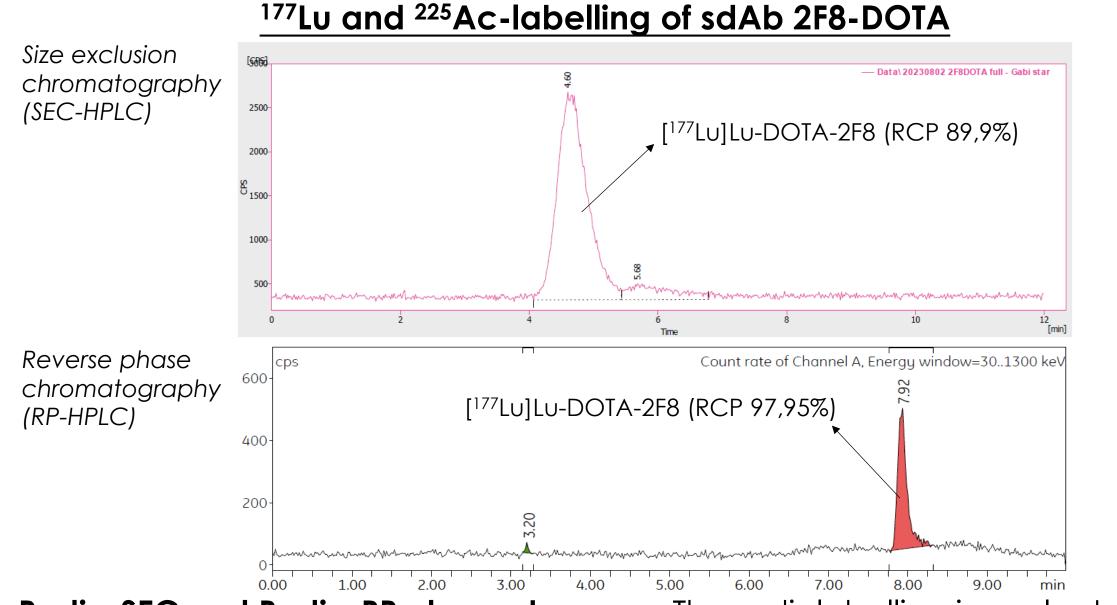

CD38-based Targeted Alpha Therapy for the treatment of multiple myeloma

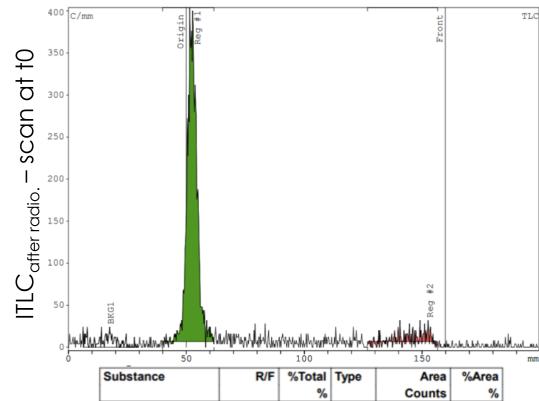
<u>Valentina Bocuzzi^{1,2}, Guillaume Marcion^{1,2}, Nadia Withofs³, Roland Hustinx⁴, Matthias D'Huyvetter⁵, Laurent Navarro⁶, Alain Brans², Mireille Dumoulin², Jo Caers^{1,7}, Jessica Bridoux⁵.</u>

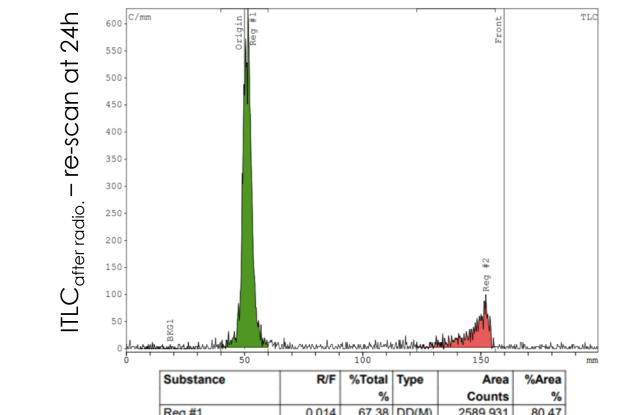
¹Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium. ² Centre for Protein Engineering, Inbios, University of Liège, Belgium. ³Department of Nuclear Medicine, CHU de Liège, Liège, Belgium. ⁴Department of Nuclear Medicine and Oncology, CHU de Liège, Liège, Belgium. ⁵Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium.⁷Department of Hematology, CHU de Liège, Liège, Belgium. ⁶Precirix NV/SA, Brussels, Belgium

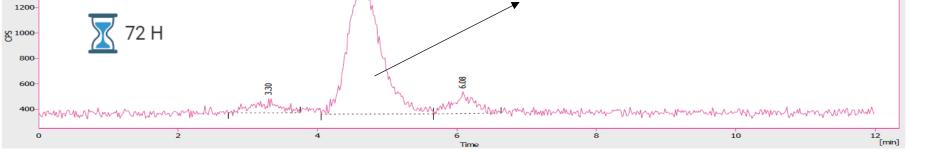
Introduction


Multiple myeloma (MM) is an incurable hematological malignancy, and patients experience relapse despite achieving complete remission¹. Targeted alpha therapy (TAT) has the potential to eradicate minimal residual disease delivering cytotoxic alpha radiation to cancer cells, while sparing healthy tissues². TAT is carried out using a vector radiolabelled with a therapeutic radionuclide by means of a chelator. Single-domain antibody fragments (sdAbs), derived from Camelidae heavy-chain antibodies, exhibit ideal properties as carrier molecules for TAT.

average of 1,4 DOTA per sdAb.

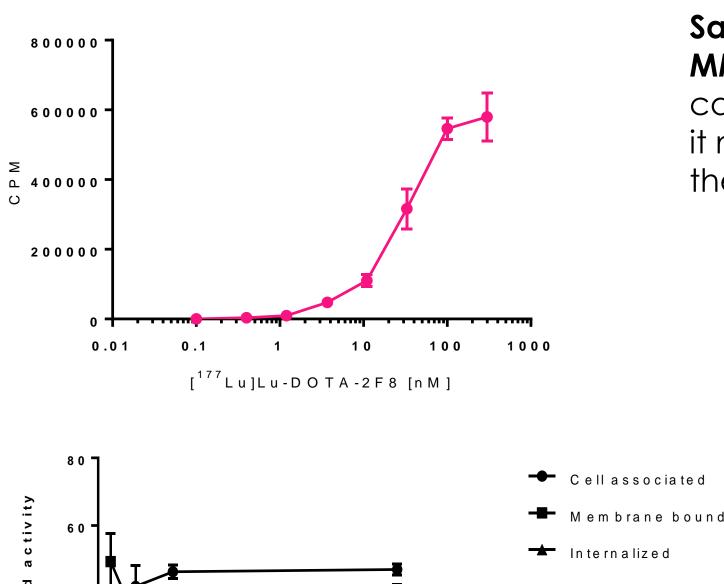

[¹⁷⁷Lu]Lu-DOTA-2F8 (RCP 90%)


releasing free ¹⁷⁷Lu.



or 3 DOTAs. The sdAb is successfully conjugated to p-SCN-Bn-DOTA with an

Radio-SEC and Radio-RP chromatograms. The radiolabelling is evaluated comparing the intensity of radiations over the time. The peak corresponding to sdAb 2F8-DOTA (at the correct Rt) present radiochemical purity (RCP)>90% in nearly completely absence of free radionuclide. The radiolabelling with 200 MBq ¹⁷⁷Lu is therefore achieved.

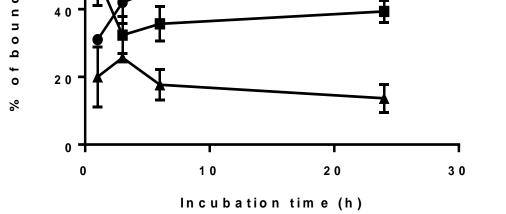


[¹⁷⁷ Lu]Lu-DOTA-2F8 in HS at 37°C									
	<0.5h	1h	2h	3h	19h	24h	48h	72h	120h
<u>Radio-</u> iTLC	>99%	>99%	>99%	97%	NM	98%	91%	95%	91%
<u>Radio-</u> <u>SEC</u>	>99%	93%	95%	90%	88%	92%	94%	90%	76%

The table summarizes the RCP of [¹⁷⁷Lu]Lu-DOTA-2F8 in human serum at 37 °C over the incubation time. The RCP is > 95% in serum for two hours and > 90% for three hours indicating that the radio-conjugate is stable.

[¹⁷⁷Lu]Lu-DOTA-2F8 binds on CD38+ MM cells

Specific activity (CPM) associated to the cells in function of the 177Lu-sdAb concentration



Saturation binding curve of [177Lu]Lu-DOTA-2F8 on CD38+ MM cells. The maximal effective concentration (EC50) calculated for [177Lu]Lu-DOTA-2F8 is 40 nM meaning that it maintains its high affinity for the antigen expressed on the surface of the cancer cells.

Reg #1	0.023	62.59	DD(M)	1825.065	95.18
Reg #2	0.939	3.17	DD(M)	92.387	4.82
Sum in ROI	-	-	-	1917.452	100.00
Total area	-	-	-	2915.903	-
Area (total) RF	-	-	-	2507.000	-
Remainder (Tot)	-	-	-	998.45	34.24

Reg #1	0.014	67.38	DD(M)	2589.931	80.47
Reg #2	0.927	16.36	DD(M)	628.772	19.53
Sum in ROI	-	-	-	3218.703	100.00
Total area	-	-	-	3843.574	-
Area (total) RF	-	-	-	3012.000	-
Remainder (Tot)	-	-	-	624.87	16.26

iTLC graphs. The sdAb 2F8-DOTA is radiolabeled with ²²⁵Ac and not its daughter isotopes because after 24 H the peak is still detectable with a weak presence of free radioactivity on the front of the strip. The radiolabelling of sdAb 2F8-DOTA with ²²⁵Ac is feasible (RCP=80%), but the protocol needs optimization.

Plot representing the cell internalization assays. The internalized fraction of [¹⁷⁷Lu]Lu-DOTA-2F8 is evaluated over the time considering the % of bound activity. It present a very low and constant activity over time resulting in a nearly absence of internalization.

Conclusions

The application of TAT using sdAb 2F8 is a feasible approach for treating MM. The targeting-CD38 sdAb 2F8 can be successfully conjugated to the p-SCN-Bn-DOTA and the radiolabelling with ¹⁷⁷Lu allowed to obtain a pure product (RCP>95%) stable for the whole duration of the half-life of the sdAb. Primary studies gave an idea about the EC₅₀ the partial internalization of the sdAb guaranteeing the interaction of sdAb 2F8 with the CD38 on the surface of malignant cells. The primary results obtained are encouraging. However, the radiolabelling with ²²⁵Ac has to be optimized to achieve higher specific activity and using a batch of 2F8-DOTA presenting more conjugation.

References

- 1. Ahmed, A., & Killeen, R. B. (2023). Relapsed and Refractory Multiple Myeloma. In StatPearls. StatPearls Publishing.
- 2. Pruszynski, M., D'Huyvetter, M., Bruchertseifer, F., Morgenstern, A., & Lahoutte, T. (2018). Evaluation of an Anti-HER2 Nanobody Labeled with ²²⁵Ac for Targeted a-Particle Therapy of Cancer. Molecular pharmaceutics, 15(4), 1457–1466. https://doi.org/10.1021/acs.molpharmaceut.7b00985
- 3. Duray, E., Lejeune, M., Baron, F., Beguin, Y., Devoogdt, N., Krasniqi, A., Lauwers, Y., Zhao, Y. J., D'Huyvetter, M., Dumoulin, M., & Caers, J. (2021). A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma. Journal of hematology & oncology, 14(1), 183. https://doi.org/10.1186/s13045-021-01171-6

Valentina Bocuzzi Valentina.bocuzzi@uliege.be Valentina.bocuzzi@VUB.be