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ABsTrRACT. We present a generalization of Cantor’s ternary set and ternary
function through the Cantor expansion of real numbers. Our analysis demon-
strates that the Hausdorff dimension of these generalized sets and the Hélder
regularity of the corresponding functions are influenced by the specific sequence
used to define the expansion. Additionally, we explore the measure-theoretic
properties of these sets through their Hausdorff h-measure, highlighting the
connections between numeral systems and fractal geometry.
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1. INTRODUCTION

The intricate interplay between discrete mathematics, number theory, and the
notion of fractals has long been recognized [7, 13, 19, 15, 2, 26]. This relationship
persists in the investigation of fractal regularity in functions [13, 14, 15, 16], a topic
that remains underexplored in the existing literature. Notably, substituting the
decimal numeral system with more exotic ones often induces profound changes in
a function’s fractal characteristics [15, 22]. This work exemplifies such phenomena
by generalizing Cantor’s ternary set and ternary function. The sets analyzed herein
are part of the class of Moran sets [10], a subject of extensive generalization in prior
studies (e.g., [10, 8, 3, 21, 18, 25, 1, 17]). However, to the best of our knowledge,
no prior exploration has directly employed generalized numeral systems.

Cantor’s ternary set, €, was introduced as a quintessential example of a perfect
set that is nowhere dense [11]. Its Hausdorff dimension (see Definition 2.1) is
well-known to be ay = log2/log3. Similarly, the Devil’s staircase (also called the
Cantor function), ® - a paradigmatic singular function [24] - is continuous and non-
constant, with a derivative that vanishes outside ¢, almost everywhere. The Hélder
regularity (see Definition 3.1) of © on € matches «g, as the Holder exponent at any
point in € is precisely ag. Intuitively, this result can be explained from the fact
that, on €, © associates a number in base 2 to a number in base 3 in a very simple
way. This study extends both € and © to explore the Hausdorff dimension of the
resulting sets and the Holder exponents of the corresponding functions. Under our
framework, these quantities can achieve values as high as 1, relying on the Cantor
expansion of real numbers.

Let g = (g;),jen be a sequence of natural numbers greater than 1. A representa-
tion of the form

J
(1) ;%QQ“'QJ"
1
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where z; € 0,1,...,¢; — 1 for all j, is referred to as a Cantor series [4, 5]. By
setting g; = b > 1 for all j, this framework recovers the familiar representation in
base b. For = € [0, 1], we denote its representation in base q as z = (z1,22,...)q.
Notably, this representation admits proper and improper forms, depending on the
values of x;.

To two sequences q = (g;)jen and n = (n;), ey of natural numbers, we associate
a new sequence q' = (g;);jen defined as

(2) g5 =mni(g; — 1)+ L
In the sequel, we will always assume that ¢; > 1 and n; > 1 for all j € N. We then
define the set
Cq,n = {(.’171,1)2, . )q/ PSS an, Vj}7
which generalizes the Cantor ternary set € when ¢; = n; = 2 for all j. Like €, Cyn
is totally disconnected and can be constructed iteratively, as noted in Remark 2.2.
A generalization of the Devil’s staircase, Dq n, is similarly defined:

Dgmn: Cqn = [0,1]  (nip1,nopa,...)q = (P1,P2,- - )as
This function extends continuously to [0, 1] via

Dgn(z) =sup{Dgn(y) :y <z, y € Cqn}-

For ¢; = 2 and n; = 2, Dg n reduces to ©. Following techniques employed for ©
[6], it can be shown that Dg » is nowhere differentiable on Cq . Figure 1 illustrates
one such example, with Dg ,, exhibiting a structure reminiscent of ®, as anticipated
from Remark 2.2.

In this work, after observing that Cq , belongs to the class of Moran, whose
Hausfordd dimension is consequently well-established [9, 10], we proceed to compute
the Holder exponent of Dg n for a broad class of sequences q and n. Specifically,
when q and n are constant sequences, the Hausdorff dimension of Cqn and the
Holder exponent of Dy at any point in Cy , are equal to (5), with the standard
case corresponding to ¢; = 2 and n; = 2 for all j. We also explore cases where g’
deviates significantly from a constant sequence. For instance, we consider scenarios
where q;» is the j+1-th prime number. More generally, we establish a straightforward
growth condition on the sequence q' such that the Hausdorff dimension of Cqn
attains the maximum value of 1 (albeit with an associated measure that vanishes),
and the Holder exponent of Dg , at © € Cq n also equals 1.

For s € [0,1], an s-set is defined as a set whose s-dimensional Hausdorff measure
is finite and positive (see Definition 2.1). We provide examples of sets Cq n, that fail
to qualify as s-sets (see Corollary 3.10). To further analyze such sets, we leverage
the Hausdorff h-measure, which extends the classical Hausdorff measure framework
(see Definition 4.1) [12, 23]. Building on the methods introduced in [3], we compute
a Hausdorff h-measure of Cy y,, revealing how the growth of the sequence q impacts
both the dimensional and measure-theoretic properties of these sets.

This study presents a framework that highlights novel connections between nu-
meral systems and the geometric intricacies of such sets.

2. THE CONSTRUCTION OF Cgq n

It is interesting to note that Cgy inherits the fractal properties of €. More
precisely, the usual approach for computing the Hausdorff measure of € can be
extended to Cgq n.
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FIGURE 1. In the upper left, the so-called Devil’s staircase D is
depicted In the upper right, the function Dg n is shown, where g;
represents the (j + 1)-th prime number and n; = 2 for all j. The
lower left illustrates the function Dg, with ¢; = 2 and n; = 3 for
all j, while the lower right presents the function Dy, where g; is
the (j + 1)-th prime number and n; = g¢; for all j.

Let us first briefly introduce the notions of Hausdorff measure and Hausdorff
dimension (for more details, see e.g. [12, 7, 23]).

Definition 2.1. Given a set E of R™ and s > 0, the quantity

(3) M (E) = supinf{) _|E;|*: E | J Ej, |E)| < e}

e>0 j=1 =1
is called the s-dimensional Hausdorff (outer-)measure of E. The Hausdorff dimen-
sion of a non empty set E is the real number

sup{s: H*(F) > 0}.

Since the diameter of a set is the same as the diameter of its convex hull, we
may assume that the F; in the previous definition are convex sets. If s > 0 is the
Hausdorff dimension of E, we have H*T¢(E) = 0 and H* “(E) = oo for any € > 0
such that s —e > 0.
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FIGURE 2. Illustration of the construction of the intervals I ,il) from Remark 2.2.

It is easy to show that Cqy , can be defined as a countable intersection of compact
sets: € can be obtained by iteratively deleting the open middle third from a set of
intervals and this construction can be generalized for Cy .

Remark 2.2. To build Cgq n, the first step consists in removing open intervals from

Ko = [0,1] to obtain the set K1 = U% ' 1{", with

IV = [(n15,0,.. )y (n1j + 1,0, )g],
if j <@ —1and
I = (g —1),0,.. ), 1]
](2)

Next, one removes open intervals from each I j(-l) to obtain sets of the form U~ " I}
with

2

12 = [(p,nak,0,.. g, (D, 2k +1,0,.. o],

for some p € noNy. The union of all these intervals is denoted Ks. If K is a finite
union of closed intervals I J(Z), one removes open intervals from each [ j(.é) so that the

subset Kyy1 of Ky is the finite union of intervals of the form

(4) LY = [, me41k, 0, s (5 k + 1,0, g,
with k € {0,...,qe41 — 1} (with an obvious modification if £ = gg41 — 1), where *

is a prefix of length ¢, so that the numbers ny1k and ngy1k+ 1 are at the ¢ + 1-th
position in the endpoints of the interval. By construction, we have Cq n = Ny K.

Remark 2.3. At iteration /¢, the distance between two consecutive intervals I ]ge) is

ng — 1 times the length of each I,ie), while the ratio between the lengths of I,g) to
I]@H) is equal to ¢j, ;. An interval I,ie) generates ggy1 intervals of the form IJGH)

at iteration ¢ + 1.

Given sequence q = (g;);en of natural numbers, let us set r; = ¢q1g2---¢; and
i = ¢1q5 - - - qj, where ¢} is specifieded as in (2). The previous remark shows that
Cq,n can be covered with ry intervals of length 1/r, (¢ € N). As a consequence Cq n
is a nonempty compact set that contains no interval.

Example 2.4. Setting ¢ = n; = 2 and ¢ = ny = 3, we obtain ¢f = 1/3 and
g5 = 7. The interval [0, 1] yields two intervals I(gl) = [0,1/3] and Ifl) = [2/3,1].
These two intervals define the following intervals: I(()z) =[0,1/21], 11(2) =[1/7,4/21],
112 =1[2/7,1/3), I{? = [2/3,5/7], I?) = [17/21,6/7) and I}? = [20/21,1].
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F1GUure 3. Construction of the initial intervals defining Cq n for
q1=2,q2:3,n1:26tn2:3.

For ¢ € N, let us set
log e
Sp = 7
log 1}

It has been demonstrated in [9] that the Hausdorff dimension of Cq n is given by
o= limzinf Sy.

Corollary 2.5. Given two natural numbers b > 1 and n > 1, if @ = (gj)jen

and n = (n;)jen are defined by q; = b nj = n, respectively, then the Hausdorff
dimension of Cqn s

logd
(5) “T logtn(b—1) + 1)

and this set has full measure: H*(Cqn) = 1.

Proof. We have
1
H(Cq) < limry(—)* = 1.
L T
Let Z be a collection of intervals covering Cyn. Since Cyn is compact, we can
suppose that Z consists of a finite number of intervals with non-zero lengths. Then,

(6) S| > rz%)a -1,

1T

which suffices to establish the result. O

This result,however, does not hold universally for any sequence q. Indeed, in-

equality (6) may fail if the sequence (s¢)sen is not constant, as shown by Corol-
lary 3.10.

3. HOLDER REGULARITY OF CANTOR FUNCTIONS

In this section, we delve into the Holder regularity of the functions Dgn. The
results presented here can be viewed as a natural extension of the classical case.

To analyze the regularity of Dg n, we introduce some necessary notations. Con-
sider a sequence q = (g;);jen of natural numbers strictly greater than 1, and define
r; = q1q2---qj. For a point x = (z1,22,...)q such that z; = 0 for j < ¢ and
xe+1 > 0 (¢ € N), we clearly have > xp41/re41 > 1/rep1. Furthermore, since



6 THOMAS DEVOS, LAURENT LOOSVELDT, AND SAMUEL NICOLAY

qg; > 2 for all j € N, it follows that r; > 20=kp for all j.k € N with 57 > k.
Consequently, we can write

J
x = —=
Yucsusy L
j=t+1 7 =41 "
Now, let 2,y € [0,1], and denote by (21,227 .. )q the proper representation of
|z — y| in base q, Define:

Yo(z,y) =inf{j e N:z; #0} — 1.
In other words, vq(x,y) represents the length of the longest prefix of zeros in

(21,...)q- It is straightforward to verify that if « > y and vq(x,y) = ¢, then
we have either

(7) x—zxj Z and yzz Zyj

>l j=1 >l "j

where Zj>€ Y/ < Zj>[ xj/T;, Or

k—1
(8) x—z Z and yzz% Z ke ZyJ
>0 " j=1 "7 j=k+1 T >0

for some k; < with 3., yi/ri > 00w/

Next, we introduce the notion of Holder exponent, defined from the Holder
spaces. We present here the pointwise version for non-differentiable functions (we
restrict our interest to exponents in [0, 1]).

Definition 3.1. A locally bounded function f belongs to the Holder space A%(z)
with a € [0,1] if there exists a constant C' such that, for any « in a neighborhood
of Zo,

|f(zo) = f(2)] < Clazo — x|
The Holder exponent of f at xg is then defined as

sup{a : f € A%(z0)}.

The Holder exponent provides a measure of the regularity of a function: the
larger the exponent, the smoother the function [20]. In particular, if this exponent
is strictly less than 1 at xg, then the function is non-differentiable at z.

Let g = (¢;)jen and n = (n;) ey be sequences of natural numbers greater than
1, and let q" = (¢})jen denote the sequence defined by ¢; = n;(g; — 1) + 1. As
before, we define r; = q1g5 - - gj. It is already established that the Hélder regularity
of Dy n at any point of [0,1] \ Cqn is equal infinite, as the function is piecewise

linear on this set.

Lemma 3.2. The quantity
logry
logry,

is a lower bound for the Holder exponent of Dy q at any point of Cy .

9) o = hm inf

Proof. Let x € Cqn, and choose y € [0, 1] such that vq/ (z,y) = £. If (7) holds, the
expansions in base q of Dg n(x) and Dg n(y) both begin with Z§:1 p;/rj, implying
that vq(Dgn(x), Dgn(y)) > €. If (8) holds, then y ¢ Cqn because x; — 1 cannot
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be divisible by ny. Consequently, Dy n(y) = Z?:l p;j/7’;, which again ensures that

Ya(Dgn(z), Dgn(y)) > L.
Thus, we have

log2 —logry
10g | Dayn(@) = Dan(y)| < 1052 = 1081 (ay) = = ———logrip
041
1 — log 2
< w log |z — 9],
logry,
which concludes the proof. (Il
Lemma 3.3. The quantity
1
£1 = limsup 8 7“@-1;1
) log 1}

is an upper bound for the Holder exponent of Dqn at any point of Cqn.

Proof. We can assume that the upper limit

) log 7yt
10 1 —_—
(10) 1mgsup log r, —log2
is strictly less than 1. Given x € Cqn, one can always find y € Cq n such that (7)
holds, which implies that v/ (2,y) = 7q((Dq,n(2), Dgqn(y)). Therefore,

log rp41
log [Dgn(2) = Dgn(y)| = logrj — log2 log |z — yl.
Consequently, for any sufficiently small € > 0, there exists L > 0 such that for all

¢ > L, one can find y satisfying vy (z,y) = ¢ and
|Dq’n(x) - Dq:ﬂ(y)| > |z — y|'8+€~
This establishes the result. O

Knowing that Dq y is nowhere differentiable on Cq n, the following proposition
is a straightforward consequence of Lemmata 3.2 and 3.3.

Proposition 3.4. If oy = 1 or a1 =1 (ay and B; being defined by (9) and (10),
respectively), then the Hélder exponent of Dgqn at any point of Cqn is equal to o.
In particular, if there exists n,b € N, both greater than 1, such that ¢; = b and

n; = n for any j, then the Holder exponent of Dgn at any point of Cqn is equal
to logb/log(n(b—1) 4+ 1).

Let us provide a simple condition to construct a Cantor set whose Hausdorff
dimension equals 1, while its associate measure vanishes. Using the same con-
struction, we can obtain Cantor functions with Holder exponent equal to 1 on the
corresponding Cantor set. Let

Definition 3.5. A function ¢ : N — N is called sup-linear if ¢(j) > j for any
jeN

Corollary 3.6. Let q = (¢;)jen be a sequence of the form q; = ¢(j), where ¢ is a
sup-linear function and let n = (n;)jen be a bounded sequence of natural numbers
greater than 1.
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o If v =0 then the Holder exponent of Dqyn at any point of Cq.n s equal to
1.

o If v € (0,+00) then the Holder exponent of Dgn at any point of Cqn is
greater than 1/(1+ ).

Proof. Let C' > 0 be such that n; < C for all j € N. For any ¢ € N, we have
log 14 log [T;_, #(4) o [Ty (i) — log [T;_y n,

Tlogriy log [T (ni(0() — 1)+ 1) logIT5 i (ny(6(j) — 1) + 1)
_ log T nio() —logTTi_yny _ logTTjm nid() _ logITjmy ns

log [T;Z; n;0()) T log[TiEine()  log(Ctl)
It is evident that the second term vanishes as £ — co. Furthermore, we observe
log [T'_, n,; ®(j 1 1
lim inf M > liminf = ,
log [T521 ;@) ey logne1 +loggerr 147
logr¢ + ¢loginf; n;
which completes the proof. O
Remark 3.7. Using reasoning analogous to the proof of Corollary 3.6, we have
¢ .
1 log[T,_{ n; 1
lim sup &@;1 > Tim sup gHéJ i#(J) Og(né+19£.+1) 14
) log ¢ log Hj:1 n;o(5) log r¢ + ¢log inf; n;

We now present an example where the exact Holder exponent can be determined.
Corollary 3.8. Under the same conditions as Corollary 3.6, if ¢ is a sup-linear
function satisfying ¢(j) < a’ for all j € N (a > 1), then v = 0.

In particular, the Holder exponent of Dqn at any point of Cqn s equal to 1.
Proof. We immediately have

1 {41
v < limsup A = lim sup
‘

log 7 ¢ log[Ti—y 6())

log a**1 (£+1)loga

log ¢!

< lim sup =0.
¢

O

However, the above result does not hold for a function ¢ that grows too quickly,
as demonstrated in the following example.

Example 3.9. Let ¢; = 22’ for all j € N. In this case, we directly find v = § = 3.

To conclude this section, we return to the discussion of the Hausdorff dimension
of Cq.n.

Corollary 3.10. If q = (g;)jen is defined by q; = ¢(j), where ¢ is a sup-linear
function, then the Hausdorff dimension of Cq n is equal to 1, and Cq n has vanishing
Lebesgue measure: H'(Cqn) = 0.

Proof. The argument for the Hausdorff dimension follows similarly from Corol-
lary 3.6. For the Lebesgue measure, we find
‘ ,
H' (Cqn) = lim H' (Ky) = lim —; Hj:l_(b(]) =0
¢ ¢ IT=i(ni(e() = 1) + 1)
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4. THE HAUSDORFF h-MEASURE OF Cgq

Let h be a nondecreasing, right-continuous function that is zero at the origin. The
Hausdorff h-measure, denoted by H", generalizes the standard Hausdorff measure
by replacing the function z* in (3) with h(z) [12, 23].

Definition 4.1. Let h be a right-continuous nondecreasing function defined on
[0,00) such that ~A(0) = 0. The Hausdorff h-measure of a set E is given by

H'(E) =supinf{>_h(|E;|): EC | Ej, |E;| <e}.
e>0 -
j=1

=1
The function h is called a dimension function for E if 0 < H"(E) < cc.

It is worth noting that if A is a dimension function, then rh (where r > 0) is also
a dimension function.

For ¢ € N and j € {0,...,r¢ — 1}, let Ij(.e) denote the (j 4+ 1)-th component
interval of K, arising from the construction of Cq  as detailed in Remark 2.2.

Lemma 4.2. For the Cantor set Cqy n, there exists a Borel probability measure jiq n

such that )
LIy = =
Haq, ( J ) ré’

forany £ € N and j € {0,... 7y — 1}, with ro = 1.

Proof. Extend Dqgn to R by setting Dgn(z) = 0 for £ < 0 and Dgn(z) = 1 for
x > 1. Let piqn be the Lebesgue-Stieltjes measure such that

Dgn(z) = / ditgn-

Clearly, ptgn(Cqn) = 1. For £ € N and j € {0,...,7, — 1}, let =z = inflj(-l),
Y= supIJ(-e)
14
Mq,n(I](' )) = Dgn(y) — Dgn(z)
= Dgn((*, ek +1,0,...)q) — Dgn((*, 10k, 0, ... )q’)
1

:(*/,k+1,0,...)q7(*/akaov"')q:7’
Te

and k =7 mod ¢;. Then,

where x and " represent common prefixes of length £ —1 in the representations. [

Let us demonstrate that the function h = Dg n defined above serves as a dimen-
sion function for Cq n.

Theorem 4.3. Given a set Cqn, the function h = Dq v is a dimension function
for Cqn and

H (Cyn) = 1.

Proof. Using the notations from Remark 2.2, the length of I](-Z) tends to 0 as £ — oo.
Additionally, we have
’l‘g*l
¢ 1
>R =reh(5) =1,
=0 ¢

implying H"(Cqn) < 1.
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Next, consider U, an open interval of diameter € forming a part of a covering of
Cqn. We examine two scenarios. First, suppose there exists £ € N such that for

some k € {0,1,...,q, — 2},
1 1
(11) ke o (EEDne

! /
Ty Ty

In this situation, U intersects at most k + 2 intervals of the form I ) 1f U contains

J
k + 1 such intervals, it follows that

k+1 1+ kng
:h‘( 7

Ty Ty

k
YA
fan(U) < pagn(|J 1) =

Jj=0

) < h(|UY).

Otherwise, U contains k intervals of the form [ ](Z) and intersects two additional

intervals 1\ and I\ with j; < jo. Let J; = UNL. and Jo = U NI, Define
{y as the smallest index such that, for all j € {0,...,7, — 1}, the intersection

0), where U denotes the closure of U. Since

Uun IJ@O) is either empty or equal to I](-e
Ji|+1|J2| < 1/r),, J1UJs contains at most m = £ g; intervals of the form 70,

¢ j=Lo 17 J
Thus,

k—1 m—1

Vi ? k+1 1+ kng
Han(U) < gl L)+ pan(J 1Y) = == = h(=_=5) < h(U).
j=0 §=0 ¢

If condition (11) is not satisfied, there exists ¢ € N such that
(k+1)n, ce< 14+ (k+1)ng

! /
Ty Ty

b

for some k € {0,...,¢, —2}. Assuming infU and supU are points in Cqn, U

contains between k and k + 1 intervals of the form I J(-Z). Since these two cases are

)

similar, assume U contains k 4 1 intervals. Each interval I j(.é is separated by a gap

of length (n, —1)/r}, so

k+1
0<|U|— w
T Te
Thus, the other intervals within U are contained in an interval J of length at most
1/ry. If there exists ¢’ > £ such that

1+ kngy (k‘l + 1)”(/

<|J| < ,

) <1 )

for some k' € {0,...,q¢ — 2}, we can proceed as in the first part of the proof to
obtain

k+1 K +1
pan(U) < (k+ Dptan(I))) + pan()) < ==+ =~
k+1)n, kK + 1ngy
— pErne WA Dney o,

T )
If no such ¢ exists, we can assume
1+ (k/ + 1)71@/

14+ Eny
A Kne 1 < :
.
V4 V4
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this case, a simple recurrence on the size of the intervals reduces the problem to

the previous case.

Finally, for any covering (U;) en of Cq.n consisting of intervals, we have

Zh(|UjD 2 Z.Uq,n(Uj) 2 pgn(Cqn) =1,

JEN jEN

which concludes the proof. O
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