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Abstract. We present a generalization of Cantor's ternary set and ternary
function through the Cantor expansion of real numbers. Our analysis demon-
strates that the Hausdor� dimension of these generalized sets and the Hölder
regularity of the corresponding functions are in�uenced by the speci�c sequence
used to de�ne the expansion. Additionally, we explore the measure-theoretic
properties of these sets through their Hausdor� h-measure, highlighting the
connections between numeral systems and fractal geometry.

Keywords: Cantor function, Cantor expansions, Cantor set, Hölder exponents
2020 MSC : 11A67, 11K55, 26A30, 26A16, 26A27, 11A63

1. Introduction

The intricate interplay between discrete mathematics, number theory, and the
notion of fractals has long been recognized [7, 13, 19, 15, 2, 26]. This relationship
persists in the investigation of fractal regularity in functions [13, 14, 15, 16], a topic
that remains underexplored in the existing literature. Notably, substituting the
decimal numeral system with more exotic ones often induces profound changes in
a function's fractal characteristics [15, 22]. This work exempli�es such phenomena
by generalizing Cantor's ternary set and ternary function. The sets analyzed herein
are part of the class of Moran sets [10], a subject of extensive generalization in prior
studies (e.g., [10, 8, 3, 21, 18, 25, 1, 17]). However, to the best of our knowledge,
no prior exploration has directly employed generalized numeral systems.

Cantor's ternary set, C, was introduced as a quintessential example of a perfect
set that is nowhere dense [11]. Its Hausdor� dimension (see De�nition 2.1) is
well-known to be α0 = log 2/ log 3. Similarly, the Devil's staircase (also called the
Cantor function), D - a paradigmatic singular function [24] - is continuous and non-
constant, with a derivative that vanishes outside C, almost everywhere. The Hölder
regularity (see De�nition 3.1) of D on C matches α0, as the Hölder exponent at any
point in C is precisely α0. Intuitively, this result can be explained from the fact
that, on C, D associates a number in base 2 to a number in base 3 in a very simple
way. This study extends both C and D to explore the Hausdor� dimension of the
resulting sets and the Hölder exponents of the corresponding functions. Under our
framework, these quantities can achieve values as high as 1, relying on the Cantor
expansion of real numbers.

Let q = (qj)j∈N be a sequence of natural numbers greater than 1. A representa-
tion of the form

(1)

∞∑
j=1

xj

q1q2 · · · qj
,

1
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where xj ∈ 0, 1, . . . , qj − 1 for all j, is referred to as a Cantor series [4, 5]. By
setting qj = b > 1 for all j, this framework recovers the familiar representation in
base b. For x ∈ [0, 1], we denote its representation in base q as x = (x1, x2, . . . )q.
Notably, this representation admits proper and improper forms, depending on the
values of xj .

To two sequences q = (qj)j∈N and n = (nj)j∈N of natural numbers, we associate
a new sequence q′ = (q′j)j∈N de�ned as

(2) q′j = nj(qj − 1) + 1.

In the sequel, we will always assume that qj > 1 and nj > 1 for all j ∈ N. We then
de�ne the set

Cq,n = {(x1, x2, . . . )q′ : xj ∈ njN, ∀j},
which generalizes the Cantor ternary set C when qj = nj = 2 for all j. Like C, Cq,n

is totally disconnected and can be constructed iteratively, as noted in Remark 2.2.
A generalization of the Devil's staircase, Dq,n, is similarly de�ned:

Dq,n : Cq,n → [0, 1] (n1p1, n2p2, . . . )q′ 7→ (p1, p2, . . . )q,

This function extends continuously to [0, 1] via

Dq,n(x) = sup{Dq,n(y) : y ≤ x, y ∈ Cq,n}.
For qj = 2 and nj = 2, Dq,n reduces to D. Following techniques employed for D
[6], it can be shown that Dq,n is nowhere di�erentiable on Cq,n. Figure 1 illustrates
one such example, with Dq,n exhibiting a structure reminiscent of D, as anticipated
from Remark 2.2.

In this work, after observing that Cq,n belongs to the class of Moran, whose
Hausfordd dimension is consequently well-established [9, 10], we proceed to compute
the Hölder exponent of Dq,n for a broad class of sequences q and n. Speci�cally,
when q and n are constant sequences, the Hausdor� dimension of Cq,n and the
Hölder exponent of Dq,n at any point in Cq,n are equal to (5), with the standard
case corresponding to qj = 2 and nj = 2 for all j. We also explore cases where q′

deviates signi�cantly from a constant sequence. For instance, we consider scenarios
where q′j is the j+1-th prime number. More generally, we establish a straightforward
growth condition on the sequence q′ such that the Hausdor� dimension of Cq,n

attains the maximum value of 1 (albeit with an associated measure that vanishes),
and the Hölder exponent of Dq,n at x ∈ Cq,n also equals 1.

For s ∈ [0, 1], an s-set is de�ned as a set whose s-dimensional Hausdor� measure
is �nite and positive (see De�nition 2.1). We provide examples of sets Cq,n that fail
to qualify as s-sets (see Corollary 3.10). To further analyze such sets, we leverage
the Hausdor� h-measure, which extends the classical Hausdor� measure framework
(see De�nition 4.1) [12, 23]. Building on the methods introduced in [3], we compute
a Hausdor� h-measure of Cq,n, revealing how the growth of the sequence q impacts
both the dimensional and measure-theoretic properties of these sets.

This study presents a framework that highlights novel connections between nu-
meral systems and the geometric intricacies of such sets.

2. The construction of Cq,n

It is interesting to note that Cq,n inherits the fractal properties of C. More
precisely, the usual approach for computing the Hausdor� measure of C can be
extended to Cq,n.
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Figure 1. In the upper left, the so-called Devil's staircase D is
depicted In the upper right, the function Dq,n is shown, where qj
represents the (j + 1)-th prime number and nj = 2 for all j. The
lower left illustrates the function Dq,n with qj = 2 and nj = 3 for
all j, while the lower right presents the function Dq,n where qj is
the (j + 1)-th prime number and nj = qj for all j.

Let us �rst brie�y introduce the notions of Hausdor� measure and Hausdor�
dimension (for more details, see e.g. [12, 7, 23]).

De�nition 2.1. Given a set E of Rn and s > 0, the quantity

(3) Hs(E) = sup
ϵ>0

inf{
∞∑
j=1

|Ej |s : E ⊂
∞⋃
j=1

Ej , |Ej | < ϵ}

is called the s-dimensional Hausdor� (outer-)measure of E. The Hausdor� dimen-
sion of a non empty set E is the real number

sup{s : Hs(E) > 0}.

Since the diameter of a set is the same as the diameter of its convex hull, we
may assume that the Ej in the previous de�nition are convex sets. If s > 0 is the
Hausdor� dimension of E, we have Hs+ϵ(E) = 0 and Hs−ϵ(E) = ∞ for any ϵ > 0
such that s− ϵ > 0.
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Figure 2. Illustration of the construction of the intervals I
(ℓ)
k from Remark 2.2.

It is easy to show that Cq,n can be de�ned as a countable intersection of compact
sets: C can be obtained by iteratively deleting the open middle third from a set of
intervals and this construction can be generalized for Cq,n.

Remark 2.2. To build Cq,n, the �rst step consists in removing open intervals from

K0 = [0, 1] to obtain the set K1 = ∪q1−1
j=0 I

(1)
j , with

I
(1)
j = [(n1j, 0, . . . )q′ , (n1j + 1, 0, . . . )q′ ],

if j < q1 − 1 and

I
(1)
q1−1 = [(n1(q1 − 1), 0, . . . )q′ , 1].

Next, one removes open intervals from each I
(1)
j to obtain sets of the form ∪q2−1

k=0 I
(2)
k

with
I
(2)
k = [(p, n2k, 0, . . . )q′ , (p, n2k + 1, 0, . . . )q′ ],

for some p ∈ n2N0. The union of all these intervals is denoted K2. If Kℓ is a �nite

union of closed intervals I
(ℓ)
j , one removes open intervals from each I

(ℓ)
j so that the

subset Kℓ+1 of Kℓ is the �nite union of intervals of the form

(4) I
(ℓ+1)
k = [(∗, nℓ+1k, 0, . . . )q′ , (∗, nℓ+1k + 1, 0, . . . )q′ ],

with k ∈ {0, . . . , qℓ+1 − 1} (with an obvious modi�cation if k = qℓ+1 − 1), where ∗
is a pre�x of length ℓ, so that the numbers nℓ+1k and nℓ+1k+1 are at the ℓ+1-th
position in the endpoints of the interval. By construction, we have Cq,n = ∩ℓKℓ.

Remark 2.3. At iteration ℓ, the distance between two consecutive intervals I
(ℓ)
k is

nℓ − 1 times the length of each I
(ℓ)
k , while the ratio between the lengths of I

(ℓ)
k to

I
(ℓ+1)
j is equal to q′ℓ+1. An interval I

(ℓ)
k generates qℓ+1 intervals of the form I

(ℓ+1)
j

at iteration ℓ+ 1.

Given sequence q = (qj)j∈N of natural numbers, let us set rj = q1q2 · · · qj and
r′j = q′1q

′
2 · · · q′j , where q′j is speci�eded as in (2). The previous remark shows that

Cq,n can be covered with rℓ intervals of length 1/r′ℓ (ℓ ∈ N). As a consequence Cq,n

is a nonempty compact set that contains no interval.

Example 2.4. Setting q1 = n1 = 2 and q2 = n2 = 3, we obtain q′1 = 1/3 and

q′2 = 7. The interval [0, 1] yields two intervals I
(1)
0 = [0, 1/3] and I

(1)
1 = [2/3, 1].

These two intervals de�ne the following intervals: I
(2)
0 = [0, 1/21], I

(2)
1 = [1/7, 4/21],

I
(2)
2 = [2/7, 1/3], I

(2)
3 = [2/3, 5/7], I

(2)
4 = [17/21, 6/7] and I

(2)
5 = [20/21, 1].
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Figure 3. Construction of the initial intervals de�ning Cq,n for
q1 = 2, q2 = 3, n1 = 2 et n2 = 3.

For ℓ ∈ N, let us set

sℓ =
log rℓ
log r′ℓ

.

It has been demonstrated in [9] that the Hausdor� dimension of Cq,n is given by

α = lim inf
ℓ

sℓ.

Corollary 2.5. Given two natural numbers b > 1 and n > 1, if q = (qj)j∈N
and n = (nj)j∈N are de�ned by qj = b nj = n, respectively, then the Hausdor�
dimension of Cq,n is

(5) α =
log b

log(n(b− 1) + 1)

and this set has full measure: Hα(Cq,n) = 1.

Proof. We have

Hα(Cq) ≤ lim
ℓ

r′ℓ(
1

rℓ
)α = 1.

Let I be a collection of intervals covering Cq,n. Since Cq,n is compact, we can
suppose that I consists of a �nite number of intervals with non-zero lengths. Then,

(6)
∑
I∈I

|I|α ≥ r′ℓ(
1

rℓ
)α = 1,

which su�ces to establish the result. □

This result,however, does not hold universally for any sequence q. Indeed, in-
equality (6) may fail if the sequence (sℓ)ℓ∈N is not constant, as shown by Corol-
lary 3.10.

3. Hölder regularity of Cantor functions

In this section, we delve into the Hölder regularity of the functions Dq,n. The
results presented here can be viewed as a natural extension of the classical case.

To analyze the regularity of Dq,n, we introduce some necessary notations. Con-
sider a sequence q = (qj)j∈N of natural numbers strictly greater than 1, and de�ne
rj = q1q2 · · · qj . For a point x = (x1, x2, . . . )q such that xj = 0 for j ≤ ℓ and
xℓ+1 > 0 (ℓ ∈ N), we clearly have x ≥ xℓ+1/rℓ+1 ≥ 1/rℓ+1. Furthermore, since
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qj ≥ 2 for all j ∈ N, it follows that rj ≥ 2j−krk for all j, k ∈ N with j ≥ k.
Consequently, we can write

x =

∞∑
j=ℓ+1

xj

rj
<

∞∑
j=ℓ+1

qj
rj

≤
∞∑

j=ℓ+1

1

rj−1
≤ 2

rℓ
.

Now, let x, y ∈ [0, 1], and denote by (z1, z2, . . . )q the proper representation of
|x− y| in base q, De�ne:

γq(x, y) = inf{j ∈ N : zj ̸= 0} − 1.

In other words, γq(x, y) represents the length of the longest pre�x of zeros in
(z1, . . . )q. It is straightforward to verify that if x > y and γq(x, y) = ℓ, then
we have either

(7) x =

ℓ∑
j=1

xj

rj
+
∑
j>ℓ

xj

rj
and y =

ℓ∑
j=1

xj

rj
+
∑
j>ℓ

yj
rj

,

where
∑

j>ℓ yj/rj <
∑

j>ℓ xj/rj , or

(8) x =

k∑
j=1

xj

rj
+
∑
j>ℓ

xj

rj
and y =

k−1∑
j=1

xj

rj
+

xk − 1

rk
+

ℓ∑
j=k+1

qj − 1

rj
+
∑
j>ℓ

yj
rj

for some k ≤ ℓ, with
∑

j>ℓ yj/rj >
∑

j>ℓ xj/rj .
Next, we introduce the notion of Hölder exponent, de�ned from the Hölder

spaces. We present here the pointwise version for non-di�erentiable functions (we
restrict our interest to exponents in [0, 1]).

De�nition 3.1. A locally bounded function f belongs to the Hölder space Λα(x0)
with α ∈ [0, 1] if there exists a constant C such that, for any x in a neighborhood
of x0,

|f(x0)− f(x)| ≤ C|x0 − x|α.
The Hölder exponent of f at x0 is then de�ned as

sup{α : f ∈ Λα(x0)}.

The Hölder exponent provides a measure of the regularity of a function: the
larger the exponent, the smoother the function [20]. In particular, if this exponent
is strictly less than 1 at x0, then the function is non-di�erentiable at x0.

Let q = (qj)j∈N and n = (nj)j∈N be sequences of natural numbers greater than
1, and let q′ = (q′j)j∈N denote the sequence de�ned by q′j = nj(qj − 1) + 1. As
before, we de�ne r′j = q′1q

′
2 · · · q′j . It is already established that the Hölder regularity

of Dq,n at any point of [0, 1] \ Cq,n is equal in�nite, as the function is piecewise
linear on this set.

Lemma 3.2. The quantity

(9) α1 = lim inf
ℓ

log rℓ
log r′ℓ+1

is a lower bound for the Hölder exponent of Dn,q at any point of Cn,q.

Proof. Let x ∈ Cq,n, and choose y ∈ [0, 1] such that γq′(x, y) = ℓ. If (7) holds, the

expansions in base q of Dq,n(x) and Dq,n(y) both begin with
∑ℓ

j=1 pj/rj , implying

that γq(Dq,n(x), Dq,n(y)) ≥ ℓ. If (8) holds, then y /∈ Cq,n because xk − 1 cannot
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be divisible by nk. Consequently, Dq,n(y) =
∑k

j=1 pj/r
′
j , which again ensures that

γq(Dq,n(x), Dq,n(y)) ≥ ℓ.
Thus, we have

log |Dq,n(x)−Dq,n(y)| ≤ log 2− log rγ′
q(x,y)

=
log 2− log rℓ

log r′ℓ+1

log r′ℓ+1

≤ log rℓ − log 2

log r′ℓ+1

log |x− y|,

which concludes the proof. □

Lemma 3.3. The quantity

β1 = lim sup
ℓ

log rℓ+1

log r′ℓ
is an upper bound for the Hölder exponent of Dq,n at any point of Cq,n.

Proof. We can assume that the upper limit

(10) lim sup
ℓ

log rℓ+1

log r′ℓ − log 2

is strictly less than 1. Given x ∈ Cq,n, one can always �nd y ∈ Cq,n such that (7)
holds, which implies that γq′(x, y) = γq((Dq,n(x), Dq,n(y)). Therefore,

log |Dq,n(x)−Dq,n(y)| ≥
log rℓ+1

log r′ℓ − log 2
log |x− y|.

Consequently, for any su�ciently small ϵ > 0, there exists L > 0 such that for all
ℓ ≥ L, one can �nd y satisfying γq′(x, y) = ℓ and

|Dq,n(x)−Dq,n(y)| ≥ |x− y|β+ϵ.

This establishes the result. □

Knowing that Dq,n is nowhere di�erentiable on Cq,n, the following proposition
is a straightforward consequence of Lemmata 3.2 and 3.3.

Proposition 3.4. If α1 = β1 or α1 = 1 (α1 and β1 being de�ned by (9) and (10),
respectively), then the Hölder exponent of Dq,n at any point of Cq,n is equal to α1.

In particular, if there exists n, b ∈ N, both greater than 1, such that qj = b and
nj = n for any j, then the Hölder exponent of Dq,n at any point of Cq,n is equal
to log b/ log(n(b− 1) + 1).

Let us provide a simple condition to construct a Cantor set whose Hausdor�
dimension equals 1, while its associate measure vanishes. Using the same con-
struction, we can obtain Cantor functions with Hölder exponent equal to 1 on the
corresponding Cantor set. Let

γ = lim sup
ℓ

log qℓ+1

log rℓ

De�nition 3.5. A function ϕ : N → N is called sup-linear if ϕ(j) ≥ j for any
j ∈ N.

Corollary 3.6. Let q = (qj)j∈N be a sequence of the form qj = ϕ(j), where ϕ is a
sup-linear function and let n = (nj)j∈N be a bounded sequence of natural numbers
greater than 1.
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• If γ = 0 then the Hölder exponent of Dq,n at any point of Cq,n is equal to
1.

• If γ ∈ (0,+∞) then the Hölder exponent of Dq,n at any point of Cq,n is
greater than 1/(1 + γ).

Proof. Let C > 0 be such that nj ≤ C for all j ∈ N. For any ℓ ∈ N, we have

1 ≥ log rℓ
log r′ℓ+1

=
log

∏ℓ
j=1 ϕ(j)

log
∏ℓ+1

j=1(nj(ϕ(j)− 1) + 1)
=

log
∏ℓ

j=1 njϕ(j)− log
∏ℓ

j=1 nj

log
∏ℓ+1

j=1(nj(ϕ(j)− 1) + 1)

≥
log

∏ℓ
j=1 njϕ(j)− log

∏ℓ
j=1 nj

log
∏ℓ+1

j=1 njϕ(j)
≥

log
∏ℓ

j=1 njϕ(j)

log
∏ℓ+1

j=1 njϕ(j)
−

log
∏ℓ

j=1 nj

log(Cℓℓ!)
.

It is evident that the second term vanishes as ℓ → ∞. Furthermore, we observe

lim inf
ℓ

log
∏l

j=1 njΦ(j)

log
∏ℓ+1

j=1 njΦ(j)
≥ lim inf

ℓ

1

1 +
log nℓ+1 + log qℓ+1

log rℓ + ℓ log infj nj

=
1

1 + γ
,

which completes the proof. □

Remark 3.7. Using reasoning analogous to the proof of Corollary 3.6, we have

lim sup
ℓ

log rℓ+1

log r′ℓ
≥ lim sup

ℓ

log
∏ℓ

j=1 njϕ(j)

log
∏ℓ

j=1 njϕ(j)
+

log(nℓ+1qℓ+1)

log rℓ + ℓ log infj nj
= 1 + γ.

We now present an example where the exact Hölder exponent can be determined.

Corollary 3.8. Under the same conditions as Corollary 3.6, if ϕ is a sup-linear
function satisfying ϕ(j) ≤ aj for all j ∈ N (a > 1), then γ = 0.

In particular, the Hölder exponent of Dq,n at any point of Cq,n is equal to 1.

Proof. We immediately have

γ ≤ lim sup
ℓ

log aℓ+1

log rℓ
= lim sup

ℓ

log aℓ+1

log
∏ℓ

j=1 ϕ(j)
≤ lim sup

ℓ

(ℓ+ 1) log a

log ℓ!
= 0.

□

However, the above result does not hold for a function ϕ that grows too quickly,
as demonstrated in the following example.

Example 3.9. Let qj = 22
j

for all j ∈ N. In this case, we directly �nd γ = δ = 3.

To conclude this section, we return to the discussion of the Hausdor� dimension
of Cq,n.

Corollary 3.10. If q = (qj)j∈N is de�ned by qj = ϕ(j), where ϕ is a sup-linear
function, then the Hausdor� dimension of Cq,n is equal to 1, and Cq,n has vanishing
Lebesgue measure: H1(Cq,n) = 0.

Proof. The argument for the Hausdor� dimension follows similarly from Corol-
lary 3.6. For the Lebesgue measure, we �nd

H1(Cq,n) = lim
ℓ

H1(Kℓ) = lim
ℓ

∏ℓ
j=1 ϕ(j)∏ℓ

j=1(nj(ϕ(j)− 1) + 1)
= 0.

□
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4. The Hausdorff h-measure of Cq

Let h be a nondecreasing, right-continuous function that is zero at the origin. The
Hausdor� h-measure, denoted by Hh, generalizes the standard Hausdor� measure
by replacing the function xs in (3) with h(x) [12, 23].

De�nition 4.1. Let h be a right-continuous nondecreasing function de�ned on
[0,∞) such that h(0) = 0. The Hausdor� h-measure of a set E is given by

Hh(E) = sup
ϵ>0

inf{
∞∑
j=1

h(|Ej |) : E ⊂
∞⋃
j=1

Ej , |Ej | < ϵ}.

The function h is called a dimension function for E if 0 < Hh(E) < ∞.

It is worth noting that if h is a dimension function, then rh (where r > 0) is also
a dimension function.

For ℓ ∈ N and j ∈ {0, . . . , rℓ − 1}, let I
(ℓ)
j denote the (j + 1)-th component

interval of Kℓ, arising from the construction of Cq,n as detailed in Remark 2.2.

Lemma 4.2. For the Cantor set Cq,n, there exists a Borel probability measure µq,n

such that

µq,n(I
(ℓ)
j ) =

1

rℓ
,

for any ℓ ∈ N and j ∈ {0, . . . , rℓ − 1}, with r0 = 1.

Proof. Extend Dq,n to R by setting Dq,n(x) = 0 for x < 0 and Dq,n(x) = 1 for
x > 1. Let µq,n be the Lebesgue-Stieltjes measure such that

Dq,n(x) =

∫ x

−∞
dµq,n.

Clearly, µq,n(Cq,n) = 1. For ℓ ∈ N and j ∈ {0, . . . , rℓ − 1}, let x = inf I
(ℓ)
j ,

y = sup I
(ℓ)
j and k = j mod qj . Then,

µq,n(I
(ℓ)
j ) = Dq,n(y)−Dq,n(x)

= Dq,n((∗, nℓk + 1, 0, . . . )q′)−Dq,n((∗, nℓk, 0, . . . )q′)

= (∗′, k + 1, 0, . . . )q − (∗′, k, 0, . . . )q =
1

rℓ
,

where ∗ and ∗′ represent common pre�xes of length ℓ−1 in the representations. □

Let us demonstrate that the function h = Dq,n de�ned above serves as a dimen-
sion function for Cq,n.

Theorem 4.3. Given a set Cq,n, the function h = Dq,n is a dimension function
for Cq,n and

Hh(Cq,n) = 1.

Proof. Using the notations from Remark 2.2, the length of I
(ℓ)
j tends to 0 as ℓ → ∞.

Additionally, we have
rℓ−1∑
j=0

h(|I(ℓ)j |) = rℓh(
1

r′ℓ
) = 1,

implying Hh(Cq,n) ≤ 1.
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Next, consider U , an open interval of diameter ϵ forming a part of a covering of
Cq,n. We examine two scenarios. First, suppose there exists ℓ ∈ N such that for
some k ∈ {0, 1, . . . , qℓ − 2},

(11)
1 + knℓ

r′ℓ
≤ ϵ <

(k + 1)nℓ

r′ℓ
.

In this situation, U intersects at most k+2 intervals of the form I
(ℓ)
j . If U contains

k + 1 such intervals, it follows that

µq,n(U) ≤ µq,n(

k⋃
j=0

I
(ℓ)
j ) =

k + 1

rℓ
= h(

1 + knℓ

r′ℓ
) ≤ h(|U |).

Otherwise, U contains k intervals of the form I
(ℓ)
j and intersects two additional

intervals I
(ℓ)
j1

and I
(ℓ)
j2

with j1 < j2. Let J1 = U ∩ I
(ℓ)
j1

and J2 = U ∩ I
(ℓ)
j2

. De�ne

ℓ0 as the smallest index such that, for all j ∈ {0, . . . , rℓ0 − 1}, the intersection

Ū ∩ I
(ℓ0)
j is either empty or equal to I

(ℓ0)
j , where Ū denotes the closure of U . Since

|J1|+ |J2| < 1/r′ℓ, J1∪J2 contains at most m =
∏ℓ

j=ℓ0
qj intervals of the form I

(ℓ0)
j .

Thus,

µq,n(U) ≤ µq,n(

k−1⋃
j=0

I
(ℓ)
j ) + µq,n(

m−1⋃
j=0

I
(ℓ0)
j ) =

k + 1

rℓ
= h(

1 + knℓ

r′ℓ
) ≤ h(|U |).

If condition (11) is not satis�ed, there exists ℓ ∈ N such that

(k + 1)nℓ

r′ℓ
< ϵ ≤ 1 + (k + 1)nℓ

r′ℓ
,

for some k ∈ {0, . . . , qℓ − 2}. Assuming inf U and supU are points in Cq,n, U

contains between k and k + 1 intervals of the form I
(ℓ)
j . Since these two cases are

similar, assume U contains k+1 intervals. Each interval I
(ℓ)
j is separated by a gap

of length (nℓ − 1)/r′ℓ, so

0 ≤ |U | − (k + 1)nℓ

r′ℓ
≤ 1

r′ℓ
.

Thus, the other intervals within U are contained in an interval J of length at most
1/r′ℓ. If there exists ℓ

′ > ℓ such that

1 + k′nℓ′

r′ℓ′
≤ |J | < (k′ + 1)nℓ′

r′ℓ′
,

for some k′ ∈ {0, . . . , qℓ′ − 2}, we can proceed as in the �rst part of the proof to
obtain

µq,n(U) ≤ (k + 1)µq,n(I
(ℓ)
0 ) + µq,n(J) ≤

k + 1

rℓ
+

k′ + 1

rℓ′

= h(
(k + 1)nℓ

r′ℓ
+

(k′ + 1)nℓ′

r′ℓ′
) ≤ h(|U |).

If no such ℓ′ exists, we can assume

(1 + k′)nℓ′

r′ℓ′
≤ |J | < 1 + (k′ + 1)nℓ′

r′ℓ′
.
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In this case, a simple recurrence on the size of the intervals reduces the problem to
the previous case.

Finally, for any covering (Uj)j∈N of Cq,n consisting of intervals, we have∑
j∈N

h(|Uj |) ≥
∑
j∈N

µq,n(Uj) ≥ µq,n(Cq,n) = 1,

which concludes the proof. □
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