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Interpretable large-signal black-box models of
power electronic converters: a multimodel approach

Antonin Colot, Simone Paoletti, Antonio Giannitrapani, Mevludin Glavic, and Bertrand Cornélusse

Abstract—In this paper, we propose a multimodel approach to
derive large-signal black-box models of power converters that are
suitable for system-level studies. We introduce an interpretable
black-box large-signal model by taking advantage of the inherent
interpretability of linear system models and the design of an
interpretable weighting function. First, the non-linear model of
a power converter is approximated by a set of linear submodels.
Next, we consider a neural network-based weighting function
trained to combine the linear submodels’ responses. A post-
analysis of the trained neural network is used to speed up the
partitioning of the operating space by restricting the number of
new experiments that have to be carried out. A single-machine
infinite bus system is used to illustrate the rationale behind
the proposed multimodel approach and to illustrate some of its
inherent limitations. The overall methodology is illustrated using
a voltage-regulated DC-DC boost converter. Finally, the approach
is validated using a small system including a battery, a voltage-
regulated DC-DC boost converter, and a DC motor.

Index Terms—Power electronic converters, Large-signal black-
box model, Multimodel approach, Interpretability

I. INTRODUCTION

The increasing integration of power electronic converters
(PECs) in modern power systems introduces fast and complex
non-linear dynamics [1], contrasting with the traditionally
slower dynamics driven by electromechanical phenomena.
This paradigm shift requires new time-domain simulation tools
for assessing the stability of power systems under various
operating conditions [2], [3].

Modeling PECs usually requires detailed information about
their internal parameters and electrical configuration [4]. How-
ever, modern power systems often incorporate Off-The-Shelf
converters from different manufacturers [5], [6] with limited
available data provided to the user. This calls for the develop-
ment of black-box models [7], which relate inputs and outputs
of systems without requiring any knowledge of their internal
mechanism.

Generally, PECs are non-linear, time-varying systems [2].
Switching models of PECs are not relevant for system-level
studies because they have to be solved with small time
steps, which is a prohibiting factor for simulating large-scale
systems. We focus on state-space averaged models of PEC that
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are time-invariant, and thus, can be solved using much larger
time steps than switching models, while giving similar results
for low-frequency dynamics [8]. Notice that averaged models
of PEC remain non-linear, and non-linear system identification
is much more challenging than linear system identification as
far as the number of possible model structures, and experiment
design, as well as the difficulty of parameter estimation are
concerned [9]. On the other hand, linear models have some
limitations when considering PECs, as they cannot adequately
capture their large-signal behaviors. Although one can use
PEC linear models to design new controllers [2], this is not
appropriate for system-level studies since PECs’ dynamics
may depend heavily on the operating point.

This paper introduces a multimodel approach to approxi-
mate the behavior of state-space averaged models of PEC and
derive large-signal black-box models for system-level design
and analysis. The multimodel approach computes the global
model output as a weighted combination of some linear sub-
model responses. The weighting function represents the linear
submodel’s validity within a specific operating range [10]. This
approach is simple, mathematically tractable, and built upon
the well-known theory of linear system identification.

Literature review. In [11], authors compare different mod-
eling techniques for PECs and show the limited capabilities
of linear models when representing the global behavior of
PECs. Many different model structures belong to the multi-
model approach. Among them, polytopic models exhibit some
advantages for modeling power converters. In [6], [7], authors
propose a polytopic model with a double sigmoid weighting
function for power converters, while [12] emphasizes the
performance of polytopic models for system-level modeling.
In [13], authors compare polytopic models with a wavelet
convolutional neural network trained to represent the PEC
behavioral response. In [14], authors use a recurrent neural
network to approximate the PEC’s dynamics. Although fully
neural network-based models lead to better results, they lack
interpretability and are highly dependent on data quality [15].
Ensuring sufficient data quality and availability may be chal-
lenging for PEC applications, and the lack of physical insights
behind those full neural network-based models may make
the analysis of power systems challenging. Other modeling
techniques exist, such as Hammerstein models [16]. Those
methods combine static non-linear blocks with dynamical
linear systems, and are very convenient when the non-linearity
stems from saturation, sensors and actuators, etc. [6]. However,
when the non-linearity comes from the switching nature of the
converter, the range of applicability of these methods is limited
since the dynamics of the system become dependent on the
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operating point.
Contributions. For a given multimodel structure, one has to

face three challenges: how to identify the linear submodels,
how to partition the operating space and how to design the
weighting function. We address the last two challenges and
provide some guidelines for dealing with the first one. The
paper contributions can be summarized as follows:

• An interpretable neural network-based weighting function
is trained to combine the linear submodels’ responses to
best fit the response of the power electronic converter.
The weighting function interpretability is ensured by its
dependence only on the inputs of the system. This also
ensures tractability for high dimensional state systems.

• The partitioning of the operating space is based on the
post-analysis of the weighting function. This partition-
ing reduces the number of experiments that should be
carried out and significantly speeds up the identification
procedure compared to other partitioning methods, e.g.
LOLIMOT [17], for complex systems with multiple in-
puts and outputs.

• This paper extends the work done in [18] by introduc-
ing a state-space model formulation and a state update
technique to enhance the performance when the input
signals change abruptly. Moreover, a system-level study
is presented to validate the multimodel approach for a
small system.

The remainder of the paper is organized as follows. A
general framework for the identification problem is presented
in Section 2 while Section 3 illustrates the rationale behind our
approach using a single-machine infinite bus system. Section
4 presents the black-box model of the DC-DC boost converter.
Section 5 validates the proposed modeling approach using a
small system, while Section 6 offers some conclusions.

II. GENERAL FRAMEWORK

We consider a discrete-time non-linear dynamical system of
the form:

x(k + 1) = f(x(k),u(k)), (1a)
y(k) = h(x(k),u(k)), (1b)

where x ∈ Rnx ,u ∈ Rnu , y ∈ Rny are the system
state, input and output, respectively, f : Rnx×nu 7→ Rnx ,
h : Rnx×nu 7→ Rny is the output function and x(k),u(k)
and y(k) are the state, input and output values at continuous
time kτ with τ ∈ R the time step considered. We want to
approximate the dynamics of the non-linear system (1) using a
multimodel approach. To this purpose, we combine the outputs
of the linear submodels through a weighting function [10].
This allows us to have heterogeneous submodels compared
to other multimodel approaches where, for instance, the state
of the global system is a weighted sum of the states of each
submodel. In that case, the different linear submodels have to
share the same state space dimensionality.

Let us consider the set N := {1, ..., N} of indices of
the different linear submodels. The linear submodel i ∈ N ,
obtained around the operating point (ue

i ,y
e
i ) via linearization

techniques, is described by the following state-space equation:

x̃i(k + 1) = Aix̃i(k) +Biũi(k), (2a)
yi(k) = Cix̃i(k) +Diũi(k) +Hi, (2b)

with ũi := u − ue
i ∈ Rnu , x̃i ∈ Rnx,i ,yi ∈ Rny , and Ai ∈

Rnx,i×nx,i , Bi ∈ Rnx,i×nu , Ci ∈ Rny×nx,i , Di ∈ Rny×nu ,
Hi ∈ Rny .

Interpretability of black-box models is a vibrant research
field and numerous approaches have been proposed to this
purpose [19], [20]. We stick with the notion of interpretability
focused on how the system outputs are affected by its inputs.
Therefore, we capitalize on the fact that linear models are
inherently interpretable (intuitive meaning of its parameters,
they are additive, etc.) [19].

To further ensure interpretability of the proposed approach,
in this paper we combine different linear submodels’ outputs
as follows:

yPM(k) =
∑
i∈N

ωi(u(k))yi(k), (3)

with ωi : Rnu 7→ R being the weighting function for the linear
submodel i, such that ωi(u(k)) ∈ [0, 1] and

∑
i∈N ωi(u(k)) =

1 at every step k.
Notice that the weighting functions ωi(·) depend on u(k)

only. This dependence on the inputs improves the global model
interpretability. For one constant input u(k) = u∗, the linear
submodel i∗ mostly responsible for the global model behavior
has the largest associated weight ωi∗(u

∗). On the other hand,
it leads to a suboptimal combination of submodel responses
during ”jumps” in the inputs. This drawback is discussed later.

The rationale behind the input-dependent weighting func-
tion used in (3) is fully detailed in the next section using the
single-machine infinite bus system together with the illustra-
tion of some challenges related to the modeling of non-linear
dynamical systems with proposed multimodel approach.

III. THE SINGLE-MACHINE INFINITE BUS (SMIB)
SYSTEM

The SMIB system consists of one equivalent synchronous
machine connected to an infinite bus through a line of
reactance X . The dynamics of the equivalent synchronous
machine is described with the swing equations. Although
simple, this system is often used in power system practice
through one-machine infinite bus transformation for angle
stability problems [21].

Consider the SMIB system:

δ(k + 1) = δ(k) + τωs∆ω(k), (4a)
∆ω(k + 1) = ∆ω(k)+ (4b)

τ

M

(
Pm −D∆ω(k)− V V∞ sin (δ(k))

X

)
,

where δ is the rotor angle of the single machine, ∆ω the
deviation of the angular speed from the nominal angular speed
of the machine in per unit, Pm is the mechanical power
in per unit, D the damping parameter, X the reactance of
the line connecting the single machine to the infinite bus
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system, and M the moment of inertia of the machine. For this
system, let us consider the input u = V∞, the output y(k) =
[δ(k),∆ω(k)]⊤, the state vector x(k) = [δ(k),∆ω(k)]⊤, and
the parameters ωs = 2π60 [rads−1], Pm = 0.5 [pu], D = 5
[pu], V = 1 [pu], X = 1.5 [pu], M = 8 [s]. Finally, let us
consider τ = 1e− 2 [s].

One equilibrium point xe = [δe,∆ωe]⊤ of the system (4)
is:

δe = arcsin

(
PmX

V V∞

)
∈ [0, π/2] (5a)

∆ωe = 0 (5b)

A. Linear approximations

We assume that V∞ ∈ [0.85, 1.15], and we define N = 3
linear systems around the equilibrium points xe

i = [δei , 0]
⊤ as

follows:

Ai =

[
1 τωs

−τ
V V∞,i cos (δ

e
i )

MX −τ D
M + 1

]
, Bi =

[
0

−τ
V sin (δei )

XM

]
,

(6a)

Ci =

[
1 0
0 1

]
, Di =

[
0
0

]
, Hi =

[
δei
0

]
, (6b)

where V∞,1 = 0.9, V∞,2 = 1.0, V∞,3 = 1.1 and δei ∀i ∈ N
are obtained from equation (5a).

B. Weighting functions

In this example, we consider two types of weighting func-
tions for the polytopic model (2)– (3).

a) Piecewise-Affine (PWA): Let us consider the case
where only one linear submodel is active for a given input
u. We define d = 0.1, that is the difference between two
input linearization points, i.e., V∞,i − V∞,i−1 ∀i ∈ {2, 3}.
In this simple example, notice that the input operating space
u ∈ [0.85, 1.15] is divided into three similar operating regions,
i.e., linear submodel LM0 should be valid for u ∈ [0.85, 0.95],
linear submodel LM1 for u ∈ [0.95, 1.05] and linear submodel
LM2 for u ∈ [1.05, 1.15]. Now, we write:

ωi(u) = ωi(V∞) =

{
1 if |V∞ − V∞,i| ≤ d

2 ,

0 else.
(7)

Notice that for V∞ = 0.95 and V∞ = 1.05, there are two
weights equal to 1. In practice, we activate only one linear
submodel to ensure that

∑
i∈N ωi(u(k)) = 1.

b) Double Sigmoid (DS): The second type of weighting
function provides a smooth transition from one linear sub-
model to another when the input is slowly changing. We write:

ωi(V∞) =
1

1 + exp
(
−s+i (V∞ − (V∞,i − d))

)
− 1

1 + exp
(
−s−i (V∞ − (V∞,i + d))

) , (8)

where s+i ∈ R and s−i ∈ R are the slopes of the double
sigmoid, and should be sufficiently large such that ωi(V∞,i) =

1

1+exp(−s+i d)
− 1

1+exp(s−i d)
≈ 1.
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Fig. 1: Comparison for a slowly time-varying input between a linear model and polytopic
models with two different weighting functions.

C. Comparison between polytopic and linear models

Let us first consider a slowly time-varying input u(k) =
1+0.15 sin(0.3πkτ), and compare the performance of a linear
model identified for V∞ = 1, denoted L(V∞ = 1.0), and
that of two polytopic models with PWA and DS weighting
functions. To evaluate the estimation accuracy, we use the
coefficient of determination defined as:

R2
j = 1− ∥yj − ŷj∥2

∥yj − ȳj1∥2
, (9)

where ŷj is the vector including the samples yj(k) of the
jth output of the approximate model, while yj corresponds
to the jth output of the true non-linear system and ȳj the
mean value of yj . For the SMIB system, recall that y(k) =
[y1(k),y2(k)]

⊤ = [δ(k),∆ω(k)]⊤. The R2 = [R2
δ , R

2
∆ω]

scores for the linear model, the PWA polytopic model and the
DS polytopic model are [0.928,821], [0.993, 0.901], [0.993,
0.908], respectively. The simulation results are shown in Fig. 1
where NL is the output of the true nonlinear system.

We then consider a piecewise constant input signal. The
R2 scores for the linear model, the PWA polytopic model
and the DS polytopic model are [0.673,0.047], [0.924,0.768],
[0.924,0.768], respectively. Notice that PWA and DS polytopic
models have the same R2 scores. The simulation results are
shown in Fig. 2.

One can notice that the polytopic models perform better
than the linear model in both scenarios; for slowly time-
varying inputs and step signals. However, when the input
signal changes abruptly, the weights associated with each
linear submodel also change quickly since the weighting
function only depends on the input. As a consequence, when
a previously non-active linear model becomes active, its state
might be far away from the operating region where the linear
submodel was identified. This creates ”jumps” in the states
and in the outputs of the global model, as shown in Fig. 3.
In the next subsection, we introduce a state update technique
to smooth out transitions from one linear submodel to another
during ”jumps” in the inputs.
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D. Modified state update

In our framework, the weighting function only depends on
the inputs u. This makes the partitioning in different operating
regions, and the realization of experiments on the system,
much easier. However, the polytopic model may perform
poorly when the input changes quickly, as shown in Fig. 3. In
this section, we investigate a state update technique to smooth
out the response of the polytopic model for abrupt changes in
the input. The idea is to find the state x̃es

i (k) at every step k
such that the distance between the output trajectory of the lin-
ear submodel and the one of the polytopic model is minimized.
First, define zPM (k − 1) ∈ RT ·ny , zi(k − 1) ∈ RT ·ny as the
vectors that contain the T previous outputs of the polytopic
model and of the linear submodel i, respectively:

zPM (k − 1) =


yPM (k − T )

yPM (k − T + 1)
...

yPM (k − 1)

 ,

zi(k − 1) =


yi(k − T )

yi(k − T + 1)
...

yi(k − 1)

 . (10)

We consider the sequence {x̃i(k−T ), x̃i(k−T+1), ..., x̃i(k−
1)} obtained via (2) that yields the output sequence zi(k −
1). We obtain the initial state x̃es

i (k − T ) by minimizing the
difference between the output vector of the linear submodel i
and the output vector of the polytopic model:

x̃es
i (k − T ) = arg min

x̃i(k−T )
∥zPM (k − 1)− zi(k − 1)∥2, (11)

where zi(k − 1) is a function of x̃i(k − T ). Using (2), we
have

zi(k − 1) =


Ci

CiAi

...
Ci(Ai)

T−1

 x̃i(k − T )

+


Di

CiBi Di

...
CiA

T−2
i Bi . . . Di




ũi(k − T )
ũi(k − T + 1)

...
ũi(k − 1)

+


Hi

Hi

...
Hi


(12)

that can be written as

zi(k − 1)−Ri = Oix̃i(k − T ), (13)

with Oi ∈ RT ·ny×nx,i the observability matrix and Ri ∈
RT ·ny is easily obtained from (12). Therefore, we estimate
x̃i by replacing zi with zPM in (13) and then solving for x̃i.
This gives:

x̃es
i (k − T ) =

(
O⊤

i Oi

)−1 O⊤
i (zPM (k − 1)−Ri) , (14)

provided that O⊤
i Oi is invertible, which allows one to obtain

x̃es
i (k) as:

x̃es
i (k) = AT

i x̃
es
i (k − T ) +

T∑
j=1

Aj−1
i Biũi(k − j). (15)

The estimated state x̃es
i (k) is then used to obtain the next state

x̃i(k + 1) following the update equation:

x̃i(k + 1) = Ai((1− ωi(u(k)))x̃
es
i (k)

+ ωi(u(k))x̃i(k)) +Biũi(k).
(16)

Notice that, for weighting functions that can take any values
between 0 and 1, two linear submodels may have weights
equal to 0.5. In that case, there is no clear active linear
submodel, rather two partially active linear models. Hence,
equation (16) might badly impact the overall dynamics of
the polytopic model. For that reason, we perform the state
update (16) if the weight associated to one specific linear
submodel is below a threshold value. For the rest of this
paper, the threshold value is set to 0.1, i.e., if the linear model
participates to only 10% of the global model output, its state
is updated using equation (16).
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Fig. 5: Voltage-regulated DC-DC boost converter.

In Fig. 3, we show the state trajectories in a phase portrait
of the polytopic model with the PWA weighting function
with and without the proposed state update technique. One
can observe that the state update technique prevents ”jumps”
from happening. We then consider the same piecewise constant
signal for the input as in Fig. 2. The R2 scores for the
linear model, the DS polytopic model and the DS polytopic
model with state update are [0.673,0.047], [0.924,0.768],
[0.963,0.891], respectively. The simulation results are shown
in Fig. 4. The modified state update technique helped improve
the performance of the polytopic model.

IV. DC-DC BOOST CONVERTER

Considered voltage-regulated DC-DC boost converter is
illustrated in Fig. 5.

The Pulse-Width Modulation (PWM) block produces a
binary signal s that triggers the switch. We consider an ideal
switch and an ideal diode, i.e., there are no losses or forward
voltage drop. We also do not consider saturation of the mag-
netic cores. When the switch is open, the diode is conducting
and the governing dynamical equations for the boost converter
are equations (17). On the other hand, when the switch is
closed, the dynamical equations are equations (18).

di

dt
=

v − vo −RLi

L
(17a)

dvo
dt

=
1

C(1 +Rc/RLoad)
(17b)((

−1

RLoad
−Rc

C

L

)
vo +

(
1−RcRL

C

L

)
i+Rc

C

L
v

)
di

dt
=

v −RLi

L
(18a)

dvo
dt

=
−vo

C (RLoad +Rc)
(18b)

Let us consider the inputs u = [v,RLoad]
⊤ and outputs

y = [i, vo]
⊤. In the following, we assume that v ∈ [20, 30]

V and RLoad ∈ [20, 50] Ω. Notice that the power converter
switching model is capable of representing ripples. A major
advantage of our black-box model is that it can be run with
a larger time step, leading to less computational burden. One
drawback, however, is that averaged model cannot represent
high frequency dynamics of the converter, i.e., it cannot
represent voltage and current ripples, for instance.

A. Linear model identification
We identify four linear models based on an orthotope parti-

tioning of the operating space, i.e., u1 = [22.5, 27.5], u2 =
[22.5, 42.5], u3 = [27.5, 27.5], u4 = [27.5, 42.5]. For each
setpoint ui ∀i ∈ {1, ..., 4}, we design an experiment to gather
some measurements on the converter. The experiments are
realized with pseudo-random binary sequences.

Notice that in this paper, we simulate in PYTHON the power
converter using the switching equations (17)-(18). A digital
implementation of the PID controller as well as the PWM are
responsible for producing the signal s, which selects whether
equation (17) or equation (18) to simulate the dynamical
system. Notice that the duty cycle d is the average value of
the binary signal s over a switching period.

Remark IV.1 (Practical linear model identification).
We simulate the switching equations of a power converter, and
use the simulation results as artificial measurements. However,
the methodology proposed to identify the linear submodels can
easily be reproduced on a real power converter. The steps in
the input voltage can be performed with a controllable DC
voltage source, while the steps in the load resistance can be
performed by connecting and disconnecting a parallel resistor
to the converter. In practice, the dynamics of external devices
such as voltage source or sensors may interfere when taking
measurements to identify the system. However, there exist
techniques to remove undesired dynamics by post-processing
measurements [22].

After obtaining the four different linear models, we use
a PWA weighting function to design our polytopic model.
We compare the performances of a linear model and our
polytopic model in Fig. 6. The R2 = [R2

vo , R
2
i ] scores are

[0.794, 0.848] and [0.727, 0.652] for the polytopic model with
PWA weighting function and the linear model, respectively
One can notice some steady-state errors in the polytopic
model, which emphasizes the importance of the weighting
function. In the next section, we introduce a neural network-
based weighting function to optimally combine the responses
of the different linear models.
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B. Neural network-based weighting functions

Figure 7 shows the overall architecture of the proposed
polytopic model (PM-net) including the neural-network based
weighting functions (NN-WF). It is composed of one dense
neural network for each input vj that is called a premise
variable. For every discrete time k, NN WF takes as input
the value of v(k) = [v1(k), ..., vnu

(k)]⊤ and returns a weight
value ωi(k) comprised in [0, 1] for each linear submodel
i ∈ N . The premise variables v may differ from the actual
system inputs u if one wants to normalize the inputs fed to
the neural network through a function f(·) : Rnu 7→ Rnu .
The output of NN WF corresponding to each input vj(k)
is βj(k) = [β1

j (k), ..., β
N
j (k)]⊤ ∈ RN , each element corre-

sponding to one linear submodel. The end layer of each neural
network is a Softmax function such that the weights for each
submodel i ∈ N for one specific input vj(k) sum to one:

∑
i∈N

βi
j(k) = 1. (19)

The non-normalized weight corresponding to linear submodel
i is computed as follows:

γi(k) =

nu∏
j=1

βi
j(k). (20)

Then the weight associated with each linear submodel i is
computed as:

ωi(k) =
γi(k)∑

i∈N γi(k)
. (21)

NN WF

Linear models

PM-net

M
LP

So
ftm

ax

M
LP

So
ftm

ax

...

Normalization

MLP

Softmax

Fig. 7: NN WF topology and its interconnection with the linear submodels.

The neural network is trained using measurements gathered
on the converter for inputs ranging in the operating space.
That would correspond to a normal operation of the power
converter. Notice that the normalization function

f(ui(k)) = vi(k) = 2

(
ui(k)−mink ui(k)

maxk ui(k)−mink ui(k)
− 0.5

)
,

(22)
where the operators mink and maxk correspond to minimum
and maximum values over all the samples k, ensures that every
input vi(k) ∈ [−1, 1] ∀i ∈ {1, · · · , nu}. Also, the MLP layers
for each input vi(k) correspond to a linear layer R 7→ R10, an
hyperbolic tangent activation function, and another linear layer
R10 7→ RN where N denotes the number of linear submodels.
The weights obtained are shown in Fig. 8. The comparison
between the polytopic model with the neural network-based
weighting functions, the PWA weighting functions and the
linear model is shown in Fig. 6. The R2 testing scores are
[0.887, 0.906],[0.794, 0.848] and [0.727, 0.652] for the poly-
topic models with the NN and PWA weighting functions and
the linear model, respectively.
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Fig. 8: PWA and neural network-based weighting functions.

In the next subsection, we introduce a partitioning proce-
dure to add and/or remove linear submodels to improve the
polytopic model accuracy.

C. Partitioning procedure

We propose the methodology shown in Alg. 1 for deriving a
model PM-net for any kind of non-linear system, although this
model structure is particularly adapted to power converters. It
takes as input the desired operating space S on which the
resulting black-box model should be valid. We start with an
orthotope-based partition and identify the linear submodels on
the resulting operating points (the centers of the orthotopes)
using specifically designed experiments. Then, we train the
neural network over a large dataset that excites the system
dynamics over its entire operating space. Finally, we analyze
the weighting functions associated with each submodel. The
latter is divided into two steps: a pruning and a segregation
procedure.

The pruning procedure removes submodels to reduce the
overall model complexity. If the weight associated with a
submodel is always below a specified threshold α, it can
be removed since it does not significantly impact the overall
model response. This may happen if two submodels have
similar parameters as the system behaves linearly along one
input, or if one submodel was badly identified. The threshold
value is a tuning parameter to achieve the desired overall
model complexity.

If no model can be removed, we enter into the segregation
procedure. First, one needs to identify the submodel which
performs the worst, so that we can identify an operating region
where the overall model response can be improved. For each
submodel i ∈ N , we compute the value of a weighted loss
function. Let us consider a mean squared error loss function.
The weighted loss Li associated with submodel i can be
written as:

Li =
1

l

l∑
k=1

[ωi(u(k))(y(k)− yi(k))]
2
, (23)

with l being the number of measurements and y(k) the output
of the non-linear system. The worst submodel i has the largest
weighted loss value, that is

i∗ = argmax
i∈N

Li, (24)

where i∗ is the index of the worst submodel. In operating
regions where the submodel i is not expected to perform well,
the weight ωi is close to 0, and the loss associated does
not significantly increase. The weighted loss function is also
used in [17], where authors described the Local Linear Model
Trees methodology (LOLIMOT). The working principle of
LOLIMOT is to analyze every feasible re-partitioning in the
operating region associated with the worst model. Then, after
identifying the new submodels, they select the best partitioning
and continue the procedure. In an n-dimensional operating
space, this would imply n re-partitionings and 2×n submodels
to be identified. For complex systems with multiple inputs
and outputs, the process of identifying new submodels is
time-consuming. Achieving a successful identification of a
submodel implies the design of new experiments and the
measurements of the system response, which requires human-
in-the-loop. This part should be minimized to speed up the
modeling. Thus, in this work, we analyze the NN WF to
find one cutting direction that can lead to good partitioning.
At every step of the procedure, one must identify only two
submodels based on new measurements, which significantly
reduces the number of new experiments that have to be carried
out on the system.

The cutting direction index j∗ is found by looking at
the evolution of βi∗

j for every j = 1, ..., nu. Through the
normalization function f(·), the values of the premise variables
vj are bounded within [-1,1]. Thus, we compute the values of
βi∗
j for every j = 1, ..., nu and for values of vj between -1

and 1, and then numerically compute the gradients. The index
of the cutting direction is computed as:

j∗ = arg max
j=1,...,nu

{
max

vj∈[−1,1]

∣∣∣∣∣∂βi∗
j

∂vj

∣∣∣∣∣
}
. (25)

Let us consider a multi-input system with a linear behavior
with respect to one input u. Two submodels LM1,LM2
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Fig. 9: β values after training the neural network.

identified around two different values of input u have the same
parameters. Therefore, the weight associated with LM1 (β1

u) or
with LM2 (β2

u) along various values of u does not vary, as no
improvement can be gained by promoting one submodel over
the other when u changes. One of the two submodels may be
dropped during the pruning procedure. If a system strongly
behaves non-linearly along one input, one submodel quickly
performs better than the others and the weight associated with
that model varies steeply. We thus decide that the best cutting
direction corresponds to the input along which the weight
varies the steepest.

Let us consider the submodel LMλ identified around the op-
erating point corresponding to the input cλ = [cλ1 , · · · , cλnu

]⊤.
We can define an operating region Sλ ⊂ S in which the
submodel LMλ is supposed to perform better than the other
submodels. Once we found the cutting direction index j∗,
we define three new orthotopic regions, Sλ−1,Sλ and Sλ+1.
We can compute two new operating points, cλ−1, cλ+1 from
which we can build two perturbation signals to be applied
on the system to extract its response. Based on those mea-
surements, we can identify two linear models, LMλ−1 and
LMλ+1, that will be associated with operating regions Sλ−1

and Sλ+1. The operating regions for one model i can change
from one step to another, as it depends on the number of linear
models identified on operating points close to the operating
points used to identify model i. The values of β after the
first iteration of the method for the DC-DC boost converter
are represented in Fig. 9. Following the algorithm, the worst
model is the linear submodel 3 (LM3), for which the largest
gradient is along RLoad direction. The next step is to identify
two linear submodels LM5, LM6 around operating points with
inputs (v = 27.5, RLoad = 22.5), (v = 27.5, RLoad = 32.5).

D. Results

The target accuracy ϵ is a R2 score greater than 0.9 for
both output variables. After 6 iterations, we reached R2 =
[0.907, 0.925] with 7 linear submodels. The simulation results
are shown in Fig. 10. NN weighting functions better combine
the outputs of the different linear submodels. However, they
cannot resolve the ”jumps” in the system outputs that occur
when the input quickly changes. In particular, one can see

Algorithm 1: Operating space partitioning for a non-
linear system with nu inputs. In red, steps that require
human-in-the-loop.

input : S
Initialization: N = 2nu , Orthotope partition: Si ∀i ∈ N ,

Identify LMi valid in Si ∀i ∈ N .
while Loss (PM-net)> ϵ do

Train (NN WF);
// Pruning procedure
for i← 1 to N do

if max(ωi)< α then
Remove model LMi;

end
end
if no model removed then

// Segregation procedure
i∗ ← from (23),(24);
j∗ ← from (25);
Define Si∗−1,Si∗+1 → along j∗ direction;
Identify LMi∗−1,LMi∗+1;

end
end

such a ”jump” in Fig. 10 around t = 0.065 s in the input
current i (on the left of the zoomed box). The input current
suddenly drops for the polytopic model while it does not for
the non-linear model. In Fig. 11, we show how those jumps
are removed by appropriately updating the states of the non-
active linear models. Notice that, in terms of R2 score, the
modified state update changes the overall performance of the
polytopic model ([0.91, 0.918] compared to [0.907, 0.925]) but

gives a lower RMSE = 1
l

√∑l
k=1 ∥y − ŷ∥2 (l is the number

of measurements) value overall (0.454 compared to 0.461).

V. A VALIDATION ON A SMALL SYSTEM

We consider a small system composed of a battery, our
DC-DC boost converter, and a DC motor, that is illustrated in
Fig. 12. The battery is modeled as in [23]:

v =


E0 −Ri−K Q

Q−
∫
idt

(
∫
idt+ ifiltered)+

A exp(−B
∫
idt) if discharging,

E0 −Ri−K Q
Q−

∫
idt

(
∫
idt)−K Q∫

idt−0.1Q
(ifiltered)

+A exp(−B
∫
idt) if charging,

(26)
where R is the internal resistance, Q the battery capacity,
ifiltered the filtered current,

∫
idt the discharge capacity and

E0,K,A,B parameters that are identified to match a nominal
voltage of 48V and a given discharge curve [24]. The DC
motor is modeled as in [25]:

La
dio
dt

= vo −Raio −Keω, (27a)

Jω̇ = Keio − bω − TL, (27b)

where La, Ra are the armature inductance and resistance,
respectively, Ke is the motor constant, J the motor inertia,
b the friction coefficient and TL the load torque. This system
is solved sequentially. The system is initialized with a value
for v and RLoad. The DC-DC boost converter outputs the input
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Fig. 10: Performance comparison between two different polytopic models with NN
weighting functions at two different stages of Algorithm 1.

current i and the output voltage vo. The input current i is used
in the battery model (26) to obtain the input voltage v, while
the output voltage is used in the DC motor model (27) to
obtain the output current io. One can then build an equivalent
resistance RLoad = vo

io
that is fed into the DC-DC boost

converter model. Assuming proper initialization of the state
variables, the sequence is described in the following:

vo(k), i(k) = Converter(v(k), RLoad(k)) (28a)
v(k + 1) = Battery(i(k)) (28b)
io(k + 1) = Motor(vo(k)) (28c)

RLoad(k + 1) =
vo(k)

io(k + 1)
(28d)

In Fig. 13, we show the simulation results of the small
system, when the DC-DC boost converter is modeled using
the switching model, and when it is modeled using our
multimodel approach, with and without the modified state
update. One can see that our multimodel approach describes
accurately the dynamics of the small system. One can also
notice that the state update does not improve significantly the
dynamical response of the DC-DC boost converter because
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Fig. 11: Performance comparison between two different polytopic models with NN
weighting functions with and without modified state update.

M

DC motor
DC-DC

converterBattery

Input
Output

Fig. 12: Illustration of the small system.

there are no ”jumps” in the input. The inputs (battery voltage
and equivalent resistance obtained from the DC motor) vary
smoothly, so that the weights also vary smoothly.

VI. CONCLUSION

We presented a multimodel approach to derive large-signal
black-box models of power electronic converters. The ap-
proach is built upon the well-known theory of linear system
identification and is consequently simple and mathematically
tractable. In this paper, we addressed two important challenges
in the multimodel framework; the design of the weighting
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Fig. 13: Performance of polytopic models for system-level analysis.

functions and the partitioning of the operating space. The
neural network-based weighting functions offer more flexi-
bility and better combine linear submodels’ responses than
generic weighting functions. Furthermore, the post-analysis of
the trained neural network provides valuable information to
improve the performance of the polytopic model by adding
or removing some linear submodels. The reliance on linear
submodels together with the specific design of the weight-
ing functions renders our multimodel approach interpretable,
making it suitable for system-level analysis. The focus of this
paper is on detailed presentation of the approach, and it is
validated using only a small system comprising a voltage-
regulated DC-DC boost converter, a battery and a DC motor.
The validation on realistically sized systems and the proposed
approach considerations with other types of PECs are central
to the research efforts that will be carried out in the future.
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