVar and the ON/OFF
strategies withstand more important voltage violations, though limited by the overvoltage
protection.

In Figure 7.9b, we show the total energy lost and the reactive energy usage. VoltVar
and our method are equivalent in terms of active power losses, in particular VoltVar
suffers from larger curtailment while our method induces larger losses in the lines since it
uses more reactive power compensation due to reactive power prioritization. Our method
uses more reactive power, but keeps the voltages within fixed limits. If the cost of reactive
power usage exceeds the cost of violating voltage constraints, one could either change
the voltage limits, or pick a different pj, ;. to reduce the total reactive energy usage.
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Figure 7.9: (a) Cumulative distribution function for the vectors Vax, and V. (b) Energy lost
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7.4 EXTENSION TO A THREE-PHASE UNBALANCED DISTRIBUTION SYSTEM

In this section, we show how our algorithm can be naturally applied to a three-phase
unbalanced distribution network and present some simulation results. For this purpose,
we consider the IEEE 123-node test system [[EEE, 1992].

First, we characterize the stability of our control algorithm applied to multi-phase
distribution networks. We use the approximation proposed in Kekatos et al. [2015],
where v, = Xq;, + pg,, with oy = [(ﬁik)2,..., (ﬁf\),’k)ﬂT € RV, X ¢ RWVSN q, :=
[q(ﬁk, ...,q?{,’k]—r c RN, p, = [(pf’k)z, v (p%7k)2]—r € R3N, where we use the superscript
¢ to denote (ﬁffk)z = [(ﬁf{’k)Q, (ﬁz,k)2v (ﬁflk)Q] We follow the approach of Kekatos et al.
[2015] for the derivation of the matrix X, which is based on the branch flow model and
the phase impedance matrices for the lines. Notice that, since it is based on the branch
flow model, the approximation considers the squared voltage magnitudes; however, this
does not affect our method as the linear approximation (and, thus, the matrix X) is used
only to design the controller gains and one can simply modify the voltage limits V, V.
in our optimization-based approach to consider squared voltages. For this case-study, we
assume that DERs are wye-connected, and their reactive powers on each phase can be
independently controlled. For the multi-phase case and for a DER g € G connected to a
node n € N, the implementation of the controller derived in equations (7.24) becomes:

Giir = Proj g ) +n(1 =72 ,) — (1= n)ag],] (7.30a)

pz,kﬂ = min (Pﬁ,m \/(33)2 - (q;kH)Q) ; (7.30b)

where ¢ € {a,b, c}, and where reactive power limits Q? and rated powers 33 are defined

on a per-phase basis. In particular, we consider that our controllable DERs are balanced,
share the same rated power sf; among each phase and thus have the same reactive power
limits Qg’ for each ¢ € {a,b,c}. Each phase of each DER is regulated independently.
Notice that in our simulations, the system is unbalanced because the uncontrollable
power injections are not equal among each phase.

The matrix X of our linear approximation of the three-phase IEEE 123-node test sys-
tem is positive-definite, which ensures the existence and the uniqueness of the equilibrium.
However, it is not symmetric, and, thus, the stability analysis of the projected controller
performed in Section 7.2.4 no longer holds since p(A(n, o)) < ||A(n, @)|. We derive some

conditions that highlight the role of X; to this end, consider the following inequality:
[A(m, )l = I(1 = (1 =n)a)l — nX|
<[ =@ =ma)l]| + [[nX]| (7.31)
< 1= (@1 =n)al+nl|X]|.
Thus, a sufficient condition for the controller to be stable in the multi-phase setup is:

1= =naf+n] X[ <1 (7.32)
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which can be written
0 < (1—=mna-—n|X]<2-2n[X]. (7.33)

It yields to the following two constraints when we divide both sides by 7, and introduce
the variable x:

0<1'x—|X| (7.34a)
(1"x—2)+ X <0. (7.34b)

Notice that, as in the single-phase equivalent, we replace 2/n with 2 such that we obtain
a tighter bound on the second constraint as n € [0, 1]. Although the stability constraints
slightly differ from the one presented for the single-phase equivalent, they remain linear
with respect to x.

The results obtained on the IEEE 123-node test system are presented next. The sim-
ulation setup is the same as the one presented in 7.2.5. The DERs are PV inverters. At
each node, a three-phase wye-connected PV inverter is installed, and its rated size is
picked randomly among four different inverter sizes {60,120, 160,200} kVA. The aggre-
gated non-controllable power injections are shown in Figure 7.10a, where one can observe
that the system is unbalanced. The DERs dynamics are not implemented, as they are
considered to be much faster than the controller dynamics.

Notice that in this multi-phase setup, the static Volt/Var control is unstable and leads
to an oscillatory behavior that can be observed in Figure 7.10b. This unstable behaviour
can be mitigated by adjusting the gains of the static Volt/Var control, but this will
impact the voltage regulation capabilities. Therefore, we compare our method for two
prescribed probabilities € with the no control (ON/OFF) strategy.

The cumulative distribution functions (CDF) for maximum and minimum voltages
during the simulation are shown in Fig. 7.11a. For the entire duration of the simulation,
our method with both prescribed probabilities (e = 5% and € = 20%) performs better
than the no control strategy in terms of voltage regulation. Notice that the percentage of
voltage violation is consistent with respect to the prescribed probabilities; the CDFs cross
the purple line over 95% and over 90% for probabilities € = 5%, e = 20%, respectively.

Figure 7.11b shows the energy usage of the different methods. One can observe that,
while our method uses more reactive energy, it leads to less active power curtailment
because of limited voltage violations. One can also see that the total energy lost with
the ON/OFF strategy (both coming from active power curtailment and lines losses) is
more significant than the energy lost with our method. In particular, our method with a
prescribed probability of € = 5% leads to almost no active power curtailment.

Finally, Figure 7.12 shows the maximum duration of voltage violations. When we
tolerate less voltage violations (smaller prescribed probability €), the voltage violations
are shorter. Notice that in this metric, we consider that there is a voltage violation at
time ¢t if at least one voltage among all the nodal voltages for at least one phase is out
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Figure 7.10: (a) Aggregated non-controllable active power injections, and active/reactive power
consumption for the IEEE 123-node test system. (b) Reactive power updates using the static
VoltVar for two DERs in the IEEE 123-node test system, where gpgr denotes the reactive power
of the DER and vpgr the voltage magnitude measured at the node where it is connected to.
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Figure 7.11: (a) Cumulative distribution function for the vectors V.x and Vi, for the IEEE
123-node test system. (b) Energy lost in the lines and because of curtailment, and reactive energy
usage for the IEEE 123-node test system.
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Figure 7.12: Cumulative distribution function for voltage violations for the IEEE 123-node test
system.

of the admissible limits. This metric does not indicate the maximum duration of voltage
violations for a specific node, but rather provides an overview of the system.
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7.5 SUMMARY

In this chapter, we proposed an incremental Volt/Var control strategy for voltage regu-
lation in distribution networks. We showed the stability of our controller and introduce
a methodology to compute the gains of our controller based on a multi-period chance-
constrained formulation of an optimal reactive power flow problem. Our methodology
only needs limited and non-continuous communications; that is, the same controller gains
are broadcasted to individual controllers. Our chance-constrained formulation tackles un-
certainties in power injections. Moreover, the feasibility issue of local Volt/Var control,
i.e., if there is enough reactive power reserve to satisfy the voltage constraints given the
architecture of the controller, is implicitly taken into account by allowing the system op-
erator to tolerate a prescribed probability of voltage violations. Our method shows better
performance compared to static Volt/Var curves with fixed parameters, and limited and
short voltage violations that are consistent with the prescribed probability. We also in-
troduced a robust formulation of our incremental Volt/Var control strategy, based on a
simple heuristic that determines the worst-case scenario in terms of voltage regulation.
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Outline

In this chapter, we present a distributed controller for voltage regulation in
distribution networks to solve the Problem 1.2 introduced in Section 1.2.2.
The AC-OPF problem is decomposed and solved using a consensus-based
Alternating Direction Method of Multipliers (ADMM) approach. We lever-
age the iterative procedure of ADMM to convexify the branch flow model
by appropriately estimating the branch currents using consensus variables.
We provide experimental results to demonstrate the effectiveness of the
proposed approach on a 122-node single-phase distribution network. The
chapter is organized as following. In Section 8.1, we review the literature
on distributed controllers for voltage regulation in distribution networks.
In Section 8.2, we present the proposed consensus-based ADMM approach,
and we provide experimental results to demonstrate the effectiveness of
the proposed approach. Finally, we summarize the chapter in Section 8.3.

8.1 LITERATURE REVIEW

Distributed control strategies are a trade-off between centralized and decentralized con-
trol strategies. They only need reduced communication to take decisions locally, but can
reach similar performance as a central controller. This makes them particularly well-
suited for the voltage regulation problem in distribution networks. Additionally, they
can ensure data privacy and improve robustness against cyber-attacks or communication
failure. Compared to a central controller, there is no aggregator in distributed control
strategies, so that there is no single-point of failure. In Li et al. [2019] and Bolognani
et al. [2014], authors use a dual-ascent method to solve an optimization problem that is
decomposed over each electrical node. After updating the Lagrangian multipliers, they
are exchanged among neighbors through a communication network. In Zhang et al. [2014],
authors also employ a dual-ascent method, but they exchange Lagrangian multipliers to
equalize the angle differences across a line from both ends.

In Sulc et al. [2014], authors show that the Alternating Direction Method of Multi-
pliers (ADMM) has superior convergence properties to dual-ascent methods, and con-
sider consensus-based version of ADMM. The convergence properties of distributed algo-
rithms are actually important when it comes to real-time control of distribution network,
since long convergence times lead to suboptimal operation of the system. In Xu and
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Wu [2020], the problem is split into several zones consisting of several electrical nodes,
and a consensus-based ADMM is also implemented. They use a quasi-Newton approach
for the dual update to further enhance convergence properties. A convex surrogate of
a distributed AC-OPF problem is solved using ADMM in Zhang et al. [2017], although
they use a centralizer to compute voltage-related vectors and to broadcast them to the
different controllable units.

8.1.1 Solving an AC-OPF using consensus-based ADMM

In this thesis, we propose a fully distributed optimization algorithm to perform real-time
voltage control of distribution networks. By fully distributed, we mean that each node
solves its own subproblem, and only requires communication with neighboring nodes.
We do not rely on any type of central coordinator. The proposed distributed control
minimizes the communication burden and ensures data privacy; each electrical node
is responsible for computing its power setpoints. We leverage the convergence proper-
ties of consensus-based ADMM and its iterative procedure to pursue a solution of an
AC-OPF problem. ADMM exhibits improved convergence properties compared to dual
ascent methods, in particular for problems with ill-conditioned dual functions, as it uses
a quadratic regularization term to deal with nonsmooth terms [Zhang et al., 2021].

8.1.2 Contributions

The contributions of this work are the following:

(c1) No need for a central coordinator. Small optimization problems are solved at each
electrical node using local estimations for power and voltage magnitude measurements.

(¢2) A linear version of the branch flow model is implemented based on estimation of the
branch currents. Unlike common linearization methods, the losses are not neglected; they
are evaluated for each line and each iteration. This method allows the use of a convex
model which does not need the usual loss minimization term for the convex relaxation
to be exact, as discussed in Remark 6.2.

8.2 PROPOSED CONSENSUS-BASED ADMM APPROACH

We consider the branch flow model introduced in (6.19) that we recall here:

min i(pi,qq 8.1a
min, j;ff;(p] 4) (8.1a)
st P =P = Y Pin— (Paj —7ajBay)  VjEN (8.1b)

nECj
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G—0j= Y Qjn—(Quj—TajBaj) ViEN (8.1c)
nGCj

Q5 = Qg — 2(rajPaj + xanaj) + (ng + xgj)ﬁaj V] € N (81d)

Baj = Faj +Qaj VieN (8.1e)

(pi,qi) €Uy Vieg (8.1f)

VP<a; V2 VjeM (8.1g)

where, compared to the formulation proposed in (6.19), we consider an objective function
that can be decomposed node by node. It corresponds to the sum of objective values
defined at each node. Furthermore, we applied the following change of variable o; = 1/1-2
and 3;; = Ifj The decision variables p;,g; and the objective function are specific to
each node, i.e., they depend only on quantities defined at node j. However, there are
coupling constraints, i. e., constraints that are coupling quantities that are shared among
different nodes. For instance, consider a node a connected to node j through a line of
impedance rq; +jxs;, one can write vgeida —Vjej‘;j = (rqj —|—jxaj)Iajej¢“j, that is Ohm’s law
in phasor form. Voltage magnitudes at nodes a and j are linked via the current through
the line connecting a to j, and its impedance. Therefore, one cannot directly decompose
the optimal power flow problem because of the power flow constraints. In this work, we
employ the consensus-based ADMM [Boyd et al., 2011] to distribute the problem because
of its enhanced convergence properties compared to other distributed methods.

We consider the following conventions. The network is radial, it is represented using
a directed graph rooted at the substation node that is node 0. Each of the other nodes
(j # 0) has a unique ancestor a and any number of children that belongs to the set
C;. A positive power flows from the ancestor to the children and all branch powers are
considered on the side of the ancestor node (see Figure 8.1 for the conventions used).

In the consensus-based ADMM, coupled variables are turned into local copies, and
an additional consensus constraint imposes the equality of local copies to a shared con-
sensus variable. The consensus constraint is then dualized. The consensus variables are
computed as the mean of the local copies. As a result, a communication network match-
ing the electrical network must be created to share corresponding local variables between
neighboring nodes.

The ADMM iterative procedure is implemented as follows:

Step 1: Solve the subproblem at each node j,

Step 2: Exchange local copies with the neighbors of j,

Step 3: Update the consensus variables.

Step 4: Update scaled dual variables corresponding to the consensus variables using dual
ascent.

These four steps are repeated until convergence of primal and dual variables.
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8.2.1 [Iterative procedure

Step 1: The subproblem solved at each node j is:

min - f(pj, ¢5) + 1 &) +mj(al, af) (8.2a)

747
st pj—pij= Z (ng - rajﬁgj> , (8.2b)

neC;
_ N
— 4L = Z Q ( $ajﬁaj> s (8.20)
neC;

ag = ai 2 <ra]P + a:an ) ( gj + .Z'ZJ) ij, (8.2d)
pj, 45 € Uj, (8.2¢)
Vi<al <V, (8.2f)

where s] is a vector containing the coupling variables related to node j, i. e. a aa, ng, aj
and { P/ i Q jn}necj- Notice that our algorithm requires an estimate of the network branch
impedances (7q; + jZq;)-

The penalty term n; comes from the augmented Lagrangian in its scaled form [Boyd
et al., 2011]:

- p o A , » ,
nj(e’) = 5(”]323 - ng + ’Yﬁg”g + Hszj - flj + ‘%Hg
+ o — @ + M3 + llof — af + AlI3

+ > (1P, = Pl 477,13 + @5, — Q) + 6,113)), (83)

TLECj

with the penalty parameter or update step p, initialized at 1 and updated using a heuristic
described in Boyd et al. [2011], ’ya], ’an, ML (52 i 5J are dual variables associated with
consensus constraints, and quantities deﬁned with ( ) represent consensus variables. We
explained in Step 3 how those quantities are computed. Notice that the constraint (8.1¢)
does not appear in the local subproblems, although the branch currents 3;; appear in the
other constraints. This constraint renders the problem non-convex, and in this thesis, we
leverage the iterative procedure of the ADMM to consider branch currents as parameters

that are updated at each iteration of the procedure using:

s (P @)
aj O_ZZL

(8.4)

The last term m; is a second penalty term for voltage deviation compared to the
measured value:

m;j (ai,oﬂ) co((0f = 02)% + (ol — 72)?). (8.5)
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This aims to keep the local copies of the squared voltage magnitude variables close to the
measured values. In distribution network, the substation node sets the reference voltage
for the system, and the voltage values at other nodes are derived from this reference and
the power flow in the lines. The outer nodes thus rely on information from ancestors
to determine their own voltage in the ADMM algorithm. Due to the distributed and
iterative nature of ADMM, this information takes some time to propagate through the
network, resulting in underestimation of voltage values and lasting overvoltages. This is
actually one of the major drawback of distributed control strategies, as they take some
time to converge to the optimal solution. Adding this term with a weight factor ¢, > ¢,
speeds up the convergence to solutions that satisfy Kirchhoff’s laws. This term ensures
faster voltage regulation while optimal operation is still reached when the algorithm has
converged.

Remark 8.1 (Penalty term). Notice that, if one considers a perfect voltage model, and
no measurement errors, the penalty term defined in (8.5) becomes zero when the ADMM
procedure has converged toward a solution of problem (8.1). However, in practice, there
exist some modelling uncertainties and measurements are noisy such that the penalty term
is never equal to zero.

With respect to (8.1), a superscript j represents a local copy of a variable considered
at node j and a is associated to the ancestor of node j, i.e., ag denotes the squared
voltage magnitude of the ancestor node a of node j seen from node j, while a? denotes
the squared voltage magnitude of node j seen from node j.

Step 2: The communication graph described in Figure 8.1 shows the variables to be
exchanged after each node has solved its subproblem.

Step 3: The consensus variables are updated by computing the average value of all the
local copies:

J n
@t ) e O

o = (863)
2o G+
(P 4+ po
pgj :((1]2@)’ (8.6b)
(@, +Qs)
j _\¥aj aj
b= (8.6¢)
_ P! 4 pn
P/, :(3"27”), VneCc; (8.6d)
J n
. Q"
;'n :7( Jn 5 Q]n), Vne Cj. (8'66)

‘We only use communication with adjacent buses in the algorithm. In order to update
a},, information from the children nodes n € C, of the ancestor a is needed, since all the
children nodes have a local copy of the ancestor voltage. This consensus variable is thus
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Decision variables: p;, q;

Parameters: (3., 74 + jTqj, Tjn + jTjn
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Figure 8.1: Communication graph for node j.
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only updated in node a with data from all its children, then transmitted to the children
node, including node j.
Step 4: The scaled dual variables are updated with a gradient ascend method:

J—\J J_ 7
A =N+ — osz, (8.7a)
No=M+al —al, (8.7b)
v] =i+ P — P, (8.7d)
&, =05, +QJ, — Qi Vn e Cj (8.7e)
&, =04 + Q) — Ql. (8.7F)

8.2.2  Fxperimental results

8.2.2.1 Simulation setup

We use a Dickert benchmark LV network as described in Dickert et al. [2013], which is
available in Pandapower [Thurner et al., 2018]. The parameters for the Dickert network
are long range feeders, multiple customers, cables as line type, and the case type is
average with a total of 122 nodes. We keep the same initial electrical loads, and add PV
systems. We distribute 109 PV systems randomly in the network, corresponding to a
penetration rate of 90%. The rated size of the inverters is selected among three different
sizes {8,9,10} kVA. Time-domain values for load consumption and PV production with a
minute resolution come from Open Power System Data. We derived 40 load profiles and
40 PV production profiles collected over several days to simulate active and reactive load
consumption patterns and PV system orientations. The data are linearly interpolated to
create profiles with second resolution, and are shown in Figure 8.3a.

The simulations are run for one day, from sunrise to sunset. Considering the very
low computation time and the direct communication between nodes, the frequency of
the ADMM algorithm is estimated to be 10 Hz. Every 0.1 second, the inverters receive
new setpoints. We consider that the inverters directly implement the power setpoint
received. Then, we measure voltage magnitudes measurements and feed them back in
equation (8.2). Considering the one-second resolution for PV and load data, ADMM has
10 iterations to approach convergence before the state of the system is modified. Each
second, after system modification, the algorithm benefits from previous operating points
as a warm start. Operating points stay similar and dual variables for the problem are
already close to convergence. Perfect communication and synchronicity between neigh-
boring inverters is considered for these simulations.
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Figure 8.2: Results for one specific bus equipped with a PV inverter. V denotes the local copies
of the voltage magnitude for one specific node, while V¢4 is the actual voltage magnitude that
has been measured. ¢ and p denote the reactive power and active power injected by the DER,
respectively.

8.2.2.2 Results

Figure 8.2 compares the performance of the centralized model and the distributed model.
The voltage magnitude at one problematic node is shown in the top-left figure. We
compare three different simulations. The first two use centralized and distributed models
to compute power setpoints. In the third one, no control action is taken (reactive power
set to zero and no active power curtailment). The voltage level in the latter case exceeds
the 1.05 pu threshold, whereas it does not in the other two cases. Even if the local
voltage measurements are not outside voltage limits, the distributed algorithm curtails
the active power to avoid overvoltages in other nodes. It can achieve the same results
as a centralized model without needing a coordinator with complete observability of the
system state. However, the magnitude of the voltage in our model may differ from the
network’s actual voltage (resulting from the solution of a power flow using the power
setpoints computed with the distributed algorithm), as explained before.

The bottom right plot displays the differences between the actual voltage and the volt-
age perceived by the distributed agents. Finally, we compare the computed power set-
points for the centralized and distributed algorithms. It is noticeable that the distributed
model accurately follows the optimal power setpoints computed with the centralized
model.

In Figure 8.4, we compare the energy curtailed (integral of the total active power cur-
tailed over a specified period) for three control algorithms, the centralized version of equa-
tion (8.1), the distributed approach and the CENELEC EN50549-2 standard [EN50549-2,
2019| already discussed previously, that corresponds here to a decentralized control strat-
egy.

The control algorithms are compared in terms of overvoltages in Figure 8.3b (except the
centralized method since it avoids overvoltage). As can be seen, compared to the scenario
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Figure 8.3: (a) PV production and load profiles for one day with second resolution. (b) Cumulative
distribution functions of voltages for all nodes in three simulations, where V' denote the voltage
magnitude measured throughout the network.

149



150

DISTRIBUTED CONTROLLER

600 4 —— Centralized
= — Distributed
_% Decentralized
— 400 -
r
3
L
g 200 —
F
O -
1 1 1 1 1
6 8 10 12 14 16 18

Time [h]
Figure 8.4: Energy curtailed for the three control algorithms.

with no control, the distributed algorithm limits the number of voltage violations and
the maximum overvoltage.

Table 8.1 shows the comparative results for the four simulations. The centralized opti-
mizer shows the ideal results, with minimal energy curtailment and no voltage violations.
The results for the proposed distributed method are relatively close to ideal, with greatly
reduced communication needs. The decentralized controller show relatively good voltage
regulation, at the expense of very large power curtailment.



Table 8.1: Results for the full simulations.

8.3 SUMMARY

Control algorithm
No Ctrl Dec. ADMM Cent. Op.
Ctrl(CENELEC
standard)
Energy produced | 5009kWh 4342kWh 4498kWh 4549kWh
Energy curtailed | 0 kWh 697 kWh 511 kWh 460 kWh
Energy lost 212 kWh 123 kWh 186 kWh 191 kWh
Production peak | 697 kW 579 kW 591 kW 601 kW
Consumption 679 kWh
Reactive control | 0 kvarh 0 kvarh 1129 kvarh | 1031 kvarh
Max. voltage 1.15 pu 1.08 pu 1.06 pu 1.05 pu
% of overvoltages | 29 10 3 0

8.3 SUMMARY

In this chapter, we solved an AC-OPF problem using a consensus-based ADMM, that only
requires neighbor-to-neighbor communication. We solve one subproblem per electrical
node, and each node communicates with its neighboring nodes. The proposed method
can reach similar results as an optimal centralized controller. We used a branch flow model
to model the power flow equations. We obtain a convex formulation for the branch flow
model, by appropriately estimating the branch currents, using the iterative procedure of
ADMM. The global optimum can be reached without minimizing the network losses in
the model objective thanks to the iterative evaluation of the branch currents. We showed
numerical results on a 122-node single-phase distribution networks, and performance

comparable to a centralized controller, with less communication requirements.
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9.1 CONCLUSION

In this part, we proposed three different control algorithms to perform voltage regulation
in distribution networks.

Centralized algorithms require a complex communication infrastructure that is not
always available in distribution networks. They often require a detailed model of the
network, and full information about the system’s state. However, recent works in online
feedback-based optimization reduce the requirements in terms of modelling and observ-
ability of the system. These algorithms work in interaction with the grid; the feedback
controller converges toward an equilibrium that is a solution of the optimization problem.
There are two main advantages of real-time closed-loop implementation of optimization
algorithms; (i) they naturally track time-varying conditions since they manifest them-
selves in the feedback received by the controller, (ii) they do not require detailed model
of the system. We mention the requirements in terms of system’s observability. While
solving the non-convex AC-OPF requires collecting load measurements at every node, our
feedback-based method only requires voltage measurements at nodes where we want to
perform voltage regulation. In particular, one can create some clusters of nodes where volt-
age regulation is required, and only collect voltage measurements at the cluster’s leader.
This would greatly reduce the requirements in terms of communication infrastructure.
Compared to other feedback-based method, we proposed an algorithm that leverages
control barrier functions. Hence, we can guarantee that the voltage remains at anytime
within the admissible limits. The proposed method relies on a quadratic programming
problem that can be solved in real-time. We showed that our feedback-based safe gradient
flow exhibits similar performance compared to solving the non-convex AC-OPF problem,
even though our safe gradient flow is based on a linear approximation of the power flow
equations. This is because the voltage model is replaced by voltage measurements in
feedback-based methods, which make them robust against modelling uncertainties. How-
ever, we note that, even though communication requirements are reduced, the method
still requires communication between some nodes and a central aggregator, which may
not be available in all distribution networks.

We proposed a decentralized control algorithm that does not require communication for
real-time operation. The gains of the local controller are computed days/hours ahead by
a central aggregator with an algorithm based on a chance-constrained formulation of the
optimal reactive power flow (ORPF) problem. The gains are then dispatched days/hours
ahead, and in real-time, there is no communication. It is well-known that, even though
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a solution of the ORPF problem exists, a decentralized controller may not be able to
find it. That is because decentralized controllers only have access to local information,
and do not have full system’s observability. Hence, they cannot be compared with cen-
tralized controller in terms of performance, since there exist solutions they cannot reach.
In the proposed approach, we leverage a chance-constrained formulation of the ORPF
problem to (i) account for uncertainties in load consumptions and renewable energy pro-
ductions, and (i) to allow the system operator to tolerate a prescribed probability of
voltage violations. We showed that our method can achieve better performance compared
to static Volt/Var curves with fixed parameters, and limited and short voltage violations
that are consistent with the prescribed probability. Although in real-time, the proposed
method does not require any communication with a central aggregator, it still requires
occasional communication to obtain gains for the incremental Volt/Var controller. No-
tice that the communication requirements are kept as low as possible because the same
gains are broadcasted to all the nodes. We also introduced a robust formulation of our
incremental Volt/Var control strategy, based on a simple heuristic that determines the
worst-case scenario in terms of voltage regulation. While decentralized controllers can be
implemented in current distribution networks, they may not be able to reach the global
optimum, and lead to over-usage of some resources.

We proposed a distributed controller based on ADMM that can achieve similar results
as a centralized controller. This controller only requires communication between neigh-
boring nodes, and does not require a central aggregator. That corresponds to a trade-off
between a centralized controller and a decentralized controller. Additionally, they can
ensure data privacy and improve robustness against cyber-attacks or communication fail-
ure, since there is no single-point of failure, while reaching the same global optimum as
a centralized controller. We considered a consensus-based ADMM approach to decom-
pose and solve an AC-OPF problem formulated with the branch flow model as they
present improved convergence properties compared to primal-dual methods for instance.
We showed that the distributed algorithm can reach similar results as the centralized
algorithm, with greatly reduced communication needs. We also leveraged the iterative
procedure of the ADMM to estimate branch currents to allow us to use a convex version
of the AC-OPF problem. Distributed methods present many advantages, however, they
tend to be difficult to implement in practice. For instance, in our approach, we consid-
ered synchronicity for the communication between neighboring nodes, which may not be
possible in practice. Furthermore, we did not derive any guarantee in terms of stability
of our distributed controllers.

9.2 PERSPECTIVES

In the following, we discuss some perspectives for each of the proposed control algorithms.
Centralized controller: There are two main drawbacks for our approach; (i) it requires
a central aggregator, and (i) one needs to rely on an optimization solver to obtain the
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output of the map Fg(u,v). One could envision decomposing the problem of solving
the map Fpg(u,v), and obtain a distributed controller instead. For instance, authors
in [Mestres et al., 2024] propose a distributed controller for safe navigation of multi-
agent systems, that is based on a projected saddle-point dynamics. This method could
be adapted to solve the map Fj(u, V) for the voltage regulation problem in a distributed
manner. Instead of relying on an optimization solver, one could imagine learning the
map Fg(u, V) using machine learning techniques. Interesting works on neural networks
could be used to solve the QP problem 100 times faster than existing solvers [Amos and
Kolter, 2017]. However, the question remains on how to ensure that the neural network
will provide the same guarantees as the optimization solver.

Decentralized controller: The main drawback of our decentralized controller is that it
does not use optimally the resources of the different assets. One could envision using
machine learning techniques such as in Yuan et al. [2024] to learn the optimal gains of
the incremental Volt/Var controller, or reinforcement learning such as in Cui et al. [2022]
to learn optimal policies for each asset. However, it is not clear what one should do if
the network topology changes, and how to combine those machine learning methods with
other traditional regulation methods such as OLTCs. In particular, we believe that our
decentralized controller is fairly flexible, and can easily be combined with traditional
regulation methods through our voltage forecasts pr, = H(0,zy), since the map H can
incorporate the impact of any regulation method. Nevertheless, decentralized control
algorithms cannot compete with centralized controller in terms of performance, since
they do not have full observability of the system. Therefore, they should be combined
with slower controllers that could track at a slower time-scale a solution that minimizes
the usage of resources.

Distributed controller: The main drawbacks of our distributed controller are the require-
ments in terms of synchronicity in the communication, the lack of stability guarantees,
and the number of iterations required to converge toward a solution of the optimization
problem. Notice that we did not perform extensive studies about the stability guaran-
tees, although consensus-based ADMM has been proved to converge toward the optimum
of a convex optimization problem under relatively mild assumptions Boyd et al. [2011].
To improve convergence rate of consensus-based ADMM, one can consider time-varying
penalty parameters p such as in Zeng et al. [2022]. Also, notice that techniques to ensure
convergence of ADMM with asynchronous communications has also been discussed [Rikos
et al., 2023].
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This thesis is divided into two parts: in the first part, we develop new power converter
models suitable for system-level analysis, while the second part focuses on the develop-
ment of new control strategies for active distribution networks. In this chapter, we discuss
the main contributions of this thesis and why the development of power converter models
is essential when designing control strategies for active distribution networks.

In Part I, Chapter 2 is dedicated to the introduction of different modelling techniques
for power converters. In particular, we introduced switched models, averaged models, and
small-signal models. Switched models are non-linear and time-varying systems, every
conduction configuration of the power converter is represented by a linear or a non-
linear system. On the other hand, averaged models are time-invariant systems, derived
by averaging inputs, states and outputs over the switching period of the power converter.
Finally, small-signal models are obtained by linearizing the averaged model around a
given operating point. Although linear small-signal models can be used to design power
converters’ local controllers, they are not appropriate for system-level studies. We showed
that, modelling the closed-loop system, i.e., the power converter and its controller, with
a linear model does not yield good performance, particularly if the dynamics of the
closed-loop system depend on the operating point.

In Chapter 3 we introduced a methodology to derive large-signal black-box models
of power converters in order to find a solution to the Problem 1.1. First, we aim at
deriving models that can capture the dynamics of the system around different operating
points. Our multimodel approach combines different linear submodels responses using a
neural network-based weighting function. The different linear models are identified from
measurements collected on the converter. The neural network is then trained using data
collected during normal operation of the power converter. We focused on developing
models that can be easily obtained running simple experiments on the power converter
and do not require specific equipment. These are measurement-based models such that
the models (i) do not require a-priori knowledge about their internal structure. The model
can be further improved using a partitioning procedure where the trained neural network
is analyzed. To minimize the complexity of the model, linear submodels that do not
bring any improvement to the global model response are removed, and the algorithm
suggests where to add new linear submodels. Our multimodel approach is therefore (ii)
computationally lightweight compared to detailed models, and it can be used to simulate
large systems for (7ii) system-level studies. We illustrate the approach on different power
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converters, and also in the context of small systems, where our model is used to simulate
the dynamics of a system composed of different assets.

In Part II, Chapter 5 is dedicated to the introduction of the voltage regulation problem
in distribution networks. We showed that the massive integration of renewable energy
resources can lead to voltage issues in distribution networks, and that traditional regu-
lation techniques may fail at solving those issues. We introduced the voltage regulation
problem as an optimization problem, and then proposed different control techniques to
solve the Problem 1.2. In particular, we propose three different control strategies that
(i) track the solution of an AC optimal power flow problem to regulate the voltages in
the network by steering the setpoints of the distributed energy resources and (ii) that are
appropriate for real-time operation. Each control strategy has their own requirements in
terms of communication and knowledge about the system, but (i) they do not require
extensive monitoring of the distribution network.

In Chapter 6, we proposed a centralized online optimization method that drives the
distributed energy resources power setpoints to a solution of the AC optimal power
flow problem. The controller ensures anytime satisfaction of voltage constraints when
no model and measurement errors are present. Our controller is centralized, it requires
collecting measurements throughout the network and communicating power setpoints to
the different DERs. However, compared to traditional techniques for solving the AC-OPF
that require collecting load consumption at every nodes, our controller collects voltage
measurements only at nodes where one wants to regulate the voltages, which significantly
reduces the communication burden. Our controller is very flexible, as one can easily take
into account other operational constraints besides the voltage limits. For instance, we
developed a controller to regulate a virtual power plant based on the same approach.

In Chapter 7, we proposed decentralized controllers, where only local measurements are
required to compute the DER setpoint. Notice that we focused on Volt/Var control, such
that the optimization problem introduced in Chapter 5 is slightly modified to only con-
sider reactive power as controllable variable. We propose an incremental Volt/Var strat-
egy, where the gains are obtained by solving an optimization problem. The optimization
problem is solved centrally, but the method does not require continuous communication.
To take into account uncertainty in load and generation and to keep communication
minimal, the optimization problem is formulated as a multi-period chance-constrained
optimization problem. The controllers for each DER regulate the voltages at their node
such that the voltage constraints are satisfied with a prescribed probability. Compared
to the centralized method, the decentralized method does not require continuous com-
munication, and is suitable with current distribution network technology. However, the
controllers cannot ensure anytime satisfaction of the voltage constraints, since decentral-
ized methods may not be able to converge toward a solution of the optimization problem
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(even if such solution exists) since it only relies on local information [Bolognani et al.,
2019].

Finally, in Chapter 8, we proposed a distributed controller, where the AC optimal power
flow problem is decomposed and solved node by node, with only local communication
between neighboring nodes. We used the Alternating Direction Method of Multipliers
(ADMM) to solve the optimization problem. The iterative method allows us to approx-
imate the branch currents, and therefore solve a convex optimization problem at each
node. This method does not require a communication infrastructure as complex as for
the centralized controller, and does not present a single-point of failure. Notice that if the
centralized controller is attacked, and no longer works, one cannot regulate the voltages
throughout the network. Decentralized and distributed methods do not present a cen-
tral aggregator, and therefore are more robust against attacks. However, our distributed
controller requires synchronous communication, and the convergence time might be long.

We have presented three different control strategies for the voltage regulation in ac-
tive distribution networks. Each control strategy has its own requirements in terms of
communication, computational resources, and knowledge about the system. It is clear
that advanced system monitoring, and development of communication infrastructure in
active distribution networks can maximize our usage of renewable energy resources, and
activate some flexibilities to slowly move toward zero-carbon emission targets. However,
as of today, current distribution networks technology does not meet those requirements,
and intermediate solutions such as the decentralized controller we proposed can be a
first step in the right direction. Also, the system’s scale may prohibit the usage of a
centralized controller, and safety concerns such as the presence of a single-point of fail-
ure, may prevent centralized controllers to be deployed in practice. That is where we
believe distributed controllers can be interesting, thanks to the limited communication
requirements, and the problem decomposition which reduces the computational burden.

In the following, we discuss an important assumption that we made throughout this
manuscript. When we design the system-level controllers in Part 11, we assume that DERs’
dynamics are much faster than the controller dynamics, such that the power setpoints
sent by the system-level controller are instantaneously implemented. This assumption
is discussed in Eggli et al. [2020], where authors mention the timescale separation of
the power system phenomena and of the different control loops. This is a reasonable
assumption for physical system with fast-decaying dynamics. However, for other systems,
one must enforce that the controller is sufficiently slower than the plant dynamics to
ensure the stability of the closed-loop system. Actually, it has been shown that if there is
no timescale separation, it can lead to an unstable closed-loop system [Hauswirth et al.,
2020]. However, as mentioned in Bianchi and Dérfler [2024], in some cases, it would be
desirable to run the controller at the same timescale as the plant dynamics to improve
the transient behavior. Actually, we mentioned in this manuscript that traditional offline
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algorithms are not appropriate for controlling active distribution networks, since the
computation time might be too long compared to the variability of the load and renewable
energy production, and it can thus lead to suboptimal solutions. On the other hand, if
we have to run our online optimization algorithms slower to guarantee the stability of
the system, we also might end up with suboptimal solutions. Authors in Bianchi and
Dérfler [2024] show that under some assumptions, online optimization algorithms can
be run at the same timescale as the plant dynamics, and still guarantee the stability of
the closed-loop system. However, that raises some questions. When one considers more
complex systems with different assets and different dynamics, can we always theoretically
guarantee the stability of the closed-loop system? Can we always verify the assumptions
that are required to ensure the stability of the closed-loop system? In practice, active
distribution networks contain many different assets, provided by different manufacturers,
and with dynamics that are not always well-known. We believe that theoretical guarantees
are important, but one should always run some simulations to guarantee that the system
behaves as expected. Therefore, we believe that the development of new models for power
converters is essential when designing control strategies for active distribution networks.
We need models that are computationally lightweight, in order to simulate large test
systems. Those models should be valid around different operating points, as the system
is expected to operate in different conditions. Furthermore, interpretability is also a key
aspect, as one needs to understand how the system behaves and how the control strategies
might render the closed-loop system unstable. That is a crucial aspect for the integration
of new control strategies in active distribution networks, that would allow for a greater
integration of renewable energy resources, and distributed energy resources in general, in
order to meet our carbon emission targets.
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A.l FEEDBACK-BASED SAFE GRADIENT FLOW
A.1.1  Stability analysis and constraint satisfaction guarantees

In our technical analysis, we make use of the following assumptions. The assumptions
are stated for given values of the non-controllable powers p;, q;.

Assumption A.1 (Jacobian errors). 3 Ej, < +o0, By < 400 such that ||H(u;p;, q;) —
H(w;py,q)|| < Ep and [|J5(u) — Jg(u)|| < Ej for any u € B(u*,r1). O

Assumption A.2 (Measurement errors). 3 Ep < 400 such that || —v| < Ep. O

Assumptions A.1-A.2 are motivated by the following observations: (i) the linear map
error ||H(u; p;, q;)—H (u; p;, q;)| is bounded and small in a neighborhood of the optimizer
(as confirmed in Figure 6.5f in our numerical results, and by the analytical findings
in [Bolognani and Zampieri, 2015, Dhople et al., 2015]), and (ii) in realistic monitoring
and SCADA systems, the measurement of the voltage magnitudes are affected by a small
(or even negligible) error.

In our analysis, we view (6.16) as a perturbed version of the initial formulation of the
safe gradient flow (Fj(u, H(u; p;, q;))). To begin with, we have the following result.

Lemma A.3 (KKT and equilibrium). Consider the problem (6.1) satisfying Assumptions
5.1-6.1. There exists pw* such that (u*, u*) is a KKT point for (6.1) if and only if u* is
an equilibrium of 0 = nFg(u, H(u;p;, qp))- O

Before analyzing the stability of the proposed feedback-based SGF, we provide some
notation and intermediate results that will be used in the proof of our main result.

Let Q := Jy(u) — Jg(u) and denote by w; the i-th row of Q. Moreover, let e := U —v
denote the measurement errors. Then, define Fg(u, (2, e) as

Fg(u,Q,e)
= arg mein 104V C, (1) +(Jr(0)+Q) 'VC,(v +e)|

sit. — (VH;(u) +w;) "0 < —B(V —v; — ;) Vie M
(VH;(u) +w;) 0 < —B(vi+e;—V) Vie M
Je,(0) "0 < —BLi(pi, ) Vieg

165



166

APPENDIX

where v = H(u;p;,q;). Note that Fg(u, H(u;p,,q;)) = Fs(u,0,0) and Fs(u,v) =
Fg(u,Jy(u) — Ju(u), 0 —v). Let £5:={Q: |Q| < E;} and &y := {e : [Je]| < Ep} for
brevity. We make the following assumption on Fj.

Assumption A.4 (Regularity). For any u € B(u*,r1), and any Q and e satisfying
Assumptions A.1-A.2, the problem (6.16b) is feasible, and satisfies the Mangasarian-
Fromovitz Constraint Qualification and the constant-rank condition Liu [1995]. O

Since the constraints in the problem defining F, 3(u,Q, e) (and, hence, our safe gradient
flow (6.16)) are based on techniques from CBFs [Ames et al., 2019, Allibhoy and Cortés,
2024], Assumption A.4 guarantees that there always exists a direction for the setpoints
to satisfy the constraints of the OPF. Moreover, this assumption allows us to derive the
following result.

Lemma A.5 (Lipschitz continuity). Let Assumption A.J hold, and assume that u
Cp(u), v — Cy(v) are twice continuously differentiable over B(u*,r1) and V = {v €
RM .V <vi+e <V,Vic M,v=H(u;p,q),lle|| < Eux,uc B(u*,r)}, respectively.
Then:

(i) For any Q € &5 and e € Epr, u ' Fg(u,$, e) is locally Lipschitz at u, u € B(u*,ry).
(ii) For any u € B(u*,r1) and Q € &, e — Fz(u,Q, e) is Lipschitz with constant {p, > 0
over Eyf.

(iii) For any u € B(u*,r1) and e € Eyr, O — Fs(u,v,Q,e) is Lipschitz with constant
lp, >0 over &;. [l

Lemma A.5 follows from [Liu, 1995, Theorem 3.6|, and by the compactness of the sets
En and E;. This result ensures existence and uniqueness of solutions for the proposed
feedback-based safe gradient flow [Khalil, 2002, Ch. 3].

Our main stability result critically relies on these results. Before stating it, we introduce
some useful quantities that play a role in the main result; in particular, they are related
to local properties of Fj(u, H(u;p;,q;)). Recall that u* is the local optimizer of (6.1).
We define v* := H(u*;p;,q;), E := w lu=u*, €1 := —Amax(F), and eg :=
_)\min(E)-

Then, we can write the dynamics as Fz(u, H(u; p;, q;)) = E(u—u*)+g(u), where g(u)
satisfies ||g(u)|| < L|ju — u*||?, Yu € B(u*,rq), for some L > 0 and ro > 0 (see Khalil
[2002]). Define r := min{r, r2} and

0, ifr>4<

Smin ‘=

Since U is compact, Jy(u) is Lipschitz on U with constant £.
We are now ready to state the main stability result for (6.16).
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Theorem A.6 (Practical local exponential stability). Consider the OPF problem (6.1)
satisfying Assumptions 5.1-6.1, a linear map H satisfying Assumption A.1, measurements
U satisfying Assumption A.2, and the controller (6.16) satisfying Assumption A.J. Let
u(t), t > to, be the unique trajectory of (6.16). Assume that the set

S = {s D Smin < 8 <1, 61_362L(€FJEJ +/lp,En) < s— 82} is not empty. Then, for any
s €8, it holds that

E F
Hu(t)_u*H < \/ae—elﬁs(t—to)||u(t0)_u*|| +€2(’€FJ J ‘ZEFU M) <1 _ 6—elns(t—t0)) ’
€1 seq
(A1)
for any initial condition u(ty) such that ||u(ty) — u*|| < /%%(1 —s). A

Proof. First, we express our controller as:

= nFp(u, )
=1F3(u,0,0)
+ n[Fg(u, Jg(u) = Jg(u), v —v) — Fg(u,(@, U—v)
+n[F3(u,0,0 — v) — F3(u,0,0)]

where we added and subtracted Fj(u,0,0) and Fz(u, 0, —v), and we re-organized the
terms. The feedback-based SGF can then be understood as a perturbation of the nominal
gradient flow Fz(u,0,0).

By [Allibhoy and Cortés, 2024, Lemma 5.11 and Theorem 5.6(iii)], Fj3(u,0,0) is dif-

ferentiable at u* and its Jacobian F = w lu=u* is negative definite. Recall that

e1 = —Amax(E) and ez = —Apin(E). Let P := [°(exp(E()" exp(E()d(, and then by
[Khalil, 2002, Theorem 4.12], it holds that PE + ETP = —I,,, and ﬁ”u —u*2 <

(u—u*)"P(u —u*) < 5||lu —u*|2. Let Vi(u) := (u — u*)T P(u — u*); then we bound

= 2¢1

2(u —u*)" PF3(u,0,0) and then leverage this bound to estimate V;:
2(u —u*) " PFj(u,0,0)
=(u—u)’ (PE + ETP) (u—u")
+2(u—u*)" Pj(u)

IN

1
~flu—w* + = [u — u| Lfju -
€1

IN

L * * |2 *
(<1 2wl ) o= w0l < sl P
where the last inequality holds if ||u — u*[| < Z(1 — s), for any s € (smin, 1]. Then,

Vi=2u-u")"Pu
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—u*) " PF5(u,0,0))

+2n(u — u*) " P[Fs(u, Jg—Ju, v —v) — Fg(u,0,0 — v)

+2n(u — u*)" P[F5(u,0, > — v) — F5(u,0,0)]

< —nslu—u*|* + 2nlp, u — W Pl Ji — Tyl

+ 200k, [[u = [|| Pz — v

KFJEJ—I—KFvEM
€1

= 21n(u

< —psfu— |+ [u —u’|

lrp B Irp E
< —2e1msVi + ny/2e3—2 J; o M\/Vl-

Define Va(u) := /Vi(u). Then,

v — Vi <—2€1778V1+?7\/EW\/71
R N

lp, B+l E
= — ernslh +ny/2e L

2eq

In addition, we note that that for any a > 0, b > 0, y(t) = y(to) exp (=b(t — to))+$(1—
exp —b(t — tp)) is the solution of ¥y = —by + a, y(to) = y(to). Hence by the Comparison
Lemma |[Khalil, 2002, Lemma 3.4], it follows that

Va(t) < Vg(to)e_ems(t_to)

n \/E(KFJEJ;— EFUEM) (1 B e—qns(t—to)) .
2seq]

Thus, one has that

[u(t) — || = V2e2V5a(?)
<v2e3Vh(to)e )

n 2e3(lp, By -ZEFUEM) (1 _ e—elns(t—to))
2sey

1
<\ gy Ve ulto) — |

N es(lp,Ey+ g, En) (1 B e—elns(t—t0)>

2
sef

=/ 2 u(t) — '
€1

T GQ(EFJEJ +€FUEM) <1 o e—elns(t—to)) )

2
sef

which proves the result. The limits for ¢ = +o0o can be computed straightforwardly. O
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The assumption that S is not empty is necessary to guarantee that the trajectory of
u(t) never exits the region of attraction of the optimizer u*. We can notice that the
first term on the right-hand-side of (A.1) decays over time; the second term models the
effect of the measurement errors and of the errors in the computation of the Jacobian.
In particular, we can notice that, as t — 400, the right-hand side of (A.1) becomes

lim |u(t) —u*| < 3_161_262(€F]EJ + g, Ey). (A.2)
t——+00 :

The asymptotic error can be reduced by increasing the accuracy in the measurement of
the voltages (i.e., reducing F)y), or allocating more computational power to compute the
Jacobian of the power flow equations (i.e., reducing E ;). The following result character-
izes the feasibility of the solution u(t).

Lemma A.7 (Practical forward invariance). Let the conditions in Theorem A.0 be satis-
fied, and let u(t), t > to, be the unique trajectory of (6.16), and v(t) be the corresponding
voltage magnitudes. Define the set

Fe:={u:uel,V, <H(u;p,q) <V,Vie M} (A-3)

with V., =V — Ey — 2E, V.=V +Ey+ 2E, and Ep = maxyey ||H(u7 P, q;) —
H(uw;p;,q))|. Then, the feedback-based SGF' (6.16) renders a set Fs, with F C Fg C Fe,
forward invariant. O

Proof. The proof leverages Nagumo’s Theorem Nagumo [1942]. For the feedback-based
SGF Fj(u,v) in (6.16), it holds that —VH;(u)" F3 < —8(V — ;). Recall that i =
H(u;p;,q;) + e, for i € M. It follows that

- Vﬁi(u)Tﬁﬁ < -8V -H(up,q) — &)
=BV~ H(u;p,q)) — e + (H(w; pp,q) — H(w;p, qp)))

<-B((V.-Ey—Eg)—H(up,qp))

where E; := maxuey ||H (u; py, a;)—H (u; p;, q)|. Similarly, it also holds that Vﬁi(u)—rﬁ’[g <

—B(H(w;py,qp) — (V + Ex + Ep)). Thus, the set

Fs={u:V — By — By < Hi(wp,,qp) <V + En + By,
Vie M,uel}

is forward invariant under (6.16). Note that F; is a subset of F., and this concludes the
proof. O

Lemma A.7 establishes forward invariance of a set F,, which is a subset of F, and an
inflation of F (more details about Fs are provided in the proof); clearly, F. tends to
the set F with the decreasing of the error in the computation of the Jacobian and the
measurement errors, which implies that F; tends to F too. If these errors are small, the
voltage violation is practically negligible.

In the case of no errors in the measurements and in the computation of the Jacobian,
we have the following results.
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Corollary A.8 (Error-free implementation). Let all the conditions in Theorem A.0 be
satisfied, and assume that there are no measurement errors, i.e., Eyy =0, and no errors
in the Jacobian, i.e., E; = 0 and. Let u(t), t > to, be the unique trajectory of (7.4).
Then it holds that

Jalt) =l < [ Zutrg) — e
€1

and limy_, 4 o [[u(t) — u*|| = 0. A

Lemma A.9 (Forward invariance in error-free implementation). Let the conditions in
Theorem A.0 be satisfied, and assume that there are no measurement errors (i.e., Epr =
0). Let u(t), t > to, be the unique trajectory of (7.4), and v(t) be the corresponding
trajectory of the voltages. Then, (7.4) renders the set F forward-invariant. In particular:
(i) if vi(to) € [V, V], then v;(t) € [V, V] for all t > to; (i) if vi(to) & [V, V], then there
exists t' > to such that vi(t) € [V, V] for allt > t'. O

Corollary A.8 quantifies the error in the convergence to u*, and certify local exponential
stability properties for the proposed method. Lemma A.9 establishes that, for the case
with no measurement errors and with the exact computation of the Jacobian matrix, the
proposed method ensures that voltages are satisfied anytime.

A.2 INCREMENTAL VOLT/VAR CONTROL

A.2.1 Derivations of M

In this section, we derive the matrices M; ,, appearing in (7.23) to ensure that h; , (x; p™[s], x,)
is a global majorizer of h;,(xp; p). First, let us build the Jacobian matrices Vh;(x) for
i =1,2,3,4 from the Jacobian matrix Vq(x). Notice that the partial derivatives of the
vector q(x) with respect to the first and second component of the vector x are identical:

da(x) _ dq(x)
8561 8:c2

= Pdiag (y(x))P'(1 - p) (A4)

where y(x) = [—( T. Since X is positive definite, and 17x >

1 1
AT~ AT
0 by constraint, the vector v(x) has bounded elements.

&
We can now construct Vq(x) = [E’gf;lx), 837(2)()} € RPN a5

Va(x) = [P diag (y(x))P~'(1 - p), P diag (v(x)) P~ (1 - p)] - (A5)
Recalling the definitions (7.10) of the vector-valued functions h;, we can write:

Vhi(x) =Vq(x), Vha(x)=-Vq(x)

(A.6)
Vhs(x) = XVq(x), Vhy(x)=-XVq(x)
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In order to determine M;,, such that M;, — VQhM(X) = 0, we first derive the Hessian
matrix of h; ,(x):

V2hi (%) = cin (%) (1 1) (A7)

where ¢; ,(x) € R. We define ¢;(x) = [¢;1(X), ..., c; n(x)]T and from eqs (A.5) and (A.6)
it is easy to retrieve:
c1(x) = Pdiag (d,(x)) P11~ p), e2(x) = —c1(x)

(AB)
e3(x) = Xe1(x), c(x) =—Xei(x)

]T. Given that the quantity 1'x is always

where dy(x) = [( 2 2

lTx+)\X71)3 ’ (ITX+)\X7N)3

positive, setting 1"x = 0 in d,(x) gives us an upper bound on the value of V2h; ,(x).

Therefore, we write ¢; = ¢;(x)|174=g for i =1,2,3,4 and find:

M, =2 <max(0, Cin) 0 ) VneN (A.9)

0 max(0, & )

such that h;,(x;%,) is a global majorizer of h;,(x) Vx € R2.

A.2.2  Convergence guarantees for Algorithm 7.1

In this section, we show that the assumptions considered in Scutari et al. [2014] for
the SCA method to converge are applicable to our problem (7.17). To this end, define
W € RY such that p € W.

We start by observing the following properties and facts related to problem (7.17).
[A1] The set K is closed and convex. The set K is constructed with linear constraints.
[A2] The functions x — ho(x, p) and x — g; »(X, u;n; p) are continuously differentiable
on K, for any p € W. This follows from the differentiability of q(x; p); since X is positive
definite by construction, and 1Tx > 0 by constraint, it follows that Vq(x) always exists
and is bounded.

[A3] The gradient Vxho(x; p) is Lipschitz continuous on K with constant Ly, , uniformly
in p. This follows from the fact that V2q(x) is bounded on K.
[A4] For some xg € X, {x € X : ho(x; p) < ho(x0; p)} is compact, for any given p € W.

Next, we note that the surrogate function ho : KxWx X — Ris continuously
differentiable with respect to x and satisfies the following conditions.

[A5] The map x — ho (x; p,Xp) is strongly convex on K with constant ¢ > d > 0, for any
given x, € X and p € W.

[A6] We have that Vho(x,; p,x,) = Vho(x,; p) for any given x, € X and p € W. to see
this, define f(-) = || - ||? so and express ho(x) = f(q(x)) and ho(x;x,) = f(q(x,) + (x —
xp) ' Va(x,)) + 4)jx — x,|2. We can write Vho(x) = Va(x)V f(q(x)), and Vhg(x;x,) =
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Vax)Vf(qx) + (x — x,)'Vq(x)) + d(x — x,). It is clear that at x = x, we have

Vho(xp; xp) = Vho(xp).

[A7] The map (x,x,) — Vho(x; p,%,) is continuous on K x X for any given p € W.
Finally, the surrogate constraint functions g;,, : K X R>g x W x & — R Vi €

{1,2,3,4},n € N satisfy the following.

[A8] The map (x,uin) — Gin(X, Uin; p,Xp) is convex on K x R>¢ for any given p € W

and x, € X. to see this, note that the composite function g; , = f(il,n + Uip) — Ujin€ s

given by the outer function f(y) = % (y +/E2 + (y)2> which is strictly increasing and

convex and by the inner function h;, + u;, which is convex by construction; it then
follows that g; , is also convex.

[A9] Gin(Xp, win; P,Xp) = Gin(Xp, Uin; p) for any given x, € X, u;,, € R>g and p € W.
[A10] gin(x,uin;p) < Gin(X,uin; p,xp) for all x € K, u;, € R>p and for any given
xp e X, peW.

[A11] The map (X, ujn,Xp) = Gin(X, Uin; p,Xp) is continuous on K x R>¢ x X for any
given p € W.

[A12] VGin(xp, uly, 5 Py Xp) = VGin(Xp,ufy, 3 p) for all x, € X, uff}, € Rxg and for
any given x, € X, p € W. To see this, using the chain rule we obtain

09in(x, ) 1 L+ hi, ( )—|—u Ohin
0x - \/52 Y+u)?) Ox’

09in(x, ) 1 (1 hi, ( )+u ) B
ou VE+ X) + u)2

The claim is verified since 88 (xp; P, Xp) = aax (%p; p) and i 1 (Xp; P, %p) = hin(Xp; P)
for all x, € X and any given p € W.
[A13] The map (x, win,Xp) — VGin(X, uin; p,%Xp) is continuous on K x R>g x X for any
given p € W.

Given the above properties [A1]-[A13], the following holds when using Algorithm 7.1
to solve (7.17).

(A.10)

Proposition A.1. Consider the problem (7.17), and use Algorithm 7.1 with a step-size
Yp- Assume that one of the following two conditions is satisfied:

- 0 <infyyp <sup,yp <A™ <1 and 2¢ > ¥ Lyp,,
- X is compact, x*(x,) € X is reqular for every x, € X and AP € (0,1], v, —
0, >, =+

Then, every regular limit point of {xp} is a stationary solution of (7.17). Furthermore,
none of such points is a local mazximum of ho(x). O

The result of Proposition A.1 follows from [Scutari et al., 2014, Theorem 1|. It asserts
that the Algorithm 7.1 converges to a stationary solution of (7.17), and this solution is
guaranteed not to be a local maximum.
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