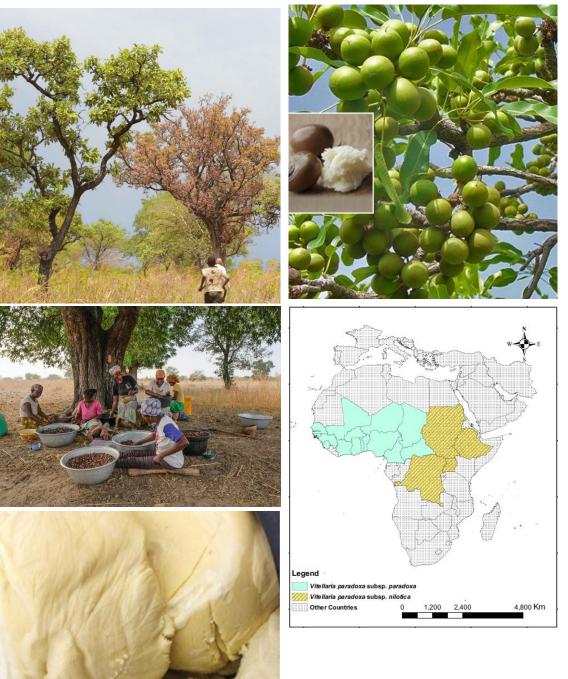


Genetic Diversity and Population Structure of Shea Trees for Sustainable Conservation and Breeding

PAG 32, Leveraging Advances in Multi-Omics Technologies for Resilient Agri-Food Systems in Africa Workshop

Affi Jean Paul Attikora


Plant Genetics lab, Uliege-Gembloux Agro Bio-Tech, Belgium

Plan of this presentation

- Context of the study
- Objectives
- Methods and Results
- Conclusions and perspectives

Context of the study

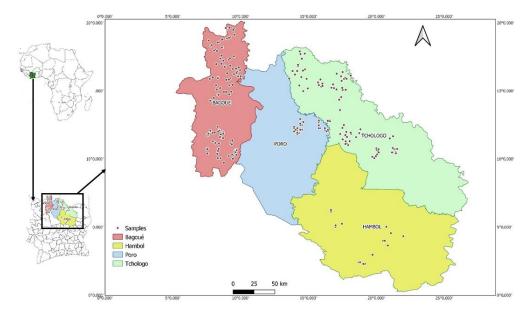
- ✓ Shea tree (*Vitellaria paradoxa*): African native plant species (2n=24)
- ✓ Two sub-species: subs. *nilotica and* subs. *paradoxa*
- ✓ Second largest oil producing plant in Africa
- ✓ Shea butter in cosmetics, pharmaceuticals and food industries
- ✓ Global shea butter market in 2024: \$2.4 billions
- ✓ Contribution to women's autonomy in its natural range
- \checkmark Carbon sequestration and substantial carbon reserve

Context of the study

- Shea tree is facing many threats: human activities and climate change
- \checkmark Overuse of shea tree as household material
- ✓ Lack of regeneration
- ✓ Consequences:
- ✓ Reduction of shea tree densities
- ✓ Loss of interesting genotypes
- ✓ Shea butter supply and sustainability problems

Context of the study

- ✓ Actions have been taken:
- ✓ Shea tree planting
- ✓ Natural assisted regeneration
- In situ collection establishment via superior shea trees identification
- \checkmark Restoration, conservation and breeding purposes
- ✓ But...
- ✓ Difficult and expensive to manage
- \checkmark Shea trees are still threatened


To provide solutions for the Long-term conservation and Sustainable use of Shea tree resources

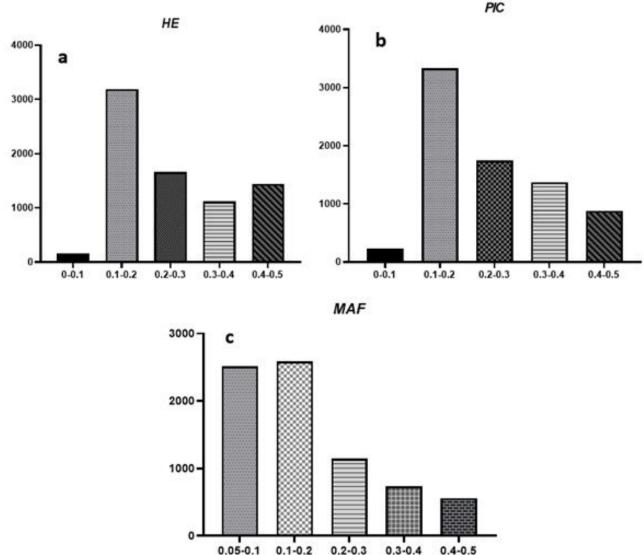
To identify QTNs associated with fat related traits To identify candidate genes involved in the biosynthesis of FRT

Genetic Diversity and Population Structure

- Methodology
- ✓ Sample: leaves of 333 shea trees were collected
- ✓ DNA extraction: NucleoMag Plant Kit
- ✓ Sequencing: Diversity Array Technology Sequencing (DArTseq)
- ✓ SNP markers, aligned to the reference Genome to locate their chromosome positions
- ✓ 42736 SNP markers
- ✓ 7559 high-quality SNP markers after filtering

Genetic Diversity and Population Structure

• Genetic Diversity


✓ Ho: 0.17

✓ He: 0.26

✓ PIC: 0.24

✓ MAF range: 0.05-0.5 (5,104 SNPs (67.5%) > 0.1)

- Moderate genetic diversity
- Adaptative Opportunity within the collected area

Genetic Diversity and Population Structure

Population Structure and Genetic Differentiation

Structure v.2.3.4

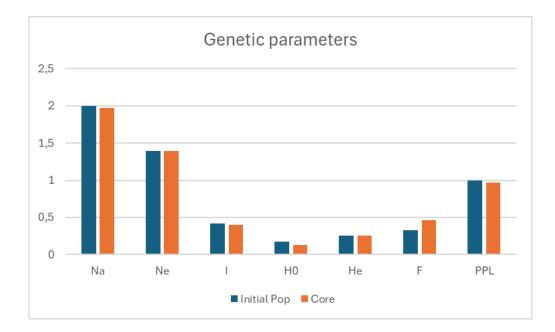
- ✓ Three genetic groups: peak of Delta K value
- ✓ Structure bar plot: high admixtures proportion

✤ AMOVA (GenAlex V.6.503)

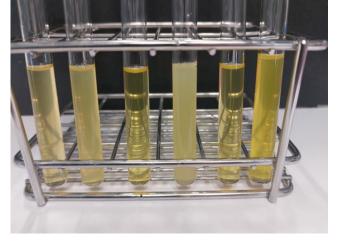
- ✓ 100% of variance within populations
- ✓ Fixation index (Fst): 0.004
- ✓ Nm (Haploid): 59.02

- 300 250 200 150 100 50 0 3 1.00 0.80 0.60 0.40 0.20 0.00 Among Pops. Percentages of Molecular Variance 0% Within Pops 100%
- Low genetic differentiation: due to semi-domestication effects, outcrossing nature and the extensive gene flow between groups.
- Characteristic for perennial, insect-pollinated out-cross and widespread in a continuous range plant species

Design of the core collection

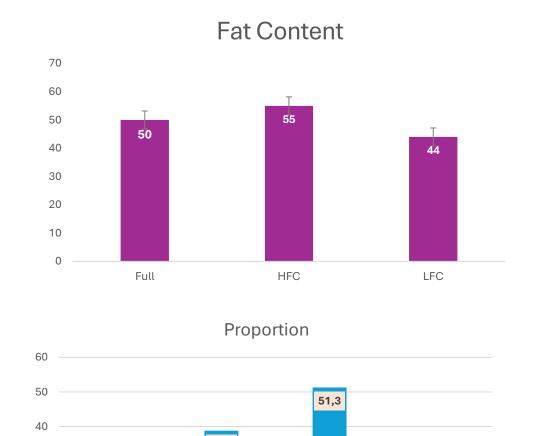

DARwin v.6.0.21 (Max. length sub-tree)

✓ Core set: 100 shea trees, representing 30% of the full panel.


✓ Display similar genetic diversity parameters to the full panel

The Core captured the full allelic diversity

> Robust for conservation, Genetic diversity, and breeding

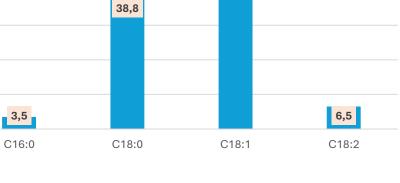

and fatty acid profile • 122 samples

- Extraction:
- Maceration with n-Hexane
- Fatty acid profile:
- Transestherification with BF3
- Analysis: Gas Chromatography

Shea butter (SB) content

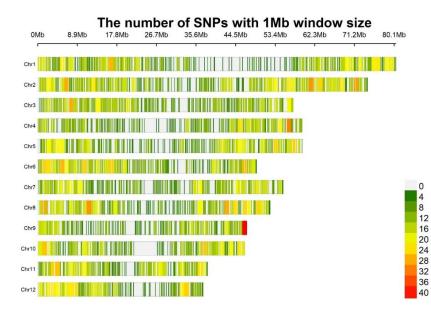
Shea butter (SB) content and Fatty Acid profile

- Shea butter variation:
- ✓ Full: 36 to 58%
- ✓ HFC: 53.5 to 58%
- ✓ LFC: 36 to 46%
- Main Fatty acids
- ✓ Palmitic acid: 2 to 6.1%
- ✓ Stearic acid: 22.3 to 50.5%
- ✓ Oleic acid: 40.3 to 65.7%
- ✓ Linoleic acid: 4.8 to 9%
- Oleic and stearic acids (90%) are known to hydrate and protect the skin. So, SB is highly used in cosmetic and personal care products.

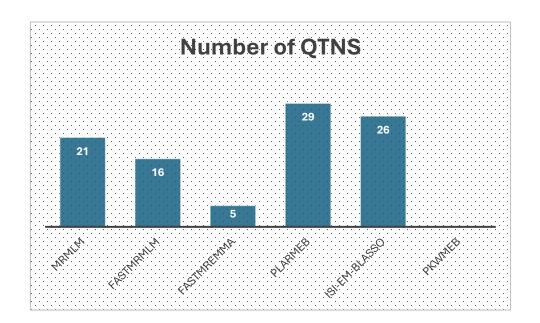


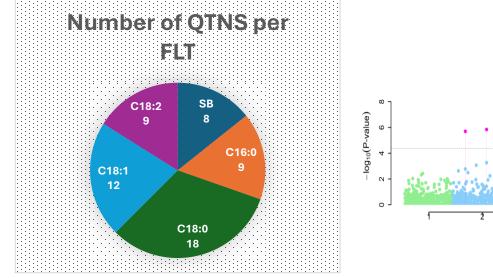
30

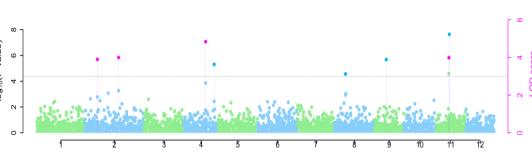
20

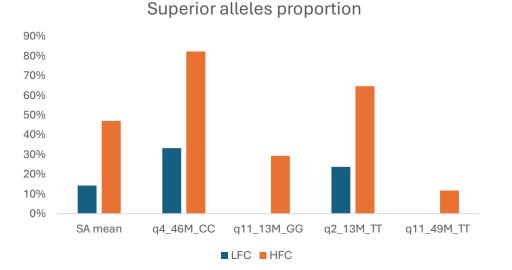

10

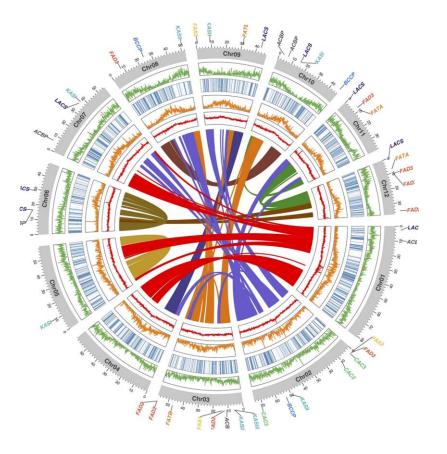
0




- 7559 SNP markers
- Six Multi-locus GWAS methods:
- mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO
- QTNs and superior alleles identification
- Identification of potential candidate genes


QTNs were searched from the *V. paradoxa* whole genome assembly and annotation


- Identification of QTNs
- ✓ 47 significant QTNs
- ✓ 25 common QTNs: 4 (C16:0), 4 (FC), 6 (C18:2), 9 (C18:0 and C18:1)



- Proportion of Superior Alleles
- □ FC QTNs superior allele proportion (SAP)
- ✓ SAP for LFC: 14.3%; 47.1% for HFC
- ✓ Two important common QTNs: q4_46M_CC and q2_13M_TT
- ✓ With 82.4% and 64.7% respectively in HFC
- Could be considered as strongly involved in the shea seed oil biosynthesis

- Potential Candidate genes
- ✓ 24 putative genes
- ✓ Associated with 8 gene/protein families
- \checkmark Involved in FA biosynthesis of shea tree
- ✓ Fat Content: 3 gene families (LACS, KINB2, KAS)
- ✓ Fatty acids: 7 gene families (ACBP, BCCP, CAC, FADs, FAX, KAS, LACS)

Conclusion and perspectives

- ✓ The molecular study highlighted a moderate genetic diversity and AMOVA revealed a low genetic differentiation the three genetic groups
- ✓ A core collection of 100 trees was designed, capturing 30% of the population while preserving all allelic diversity.
- Propagation of the core collection via grafting and conserved in a secure ex situ site for sustainable conservation
- ✓ A high variability in shea butter content and FA composition was found and 17 shea trees HFC were identified.
- ✓ A GWAS identified 25 QTNs linked to shea butter production.
- \checkmark Two QTNs were seemed to be strongly involved in Shea butter production
- \checkmark Were associated with KAS and LACS gene families

Conclusion and perspectives

- ✤ Use the HFC samples as parental for breeding
- Creation of SSR markers for molecular selection based on the common QTNs
- Further characterization of superior shea trees should include triglyceride profiles, melting points, and free fatty acid content, which are critical parameters for food and cosmetics sectors.
- Establishing a centralized *ex situ* repository will ensure long-term preservation and enable controlled breeding programs for the genetic improvement of the shea tree.

THANK YOU FOR YOUR