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Context: inverse problems
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Full waveform inversion (FWI)

FWI is an imaging method that reconstructs physical properties of a sample by minimizing
the mismatch between measured wave scattering data on the boundary of the sample and data
obtained by full-wave simulations
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[Adriaens, Métivier & G., 2023]

This is FWI in the time domain: we will use it in the frequency domain, solving the
Helmholtz equation instead of the wave equation
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FWI in the frequency domain

Problem statement: For a model m(x), a wavefield u(x), data d, excitation f and a
measurement operator R, find m that minimizes J (m) = ‖Ru(m)− d‖2

2 under constraint
A(m)u = f

Setup for this talk:
• the model m(x) is the local wave speed c(x) in a domain Ω

• A(m) is the Helmholtz operator, i.e. u satisfies the following Helmholtz problem{
−∆u − k2u = f in Ω
(∂nu − ıku) = 0 on Γ∞

where k = ω
c(x) , with ω the angular frequency

• the excitation f consists in (potentially many) sources located near the top of Ω

The minimization is carried out using a local, gradient-based optimization method (typically
l-BFGS): computing J (m) and ∇J (m) requires solving 2 Helmholtz problems, using an adjoint
approach

Main cost: solve A(m)u = f for different f and m
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Frequency-domain FWI example in 2D

Imaginary part of permittivity in the brain

[Tournier et al., Microwave tomographic imaging of cerebrovascular accidents by using high-performance
computing, Parallel Computing, 85, pp.88-97, 2019]
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Frequency-domain FWI example in 3D

Slices of the Gorgon model before and after FWI

[Operto et al. Is 3D frequency-domain FWI of full-azimuth/long-offset OBN data feasible? The Gorgon case
study. Leading Edge, 42 (3), pp.173-183, 2023]
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State-of-the art

High-resolution FWI requires ω �, leading to large sparse, complex and indefinite linear
systems for which standard iterative methods struggle

Classical approach: perform sparse LU or LDLT factorization (e.g. MUMPS)
• Factorization time O(N 2)

• Memory hungry (O(N 4/3))
• Efficient for a large number of right hand sides f
• Recent progress: Block Low Rank (BLR) compression, mixed precision

If refinement proportional to frequency ω, we have O(ω3) unknowns:
• Factorization time: O(ω6)

• Extra cost per RHS: O(ω4)

• Storage: O(ω4)
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Test case for this talk

[Górszczyk, A. and Operto, S.: GO 3D OBS: the multi-parameter benchmark geomodel for seismic imaging
method assessment and next-generation 3survey design (version 1.0), Geosci. Model Dev., 14, 17731799,
https://doi.org/10.5194/gmd-14-1773-2021, 2021]
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Test case for this talk

P-wave speed in one slice of the model

Wave speed varies by a factor close to 6 in the model: this requires
• mesh adaptation

• balanced mesh partitioning
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Test case for this talk

Typical mesh (here with 256 partitions) and sample solution on a slice for a single source at 2Hz
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Test case for this talk

What is the cost of a sparse direct solver for a problem with 10M Dofs and 68 sources?

Standard MUMPS on 8 HPC nodes (8 × 2 × 64 AMD Epyc Milan cores) requires
• 2TB of RAM
• 1250s (21 minutes) of compute time

→ 140s symbolic factorization
→ 960s numerical factorization
→ 150s triangular solves

MUMPS-BLR in mixed precision is about 20 % faster

Can we do better?
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Domain Decomposition Methods for Helmholtz
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Domain Decomposition Methods

Main idea of Domain Decomposition Methods (DDM): split the N unknowns in Ndom
subdomains...
• Factorization is N 2

dom times faster (but one needs to factorize Ndom times)
• We use less memory
• But we must iterate!

We can use DDM to either
• build a preconditioner made of local solves for the original problem (e.g. ORAS)
• solve an interface problem to glue local solutions together (e.g. OSM)
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Non-overlapping substructured optimized Schwarz DDM (OSM)

Partition Ω into non-overlapping subdomains Ωi , i = 1, . . . ,Ndom, with interface Σi,j between
Ωi and Ωj ; for every i, Γ∞

i = Γ∞ ∩ ∂Ωi

In a subdomain Ωi with neighboring subdomain Ωj , solve

Local problem −∆ui − k2ui = fi in Ωi , (Helmholtz equation)
(∂ni ui − ıkui) = 0, on Γ∞

i (radiation condition)
(∂ni ui − Sui) = (∂ni uj − Suj) , on Σij (transmission condition)

with k = ω
c(x) the wave number and S a well-chosen interface operator (simplest: S = ik)

The solution ui in Ωi depends on
• the sources in Ωi

• the solution uj in Ωj through the transmission condition
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Non-overlapping substructured optimized Schwarz DDM (OSM)

Pose gij = ∂ni ui − Sui and introduce the corresponding interface unknown gji = ∂nj uj − Suj
for Ωj

Since ni = −nj , we obtain the interface problem

gij = ∂ni uj − Suj

= −(∂nj uj − Suj)− 2Suj

= −gji − 2Suj

Iterative method (Jacobi) to solve the global problem
For each subdomain i:
• Compute un

i from gn
ij and fi

• Update: gn+1
ij = −gn

ji − 2Sun
j .
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Non-overlapping substructured optimized Schwarz DDM (OSM)

Split by linearity ui = vi + ũi into its contribution from the physical sources fi and the
interface sources gij , and define the transmission operators

Tijgij := −gij − Sũi

Tjigji := −gji − Sũj

For two subdomains i, j we obtain the system(
gij
gji

)
︸ ︷︷ ︸

g

=

(
0 Tji
Tij 0

)
︸ ︷︷ ︸

A

(
gij
gji

)
︸ ︷︷ ︸

g

−2S
(

vj
vi

)
︸ ︷︷ ︸

b

(1)

The global update of the interface variables g = (gij , gji)
T thus takes the form of a linear

system

(I − A)g = b, (2)

which can be solved with a matrix-free Krylov solver such as GMRES or GCR
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Non-overlapping substructured optimized Schwarz DDM (OSM)

Properties of the interface problem:
• Significantly smaller number of unknowns than the volume problem
• Simplest transmission condition S = ik [Després 1991]

• Clustering of the eigenvalues of (I − A) around 1 for “optimized” S:
→ S := (a + b∆Σ) [Gander, Magoules & Nataf 2002], rational DtN approximations [Boubendir,

Antoine & G. 2012], PMLs [Stolk 2013], [Vion & G. 2014], [Royer, G. Béchet & Modave 2022],
non-local operators [Parolin 2020], ...

Leads to fast convergence of the iterative Krylov solver
• One matrix-vector product involves solving each subproblem once

Solving the subproblems using a sparse direct solver is expected to be the most
computationally expensive part
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OSM in practice
• Open source implementation: Gmsh [G. & Remacle 2009], GmshFEM [Royer, Béchet & G. 2021]

and GmshDDM

• Extended to Maxwell [Dolean, Gander & Gerardo-Giorda 2009], [El Bouajaji, Thierry, Antoine, G.
2015], elastic waves [Mattesi, Darbas & G. 2020], convected Helmholtz [Marchner, Beriot, Antoine
& G. 2024]

(peak memory here is per MPI rank, i.e. per subdomain: see [Marchner, Beriot, Antoine & G. 2024])

512 node HPC cluster allows to typically resolve about
100 × 100 × 100 wavelengths with high-order FEM
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Optimized Restricted Additive Schwarz (ORAS)
Partition Ω in overlapping subdomains Ωi , i = 1, . . . ,Ndom; denote Ri the restriction operator
from Ω to Ωi and Di a partition of unity s.t.

∑Ndom
i RT

i DiRi = I

RAS and ORAS preconditionners
Let A be the system matrix resulting from the discretization of the Helmholtz problem and
Aloc,i = RiART

i the local matrix for subdomain i
The RAS preconditionner is defined as:

M−1
RAS =

Ndom∑
i=1

RT
i DiA−1

loc,iRi

Replacing Aloc,i with a local matrix AS,i obtained by assuming an impedance boundary
condition on ∂Ωi (i.e. the same as in OSM), we obtain the ORAS preconditionner:

M−1
ORAS =

Ndom∑
i=1

RT
i DiA−1

S,iRi

Then apply a Krylov iterative solver (e.g. GMRES) to M−1
ORASAu = M−1

ORASf

TSIMF workshop, January 21 2025 19



Optimized Restricted Additive Schwarz (ORAS)
Partition Ω in overlapping subdomains Ωi , i = 1, . . . ,Ndom; denote Ri the restriction operator
from Ω to Ωi and Di a partition of unity s.t.

∑Ndom
i RT

i DiRi = I

RAS and ORAS preconditionners
Let A be the system matrix resulting from the discretization of the Helmholtz problem and
Aloc,i = RiART

i the local matrix for subdomain i
The RAS preconditionner is defined as:

M−1
RAS =

Ndom∑
i=1

RT
i DiA−1

loc,iRi

Replacing Aloc,i with a local matrix AS,i obtained by assuming an impedance boundary
condition on ∂Ωi (i.e. the same as in OSM), we obtain the ORAS preconditionner:

M−1
ORAS =

Ndom∑
i=1

RT
i DiA−1

S,iRi

Then apply a Krylov iterative solver (e.g. GMRES) to M−1
ORASAu = M−1

ORASf

TSIMF workshop, January 21 2025 19



Optimized Restricted Additive Schwarz (ORAS)
Partition Ω in overlapping subdomains Ωi , i = 1, . . . ,Ndom; denote Ri the restriction operator
from Ω to Ωi and Di a partition of unity s.t.

∑Ndom
i RT

i DiRi = I

RAS and ORAS preconditionners
Let A be the system matrix resulting from the discretization of the Helmholtz problem and
Aloc,i = RiART

i the local matrix for subdomain i
The RAS preconditionner is defined as:

M−1
RAS =

Ndom∑
i=1

RT
i DiA−1

loc,iRi

Replacing Aloc,i with a local matrix AS,i obtained by assuming an impedance boundary
condition on ∂Ωi (i.e. the same as in OSM), we obtain the ORAS preconditionner:

M−1
ORAS =

Ndom∑
i=1

RT
i DiA−1

S,iRi

Then apply a Krylov iterative solver (e.g. GMRES) to M−1
ORASAu = M−1

ORASf

TSIMF workshop, January 21 2025 19



Optimized Restricted Additive Schwarz (ORAS)
Partition Ω in overlapping subdomains Ωi , i = 1, . . . ,Ndom; denote Ri the restriction operator
from Ω to Ωi and Di a partition of unity s.t.

∑Ndom
i RT

i DiRi = I

RAS and ORAS preconditionners
Let A be the system matrix resulting from the discretization of the Helmholtz problem and
Aloc,i = RiART

i the local matrix for subdomain i
The RAS preconditionner is defined as:

M−1
RAS =

Ndom∑
i=1

RT
i DiA−1

loc,iRi

Replacing Aloc,i with a local matrix AS,i obtained by assuming an impedance boundary
condition on ∂Ωi (i.e. the same as in OSM), we obtain the ORAS preconditionner:

M−1
ORAS =

Ndom∑
i=1

RT
i DiA−1

S,iRi

Then apply a Krylov iterative solver (e.g. GMRES) to M−1
ORASAu = M−1

ORASf
TSIMF workshop, January 21 2025 19



OSM vs. ORAS comparison
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Setup

• Adapted meshes generated by Gmsh, solutions obtained with GmshFEM+GmshDDM
(OSM) and GmshFEM (ORAS)

• FEM order 3, 2nd order transmission conditions, ORAS with 1-element overlap

• Varying frequency, leading to between 10M and 80M Dofs
• 68 point sources
• Linear algebra via PETSc, linked to MUMPS and HPDDM [Jolivet, Roman & Zampini 2021]
• By default batch 32 RHS to be solved in parallel
• Tests performed on LUCIA Tier-1 cluster

→ 2 64-core AMD Epyc Milan CPUs and 240 Gb of RAM per cluster node
→ 1 process per subdomain, 2 threads per process

TSIMF workshop, January 21 2025 21



Setup

• Adapted meshes generated by Gmsh, solutions obtained with GmshFEM+GmshDDM
(OSM) and GmshFEM (ORAS)

• FEM order 3, 2nd order transmission conditions, ORAS with 1-element overlap
• Varying frequency, leading to between 10M and 80M Dofs
• 68 point sources

• Linear algebra via PETSc, linked to MUMPS and HPDDM [Jolivet, Roman & Zampini 2021]
• By default batch 32 RHS to be solved in parallel
• Tests performed on LUCIA Tier-1 cluster

→ 2 64-core AMD Epyc Milan CPUs and 240 Gb of RAM per cluster node
→ 1 process per subdomain, 2 threads per process

TSIMF workshop, January 21 2025 21



Setup

• Adapted meshes generated by Gmsh, solutions obtained with GmshFEM+GmshDDM
(OSM) and GmshFEM (ORAS)

• FEM order 3, 2nd order transmission conditions, ORAS with 1-element overlap
• Varying frequency, leading to between 10M and 80M Dofs
• 68 point sources
• Linear algebra via PETSc, linked to MUMPS and HPDDM [Jolivet, Roman & Zampini 2021]
• By default batch 32 RHS to be solved in parallel

• Tests performed on LUCIA Tier-1 cluster
→ 2 64-core AMD Epyc Milan CPUs and 240 Gb of RAM per cluster node
→ 1 process per subdomain, 2 threads per process

TSIMF workshop, January 21 2025 21



Setup

• Adapted meshes generated by Gmsh, solutions obtained with GmshFEM+GmshDDM
(OSM) and GmshFEM (ORAS)

• FEM order 3, 2nd order transmission conditions, ORAS with 1-element overlap
• Varying frequency, leading to between 10M and 80M Dofs
• 68 point sources
• Linear algebra via PETSc, linked to MUMPS and HPDDM [Jolivet, Roman & Zampini 2021]
• By default batch 32 RHS to be solved in parallel
• Tests performed on LUCIA Tier-1 cluster

→ 2 64-core AMD Epyc Milan CPUs and 240 Gb of RAM per cluster node
→ 1 process per subdomain, 2 threads per process

TSIMF workshop, January 21 2025 21



A priori comparison

A priori advantages of ORAS:
• Better convergence (thanks to overlap)
• Simpler to use (e.g. via PETSc)
• Tolerant to non-exact solutions of the subproblems

A priori advantages of OSM:
• Smaller subproblems
• Less costly Krylov iterations (thanks to interface unknowns)
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Convergence criterion
OSM and ORAS minimize different residuals: the convergence criterion is adapted to produce
fair comparisons (10−4 for OSM and 10−6 for ORAS)

Relative L2 error vs. GMRES residual on 10M Dofs case

TSIMF workshop, January 21 2025 23



Partitioning

Ndom ORAS Dofs/dom OSM Dofs/dom OSM Dofs(Ω)/Dofs(Σ)
128 123k 92k 8.2
256 69k 46k 6.0
384 50k 31k 5.0
512 39k 24k 4.4

10M Dofs case: average number of Dofs per subdomain

For larger problems: increase number of subdomains to keep similar averages per subdomain
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10M Dofs: OSM with GMRES

Ndom 128 256 384 512
Iterations 50 65 78 87

Setup time 14s 5s 3s 2s
Local solves 65s 37s 31s 23s

Gram-Schmidt 4s 3.5s 3.5s 3.5s
Local RHS assembly 19s 16s 15s 14s

Total wall time 86s 57s 49s 42s
RAM upper bound 170 GB 219 GB 269 GB 337 GB

(Batch size: 32)

Back to comparison with direct sparse solver (MUMPS 5.7.3): 1250s / 2TB RAM
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10M Dofs: ORAS with GMRES

Ndom 128 256 384 512
Iterations 68 67 70 74

Setup time 22s 6s 4s 2s
Local solves 150s 80s 56s 50s

Gram-Schmidt 64s 33s 27s 50s
Sparse MVP 226s 117s 82s 69s

Total wall time 417s 211s 150s 122s
RAM upper bound 329 GB 376 GB 376 GB 451 GB

(Batch size: 32)

Back to comparison with direct sparse solver (MUMPS 5.7.3): 1250s / 2TB RAM
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10M Dofs: early observations

OSM outperforms ORAS here:
• smaller cost of GMRES
• smaller subdomains (no overlap)
• comparable iteration count
• replacing residual update in ORAS (global SPMV) by assembly of local interface terms

(interface local SPMV) in OSM
• ORAS converges faster than OSM if there are many subdomains
• Both OSM and ORAS clearly outperform a sparse direct solver, even with 68 RHS
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40M Dofs: strong scaling (total)
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40M Dofs: strong scaling (local solves)
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40M Dofs: strong scaling (orthogonalizations)
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40M Dofs: details on the solving phase for Ndom = 1024

OSM spends a larger fraction of time on useful work (local solves), especially when
subdomains are large (substructuring effect)

Combined with cheaper local solves (no overlap), this makes OSM very economical

TSIMF workshop, January 21 2025 31



Weak scaling

Weak scaling of OSM (left) vs. ORAS (right)
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40M Dofs: influence of the batch size

• Solving many RHS in parallel yields better arithmetic intensity...

• At the cost of more memory!
→ For ORAS the cost is about 16 GB per source for the 40M Dofs case: batching all the

sources would consume more than half the allocated amount!
→ OSM mitigates this (4 to 8 times less memory) thanks to smaller size of interface problem

Impact of the batch size for OSM (left) and ORAS (right)
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On the use of Block GMRES (BGMRES)

For a square matrix A and a vector b the m-th Krylov subspace is defined as

Km(A, b) = span{b,Ab,A2b, . . . ,Am−1b}

GMRES and BGMRES
GMRES provides at iteration m the element xm ∈ Km(A, b) that minimizes ||b − Axm||2

For several vectors b1, b2, . . . , bp, BGMRES provides the best approximation of
A−1bl , l = 1, 2, . . . , p in the sum of the p subspaces Km(A, b1),Km(A, b2), . . . ,Km(A, bp)

Using BGMRES instead of GMRES with large batches should lead to
• less iterations
• at the cost of more orthogonalizations

The latter is significantly cheaper without overlap

Is it worth it?
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40M Dofs: GMRES vs. BGMRES

Ndom GMRES - 32 BGMRES - 32 BGMRES - 64
512 95 87 84
1024 117 110 105
1536 135 128 128
2048 150 141 138

Number of iterations using OSM

Ndom GMRES - 32 BGMRES - 32
512 90 82
1024 105 100
1536 133 115
2048 129 123

Number of iterations using ORAS

BGMRES provides a moderate speedup in OSM but is usually slower in ORAS: this probably
depends a lot on the geometry and on the location of the sources
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Conclusions

We evaluated overlapping and non-overlapping DDM for solving the Helmholtz equation in 3D
with multiple sources in realistic conditions
• Both DDMs are much less expensive than a sparse direct solver for the considered number

of sources
• Substructured non-overlapping DDM is significantly more efficient than ORAS:

orthogonalisations, MVP and smaller local solves
• Parallelizing the sources (batch size) is efficient, but only affordable without overlap
• BGMRES has limited impact, but might be worth it with OSM
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Current and future work

• More detailed study in an incoming paper
• Integration in our FWI code

→ In particular interactions with the optimization algorithms

• Two-level methods (geometrical or spectral coarse grids)
→ One of my goals for this workshop: discuss with you about how they could be efficiently

applied to OSM?

Thanks!
� cgeuzaine@uliege.be
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