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Abstract 

 

A method for determining the equilibrium association constant of a complexation reaction A + B 

⇔  AB by electrospray ionization mass spectrometry is described. The method consists in 

measuring the relative intensities of the peaks corresponding to A and to AB in equimolar A:B 

solutions at different concentrations C0. The results are fitted by a non-linear least squares 

procedure, with the two variable parameters being the equilibrium association constant Ka, and a 

factor R, defined by: I(AB)/I(A) = R ×  [AB]/[A]. The factor R is the ratio between the response 

factors of AB and A, and corrects for the relative electrospray responses of the complex and the 

free substrate A, mass discrimination of instrumental origin, and/or moderate in-source 

dissociation. The method is illustrated with the following two systems: complexes between a 

double-stranded 12-base pair oligonucleotide and minor groove binders, and cyclodextrin 

complexes with α,ω-dicarboxylic acids. For the oligonucleotide complexes, it is found that the 

response of the complex is not dramatically different than the response of the free oligonucleotide 

duplex, as the double helix conformation is disturbed by the drug only to a minor extent. In the 

case of cyclodextrin complexes, these complexes were found to have a much higher response 

than free cyclodextrin. This can be due to the fact that cyclodextrin is neutral in solution, while 

the complex is charged, but it can also stem from the fact that a significant proportion of the 

complex is in a non-inclusion geometry. The present method requires the exact determination of 

the concentrations of the reactants and is applicable to 1:1 complexes.  
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Introduction 

 

The study of noncovalent complexes by electrospray mass spectrometry (ES-MS) is a 

constantly growing area of research.1-3 Characterization of the species that are present in the 

injected solution can be done by recording ES-MS spectra in soft ionization conditions. One of 

the major issues in this kind of study is to seek correlation between mass spectrometric results 

and solution phase behavior. Stoichiometries of the observed complexes can be assessed directly 

by the measurement of the molecular mass when the individual constituents are known. 

Moreover, the relative intensities in the mass spectra can be related to the relative abundance of 

the different species in solution.  

 

For two analytes, A and B, the ratio between the intensities is given by equation (1), where RA 

and RB are the response factors of the corresponding analytes. 
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Discrimination can arise from the electrospray process, from the mass analyzer and from the 

detector efficiency. In the case of noncovalent complexes, the collision-induced dissociation of 

the complex can also alter the relative intensities.  

 

The influence of the electrospray mechanism on the relative response of analytes was first 

discussed in the framework of the ion evaporation model by Tang and Kebarle.4-6 The response 
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factors are supposed to be proportional to the evaporation rates of the analytes, which depend on 

the activation free energy for an ion-solvent cluster that leaves a small charged droplet. In 1997, 

Enke7,8 proposed the equilibrium partitioning model to account for the concentration dependence 

of analyte response. The equilibrium partitioning model states that, whatever the exact ion 

production mechanism is, the molecules that are detected as ions are those that are present at the 

surface of the droplet. At low concentration, all ions can freely access the surface, which is not 

saturated. At high concentration, the surface is saturated and the different analytes are in 

competition for accessing the surface. The response factors will therefore highly depend on the 

surface activities of the ions. In the current state of the art, it is difficult to quantitatively predict 

response factors. Qualitatively, a nonpolar analyte is more easily expelled from the solvent 

droplet than a polar one, and the former has a higher response than the latter.9 For biomolecules, 

the electrospray response is very likely to be influenced by the charge state (due to the solvation) 

and the conformation (due to a different accessibility of polar residues).6 

 

For the complexation reaction (2) between substrate A and ligand B, different methods have 

been applied to determine the equilibrium association constant Ka (3) or the dissociation constant 

Kd by electrospray mass spectrometry. These methods have been reviewed recently.10  

 

A + B ⇔  AB           (2) 

 

Ka = 
dK

1  = [AB]/[A][B]          (3) 
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The association constant may be obtained indirectly by determining the concentration of 

unbound ligand B during a titration experiment.11,12 The method requires a calibration of I(B) = 

f([B]) and the data are treated by the Scatchard method.13 No assumption is made on the response 

factors. 

 

Another method for determining Ka or Kd is to measure the relative intensities of the peaks 

corresponding to the complex AB and to the free substrate A, and to calculate the ratio of the 

concentrations using equation (4), assuming that the response factors of A and AB are identical. 
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The equilibrium constants can be determined with a single mass spectrum14 or by fitting data 

obtained by a titration experiment.15-18 This methodology may be applied to the case of 

complexes with multiple stoichiometries18 or when different ligands are in competition for 

binding to a given target.14,15 The assumption that the response factors of the complex and the 

free substrate are the same has been validated by comparison with independent solution-phase 

data in the case of vancomycin-peptide complexes. This has been attributed to the fact that the 

peptide is imbedded in the complex and that vancomycin does not change conformation.14 It has 

also been shown that source-CID (collision-induced dissociation) of the complex induces an 

underestimation of the association constant.14  

 

A method for determining the ratio between the response factors of the complex and the free 

substrate is to perform two independent measurements in which the equilibrium is shifted 



  - 7 - 

completely to the left, then to the right by using an appropriate medium. In one study of the dimer 

⇔  hexamer equilibrium of citrate synthase,19 a correction factor of 0.77 was determined, and the 

equilibrium association constant in the solution of interest could be subsequently determined. 

Such a procedure to determine the ratio of the response factors is rigorous, but is not of general 

applicability. 

 

The determination of binding selectivities by measuring the ratio of two complexes when two 

ligands are in competition (equimolar mixture) for a given substrate15,20-31 is also based on a 

similar approximation: the response factors of the two complexes are supposed to be the same. In 

the case of a competition experiment between ligands B and C for the substrate A, it is therefore 

assumed that:  
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The method has been found to work well for some biological systems (e.g., carbonic 

anhydrase-inhibitor complexes20), but not for others (e.g., protein-CoA ligand binding21). The 

method has also been extensively applied to the study of cation-crown ether complexes.22-30 

Approximation (5) has been tested by several groups by comparison of the relative intensities 

observed in the mass spectra with theoretical intensities (either determined experimentally by 

shifting the equilibrium to the right by adding an excess of reactant,19,22 or calculated from known 

association constants23-26). Approximation (5) was proven to be valid when comparing complexes 

of the same host with different guest cations, but not in the opposite situation.23-26  
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Another method avoiding any approximation on the response factors has been recently 

proposed by Kempen and Brodbelt.32 It consists of monitoring the intensity of a reference 

complex before and after the addition of a competing host or guest. The calibration curve of the 

intensity of the reference complex requires prior knowledge of the Ka association constant of the 

complex. The calibration curve, which is made in a solution containing the reference complex 

alone, is assumed to be valid in the mixture solution of the competition experiment as well. 

 

The present paper describes a method where the ratio between the response factors of the 

complex and of the substrate, and the equilibrium association constants with a correction for 

response effects are determined. The method is solely based on mass spectrometry. It involves no 

comparison with data obtained by independent methods. We will illustrate the method with two 

examples: drug-oligodeoxynucleotide complexes and cyclodextrin complexes with α,ω-

alkanedicarboxylic acids. Drug-DNA and drug-RNA complexes have been studied intensively by 

our group33-35 and others.15,18,36-39 All reports on estimation of binding constants assume that the 

response of the complex is equal to the response of the free DNA or RNA oligonucleotide. As the 

agreement with independent solution-phase methods is good,34 this approximation seems to be 

valid, and the results described herein confirm this view. The case of cyclodextrin complexes 

with α,ω-alkanedicarboxylic acids is more complicated. We reported recently that the signal of 

the 1:1 complex was due partially to non-specific electrostatic adducts,40 and that the relative 

intensities did not reflect the solution-phase behavior. As described below, the response factors 

will provide information on whether the alkyl chain is included or not in the cyclodextrin cavity.  
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Experimental section 

 

Materials 

 

Single stranded oligodeoxyribonucleotides d(GGGGAATTGGGG) (M = 3863.53 Da), 

d(CCCCAATTCCCC) (M = 3486.34 Da), d(GGGGAAAAGGGG) (M = 3824.56 Da), 

d(CCCCTTTTCCCC) (M = 3468.31 Da) and d(CGCGAATTCGCG) (M = 3646.44 Da) were 

purchased from Eurogentec (Angleur, Belgium). Complementary (or self-complementary) 

strands are heated to 85 °C in 100 mM NH4OAc (pH = 7.2), and then cooled slowly (overnight) 

to form the duplexes. The extinction coefficient of each duplex was determined by monitoring its 

denaturation curve by absorption spectroscopy at 260 nm. The extinction coefficients of the 

single strands are given by Eurogentec (calculated from tables), and the total concentration of 

strands is calculated from the absorbance at the high temperature limit by Beer’s law. The 

extinction coefficient of the duplex is determined from the absorbance at the low temperature 

limit. Duplex concentrations were measured immediately before use. The drugs Hoechst 33342 

(Fluka, Bornem, Belgium) and berenil (kindly donated by C. Bailly, INSERM, Lille, France) 

were dissolved in water, then diluted in 100 mM NH4OAc, and their concentrations were 

determined just before use by absorption spectroscopy using the following extinction 

coefficients: ελ = 348 nm(Hoechst 33342) = 42,000 M-1cm-1 and ελ = 370 nm(berenil) = 34,400 M-1cm-1. 

 

The stock solution of α-cyclodextrin (α-CD) was prepared in doubly distilled water at a 

concentration of 5.0 ×  10-3 M. All stock solutions of α,ω-alkanedicarboxylic acids -OOC-(CH2)n-

COO- (5.0 ×  10-3 M) were prepared in NH4OH (pH = 9). All chemicals were purchased from 
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Aldrich and used without purification. Concentrations were determined by weighing. The 

equimolar stock solutions (2.0 ×  10-3 M) of complexes were prepared by mixing equimolar 

amounts of α-cyclodextrin and dicarboxylic acid. This stock solution was diluted to different 

concentrations C0 with NH4OH (pH = 9). 

 

 

Mass Spectrometry 

 

The ES-MS spectra of oligonucleotide complexes were recorded with an LCQ Electrospray-

quadrupole ion trap mass spectrometer (ThermoFinnigan, San Jose, CA) operated in the negative 

ion mode (needle voltage = -3.9 kV). The capillary was heated to 180 °C and the applied 

potential was –10 V. The skimmer was at ground potential. The tube lens offset was maintained 

at 40 V. The 80/20 (100 mM aqueous NH4Ac/methanol) solution was infused at 5 µL/min. Full 

scan mass spectra were recorded in the range m/z [1000-2000]. 

 

The ES-MS spectra of α-cyclodextin complexes were recorded with a Q-TOF2 mass 

spectrometer (Micromass, Manchester, UK) equipped with a Z-spray source. The samples 

(aqueous solutions at pH = 9) were infused at a flow rate of 5 μL/min. Electrospray ionization 

was achieved in the negative ion mode by application of -2.5 kV on the needle. The source block 

temperature was maintained at 80 °C and the desolvation gas was heated to 100 °C. Three 

different cone voltage values (10, 20 and 30 V) were used. The MS profile determining the 

transmission of the first quadrupole was defined to achieve maximum transmission at 250 m/z, 

and kept constant for all measurements. 
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Fluorescence Spectroscopy 

 

Fluorescence titration of the oligonucleotide duplex by the Hoechst 33342 was performed on 

an SLM-AMINCO 8100 spectrofluorometer (Spectronic Unicam, Cambridge, UK) at 20 °C in an 

aqueous solution of 100 mM NH4OAc (pH = 7.0). The concentration of duplex oligonucleotide 

was 8.1 ×  10-9 M. Since melting temperature measurements in 100 mM NH4OAc extrapolated to 

a concentration of 8.1 nM give a melting temperature of 35 °C, the duplex can reasonably be 

assumed to be quantitatively formed at room temperature in the solution used for fluorescence 

titration experiments. The ligand concentration was varied from 0 to 1.1 ×  10-6 M. The solution 

was excited at 354 nm, and fluorescence emission was measured at 485 nm after mixing for 4 

minutes to allow for equilibration between each titrant addition. Each point is the mean value of 

four data collections. Background fluorescence intensity from the oligonucleotide solution before 

the addition of drug was subtracted from each point. Fluorescence titration data were fitted by a 

single site model41. 
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Results and Discussion 

 

 

On the basic assumption 

 

We define a factor R (equation 6) as the ratio between the response factors of the complex 

AB and of the free substrate A. 
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R = 1 represents the ideal case where the response factors are the same for A and AB. In that 

case, equation (4) is obtained, and the equilibrium binding constant may be immediately 

calculated from the relative intensities of A and AB in the mass spectrum. However, if R is larger 

than unity (i.e., the response of the complex AB is higher than the response of the substrate A), 

Ka is overestimated if approximation (4) is used. Conversely, if the actual R is lower than unity, 

this leads to an underestimation of Ka.  

 

Equation (6) implies that the ratio between the response factors is constant over the whole 

concentration range. This is also an assumption. The electrospray response can indeed deviate 

from linearity when working with concentrations varying over a very wide range.7 Nevertheless, 

this approximation is better than simply considering that R = 1.  
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Fitting Procedure 

 

Introducing equation (6) into the expression of Ka (3) gives: 
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If the solution is equimolar in A and B ([A]0 = [B]0 = C0), and if we define α as the fraction of 

bound substrate (equation 8) 
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and C0 = [A] + [AB] = [B] + [AB], we have 

 

[A] = [B] = C0(1-α)           (9) 

 

and [AB] = C0α. Successive insertion of equations (9), (8) and (6) in equation (7) gives: 
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This expression can be rearranged to give equation (10):       
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The ratio of the intensities I(A)/I(AB) is measured as a function of C0 (the concentration of the 

equimolar solution). Equation (11) relating these two quantities may  be found by taking the 

positive root of equation (10). The experimental results are fitted by a non-linear least squares 

procedure, introducing equation (11) into SigmaPlot 4.0. The two variable parameters are Ka and 

R.  
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Robustness of the method 

 

Simulations with theoretical points were made to test the robustness of the equation and the 

influence of experimental errors on the determination of the constant by the method described 

above. Figure 1 shows plots of equation (11) obtained with three different pairs of parameters 

(Ka,R). The curvature shows little sensitivity to the balance of Ka and R, and does not change 

dramatically, although Ka can change by over nearly 2 orders of magnitude. This indicates that 

large errors in I(A)/I(AB) will result in large errors in the determination of Ka and R by fitting. 

 

The major source of error is however not the experimental error on the determination of C0 

and I(A)/I(AB) themselves, but rather stems from the fact that the solution may not be strictly 

equimolar. This is illustrated in Figure 2. Fictive experimental points were generated by 

calculating I(A)/I(AB) for 12 values of C0 in the range 2.0 ×  10-6 – 6.0 ×  10-5 M, with fixed 

values of Ka and R (Ka = 106 M-1, R = 0.2). The following datasets were generated by calculating 

the relative intensities as a function of the concentration in three cases: (i) truly equimolar 

solution, (ii) solution with an excess of A and (iii) solution with a deficit of A. The datasets were 

generated manually (except for equation 11, as this equation is valid only for equimolar 

mixtures). For the equimolar solution (Fig. 2, circles), the fitting of the datapoints with equation 

(11) gives the correct values of Ka and R. However, when A is in excess compared to B (squares), 

the intensity ratio I(A)/I(AB) does not sufficiently decrease at high concentration; the curve 

obtained by fitting with equation (11) goes below the datapoints at high concentration and this 

results in an overestimation of Ka (and an underestimation of R). The opposite happens when A is 

in deficit compared to B. The whole procedure was repeated for R = 1 and R = 5 (data not 
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shown), and we observed that the larger R, the smaller the effect of the non-equimolarity of the 

solution. 

 

The problem of determining the concentration is common to all methods which give access 

to equilibrium association constants, but it is clear that the present method is very sensitive to 

errors in the concentrations of both association partners. It has been shown above that the 

solution has to be strictly equimolar in A and B to avoid systematic errors in Ka. The advantage 

of the method is that this kind of systematic error can be detected and evaluated by a careful 

examination of the results of the fitting procedure. If the fitting curve goes systematically below 

the experimental points at high concentration, this indicates that A is in excess, and that the value 

of Ka obtained by fitting is an upper bound to the real Ka. If, however, the curve goes 

systematically above the experimental points at high concentration, A is in deficit, and the 

constant Ka obtained by fitting is a lower bound to the real Ka. When applying the above-

described fitting procedure, it is therefore recommended to work in a concentration range broad 

enough (at least one order of magnitude) to detect whether equation (11) is applicable or not. 

Note that a kind of system for which the equimolarity problem is avoided is for dimerization 

reactions. We present below the results obtained for two ligand-substrate systems for which the 

concentrations of the partners could be determined accurately. 
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DNA-minor groove binder complexes 

 

It has often been assumed in ES-MS that complexes with small drugs that do not disturb the 

conformation of the host will have the same electrospray response as the host itself.18 Minor 

groove binders interact with the floor of the minor groove of DNA through Van der Waals, 

hydrogen bonding and electrostatic interactions at AT-rich sites, with no dramatic change in the 

conformation of the DNA double helix.42-44 We therefore tested this kind of complex with 12-

base pair oligonucleotide duplexes to verify the hypothesis according to which R should be close 

to 1. Figure 3 shows the structure of the drugs and of a 1:1 complex with an oligonucleotide 

duplex. 

 

Complexes with berenil. Figure 4 shows spectra of equimolar mixtures of the duplex 

d(GGGGAATTGGGG)•d(CCCCAATTCCCC) and berenil. A small amount of 2:1 complex is 

detected at high concentration. The contribution of other stoichiometries cannot be taken into 

account with the present equations, so it must be assumed that the contribution of minor species 

of other stoichiometries is not significant enough to perturb the determination of Ka. Only the 5- 

charge state was considered for the determination of the intensity ratio. Fitting of the results 

obtained by varying the concentration C0 from 2.0 ×  10-6 to 2.0 ×  10-5 M gives an association 

constant Ka = (2.3 ± 0.7) ×  105 M-1 and a factor R = 0.8 ± 0.2. With a similar duplex having a 

central sequence AAAA•TTTT, the fitting gives Ka = (9 ± 8) ×  104 M-1 and R = 1.6 ± 1.0.  

 

Complexes with Hoechst 33342 and comparison with fluorescence. In order to make 

comparisons with constants measured in solution by an independent method, we have chosen the 
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drug Hoechst 33342 which, unlike berenil, makes a fluorescent complex with DNA. The complex 

with the dodecamer d(CGCGAATTCGCG)2 has been studied. Full scan ES-MS spectra were 

recorded at different concentrations for equimolar drug/duplex mixtures in 80/20 (v:v) 100 mM 

NH4OAc/methanol. 20% methanol does not dramatically change the dielectric constant of the 

medium, and it has been checked by circular dichroism (data not shown) that the B-form of the 

double helical conformation was preserved. The fitting procedure was applied (Figure 5), 

considering the 5- charge state. The results obtained by fitting are Ka = (1.9 ± 0.4) ×  108 M-1, and 

R = 0.5 ± 0.2. Considering R = 1 (equation 4) would lead to an association constant of Ka = (5.9 ± 

0.6) ×  107 M-1. No data exist in the literature on association constants determined in NH4OAc 

electrolyte, either for the present complex or for related drug-DNA complexes. To determine the 

association constant by an independent method in a solution with a composition close to the one 

used in ES-MS, we performed fluorescence titration in 100 mM NH4OAc. The experiment could 

not be conducted in the presence of methanol due to quenching effects. The fluorescence titration 

experiment had to be conducted with a starting concentration of duplex of 8.1 nM to ensure that 

the equations used are applicable32. The association constant measured by fluorescence titration 

experiments is Ka = (1.4 ± 0.2) ×  108 M-1. Despite all the approximations made, this value is 

close to that determined by the fitting method with correction for the response factors. Assuming 

that R = 1 leads however to an underestimation of the constant by a factor of about 2. 

 

Meaning of R. The relative response factors of two species can be altered by four different 

effects: (i) discrimination in the ion emission efficiency during the electrospray process, (ii) 

discrimination due to the transmission of the mass analyzer, (iii) discrimination due to the 

detector efficiency and (iv), in the case of noncovalent complexes, the collisional activation in the 
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source of the spectrometer, which has to be minimized so that the complex does not dissociate 

before mass analysis. The effect of the source conditions on the breaking of duplex DNA and 

complexes has previously been studied45 on the quadrupole ion trap mass spectrometer. The 

experimental conditions chosen here are soft enough to avoid breaking of the complex due to 

source-CID. The mass range used also prevents ion discrimination during trapping: the 

instrument automatically selects the RF amplitude that is necessary to trap all ions of the chosen 

mass range. As the [duplex]5- and the [1:1] 5- complex have close values of m/z compared to the 

mass range, both of their trapping efficiencies can be assumed to be optimum. The detector 

efficiency depends merely on the charge of the incoming ions, and is supposed to be the same for 

species of the same charge (5-). There is therefore no other discrimination on the intensities of the 

duplex and the complex than the different electrospray response factors, and R can be simply 

interpreted as the ratio between the electrospray response of the complex and that of the duplex. 

 

Influence of the structure of the complex on the response factor. The equilibrium partitioning 

model states that the response of an analyte is proportional to its affinity for the surface of the 

droplet.7 The surface affinity can vary with the size of the molecule, its conformation, its charge, 

and mostly with the distribution of polar/nonpolar groups on the surface. The difference in 

electrospray response factors for the duplex and the complex may indicate a conformational 

change in the double helix upon drug binding. Indeed, crystallographic46 and molecular 

modelling studies47 on Hoechst analogs have shown that the structure of the dodecamer is slightly 

distorted in the complex compared to the free duplex, and the role of DNA plasticity in minor 

groove binding has been emphasized.46 We found that the response of the complex and that of the 

duplex can differ by up to a factor of two in the case of Hoechst 33342. This implies that even a 

slight deformation of the molecule can change its electrospray response by a factor of two. The 
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sensitivity of the electrospray response on conformation is of a major interest: besides the 

determination of the equilibrium association constants, the present method could allow the 

detection of substrate conformational changes upon ligand binding; but this point needs further 

investigation. 

 

Implications for the determination of the absolute values of the binding constants. We have 

seen that for Hoechst 33342 the response of the complex is about half that of the duplex. If it had 

been assumed that R = 1, this would have also led to an error on the constant by a factor of about 

two. In fact, such a difference between the actual value of the constant and that determined with 

assumption (4) is not dramatic, compared to differences that can arise from determination of 

constants in solution by different methods. For example, significant discrepancies (up to a factor 

of 40, despite using identical salt and buffer conditions) may be found between constants 

determined by fluorescence titration and titration calorimetry.48 The origin of these discrepancies 

is that the equations used for fitting the titration curves are not valid at large substrate 

concentrations32,39. In titration calorimetry, the concentrations of substrates (micromolar range) 

have to be higher than in fluorescence titration experiments (nanomolar range)39 due to sensitivity 

reasons. In our mass spectrometric experiments, we use concentrations in the micromolar range, 

but the equation used to determine the association constants is completely different from that of 

the spectroscopic methods, and equation (11) is valid over the whole concentration range. Mass 

spectrometry can therefore give more reliable results than calorimetric titrations. 

 

Implications for competition experiments. In the light of the present results, we can now 

comment on previously published competition experiments33 between different drugs for a given 

oligonucleotide duplex, which were based on the assumption that all complexes had the same 
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response factors. We now see that this assumption may not be true, and that complexes with 

different drugs may have different response factors (e.g., R = 0.5 for Hoechst 33342 and R ≤ 1.6 

for berenil). Nevertheless, the differences in R are not so large and competition experiments can 

still be very useful to make a quick estimation of the relative binding affinities of drugs. If the 

drugs are similar in shape and in binding mode, the complexes can reasonably be expected to 

have equal responses.  

 

 

Charge states of free and bound DNA. At first sight it might seem strange that, in the negative 

ion mode, the complexes with positively charged drugs show a charge state distribution 

analogous to that of the free duplex. The most intense charge state for the free duplex is 5-, and 

the same holds for the complex, even though the drug has two permanent positive charges 

(Figure 3). This means that in the [1:1]5- complex, there are seven negative charges located on the 

phosphate groups of the DNA and two positive charges on the drug. Even so, the response factors 

of the duplex5- and the [1:1]5- complex ions are very similar. This means that only the total charge 

influences the activation energy for taking the ion out of the droplet. Although the maximum 

charge states are conditioned by the total number of basic or acidic sites in the positive or 

negative ion mode respectively, the observed charge state distribution merely depends on the size 

and shape of the molecule. This is in agreement with the model proposed by J.B. Fenn49: “…the 

spacing of the charges on a desorbed ion must relate to the spacing of the charges on the surface 

of the droplet…”. 
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Cyclodextrin-diacid complex 

 

Cyclodextrins (CDs) are torus-like macro-rings built up from glucopyranose units. α-CD has six 

glucopyranose units. We chose to investigate the complexes between α-CD and α,ω-

alkanedicarboxylic acids -OOC–(CH2)n–COO-. In solution, the equilibrium binding constant of α-

CD with aliphatic molecules increases with the chain length. This is attributed to the hydrophobic 

effect50,51: in solution, the aliphatic chain is buried into the cavity of the cyclodextrin, either by 

bending of the chain in a U-motif for inclusion in the cavity with the carboxylate groups on the 

exterior, or by threading of the guest molecule into the α-CD. In a separate paper,40 we reported 

that the relative intensity of the complex compared to the free cyclodextrin did not reflect the 

trend of the solution equilibrium binding constants. This was supposed to be due to a significant 

contribution of non-specific electrostatic adducts to the total signal intensity. Here we report the 

determination of the relative response factors for these complexes compared to the free 

cyclodextrin. 

 

α-cyclodextrin + α,ω-heptanedicarboxylic acid (n = 7). This diacid will be discussed in 

detail to illustrate the use of the method in a more complicated case. Figure 6 shows a spectrum 

of an equimolar mixture (C0 = 4.0 ×  10-4 M) of α-cyclodextrin and the diacid. The mass 

spectrum shows the singly and doubly deprotonated cyclodextrin (the substrate A), the singly 

charged acid (the ligand B), the doubly charged 1:1 complex (AB), and also a less abundant 

doubly charged A2B complex. At the pH used, the diacid is doubly deprotonated in solution. Note 

that all complexes are doubly charged, although only the singly charged diacid is detected in the 
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spectrum. The doubly charged acid may not be transmitted by the quadrupole with the MS profile 

used.40  

 

A priori, the response factors of the cyclodextrin and the complex cannot be predicted, but 

are very likely to differ for three reasons. First, cyclodextrin is neutral in solution, and loses one 

or two protons during the electrospray process to produce the CD1- and CD2- species. The 

complex, however, is “pre-charged” by the dianion that is complexed, and indeed appears only as 

a doubly charged species. Besides, little is known about the conformation of the complex 

(inclusion or not?).40 Finally, as will be shown below, collision-induced dissociation (CID) can 

occur in the electrospray source at the cone voltages used. The factor R therefore needs to be 

determined experimentally. 

 

The fitting procedure was applied considering the cyclodextrin as A and the 1:1 complex as 

AB. As for the drug-oligonucleotide system, the 2:1 complex A2B was not taken into account. 

For the systems studied here, these were only minor species, and a good fitting is obtained with 

this assumption.  Figure 7 A-C shows three attempts of fitting considering the different charge 

states of α-cyclodextrin, at a cone voltage of 10 V. It can be seen from Figures 7A and 7B that 

considering only one charge state of the cyclodextrin at a time is not a successful approach. The 

quality of the fit is poor, and the errors on Ka and R are larger than the values themselves. 

However, when considering the sum of the intensities corresponding to the two charge states of 

cyclodextrin I(A) = I(CD1-) + I(CD2-), the fit is of high quality and the errors on Ka and R are 

reasonable. Considering the charge states in an isolated manner causes problems for this system 

because the charge state distribution changes with the concentration. Figure 7D shows that the 



  - 24 - 

proportion of CD1- compared to CD2- increases when C0 increases. This is probably due to the 

increase in the acid concentration in the solution, which is not buffered. In Figure 7A, the 

experimental values of I(CD2-)/I(complex) do not increase steeply enough with the concentration. 

This results in an overestimation of the association constant. Conversely, considering CD1- alone 

leads to an underestimation of the association constant.  

 

The association constant obtained by fitting in Figure 7C at a cone voltage of 10 V is Ka = 

(2.6 ± 0.6) ×  103 M-1, and the factor R = 6.6 ± 1.0. As R is larger than 1, the response of the 

complex is larger than the response of the cyclodextrin. As the transmission of the quadrupole 

cannot be responsible for such a discrimination in the considered mass range, this must be due to 

a difference in electrospray response.  

 

Two reasons can account for the larger response of the complex compared to the free 

cyclodextrin. First, as mentioned before, the complex has two negative charges in solution at 

basic pH. Cyclodextrin is neutral and has to exchange protons to get charged, so that negative 

ions of cyclodextrin can be more difficult to produce than negatively charged complex. Second, 

previous results40 indicated that, in addition to the specific inclusion complex, a significant 

proportion of the signal detected in ESI-MS could be due to nonspecific electrostatic aggregation 

between the cyclodextrin and the charged diacid. If a significant proportion of the complex has a 

non-inclusion geometry, the aliphatic chain could provide the complex with a hydrophobic 

moiety that would enhance its response dramatically. 
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The effect of the cone voltage on the determination of the constants has also been 

investigated. The fitting procedure was applied to the same system at a cone voltage of 20 V. The 

relative intensity of the complex is slightly smaller than at 10 V (data not shown). Fitting of the 

results at 20 V gives an association constant Ka = (4.2 ± 1.4) ×  103 M-1, consistent with the value 

obtained at 10 V within experimental error. The factor R has however decreased to a value of R = 

4.0 ± 0.8, a significantly lower value than at 10 V. The response of the complex at 20 V is lower 

than at 10 V due to its partial dissociation. At 30 V, the abundance of the complex is largely 

reduced, but no good fitting of the results could be obtained. This illustrates that the above-

described fitting method is also capable of correcting for moderate in-source CID of the complex. 

 

Influence of the diacid chain length. The procedure that takes into account the sum of the 

charge states for the free cyclodextrin has been applied to diacids of different chain lengths. 

Results are summarized in Table 1. Ka and R values were obtained only for diacids with n = 6, 7 

and 8. For the other diacids, the solutions were obviously not equimolar, and this resulted in too 

large errors. For all diacids, the factor R is much larger than 1. The complexes always respond 

better than the cyclodextrin. As previously mentioned, this can be due to the fact that the complex 

bears negative charges in the solution, while the cyclodextrin is neutral. The factor R can also 

give indications on the conformation of the complex when it escaped the electrosprayed droplet. 

If the diacid was included in the cavity, the hydrophobic chain would be hidden from the solvent 

and the responses of all the complexes would be similar. The fact that R increases with the diacid 

chain length therefore suggests that a significant proportion of the complex has a non-inclusion 

geometry. The MS-determined equilibrium association constants do not agree with those 

determined from calorimetry. This is due to the electrospray process itself, as described 
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previously:40 the major contribution to the signal of the [1:1]2- complex comes from non-specific, 

non-inclusion complexes. The fitting method could therefore not be expected to improve the 

determination of the constant in such case. Rather, the advantage of the method lies in the study 

of the complex conformation through the value of R. 
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Conclusion 

 

In summary, we reported the equations and methodology for simultaneous determination of 

the equilibrium association constant (Ka) of noncovalent complexes and the ratio between the 

response factors of the complex and that of the free substrate (R). The method requires neither the 

prior knowledge of any association constant, nor any calibration, nor the complete displacement 

of the equilibrium. The practical limitation is that the concentrations of the reactants has to be 

determined precisely, but a careful examination of the results allows  the detection and evaluation 

of such an error source. The method is also currently limited to 1:1 complexes (otherwise a 

different R factor would be needed for each complex of the mixture).  

 

The possibility to determine R experimentally by ES-MS (not by comparison of the MS-

determined constants with other methods) can be a very useful tool for fundamental studies of 

noncovalent interactions. The factor R corrects for any discrimination such as differences in 

spectrometer transmission, in detection efficiency, different electrospray responses and moderate 

in-source CID of the complex. When the other discrimination factors are minimized by a careful 

selection of the experimental conditions, the factor R can reflect the different electrospray 

response factors of the complex and the substrate. As shown for a drug-oligonucleotide complex, 

the difference in the electrospray response of the free oligonucleotide duplex and the complex 

might provide some insight into the effect of complexation on the conformation of the substrate. 

For cyclodextrin complexes, R indicates whether or not the ligand is included in the cyclodextrin 

cavity. 
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Table 

 

Table 1.  Binding constants for complexes of diacids -OOC–(CH2)n–COO- and α-

cyclodextrin determined by calorimetry and mass spectrometry. The mass spectrometric 

results are given for a cone voltage of 10 V. 

n Ka Calorimetry (a) Ka MS (M-1) (b) MS (fitting method) 

 (M-1) (assuming R = 1) Ka (M-1) R 

4 no complex 36,000 ±  6,000 (c)   

6 93 ±  1 53,000 ±  5,000 3300 ±  1000 5.0 ±  0.9 

7 630 ±  20 67,000 ±  9,000 2600 ±  600 6.6 ±  1.0 

8 1790 ±  80 81,000 ±  9,000 2000 ±  400 6.7 ±  0.9 

10  100,000 ±  40,000 (d)   

12  91,000 ±  45,000 (d)   

(a) Data from reference 51. 

(b) Mean value over the concentration range [4.0 ×  10-4 – 2.0 ×  10-3 M]. 

(c) Concentration dependence indicates a too low diacid concentration , and hence an 

underestimation of the constant.  

(d) Concentration dependence indicates a too high diacid concentration , and hence an 

overestimation of the constant. 
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Figure legends 

 

Figure 1 

Plots of equation (11) with three different pairs of (Ka,R) that almost superimpose in the chosen 

concentration range.  

 

Figure 2 

Results of the fitting procedure for an equimolar mixture ([A]0 = [B]0 = C0) (circles), and for a 

mixture containing an excess of A ([A]0 = C0 and [B]0 = 0.9 ×  C0) (squares) or a deficit of A 

([A]0 = C0 and [B]0 = 1.1 ×  C0) (triangles). Twelve datapoints were generated for each case, 

considering Ka = 106 M-1, R = 0.2. These datapoints are then fitted with equation (11) and values 

obtained for Ka and R are reported in the inset together with their standard errors. 

 

Figure 3 

Structures and masses of the drugs Hoechst 33258 and berenil (right), and structure of a 1:1 

complex between an oligonucleotide 12-base pair duplex and a minor groove binder. 

 

Figure 4 

ESI-MS spectra of equimolar mixtures of berenil and duplex d(GGGGAATTGGGG) 

•d(CCCCAATTCCCC) at (a) C0 =  2.0 ×  10-6 M and (b) C0 = 1.0 ×  10-5 M. 
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Figure 5 

Determination of Ka and R for the complex between Hoechst 33342 and d(CGCGAATTCGCG)2. 

Fitting of the experimental results with equation (11), considering I(A) = I(duplex5-) and I(AB) = 

I(1:15-). 

 

Figure 6 

ESI mass spectrum obtained for an equimolar mixture (4 ×  10-4 M) of α-cyclodextrin (CD) and 

α,ω-heptanedicarboxylic acid. The cone voltage was set to 10 V. 

 

Figure 7 

A-C: Determination of Ka and R for the complex between α-cyclodextrin (CD) and α,ω-

heptanedicarboxylic acid considering (A) I(A) = I(CD1-), (B) I(A) = I(CD2-) and (C) I(A) = 

I(CD1-)+I(CD2-). Fittings were made with equation (11). D: Evolution of the relative intensity of 

the two charge states of α-cyclodextrin (CD) as a function of the concentration of the equimolar 

(CD:acid) mixture. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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