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Abstract

The fundamental characteristics of living organisms, including growth, adaptation,
homeostasis, organization, metabolism, and reproduction, are encoded in their DNA.
Despite the crucial control exerted on genes, clonal cells exhibit heterogeneous be-
havior even when exposed to homogeneous environments. This phenomenon is justi-
fied by the theory of bet-hedging, which suggests that it allows populations to spread
risks and opportunities. However, this heterogeneity poses significant challenges in
biotechnology, reducing bioprocess performance and robustness, and has far-reaching
implications for human health, including antibiotic resistance, cancer treatment, and
potentially even its onset. The causes of this heterogeneity are multifaceted, including
the diversity and uneven distribution of essential intracellular macromolecules nec-
essary for gene expression. Our study reveals that, despite the complexity of these
factors, intracellular dynamics alone are insufficient to explain the observed hetero-
geneity at the population level. We quantified population heterogeneity using Shannon
entropy, a metric borrowed from information theory, and identified three diversification
regimes characterized by increasing heterogeneity. A key predictor of these regimes
is the impact of gene activation on cell growth, the switching cost. We found that as
this switching cost increases, also known as the burden or production load, hetero-
geneity within the population rises accordingly. Interestingly, when the switching cost
becomes significant, cells can synchronize their gene expression into periodic bursts,
oscillations.

From these observations, the rest of the work is structured around two primary ques-
tions:

I. Why are burdensome genes associated with greater population entropy and; II.
How can a gene circuit that does not have the properties of an oscillator nevertheless
exhibit an oscillatory behavior?

To understand the relationship between population heterogeneity and the burden im-
posed by gene activation, we introduced the concept of burden entropy compensation.
This mechanism suggests that the burden associated with gene activation is offset by
the overgrowth of cells with lower activation of the burdensome gene. This overgrowth
spreads the population thus increasing entropy, but safeguards the population from be-
ing washed out in continuous cultivation devices.

We focused on the T7 expression system in E. coli BL21 and found that periodic
addition of the inducer can reduce entropy, but this control method is countered by the
emergence of mutants with weakened promoters, lower burden, and more homoge-
neous induction. We then demonstrated that reducing the switching cost by lowering
the quality of the main carbon source, and thus the maximum growth rate, homog-
enized gene expression across the population without sacrificing induction strength.
This counterintuitive outcome highlights the importance of considering phenotypic
heterogeneity using a system biology approach, rather than solely focusing on intra-
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cellular sources of noise.
The significance of this system approach was further confirmed when we attempted

to explain why highly burdensome gene circuits can exhibit bursty expression. We de-
veloped a mathematical model that incorporates the interplay between cellular stress
response and environmental changes. The model revealed that, for highly burden-
some gene circuits under certain dilution rate conditions, expression can be bursty
and exhibit oscillatory behavior. The model predictions were validated experimentally
in chemostat cultures of Bacillus subtilis, where sporulation synchronized across the
population and appeared as oscillations. These oscillations result from a feedback loop
where if cells are growing then the concentration in glucose drops below a threshold
that triggers sporulation, and if cells sporulate, then the concentration rises above this
threshold thus preventing sporulation.

Crucially, our results show that this unwanted instability can be eliminated, and en-
tropy reduced, by carefully choosing process parameters that align with the biological
characteristics of the cultivated organism. Our findings establish a clear link between
gene expression burden and cellular entropy, demonstrating that entropy can be re-
duced to benefit overall population productivity, potentially unlocking the wider uti-
lization of continuous cultivation.



Résumé

Les caractéristiques fondamentales du vivant, telles que la croissance, l’adaptation,
l’homéostasie, l’organisation, le métabolisme et la reproduction, sont codées dans
l’ADN. Cependant, malgré le contrôle crucial exercé sur les gènes, des cellules clonales
exposées à un environnement homogène présentent un comportement hétérogène. Ce
phénomène est justifié par la théorie du "bet-hedging" qui propose que les risques et
les opportunités sont répartis au sein de la populations (ne pas mettre tous ses œufs
dans le même panier). Cependant, cette hétérogénéité s’avère problématique pour des
applications de processus biotechnologiques, car elle en réduit les performances et la
robustesse. De plus, cette hétérogénéité a des implications importantes pour la santé
humaine, notamment en ce qui concerne la résistance aux antibiotiques, le traitement
du cancer et même, potentiellement, son apparition. Les causes de cette hétérogénéité
sont multiples. La nature stochastique de l’activation des gènes en est l’une des prin-
cipales. Elle résulte de la diversité et de la distribution inégale des macromolécules
requises aux deux réactions essentielles à l’expression d’un gène: la transcription et
la traduction. Malgré la complexité de ces facteurs, notre travail révèle que, dans
les cultures continues, les dynamiques intracellulaires seules ne suffisent pas à expli-
quer l’hétérogénéité observée au niveau de la population. Grâce à un indice emprunté
à la théorie de l’information, l’entropie de Shannon, nous avons pu quantifier le dé-
grée d’hétérogénéité au sein d’une population bactérienne et identifier trois régimes de
diversification caractérisés par une hétérogénéité croissante. Un élément clé permet-
tant de prédire ces régimes de diversification est la réduction de croissance associée
à l’activation du gène, le coût associé au changement de phénotype. Nous avons ob-
servé qu’à mesure que ce coût, analogue à la charge métabolique ou à la charge de
production, augmente, la population devient de plus en plus hétérogène. Nous avons
également découvert que, lorsque le coût de l’activation des gènes sur la croissance de-
vient important, les cellules peuvent synchroniser leur expression, laissant apparaître
certains phénotypes par vagues périodiques. À partir de ces observations initiales, ce
travail a été structuré autour des deux questions suivantes :

I. Pourquoi l’expression génique coûteuse pour l’organisme est-elle associée à une
population avec beaucoup d’entropie ? II. Comment un circuit génique qui ne pos-
sède pas les propriétés d’un oscillateur peut-il néanmoins exhiber un comportement
oscillatoire ?

Pour aborder le lien entre l’hétérogénéité de la population et le coût du change-
ment phénotypique imposé par l’activation d’un gène, nous décrivons le mécanisme
de compensation de cette charge par l’entropie. Ce mécanisme suggère que la perte
de croissance associée à l’activation des gènes est compensée par une sur-croissance
de cellules ayant une activation plus faible du gène dont l’expression est coûteuse. La
présence de ces cellules augmente l’hétérogénéité de la population, son entropie, et
lui permet ainsi d’éviter d’être lessivée lors d’une culture continue. En nous concen-
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trant sur l’activation coûteuse du système d’expression T7 dans Escherichia coli BL21,
nous avons trouvé que l’addition périodique de l’inducteur permet d’homogénéiser la
population. Cependant, ce contrôle est contrecarré par l’émergence de mutants qui
présentent une expression du gène affaiblie, et donc un coût métabolique moindre,
mais plus homogène. Le coût sur la croissance associé à l’expression du gène étant
la différence entre les taux de croissance des cellules induites et non induites, nous
avons montré qu’il peut être réduit en diminuant la qualité de la principale source de
carbone, ce qui réduit le taux de croissance maximal des cellules non induites. Cette
stratégie permet d’obtenir une expression du gène plus homogène au sein de la popula-
tion, sans pour autant réduire l’induction et, par conséquent, sans entraîner de perte de
production. Ce résultat contre-intuitif fait sens lorsque l’on considère l’hétérogénéité
phénotypique avec une approche de biologie du système et non uniquement en fonc-
tion des sources de bruit intracellulaire. L’importance de cette approche système a été
confirmée par la suite, lors de l’investigation de la question concernant le caractère
oscillant que peuvent avoir certains circuits génétiques dont l’expression est couteuse.
Nous avons développé un modèle mathématique qui intègre la relation entre la réponse
au stress cellulaire et les changements environnementaux. La résolution analytique de
ce modèle a montré que, effectivement, pour les circuits géniques coûteux et sous cer-
taines conditions, l’expression du gène peut se synchroniser et avoir un comportement
oscillant. La résolution de ce modèle adapté pour la sporulation de Bacillus subtilis a
montré que c’était en effet le cas pour une culture continue sous certains taux de dilu-
tions. Ces oscillations résultent d’un mécanisme de rétroaction où, si les cellules sont
en croissance, la concentration en glucose chute en dessous d’un seuil qui déclenche
la sporulation, et si les cellules sporulent, la concentration dépasse ce seuil, empêchant
ainsi la sporulation. Ces prédictions ont été confirmée expérimentalement. Surtout,
ces résultats montrent aussi que cette instabilité indésirable pourrait être éliminée, et
l’entropie réduite, en choisissant soigneusement les paramètres du processus (par ex-
emple, le taux de dilution) en fonction des caractéristiques biologiques de l’organisme
cultivé.

Pris dans leur ensemble, nos résultats établissent un lien clair entre la charge d’expression
génique et l’entropie cellulaire. Nous décrivons comment cette entropie apparaît dans
une culture continue, un système censé promouvoir une population stable. Finalement,
nous démontrons que l’entropie cellulaire peut être réduite au bénéfice de la productiv-
ité globale de la population, ouvrant potentiellement la voie à davantage d’applications
de cultures continues.
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Chapter 1. Introduction

1. Roots and benefits of cellular noise
1.1. Diversity as a survival strategy
Microbial cells exhibit a remarkable ability to inhabit diverse environments across

the globe. This adaptability stems from the wide array of phenotypes these species
can manifest. Among them are cells capable of plastic degradation [1], thriving in
high-temperature conditions (Figure 1.1), or utilizing hydrogen as a source of energy
[2]. These unique capabilities, phenotypes, are encoded within the genetic sequences
known as genes. But expressing a phenotype always comes at a cost. It consumes
amino acids, energy, or simply leads to the emergence of a phenotype that might not be
fitted to the current environment. To ensure the combination of growth and resilience
that forms the cell fitness always remains optimum, cells rely on a complex array of
sensors and regulators to turn on and off genes. The diversity of phenotype a cell can
exhibit upon the regulation of its genome is then known as the phenotypic plasticity.

Figure 1.1: Microorganisms can exhibit
remarkable adaptations to survive in challenging

environments, such as extremely high temperatures
and acidic conditions like in the hot springs of

Yellowstone. The phenotype is the visible
expression of genes, allowing the organism to

thrive in conditions that would be hostile to many
other forms of life. From Charles O’Rear/Corbis

via Smithsonian

Interestingly, it has been observed
that, despite the complexity of sens-
ing and regulatory mechanisms, a
clonal microbial population does not
uniformly respond to clear environ-
mental stimuli. Instead, gene ex-
pression varies across the popula-
tion, fluctuating over time. Thus,
cell populations exhibit phenotypes
with varying degrees of strength and
heterogeneity over time. These two
characteristics are combined under
the umbrella wording of population
dynamics.

Consider the accumulation of
glycogen in Saccharomyces cere-
visiae. S. cerevisiae, also known as
baker’s yeast, has evolved to sense
the availability of glucose, a carbon
source, and convert a portion of it
into a source of storage. This stor-
age, glycogen is synthesized notably

through the activation of the glc3 gene when the abundance of glucose decreases [3].
Later on, it can then be broken back down into glucose to avoid famine if the sugar is
to be exhausted. This phenotype sacrifices growth for resilience and serves as a prime
example of phenotypic plasticity. When exposed to a low concentration of glucose,

3



Thesis draft

not all clonal cells adopt this phenotype. Some continue to grow rapidly while others
slow down and begin storing glycogen. Another example of an uneven response to
a defined environment is the antibiotic persistence of Escherichia coli [4] [5]. As a
gram-negative bacterium, E. coli can adapt the composition of pore-forming proteins
(porins) in its outer membrane. Large pores allow for the rapid uptake of nutrients,
promoting growth but increasing susceptibility to toxic compounds such as antibiotics
that can more easily enter and kill the bacteria. Conversely, E. coli can express smaller
porins characteristic of a phenotype defined by slower growth but better resistance
to toxic compounds. This phenotype hampers growth and fitness in an environment
where no toxic compounds are present. However, it is still observed alongside the
fast-growth phenotype when no such compounds are found.

These two examples illustrate the concept of bet-hedging, a theory that justifies the
presence of unfit phenotypes in a population as a strategy to mitigate risks in an unpre-
dictable environment [6]. Imagine a scenario where glucose suddenly disappears or
antibiotics are introduced into the environment. If all cells express a phenotype solely
in response to the environment, the entire cell population would swiftly transition from
a well-adapted state to an unfit one. This would be problematic as the population needs
time to sense the new conditions, express mRNA, and translate it into proteins that
form the phenotype. This process takes time and this time could prove fatal to the
entire population. To prevent this predicament, maintaining a small proportion of the
population in a less-fit state becomes sensible. These cells safeguard the entire popu-
lation in case of sudden environmental changes. The heterogeneity in gene expression
has been extensively studied across the genome of E. coli, revealing an intriguing cor-
relation between gene noisiness and functionality [7]. Genes involved in maintenance
functions, such as DNA repair and ribosome synthesis, exhibit relatively homogeneous
expression in a population. In contrast, genes related to alternative carbon source uti-
lization or membrane composition display more variability in expression, suggesting
an evolutionary constraint on noisiness. This evolutionary constraint implies that there
exists an optimal level of noisiness in gene expression. Kussel and Leibler proposed
a model supporting this idea, indicating that the noisiness and responsiveness in the
expression of a gene depends on: the cost of the sensing machinery associated to the
responsive switching and the frequency and speed of environmental change [8]. For
example, if an environment is changing quite fast, cells can afford a more costly sens-
ing machinery than if the environment changes slowly. Also, once an environment has
changed, if it remains constant for a while, a costly sensing machinery does not really
make sense and a constant stochastic switching is favored [8].
As a nice confirmation of the selection pressure on gene expression stochastic compo-
nent, the distribution in the lag time on growth associated to the growth on glucose to
lactose in E. coli was changed [9]. It was observed that when transitioning to a me-
dia where glucose was exhausted to a media rich in lactose, E. coli can take up to 10
hours to resume growth. Interestingly some cell re-started growing faster and a wide
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distribution in lag time was observed, suggesting noisy gene expression. By selecting
this more responsive population many times, the authors changed the induction profile
to a narrower distribution, i.e., a more responsive phenotype switching. Sequencing
revealed mutations in the Lac operon changing the regulatory protein LacI structure.

1.2. Molecular mechanisms behind biological noise
Why gene expression can be noisy has already been discussed and appears to be

under evolutionary pressure. The how is equally complex and is multifactorial.

Figure 1.2: The intracellular environment
is often more gel-like than a completely
fluid space. It contains a diverse array of

macromolecules in relatively low
concentrations. Illustration by David S.

Goodsell

The intracellular environment of a cell
is crowded (Figure 1.2), characterized by
the presence of numerous macromolecules
present in uneven and sometimes very low
numbers [10] [11]. The expression of a phe-
notype depends on the activation of one or
many genes, themselves characterized by at
least two reactions, transcription and traduc-
tion. All these reactions require the inter-
action of these scarce macromolecules mak-
ing them probabilistic in time [12]. This is
referred to as intrinsic noise. But intrinsic
noise is not the sole source of stochasticity
in gene expression. This intracellular crowd-
ing and consequently the poor diffusion of
macromolecules means they inner content is
not equally partitioned. This heterogeneity
in the number of these macromolecules thus

adds a second layer of noise called extrinsic noise. The number of gene copies may
fluctuate among cells, with this disparity becoming more pronounced when the gene
of interest resides on a plasmid. Furthermore, the "state" of individual cells within
the population may differ; some may be in the midst of division cycles while oth-
ers are newly formed offspring (Figure 1.3). Given that genes often form intricate
networks wherein they reciprocally regulate each other, this inherent variability propa-
gates throughout the genome. In essence, a myriad of factors influences the expression
of a phenotype. Considering this complexity, it comes as no surprise that gene expres-
sion can manifest considerable variation between cells.

We now know that the degree of noise in gene expression depends on the function-
ality of the gene. Yet, intrinsic and extrinsic noise appear to impact the expression
of all genes, so why are some genes more noisy than others? One factor that could
impact the noisiness of a gene is the binding affinity of its regulator. A weaker affinity
might produce a more stochastic expression, while a strong affinity could promote a
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Figure 1.3: Extrinsic and intrinsic noise are inherent to biological systems and together yield
differences in expression level between isogenic cells. Figure taken from Chalancon and

colleges [13]

very responsive one. The shape of the regulator also affects the noise. For example,
the regulator of the lac operon, LacI, is a dimeric protein that, when lactose is not
present, binds to two operators above the lac promoter. By doing so, it forms a loop
that hides the promoter, thus repressing expression. When lactose is present, it binds
to the dimeric protein, changes shape, and cannot hide the lac promoter anymore. In-
terestingly, even in the absence of lactose, some cells transcribe the lac operon. This
leaky expression can actually be reduced by changing one amino acid in the LacI reg-
ulator [14]. Again, suggesting the role of the regulator and the DNA region it binds to,
it was shown that changing the operator sequence LacI binds to, can also diminish the
leakiness of the system [15].

Another key factor contributing to the heterogeneity in gene expression is the com-
plex gene network they belong to. Genes rarely function in isolation, as they are
intricately connected to each other in the genome. Environmental transitions often
require the expression of complex phenotypes, which necessitates the coordinated ex-
pression of multiple genes. A single transcription factor can activate multiple genes,
and the resulting expression of these genes can trigger the expression of additional
genes, forming a cascade. This creates a ripple effect (Figure 1.4), where noise in the
activation of one gene can propagate throughout the network, influencing the expres-
sion of connected genes [16].
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Figure 1.4: Intrinsic and extrinsic noise lead to bursty mRNA production that then gets
smoothed out into a varying protein concentration. If this protein is a regulator embedded in a
gene network, then its time varying concentration propagates the noise on the expression of

other proteins. Figure from Eldar and colleges [16]

1.3. Gene network motives and noise
Throughout its life cycle, a cell encounters a diverse range of environments and tran-

sitions through various developmental phases. The bacterium E. coli, for instance,
possesses 4,200 distinct genes, whereas human mammalian cells have approximately
30,000. To maintain optimal fitness in a given environment, a cell must interpret en-
vironmental cues and translate them into a phenotype comprising the expression or
repression of one or multiple proteins. These genes require not only precise temporal
and conditional expression but also varying levels of activation intensity. Furthermore,
they must be activated in a sequential order and deactivated promptly, if necessary. All
these properties are governed by the gene regulation network (GNR). In its simplest
form, the GNR involves a transcription factor (TF) binding to a gene’s promoter re-
gion to activate it. However, gene expression is often linked to feedback loops. Two
prominent networks in E. coli are the negative autoregulation (NAR) and positive au-
toregulation (PAR) networks, where gene expression coincides with the production of
a regulatory protein that inhibits or activates expression, respectively. NAR regulates
approximately 40 % of genes [17], a significant percentage of genes in E. coli. The
two networks, NAR and PAR, exhibit distinct dynamical properties that influence their
ability to handle noise. NAR is characterized by a more graded response, which allows
it to shorten response times and buffer out noise [17]. This property is often described
as providing homeostasis, maintaining a stable equilibrium in the system. In contrast,
PAR amplifies noise and generates a specific form of phenotypic heterogeneity in gene
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expression, known as bimodality. In this scenario, the expression of a gene across a
population tends to be binary, with cells being fully committed to a phenotype or not
expressing it at all. This occurs because the concentration of the transcription factor
must cross a threshold, triggering a positive feedback loop that locks the cell into an
"on" state. If the threshold is not reached, the cells remain in the "off" state.
Most tf regulate up to three different genes [18] but some of them such as CRP can
regulate 230 genes in E. coli. This leads to significant cross talks in the expression of
genes and explain why noise can trickle down throughout the genome.

2. The need for predictable and controllable cells
In the previous section, the distinction between responsive and stochastic activation

in gene expression was made, the rationale behind the ratio of both was explained,
and the causes of noise were described. While this noise in gene expression makes
sense from an evolutionary perspective, it can give rise to unwanted outcomes. Noise
and unpredictable behavior arising from it have been observed at all levels of life,
from microorganisms to mammalian and plant cells. Therefore, understanding cell
dynamics is crucial in all topics linked to life science. In this section, I will briefly
explain the significance of understanding cellular dynamics from a biomedical and
bioprocess perspective.

Biomedical research is a field that aims to understand the chemical and biological
principles that underlie medical treatments, with the ultimate goal of improving ther-
apies. To achieve this, it is essential to understand the phenotypic dynamics, i.e. the
behavior, of both bacterial and human cells. As previously explained, not all antibi-
otic resistance arises from acquired genome-encoded resistance. E. coli can change
its membrane permeability to give rise to a slow growth/high resistance to antibiotics
phenotype commonly named persistence [19]. Similarly, Salmonella enterica has been
shown to manage the initial shock induced by antibiotics through variability in large
pore-forming proteins (ompc) within the population [5]. The surviving subpopulation
contains fewer of these porins and has a lower outer membrane permeability. This
heterogeneity within the population allows it to survive long enough for mutation and
selection to occur, resulting in a phenotype with a more active efflux pump that can
then resume growth. In that sense, phenotypic heterogeneity within the population acts
as a springboard for mutations and selection to occur.
It is suspected that for certain cancer types, a similar phenomenon occurs. A study
[20] investigated the role of mismatch repair (MMR) deficiencies in Endometrioid en-
dometrial cancer (EEC). MMR is crucial for the genome stability of cell because as it
names implies, it corrects errors that occur during the DNA replication. Failing MMR
drastically increases the mutation rate, and consequently, the appearance of cancer-
ous cells. The study found that while only 5% of EEC cases had mutations impairing
MMR, a significant 20% of cases exhibited MMR deficiency without any mutations.
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This suggests that for certain cancer types, including EEC, a significant proportion of
cases may be linked to epigenetic factors rather than solely mutations. This challenges
the traditional view of cancer as primarily a condition caused by mutations and sug-
gest a role for phenotypic heterogeneity in the onset of cancer. However, what is clear
is that this cell-to-cell difference in phenotype within clonal cells complicates cancer
treatment by adding to the existing challenge of genetic diversity arising from muta-
tions. Similarly, to how Salmonella uses phenotypic heterogeneity to survive adverse
conditions long enough to allow a resistant mutant to emerge, cancer cells form an
expanding cone of phenotypes over time that makes treatment more and more ardu-
ous [21]. This expanding diversity enhances the cancer’s resistance to drugs, as well
as making it more aggressive, as phenotypes more prone to migration and metastasis
appear.

Bioprocess resilience and productivity are also affected by this heterogeneity. While
mutations can lead to loss of function over time, what primarily hampers bioprocess
productivity within the initial hours is the noise in gene activation [22]. This incom-
plete activation means only a fraction of the population produces the desired prod-
uct, while the rest utilizes resources without contributing. The cultivation of Bacillus
subtilis, a soil bacterium used in agriculture for biocontrol, illustrates this challenge.
Whether producing beneficial components like lipopeptides or being utilized directly
in the field after sporulation, the desired outcomes are often hindered by a mix of both
states during cultivation. Another example is the production of pluripotent cells for
organ reconstruction. Ideally, these cells should remain pluripotent until needed for
differentiation, but in practice, maintaining this state is challenging and limits produc-
tion efficiency [23].
Additionally, heterogeneity can be exacerbated by the production process itself. Many
processes rely on batch or fed-batch fermentation, where the environment transitions
from a hyper-nutritious state to a poor one. This shift in conditions means that the
environment is only briefly optimal for microbial cells, and the cells must constantly
adapt to the new conditions. Adapting always comes at a cost, and the population ex-
pends significant resources to adapt to the process. This cost, combined with the lack
of control over the induction strength of the gene of interest within the population, can
result in poor product titer.
Scaling up has often been regarded as a good solution to increase production. But
without understanding cell-to-cell heterogeneity, the incorrect assumption about uni-
form induction levels often lead to non-linear production increases. Indeed, in larger
reactors, spacial heterogeneity in environmental conditions adds up to the temporal
instability. As mixing time increases with volume, individual cells encounter different
conditions (pH, oxygen content, nutrient concentration) over time, forming distinct
environmental lifelines (Figure 1.5). And while there are examples where these fluc-
tuating conditions have been shown to improve productivity [24], because environ-
mental conditions can vary on sub-minute time scales, cells are constantly adapting
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to conditions that are no longer relevant by the time they have expressed the adapted
phenotype.

Figure 1.5: Representation of the microenvironments within a large scale bioreactor and the
subsequent cells lifelines. Illustration taken from Blöbaum et al., [25]

Returning to the previously discussed yeast glycogen accumulation phenotype, in a
large-scale bioreactor, yeast cells will encounter fluctuating areas of high and depleted
glucose concentrations. In sufficiently large reactors, some cells may experience pro-
longed periods of glucose depletion, triggering them to switch to a low-growth pheno-
type that accumulates glycogen. However, this phenotype is likely ill-suited because
the cell may subsequently encounter regions of high glucose availability and miss the
opportunity to utilize it efficiently.
Continuous cultivation offers a promising alternative to batch processes, providing
a more stable environment that allows cells to reach a steady state [26]. This ap-
proach enables longer cultivation times, which can be achieved in smaller reactors
with greater control, reducing environmental heterogeneity and resulting in cost and
energy savings. However, even in these more stable environments, phenotypic het-
erogeneity persists, emphasizing the need for effective control strategies. Synthetic
biology is one such strategy, where scientists design and assemble well-characterized
genetic building blocks to create controllable and predictable genetic switches.

3. Designing predictable and controllable genetic switches
with synthetic biology
Gene circuits, like electrical circuits, would ideally operate with precision and pre-

dictability, allowing for seamless switching between ’on’ and ’off’ states. However, as
previously discussed, biological systems are inherently complex and noisy, with gene
circuits often deeply intertwined with other cellular components. This interconnected-
ness can lead to unpredictable behavior, as noise and variability propagate throughout
the system. While some degree of stochasticity in gene expression may be unavoid-
able, it’s also clear that certain gene architectures and components have evolved to
amplify noise and variability [27, 6].
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Synthetic biology aims to use well-defined building blocks, such as regulators and pro-
moters, to construct functional gene circuits. These building blocks are assembled in a
specific way to create a behavior that is as close as possible to the intended one. This
modular approach allows for the design, construction, and optimization of gene cir-
cuits in a systematic and predictable manner. This is similar to how electronic circuits
are built using a library of well-defined components, such as transistors and resis-
tors, to create a desired functionality. One such engineered circuit, the toggle switch,
utilized a tandem of two promoters, each controlling the expression of the repressor
protein of the second (Figure 1.6). In addition to this dual-lock architecture, each pro-
moter is inducible by a chemical inducer that cannot be metabolized by the cell. This
makes the toggle switch highly controllable, multistable, and is thus a good example
of how synthetic biology can create highly predictable and controllable circuits.

Figure 1.6: The toggle switch is a gene circuit that features a unique design, where two
promoters are connected in a feedback loop. Each promoter drives the expression of the
repressor of the other promoter. This clever configuration allows the circuit to be toggled

between two stable states by adding either inducer, effectively "flipping" the switch between
the two positions. This figure originates from the original publication featuring this gene

circuit [28]

An alternative strategy involves developing host-aware systems that adjust gene ex-
pression strength based on cell resource availability. Since microbial cells have limited
resources, diverting them towards production can hinder growth. To optimize prod-
uct formation while preserving cell resources, parameters such as promoter strength,
ribosome binding site (RBS), and gene of interest copy number can be fine-tuned.
However, this approach is time-consuming and inflexible, requiring multiple design-
build-test-learn cycles and redesign of elements for each change in growth conditions
or product requirements. Researchers have pushed for the development of strategies
that can adapt to dynamic environments [29]. Host-aware circuits offer a promising
solution, as they are portable and do not require cell monitoring or external feedback
control.
To replicate the complexity of natural cellular systems, synthetic biology has sought
to integrate genetic circuitry in organisms like yeast and bacteria, enabling them to
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undergo differentiation. These systems aim to induce the irreversible segregation of a
homogeneous population into subgroups with distinct phenotypes, i.e., functionality.
In yeast, the CRE-Lox system, originally used to remove antibiotic resistance mark-
ers, has been re-purposed to trigger differentiation. When the CRE recombinase is
produced, the lox recognition sites are combined, activating a gene [30]. However,
only a subset of the population is directed to differentiate, resulting in the emergence
of a productive population with reduced growth rates, outcompeted by an undifferenti-
ated population that prioritizes growth. This leads to a co-culture-like scenario, where
both populations are genetically distinct. Furthermore, periodic re-differentiation is
necessary, requiring the re-expression of CRE.

Figure 1.7: The Bxb1 integrase recognizes and recombines attP and attB. In doing so, it flips
the sequence in between, making it code for a gene of interest. This irreversible switch

permits differentiation in E. coli.

In E. coli, a system utilizing the BxB1 recombinase has been proposed. This recom-
binase recognizes two small regions known as attP and attB and recombines them,
forming attL and attR sites (Figure 1.7), each containing half of the attP and attB se-
quences. Essentially, this means that whatever DNA sequence was originally situated
between the two recognition sites is now oriented in the opposite direction. In other
words, a DNA sequence that is non coding in one direction and that thus does not lead
to a burden, can be inverted on demand in a fraction of a population. This sequence
then codes for a burdensome gene that reduces growth. This productive population
will then be periodically overtaken by the undifferentiated population that maintains
genome stability. It thus acts as a reservoir for to be differentiated cells. The imple-
mentation of cell differentiation techniques benefit from cell machine interphase as it
is important to monitor the proportion of differentiated cells at all time. Failing to
differentiate enough cell is a waste of production potential whilst overshooting and
differentiating all the population will lead the appearance of mutants without naive
cells to outgrow them.
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On top of generating new gene circuit outputs, synthetic biology has also been used
to exploit new inputs. Optogenetic systems rely on light at specific wavelength to en-
ergizes engineered transcription factors to trigger the expression of a gene. There are
many advantages to use light. Light can be added and "removed" to a culture in a
highly precise manner. Micro-array mirrors can even be used to shine individual cells.
Also, light is cheap compared to exotic inducer such as tetracycline.
All these synthetic biology approach are rather new. The first optogenetic system
was described in 1995 [31], the toggle switch in 2000 [28], and the field is rapidly
expending. Quantitative biology is at the heart of the all the research carried out in
this expending field where using well-defined and controllable part is as important as
relying on quantitative approach to characterize the behavior of these gene circuits.

4. Capturing and controlling gene expression dynam-
ics with single cell analysis tools
Population analysis can be conducted at two levels: bulk and single-cell. Bulk mea-

surements, such as optical density, total fluorescence, or oxygen consumption, are
widely used for characterizing populations. However, single-cell measurements are
essential in specific scenarios where understanding population heterogeneity is cru-
cial. For instance, when comparing the efficacy of two induction systems, bulk mea-
surements may suggest that strain B exhibits superior induction strength compared to
strain A Figure 1.8. This might lead to prioritizing strain B for further optimization.
However, single-cell analysis reveals a more nuanced outcome. While the average in-
duction strength of strain B remains higher, single-cell analysis uncovers a subset of
cells in strain A with significantly greater production potential than strain B. In this
scenario, understanding the origin of this heterogeneity is crucial. Optimizing strain
A to harness the potential of these high-producing cells might ultimately prove more
beneficial than focusing solely on strain B.

Figure 1.8: Bulk measurements can lead to incorrect assumption because they do not capture
the diversity of expression within the population.
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4.1. Microfluidic cultivation
A microfluidic is a specialized cultivation technique that involves introducing cells

into chambers created on a polydimethylsiloxane (PDMS) chip, which can be mounted
on a microscope for analysis. The chip provides a homogeneous and stable environ-
ment, with media continuously perfused in nanoliter-scale chambers that individually
act as reactors Figure 1.9. The transparency of PDMS allows for the observation of
cells within the chamber using a microscope. By repeatedly observing a chamber, a
time-lapse is created, enabling the tracking of individual cell growth and gene expres-
sion, particularly when using fluorescent proteins. This feature enables the reconstruc-
tion of a cell’s history and that of its entire lineage. The continuous perfusion of media
provides a defined and stable environment, making it useful for characterizing strain
behavior and observing cell-to-cell phenotypic heterogeneity despite a homogeneous
environment. This tool has been used to characterize multiple inducible systems in
E. coli, namely the induction strength, heterogeneity among the cell population, basal
expression level, and growth reduction associated with the induction [32].

Figure 1.9: A. MSCC chip, containing several cultivation arrays with monolayer cultivation
chambers. B. Different cultivation chamber geometries (2D to 0D) with their advantages and
disadvantages and C. fluid flow schematic of these chambers. D. Live-cell imaging of typical
microbial cell colony cultivated at constant environmental conditions. Figure from Täuber et

al., 2020 [33]

A crucial factor driving the adoption of microfluidics is the associated data treatment.
Recently, AI-based segmentation pieces of software have been developed, enabling
effective cell segregation [34, 35, 36]. Generally, larger cells are easier to segment.
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Figure 1.10: Control
objectives more complex

than single static threshold
can be achieved as

exemplified by Lugagne et
al,. On the left a scene from
Space Odyssey, on the right
the GFP expression across

the cell population.

These software tools prove valuable not only for post-
experiment data treatment but can also be utilized in real-
time during experiments to regulate processes, a field
called cybergenetic. In this context, microfluidics can
serve as an interface between the cell and the machine,
where cells growing within are periodically monitored,
and actuation can be performed based on predefined con-
trol rules. For instance, an inducer can be added whenever
a specific proportion of the population falls below an in-
duction threshold, which can be visualized using fluores-
cent proteins. Lugagne and his colleges have exemplified
this by keeping a toggle switch in an unstable place with
both proteins being expressed. Normally, a toggle switch
only has two stable points. Without active control cells
are either locked in one state or the other. By using a close
loop control, the toogle switch was kept in an unstable
point where both output were expressed [37].
Perrino and his colleagues highlighted the significance of
precisely controlling gene expression, enabling them to in-
vestigate the relationship between synecluine concentra-
tion and its aggregation, a phenomenon hypothesized to
contribute to the development of Parkinson’s disease [38].
Recent advancements in control objectives, as demon-
strated in Lugagne et al.’s work [39], have enabled the de-
velopment of more sophisticated control strategies, paving
the way for the generation of complex outcomes such as
organs. In this work, a micro-mirror array to activate an
optogenetic circuit of at the single cell level was coupled
with AI for segmentation and decision-making to dynam-
ically control the expression of GFP across thousands of
cells (Figure 1.10). By leveraging this optogenetic sys-
tem and combining it with single-cell fluorescence analy-
sis, the authors developed an AI-driven model that enabled
rapid, on-the-fly determination of the optimal light inten-
sity for each of the thousands of analyzed cell to achieve
the desired fluorescence pattern fig. 1.10. The level of

control and observation microfluidic enables makes it a crucial tool for quantitative
biology to understand interspecies ecology [40], bio-process robustness [41] and the
functionality of genes [39].
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4.2. Flow cytometry
Flow cytometry (FC) is a powerful single-cell analysis technique that characterizes

cells as they pass through an interrogation point. As illustrated on fig. 1.11, this point
typically consists of one or more lasers, detectors, and filters that capture and analyze
the emitted signals. The silhouette formed by a cell’s passage before a laser correlates
with its size, while the reflected light provides insights into the cell’s external structure.
Additionally, the integration of fluorescent proteins, either expressed endogenously or
attached to specific antibodies, enables the quantitative assessment of gene expression
levels. This allows for the identification of pathogenic bacteria or cancerous cells,
thereby amplifying the technique’s utility in diverse research domains, including im-
munology and oncology.
Flow cytometry (FC) is a high-throughput technique that can analyze thousands of
cells per minute, generating straightforward results files with numerical values for
each cell and detector. The data requires minimal post-processing, making it relatively
easy to utilize compared to microfluidics. However, FC also has several limitations.
For example, it is prone to clogging and struggles to handle complex matrices contain-
ing high amounts of particles. Furthermore, each cell is only analyzed once, making it
impossible to track individual cells over time.

Figure 1.11: The sample is first structured using a laminar flow to separate the cells and have
them pass one by one in front of the laser(s). This initial separation is only achievable if the

concentration of cells is not too high. Then, each cell passes in front of a laser, and the optical
signal (fluorescence, diffraction, reflection) is recorded and associated with the cell. Image

credit to AAT Bioquest.

Furthermore, FC is limited in its ability to analyze cells in their native environment,
as it requires a sample to be drawn from the environment, diluted, and then analyzed.
This can lead to changes in the phenotype of cells during the analysis process. In
contrast, microfluidics allows for the analysis of cells within their native environment
without delay, providing a more accurate representation of cellular behavior.

Similar to microfluidics, FC has been incorporated in cell machine interphase. These
interfaces, sometime referred to as reactive flow cytometry (sources), enable the anal-
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ysis of cells in real-time, allowing for the control of cellular processes. In this setup,
a sample is taken from a cultivation device, diluted, and then analyzed using FC. The
resulting data can be quickly processed and utilized to exert control on the reactor
through various means, such as the addition of a chemical inducer or, in optogenetics,
by shining light onto the cells.
One such cell machine, ReacSight, utilized an open-source pipetting robot (Opentrons)
to draw and dilute a sample from small reactors for subsequent FC [42]. The FC anal-
ysis statistics are then compared to a pre-set control threshold, and if the conditions
are not met, actuation is performed. The device has been successfully employed to
maximize protein production by dynamically regulating the expression based on the
secretion stress in yeast. Induction was optimized using an optogenetic system, while
simultaneously monitoring the stress level of the yeast [43]. The platform’s flexibility
was used to incorporate an additional step to quantify the actual amount of secreted
product. Magnetic beads harboring an antibody that binds to the secreted proteins were
incubated with the sample, washed and recover before being introduced in the FC to
see the fluorescence resulting from the binding. This enabled the measurement of the
amount of GFP secreted into the environment while at the same time regulating the
production based on the stress level of the cells.
Another FC based cell-machine interface is the Segregostat. The Segregostat played a
central role as the primary tool used in the subsequent research and is thus extensively
described in the next section.

4.2.1. The Segregostat

The Segregostat (Figure 1.12) is a cell machine interface developed by Frank Delvi-
gne’s lab in the Microbial Process and Interaction Lab at Gembloux Agro Bio-Tech
(University of Liege) [44]. It utilizes flow cytometry (FC) at its core to gather single-
cell data from a lab-scale bioreactor. These data can be used not only for analysis but
also for regulation purposes. This section describes how the Segregostat operates as
well as the advantages and limitations of the technique.

The sampling process begins by extracting a sample from a lab-scale bioreactor to a
dilution and analysis chamber using a capillary tube and a peristaltic pump. The capil-
lary tube is designed to minimize dead volume, with a length of less than 30 cm and an
inner diameter of 0.2 mm. To ensure that only fresh cells are analyzed, an initial flush-
ing step is performed to remove any cells from the previous sampling. The analysis
chamber is then cleaned by filling it with filtered phosphate-buffered saline (PBS) and
emptying it multiple time. Then a sample is drawn again and diluted using a series of
peristaltic pumps that sequentially add PBS and partially empty the chamber. The di-
lution sequence is determined based on the cell concentration recorded in the previous
FC analysis. This sequence varies over time with the cellular concentration in the reac-
tor, but unfortunately, it also varies over time due to tubing wear, making it unreliable
for concluding long-term changes in cellular concentration. Once the sample is diluted
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Figure 1.12: The Segregostat is a versatile cell machine interface. Here, the sample is drawn
from a bioreactor, but because the sampling system relies on tubes and pumps, the device can
be connected to any kind of cultivation setup. The FC rapid analysis time of tens of thousands
of cells allows for the rapid capture of population complexity. These numerical data can then
be used to compare the population to a target structure and apply regulation. This schematic

representation of the Segregostat was produced by Maximilian Sehrt.

and the FC analysis is complete, the data undergoes cleaning to remove zero values,
and statistical analyses are performed using an Octave script. These statistics, along
with the raw data from the entire FC analysis, are then saved for further analysis. The
process duration from analysis to analysis varies depending on the dilution sequence
and the analysis parameters but roughly takes 10 minutes. The Segregostat is a versa-
tile and adaptable cell machine interface that can be easily integrated into a wide range
of cultivation setups, as long as a capillary for sampling can be introduced. While it
offers many benefits, it also inherits some limitations from its underlying technology,
including the risk of clogging and the inability to track individual cells.

The Segregostat can operate in either an open-loop configuration, where it solely
monitors the cultivation process, or a closed-loop configuration, where the gathered
data are used to trigger an actuation. In its current implementation, the actuation pro-
cess employs a bang-bang controller, where a peristaltic pump is activated at a specific
speed and time to deliver a precise amount of inducer into the reactor. However, fu-
ture implementations could involve various types of actuation, such as optogenetic
stimuli, pH changes, or alterations in dilution rates. As with all single cell analysis
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tools, the amount of data gathered during the process is important and extends be-
yond general parameters such as means or standard deviation. Both in close and open
loop configuration modes, data treatment is key to offer a good visual representation
of the dynamics and to quantitatively appreciate how the population structures itself
over time. Some of these principles that where adopted within our team come from
the information theory field and are presented in the following section.

5. Utilizing information theory to enable population
control
This section is an adapted version of the article:

1.Henrion, L., Delvenne, M., Bajoul Kakahi, F., Moreno-Avitia, F. & Delvigne,
F. Exploiting Information and Control Theory for Directing Gene Expression
in Cell Populations. Front. Microbiol. 13, 869509 (2022).

5.1. Abstract
Microbial populations can adapt to adverse environmental conditions either by ap-

propriately sensing and responding to the changes in their surroundings or by stochas-
tically switching to an alternative phenotypic state. Recent data point out that these
two strategies can be exhibited by the same cellular system, depending on the am-
plitude/frequency of the environmental perturbations and on the architecture of the
genetic circuits involved in the adaptation process. Accordingly, several mitigation
strategies have been designed for the effective control of microbial populations in dif-
ferent contexts, ranging from biomedicine to bioprocess engineering. Technically,
such control strategies have been made possible by the advances made at the level of
computational and synthetic biology combined with control theory. However, these
control strategies have been applied mostly to synthetic gene circuits, impairing the
applicability of the approach to natural circuits. In this review, we argue that it is pos-
sible to expand these control strategies to any cellular system and gene circuits based
on a metric derived from this information theory, i.e., mutual information (MI). In-
deed, based on this metric, it should be possible to characterize the natural frequency
of any gene circuits and use it for controlling gene circuits within a population of cells.

5.2. Introduction
The parallel advances made at the level of cell culturing procedures (i.e., microflu-

idics [45] and cell machine interfaces [37]), as well as the manipulation of gene circuits
([46] [47] [48]), have paved the way for the design of efficient cell population control
procedures. It is now possible to act either on the cell population ([49];[50];[51]) or
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on individual cells within the population ([52];[53]) for directing gene expression and
cellular functions. In this review article, we will focus more precisely on a generic ap-
proach that could be used to control gene expression in individual cells among popula-
tion. A critical aspect that must be taken into account before being able to manipulate
gene expression in cell population is related to the inherent noise of cellular systems
[54]. This noise induces cell-to-cell variability in gene expression, and a potential
control procedure must be designed by taking into account the inherent functionality
exhibited by noise on the cellular system ([47];[55]). Indeed, it is known that biolog-
ical noise is a mechanism exploited by cell population in order to increase its fitness
in front of fluctuating environmental conditions ([56];[19]). As an example, in natural
ecosystems, microbial populations are often exposed to unpredictable environmental
changes such as nutrient starvation, exposure to antibiotics, temperature variations,
and many other sources of stress [55] that can fluctuate periodically or randomly. Cel-
lular systems have then evolved accordingly by adapting different cellular components
in order to accommodate such fluctuations involving different timescales. If environ-
mental conditions change slowly and regularly, a responsive switching strategy leads
to increased fitness for the cell population [57]. On the other hand, if environmental
conditions are fast and erratic, a random switching mechanism, leading to pre-adapted
cells, is more suited for optimizing population fitness. The study of phenotypic di-
versification mechanisms involved in antibiotic persistence in bacteria has pointed out
that cellular systems can take benefit from both stochastic and responsive switching
[57]. It is clear that, for designing an efficient population control procedure, stochastic
switching must be minimized and responsive switching must be favored. Such respon-
sive mechanisms typically involve gene circuits, able to record environmental changes
and to respond accordingly.

A spectacular realization of the inference of periodic environmental changes by gene
circuits is the implementation of circadian (oscillation with a period of 24 h; [58]) or
ultradian (oscillation with a period < 24 h; [59]) rhythms by cellular systems. Many
other gene circuit architectures or motifs are known to be able to infer extracellular
signals and trigger appropriate biological responses ([60]; [61]). Even if we have now
access to a classification of the motifs and their possible dynamics ([62]), it is still a
challenge to infer the dynamics when several motifs are combined to each other or
when the response interferes with many other cellular components. Indeed, in some
case, gene circuit architectures can involve overlaps between different stress response
pathways, allowing cells to anticipate environmental changes ([63]; [64]). This antici-
patory switching arises in ecosystems where different environmental changes exhibit a
strongly correlated time profile. As an example, Escherichia coli has evolved in order
to be able to grow inside and outside a host (i.e., a mammals; [65]). When invading the
host, E. coli is exposed to heat shock where temperature increases from 20 to 37°C.
This heat shock is then followed by oxygen limitation as bacteria are reaching the
gastrointestinal tract. The gene circuits involved in heat shock response and oxygen
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limitation have been found to share common inputs and outputs in E. coli, elevation
of heat leading to the adaptation to oxygen limitation in order to anticipate correlated
environmental changes. Given all these elements, it is then difficult to infer the mode
of switching, i.e., stochastic, responsive, or anticipatory (or a combination of them)
based on the gene circuit architecture. Accordingly, we propose in this work, a gen-
eralizable approach aiming at stimulating the responsive component of switching for
directing gene expression in cell population. Such approach could be made possible
through the use of a universal metrics aiming at quantifying the information transfer
efficiency in cells and leading to the design of robust cell machine interfaces.

5.3. Using information theory for determination the optimal stim-
ulation frequency leading to coordinated gene expression in cell
population
Cells are intrinsically programmed in order to react to external stimuli and to adapt

appropriately by switching to different phenotypic states ([66]; [67]). It is then unre-
alistic to try to keep these cells into a specific phenotypic state, even if this would be
a nice outcome for several applications, such as the optimization of cell factories for
bioprocessing [68]. Indeed, these phenotypic states are linked to specific environmen-
tal states through selection pressure and the resulting fitness advantage, environmental
condition being under constant evolution [56]. A more realistic alternative is to control
cell switching itself, which is now technically feasible through the use of cell machine
interfaces ([69]; [50]; [51]). In order to make this control strategy successful, two spe-
cific aspects must be taken into account, i.e., the efficiency in information transmission
through the targeted gene circuits and the timing at which cells commit to phenotypic
switching. These two aspects will be illustrated through a case study recently ad-
dressed, i.e., the synchronization for the activation of the gene circuit responsible for
the induction of the arabinose operon in E. coli [51]. The relevance of this case study
is also justified by the fact that the arabinose operon has been long used as a biolog-
ical case study for the characterization of the functionality of biological noise in cell
population [70] and also by the fact that the genes belonging to the arabinose operon
are widely used for synthetic biology applications and notably for the synchronization
of cell response ([71]; [72]). Finally, the arabinose operon is known to exhibit strong
cell-to-cell variability both in the timing for activation ([70]; [73]) and also the level of
expression of the corresponding genes [74], suggesting that the underlying cell switch-
ing mechanisms involves a mix of responsive and stochastic components. This make
this system very interesting to be considered for possible coordination at the population
level. The first step in the cell-to-cell coordination for the activation of the arabinose
operon is to know the possible effector for the underlying gene circuit. The activation
of the arabinose operon is under the control of a feedforward loop ([75]; Figure 1.13
A) combining the glucose depletion signal (through the accumulation of cAMP inside
cells) and the presence of arabinose (through the activation of the transcription factor
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AraC).
Under glucose-limiting conditions, it is then possible to activate or deactivate this

gene circuit based on arabinose pulsing ([51]; Figure 1.13 A). At this stage, the first
drawback exhibited by biological noise can be observed. Indeed, upon arabinose puls-
ing, cells will commit to the activation of the feedforward circuit leading to the syn-
thesis of the different proteins involved in arabinose assimilation. However, due to
biological noise, timing in commitment will exhibit cell-to-cell heterogeneity ([76];
[77]). Timing in cellular commitment to alternative phenotypes depends on the accu-
mulation of regulatory proteins at the single cell level. Transcription and translation
processes in individual cells are prone to biological noise([78]; [79]). These processes
can be simulated based on the resolution of the chemical master equation or, more
practically, based on the Gillespie algorithm [78]. These simulations have been shown
to lead to very realistic pictures for mRNA and protein synthesis in individual cells
[61] and pointed out that these processes follow Poisson statistics. Accordingly, the
transition of cells between two adjacent phenotypic states (for example, the two states,
GFP negative and GFP positive, drawn in Figure 1.13 A) can also be represented by a
Poisson process. One key property of the Poisson process is that the timing between
two consecutive events (e.g., the time between the synthesis of two mRNAs from the
same DNA sequence in a single cell) follows an exponential distribution. Based on
this statement, the residence time distribution of cells in a given phenotypic state can
be represented by an exponential distribution [80].

It is thus very critical to take into account this residence time distribution for coordi-
nating cell switching at the population level. One way to overcome this use is to rely
on the use of a cell machine interface allowing the on-line monitoring of the switching
process at the level of individual cells in the population and to react accordingly. This
principle has been notably adopted for developing the Segregostat ([50]; [51]). This
system is based on the use of on-line flow cytometry for recording the cell switching
rate and to trigger environmental switching accordingly. The fact that the frequency of
environmental perturbation must be set based on the phenotypic switching frequency
has been previously deduced from numerical simulation [56]. Similarly, another study
has pointed out that the control of gene circuits is dramatically reduced above a critical
stimulation frequency [81]. Under these conditions, the frequency of the extracellular
signal is effectively transmitted, leading to a cell population with synchronized gene
expression (Figure 1.13 B). Effective entrainment of cell population can be assessed
based on the oscillatory gene expression profile exhibiting a frequency close to the one
of the input stimulations. Such oscillations were experimentally observed during Seg-
regostat experiments carried out for controlling the activation of the arabinose operon
[51]. It is also important to point out that in this case, square waves are used as stim-
ulatory input. This strategy is also called pulse width modulation (PWM; [82]; [83]).
We will see in the next section that this strategy has been used several times for con-
trolling different cellular systems (listed in Table 1.3). In the present case, population
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Figure 1.13: A Scheme of the feedforward loop motif involved in the regulation of the
arabinose operon. On the left, arabinose is not available and the AraC branch cannot be

induced. Accordingly, cell switching does not take place and, eventually, previously induced
cells are relaxed back to the un-induced (low) state at a rate Kswitch low->high. On the right,
arabinose is available and the AraC branch, together with the cAMP-CRP branch, is activated
leading to the induction of the genes araBADEFGH involved in arabinose metabolism. Under

these conditions, cells from the low-state switch actively to the high state at a rate Kswitch
high->low. B Proper coordination/synchronization of gene expression can be achieved based
on periodic stimulations (or environmental fluctuations) made at a specific frequency freqenv.

If freqenv is too high by comparison with the frequency for cell switching freqswitch, then
cells are not coordinated and exhibit strong variability in gene expression. However, when

freqenv is set close to freqswitch, coordination in gene expression is possible leading to
synchronized gene expression. C Typical shape of a Hill relationship between an input (here
the concentration of arabinose in the medium) and its resulting output (here, detected based

on the synthesis of GFP based on a ParaB : GFP transcriptional reporter). D Impact of
biological noise (represented by double arrows) on the probability for delivering an output

based on a given input.
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oscillates according to a frequency corresponding to the one of the input square waves.
This is represented in Figure 1.13 B based on the period Tenv (Tenv = 1/ frequency) of
the input square wave stimulation, which is transmitted to the population and lead to
oscillation in gene expression with the same period Tswitch = Tenv. All these obser-
vations point out that cells are able to deduce changes in their surroundings based on
diverse sensory mechanisms. We do not want here to discuss about the biological di-
versity of these mechanisms, but rather to quantify the efficiency at which a cell is able
to infer extracellular perturbation. A universal way to quantify information transmis-
sion through biochemical network can be derived from Shannon theory or information
theory [84]. In order to be able to understand the importance of information theory in
biochemical signal processing, it is important to introduce the concept of input output
(i/o) or dose response relationship. For many gene circuits, this i/o relationship can
be represented by a sigmoidal curve (Figure 1.13 C), also called Hill equation [85].
For example, Hill equation can be used to infer the response of the feedforward loop
involved in the regulation of the arabinose operon [86]. This i/o correlation tells us
what will be the output of the gene circuit according to a given input. However, we
have seen that cell switching mechanism involves a random component in addition to
the responsive one. This random component can be represented by the error bars on
the i/o correlation (Figure 1.13 D).

Accordingly, one input can drive different output trajectories, leading to cell-to-cell
heterogeneity. It can be seen that some input leads to a very heterogeneous response,
making cell unable to properly infer the state of the environment. This is exactly where
information theory can be useful, i.e., by providing a metric for quantifying the amount
of information transmitted by the gene network for some specific input environmen-
tal conditions. This metric, mutual information (MI), corresponds to the logarithm of
the number of distinct, input-dependent, states that can be reached by cells [85] and
is quantified in bits. For example, a gene network exhibiting a MI of one bit means
that only two physiologically distinct states can be resolved by cells based on the in-
put conditions. Generally speaking, most of the gene circuits are corrupted by noise
and can carry only a limited amount of information, and most of the studies carried
out so far in this area have pointed out that MI equals to only 1 2 bits for different
gene networks and model organisms ([87]; [60]; [84]; [88]; [89]). This leads to the
conclusion that only these states have to be targeted when designing a cell population
control strategy. The next section will be dedicated to the description of some real-
ization in the field of cell population control (also termed cybergenetics), pointing out
that the above-mentioned methodology could help at this level by providing a general
framework aiming at developing further cell population control procedures.
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5.4. The contribution of control theory and the nascent field of
cybergenetics
The fact that cell population can be controlled based on pulsatile inputs has been re-

ported a long time ago. Indeed, long before the advent of single-cell technologies, [90]
observed that it was possible to synchronize cell cycle in E. coli cells by periodically
pulsing phosphate in a phosphate-limited chemostat. This pioneering work has led to
the establishment of a robust modeling framework for the understanding of the impact
of external conditions on the synchronization of cell cycle for many types of organisms
([91]; [92]; [93]). However, these studies have been carried out based on an open-loop
control approach and the application of regular pulses with varying frequencies and
amplitudes. More recently, the application of control theory to the manipulation of
cellular systems, i.e., cybergenetics, has set the ground for a more rational design of
cell population control procedures ([49]; [94]). Cybergenetics is an entirely new and
exciting field of research at the interface between control engineering and synthetic
biology, and emerged with the recent advances made in genetic engineering combined
with the works initially derived from cybernetics [95]. A distinction can be made be-
tween “internal cybergenetics” (also called in vivo and involving genetic controllers
directly embedded in cells) and “external cybergenetics” (also called in silico con-
trollers; [52]; [96]; [97]). In the context of this review, we will be focused more on the
latter technology, since it involves cell machine interface and pulsatile inputs used as
actuators.

Remarkably, although different systems have been used (e.g., various model organ-
isms, type of gene circuits to be controlled, and single cell techniques), all the data
accumulated point out that it is possible to effectively control gene circuits at the level
of individual cells by applying external periodic signals (Table 1.3). Evidences have
been provided suggesting that pulses of inducers tend to decrease noise in biochemi-
cal network, leading to synchronized gene expression ([98]; [99]). This effect can be
explained based on the dose response relationship (Figure 1.13 D) where input con-
centrations at the extremities of the dynamic range lead to a homogenous response at
the population level. In contrast, input concentrations at the center of the dynamic
range produce a heterogeneous population. This strategy, known as PWM, seems to
be generalizable for the effective control of diverse gene circuits in diverse cellular
systems. Most of the experiments involving the control of gene expression in cellular
systems have been performed in microfluidic devices (Table 1.3). This type of cul-
tivation device allows the acquisition of single cell data with a high spatio-temporal
resolution, but with a low experimental throughput due to the time and computational
power required for image analysis [100] and with possible technical biases by com-
parison with conventional cultivation devices ([101]; [102]). Nonetheless, there is a
growing interest in using standard cultivation devices (e.g., flasks, bioreactors, etc.) for
studying and controlling cell populations [103]. In this case, single-cell analyses can
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be performed based on automated flow cytometry, leading to the rapid accumulation of
data at the population level. In this context, the use of cell machine interface relying on
flow cytometry can lead to the automated determination systematic determination of
the optimal stimulation frequency for the effective synchronization of gene expression
at the population level [51].

5.5. Perspective: Exploiting intrinsic frequency of gene circuits
Taken altogether, the elements assembled in the previous sections point out that a lot

of different gene circuits architectures can exhibit periodic behavior [and not only the
motifs reported behaving as natural oscillators, such as the repressilator [104] or the
oscillator motif ([71]; [72])] if stimulated at the appropriate frequencies [81]. Devel-
opment made in information theory and in cybergenetics provides the computational
framework and the experimental tools in order to generalize this concept to many bio-
logical systems. Impressive achievements can be expected from these field of research
such as the control of complex cell regulatory program (e.g., control of cell cycle pro-
gram; [105]) and the control of microbial community’s composition ([106]; [107]),
with applications in various field from bioproduction ([108]; [103]) to biomedicine
([82]; [109]).

6. Thesis objectives
The primary objectives of this thesis are twofold. The first is to enhance our general

understanding of microbial dynamics, i.e., how is a gene expressed in a population
(strength and heterogeneity) over time. To achieve this objective, we primarily fo-
cused our attention on continuous cultivation devices, examining why and how the
expression of one phenotype evolves in a homogeneous environment.

The second objective of this thesis is to develop methods for operating control over
these microbial dynamics with the aim of achieving more predictable and productive
outcomes from continuous cultivation. Initially, it might have been reasonable to as-
sume that this thesis would be divided into two parts, with understanding the dynam-
ics coming first and the control aspect following. However, as the reader will notice
throughout this manuscript, and as I have observed during the four years of my thesis,
both objectives are intertwined and feed into each other.
Understanding and controlling microbial dynamics in continuous cultivation has sig-
nificant applied implications. The COVID-19 crisis has highlighted the importance of
biomanufacturing, and greater productivity would have driven costs down, increased
production volumes of lifesaving antibodies and speed up the vaccine roll-out. Addi-
tionally, more efficient bioprocesses can accelerate the emergence of the bioeconomy
and serve as an enabler for various research initiatives that have demonstrated the pos-
sibility of replacing fossil-based products with bio-based alternatives.

28



Chapter 1. Introduction

This thesis aims to be as general as possible and will therefore focus on multiple
microorganisms. The ultimate goal being to infer population dynamics rules and feed
into the fundamental aspects of science that aim to understand how living organisms
behave, with all the applied implications that follow.
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Chapter 2. Fitness cost as an essential parameter that drives population dynamics

1. Initial case study: Characterizing E. coli arabinose
induction dynamics
E. coli main and preferred source of carbon and energy is glucose. But when this

premium carbon source is exhausted and that other carbon sources are perceived in the
environment, the bacteria can switch to the additional consumption of some of those.
This is typically done by expressing a cluster of genes coding for the transporter(s) and
enzyme(s) responsible for its assimilation. To avoid unnecessary metabolic cost, these
genes are inducible and often requires two signal. The first is cAMP. When glucose
gets exhausted, cAMP accumulates in the intracellular environment and serves as a
general signal to lift the catabolic repression associated to the availability of glucose
[1, 2]. This mechanism ensures that the bacteria is not going to invest energy into
the tools to metabolize an additional carbon source when the preferred one is widely
available.
The second signal is the carbon source itself. For the specific case study of arabi-
nose, the pentose presence lifts the inhibition exerted by the regulatory protein AraC
on the operon promoter. When arabinose is not present, AraC loops the DNA by bind-
ing to two operators upstream of the promoter. This loop makes the binding of the
RNA polymerase on the promoter impossible, thus impeaching the transcription (Fig-
ure 2.1). This inhibition can be lifted by the presence of cAMP and the binding of
arabinose to AraC [3]. Both work together to change the conformation of the regulator
protein, thus preventing DNA looping.

Figure 2.1: The regulatory protein AraC binds to two regions (operators), preventing the
interaction between the RNA polymerase and the promoter. When bonded with arabinose, the

conformation of AraC changes and the transcription inhibition is lifted. From Schleif et al.,
2000 [3]
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The arabinose promoter thus requires the shortage of glucose and the presence of
arabinose to activate the expression of the arabinose operon comprising the transport
protein and the three enzymes necessary for its metabolization. This promoter has been
observed to be tight. This means that in the absence of arabinose, no basal expression
is observed. Additionally, the arabinose promoter is strong and arabinose is a widely
available sugar. All this combined justify its utilization to drive the expression of het-
erologous proteins both for biomolecular protocol (CRISPR) [4] and in bioprocesses
[5] [6]. It was also previously observed in our lab that this system could be entrained
using the Segregostat, and it was thus decided that understanding its induction dynam-
ics would serve as a starting point in our quest to better understand gene expression
dynamics across microbial populations [7].

1.1. Disassociating induction and relaxation phases to isolate
population dynamic components
The level of gene expression within a microbial population depends on both induc-

tion and dilution processes. Cells gradually dilute certain properties as they grow and
divide, distributing their intracellular contents between the daughter cells. This phe-
nomenon resembles memory loss and occurs more rapidly with higher growth rates. In
addition to division, other factors such as protein degradation contribute to the mem-
ory clear-out; however, since protein degradation is relatively slow and considering
the high dilution rate used in our continuous cultivation, we assume that protein con-
centrations decline primarily due to growth. We monitor the induction levels of the
arabinose promoter utilizing a plasmid-based biosensor developed by Silander and its
colleagues [8]. In this medium copy plasmid, GFP mut2 expression is controlled by
the native arabinose promoter in E. coli. This construction coupled with our online
flow cytometry platform ensures that the activation of this gene circuit can be closely
monitored at a single cell resolution (Figure 2.2). During all batch cultivation, only
glucose is available. When switching to a chemostat, arabinose is co-fed with glucose,
and the cells switch from an un-induced state (basal fluorescence level) to an induced
one. At this point, the population induction stabilizes and adopts a log-normal distri-
bution. In contrast to the chemostat, in a Segregostat, only glucose is continuously fed,
and arabinose is conditionally provided as a pulse. In this setup, once 50% of the cells
are below a given fluorescence value, arabinose is added as a pulse.
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Figure 2.2: a Time scatter plot representing a chemostat cultivation of E. coli W3110
ParaB : GFP . b There, a sample is periodically drawn from a lab scale bioreactor and

analyzed with flow cytometry. c When the regulation is activated (d), the population oscillates
in response to the periodic addition of arabinose.

This kind of simple strategy is called a bang-bang controller. It allows for the perfect
desynchronization of induction and relaxation phases. During the relaxation phase, we
confirmed that de-induction resulted exclusively from dilution, as the decay followed
the growth rate of our cells (Figure 2.3). It is important to stress that because flow
cytometry only takes population snapshots, this analysis is impossible in a chemostat
where cells constantly switch up and down.
Analyzing the induction phase presents challenges, as one would ideally like to fully
characterize the induction profile for each inducer concentration. However, induc-
tion itself results in the metabolization of the inducer, potentially biasing any resulting
measurements. A potential method for addressing this concern involves employing
microfluidic cultivations, wherein fresh medium continuously replaces the old one,
thereby eliminating any feedback effects. Despite its advantages, working with mi-
crofluidics can be labor-intensive and time-consuming. At the start of this study, these
tasks proved challenging; however, significant advancements in image segmentation
techniques facilitated by artificial intelligence have greatly improved the process.
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Figure 2.3: In gray, the mean FU recorded during a relaxation phase in a Segregostat
cultivation (Figure 2.2). In red, decay of the fluorescence simulated based on an exponential

decay with µ = D.

We pursued an alternative strategy involving the construction of a strain incapable
of metabolizing arabinose. Utilizing lambda red phage enhancement of homologous
recombination combined with Cas9 negative selection, we generated the E. coli w3110
∆araBAD strain. When equipped with the ParaBAD::gfp plasmid from Silander’s work,
this modified strain signals the moment of induction without triggering the synthesis
of enzymes responsible for consuming arabinose. Upon verification of this behavior,
we proceeded to investigate the relationship between arabinose concentration and in-
duction (Figure 2.4). Specifically, we introduced a predetermined amount of arabinose
into a shake flask during the latter stages of the exponential phase, ensuring glucose
limitation, and subsequently analyzed the ratio of induced cells via flow cytometry.
This analysis revealed that the relationship linking inducer concentration with the pro-
portion of induced cells resembles a Hill function characterized by the parameters K,
the concentration at which half of the cells are induced, and n, the steepness of the
relationship.

We now know that ratio of cells that activate the arabinose promoter depends on the
pentose concentration and that when cells are not induced they dilute their phenotype
via growth.
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Figure 2.4: a The proportion of induced cell follows a Hill function dependent on the
arabinose concentration. b Low concentrations yield a clear response not to get induced, high
concentration represent a good opportunity and intermediates yield an unclear commitment.

1.2. A new mathematical framework to model population dy-
namics
This section is adapted from the description of the FlowStocK model from the fol-

lowing article:

2.Henrion, L. et al. Fitness cost associated with cell phenotypic switching
drives population diversification dynamics and controllability. Nat Commun
14, 6128 (2023).

With the induction and relaxation dynamics at its core, we built a stochastic model
named FlowStocKs to evaluate if both of these components are sufficient to reproduce
the induction dynamics observed in chemostat and Segregostat cultivation of E. coli
ParaBAD:gfp. FlowStocKS can be considered as:

• biologically segmented as it considers single cells

• abiotically unsegmented as it assumes a homogeneous environment

• an unstructured cell model as it does not take intracellular kinetics or metabolic
fluxes into consideration

This model comprises two modules: the growth module and the switch module. The
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system is resolved using a Markov chain with discrete time, where the growth module
is described by a set of ordinary differential equations (ODE). These ODEs detail how
single cells grow (2.1) and (2.2) and consume (2.3) their substrate (S), in accordance
with the Monod-type equations.

µ = µmax
S

S +Ks
(2.1)

dX

dT
= (µ−D)X (2.2)

dS

dT
= −µXY −DS +DSfeed (2.3)

In the growth module, single cells are simulated to grow until they double in size, at
which point they divide into two daughter cells. Additionally, to simulate continuous
cultivations, cells are randomly flushed out of the system based on a probability (Pout)
set by the dilution rate and the time step (Tstep) used in the simulation (2.4).

Pout = DTstep (2.4)

The growth parameters (µmax, KI, Y, Ks) are given by the switch module and define
the phenotype of each cell. To initiate the switching process, a cell must first cross a
time threshold by accumulating Tstep, and this commitment process is governed by a
switching probability (P ). This probability is determined by a response function, tak-
ing the inducer concentration (i) as input (2.5). The P function is a classical sigmoid
function characterized by a steepness (n) and a 50 % switching probability at concen-
tration (K). This function, that we will hereby refer to as the response function, is the
one presented in figure x.

Pi =
[i]n

[i]n +Ki
(2.5)

The accumulation of (Tstep) is analogous to the build-up of enzymes that are nec-
essary for the expression of a different phenotype, commonly known in many pro-
cesses e.g., substrate consumption switching and the diauxic shift time. Once the time
threshold τ is reached, the cell switches phenotype. In our experimental set-up, we
use GFP-based reporters to track the phenotype switch. Thus, once the time threshold
is reached a GFP is produced as a burst following a production rate set by a gamma
distribution. Similarly to Taniguchi et al., we assumed that active degradation of GFP
is neglectable and accordingly dilution is determined by cell division.

Let us detail how FlowStocKs is used to model the phenotypic profile of the arabi-
nose induction in E. coli. As previously mentioned, E. coli is able to consume ara-
binose, but it prefers to do so once glucose is exhausted. Fortunately, all continuous
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Figure 2.5: Comparison of experimental and simulated mean fluorescence intensity in
Segregostat mode (left). The reconstituted time scatter plot (right) of the simulation exhibits a

similar distribution to the experimental data, as shown in Figure 2.2.

cultivations performed in this work were done on the basis of a carbon limitation.
Thus, in this context, the bacteria starts assimilating arabinose once it perceives it and
has produced the necessary proteins for its intake and consumption. The transcription,
translation, and maturation time are part of the delay, and in this scenario, we fixated it
to 10 minutes, as it was observed that between the addition of arabinose in the reactor
and the first increase in fluorescence, 10 minutes pass by.
In a chemostat, arabinose is fed continuously, and thus, given this delay and the inabil-
ity of naive cells to consume the pentose, it first accumulates. This high concentration
then acts as an initial trigger, and most cells get induced, in the process, producing
GFP. Once they do so, the consumption rate of arabinose increases, and because its
influx in chemostat is stable, its concentration in the reactor goes down. This lower
concentration means that not all cells get perpetually induced and thus the GFP con-
tent across the population stabilizes. In Segregostat, arabinose is not continuously fed
but pulsed whenever the ratio of induced cells is above 50 %. Because the arabinose
promoter is tight, i.e., if no arabinose is present there is no expression, the pulsing of
arabinose yields a clear induction that then stops once the pentose gets exhausted from
the reactor. We have shown that the biosensor we used in our reactor does not yield
any growth default once activated. Thus, the GFP content goes down with growth with
similar rates regardless of the induction strength.

The FlowStocK model was used to replicate the dynamics observed in Segregostat,
with parameters n and k derived from a pre-defined response function (Figure 2.4).
The model’s parameters, including µmax and Ks for arabinose and glucose, were ex-
perimentally determined. The GFP production rate was fitted. The model success-
fully reproduced the dynamics observed in Segregostat, and its single-cell resolution
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enabled the reconstruction of a time scatter plot similar to that obtained from experi-
mental data (Figure 2.5). In this simulation, the production of GFP does not impose
a fitness cost on the cell growth, as E. coli grows similarly well on arabinose and glu-
cose. However, the activation of a gene circuit can sometimes result in a significant
growth reduction. To extend FlowStocK to these systems, we added a non-competitive
growth inhibition term ((2.6)) and assumed that the inhibitor concentration equals the
GFP content to capture the effect of gene expression strength on the population’s phe-
notypic structure.

µ = µmax
S

S +Ks

Ki

[I] +Ki
(2.6)

2. Fitness cost associated with cell phenotypic switch-
ing drives population diversification dynamics and con-
trollability
So far, we have successfully modeled the gene expression dynamics across a pop-

ulation using the induction and relaxation dynamics. This has enabled us to gain a
deeper understanding of the arabinose-inducible system in E. coli. However, to further
challenge our model and extend our analysis, we have decided to broaden our scope to
multiple systems in different organisms. This has enabled us to identify the fitness cost
associated to the switching of one phenotype to another an important driver of popu-
lation heterogeneity and controllability. At this point, it is important to empathize that
we define the fitness cost as a reduction in growth rate. Fitness is a notion that is highly
dependent of the context and approximating it to just growth rate makes no sense in a
natural environment. But as all analysis below have been performed in a continuous
cultivation device, and thus, the capacity of a phenotype to outgrow another is deemed
closed to its fitness.
This section is an adapted version of the article:

2.Henrion, L. et al. Fitness cost associated with cell phenotypic switching
drives population diversification dynamics and controllability. Nat Commun
14, 6128 (2023).
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2.1. Abstract
Isogenic cell populations can cope with stress conditions by switching to alternative

phenotypes. Even if it can lead to increased fitness in a natural context, this feature is
typically unwanted for a range of applications (e.g.,bioproduction, synthetic biology,
and biomedicine) where it tends to make cellular response unpredictable. However, lit-
tle is known about the diversification profiles that can be adopted by a cell population.
Here, we characterize the diversification dynamics for various systems (bacteria and
yeast) and for different phenotypes (utilization of alternative carbon sources, general
stress response and more complex development patterns). Our results suggest that the
diversification dynamics and the fitness cost associated with cell switching are cou-
pled. To quantify the contribution of the switching cost on population dynamics, we
design a stochastic model that let us reproduce the dynamics observed experimentally
and identify three diversification regimes, i.e., constrained (at low switching cost),
dispersed (at medium and high switching cost), and bursty (for very high switching
cost). Furthermore, we use a cell-machine interface called Segregostat to demonstrate
that different levels of control can be applied to these diversification regimes, enabling
applications involving more precise cellular responses.

2.2. Introduction
Cell populations can respond to environmental changes, and to the frequency of

these changes, by adjusting their phenotypes through the activation of dedicated gene
circuits [9] [10]. This phenotypic plasticity holds significant importance in microbial
ecology, where the fitness of a cell population depends on a cost benefit ratio between
the sensing machinery needed for the activation and deactivation of a given gene cir-
cuit [11] and its activity. Therefore, controlling the phenotype of cells has a lot of
importance in various fields of research, such as bioproduction and synthetic biol-
ogy, where coordinated gene expression is typically desired [7] [12]. Generating and
controlling cell collective behavior is considered as a hallmark of synthetic biology
[13],[14],[15], and is now enabled by the parallel advances made at the level of cell
cultivation procedures (i.e., microfluidics [16] and cell-machine interfaces [17]), as
well as the manipulation of synthetic gene circuits [18] [19]. Effective control of gene
expressions and their underlying cellular functions can be achieved in cell populations
[20],[21],[22] or individual cells within a population [17],[23]. Different approaches
can be used to coordinate/synchronize gene expression in cell populations. On the
one hand, specific gene circuits can be designed in order to generate natural oscil-
lations [15],[24]. On the other hand, external forcing can be used for coordinating
cellular responses [25],[26],[27]. According to this last approach, a given stimulus
(e.g., chemical inducer [17] and light [21],[28]) is repeatedly applied at a given fre-
quency and amplitude in order to entrain gene expression within a cell population.
In this case, the effective transfer of information from the extracellular environment
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to the effector sites within cellular systems is of critical importance and can be cor-
rupted by biological noise [29] [30]. In silico experiments pointed out that specific
environmental fluctuation frequencies could significantly reduce stochasticity in cell
switching [19],[30]. This switching behavior, which we will now refer to as a diver-
sification regime, significantly impacts the population structure and lies at the core of
phenotypic control. However, the main factors affecting these diversification regimes
are not known, when applied at a given frequency and amplitude in order to entrain
gene expression within a cell population. For this purpose, chemostat runs are comple-
mented by experiments conducted in Segregostat. Segregostat relies on a cell-machine
interface to generate environmental perturbations that are compatible with the diver-
sification rate of the considered cell population (Figure 2.6) [22]. This rational envi-
ronmental forcing allows for the observation of several diversification cycles in one
experimental run (Figure 2.6). We apply this technology to look at the dynamics of
cell populations with cellular functions leading to different fitness costs, i.e., utiliza-
tion of alternative carbon sources (Escherichia coli), general stress response (E. coli
and Saccharomyces cerevisiae), sporulation (Bacillus subtilis) and activation of a T7-
based expression system (E. coli). Based on the fitness cost associated with the cell
switching mechanism (referred to as switching cost or fitness cost in this study), three
different population diversification regimes, with different levels of sensitivity to envi-
ronmental perturbations, are observed.

2.3. Characterization of population diversification dynamics based
on automated flow cytometry
In the context of this work, the temporal diversification of cell populations has been

followed based on chemostat cultivation of GFP reporter-bearing strains and auto-
mated flow cytometry (FC) (Figure 2.6 a). We define the phenotype as the cellular
content in GFP and the characteristics associated with the activation of the observed
gene circuit. By coupling FC to GFP, we are able to visualize the diverse range of phe-
notypes and study the dynamics of population diversification based on snapshot data.
To better describe these dynamics, we have developed a methodology to compute the
fluxes of cells from one phenotype to another and the resulting degree of heterogeneity
of the population, i.e., in our case, based on the measurement of information entropy
(Figure 2.6 b) and the flux of cells (Figure 2.6 c). Entropy is a measurement derived
from information theory allowing to compute the degree of heterogeneity of a popu-
lation [31]. Briefly, GFP distributions obtained from automated FC measurements are
binned and the resulting phenotype distribution is used to compute the population en-
tropy (Supplementary Note 1 and Figure 6.3). Based on the same binning strategy and
by evaluating the enrichment or depletion of bins between consecutive measurements,
we can also determine the flux of cells. Consequently, we can assess the dynamics of
population diversification by monitoring the changes in population diversity (H (t)), as
well as understanding how the phenotype shift evolves over time (F (t)). In addition
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Figure 2.6: a Chemostat culture is monitored based on automated FC. b The fluorescence
distribution acquired by FC is assembled into a time scatter plot. This time scatter plot is then
further reordered into 50 fluorescence bins in order to compute the evolution of the entropy H

of the population (Supplementary Note 1). c The binned data are further processed by
applying a gradient to compute the fluxes of cells into the phenotypic space, leading to the
quantification of the total fluxes of cells per time interval F(t). Both H(t) and F(t) will be

exploited for characterizing the phenotypic diversification dynamics of diverse cell
populations. d Scheme of Segregostat set-up. Pulses of nutrients are added in function of the
ratio between GFP negative and GFP positive cells, as recorded by automated FC. e Expected
evolution of a Segregostat experiment where, upon controlled environmental forcing, several

diversification cycles can be generated.
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to quantifying cell-to-cell heterogeneity within the population, H will also be used to
calculate the information transmission to a cell population when subjected to environ-
mental forcing. The benefit of this proxy is its independence from the mean of the
distribution, by contrast with other noise proxies (e.g., Fano factor) that are known to
be overestimated when the mean value increases [8],[32]. Using entropy to analyze
chemostat experiments, however, provides limited information about diversification
dynamics. Indeed, the main diversification process takes place during the transition
between the batch and continuous phases of the culture. Therefore, we used a cell ma-
chine interface allowing us to produce several diversification cycles in a single experi-
ment. This device is called Segregostat and comprises a continuous cultivation device
connected to an in-house online FC platform [33] (Figure 2.6 d). This device enables
the generation of several diversification cycles per experiment, leading to a better char-
acterization of the population switching dynamics (Figure 2.6 e). Practically, the cells
analyzed based on automated FC are clustered into a GFP negative and a GFP positive
group. Depending on the gene circuits used, a pulse of inducer is applied when the
minimum ratio between the two phenotype clusters (i.e., either 50 % or 20 % of the
total amount of cells in the desired state, depending on the cellular system considered)
is not reached. Based on this experimental and theoretical framework, we character-
ized the population diversification profile of six different gene circuits in three distinct
cellular systems. Our approach involved linking a GFP reporter to each gene circuit,
enabling us to leverage the analytical power of FC (20,000 cells per analysis) to study
the population diversification over time.

2.4. Coordinated gene expression in a cell population can be ob-
tained based on environmental fluctuations triggered by a cell-
machine interface.
The methodology described in the previous section was applied to map the diversi-

fication of cell populations in chemostat and Segregostat cultivations. We began our
analysis by considering two gene circuits involved in simple cellular processes in E.
coli, i.e., the activation of the arabinose (Figure 2.7 a) and lactose (Figure 2.7 b) oper-
ons, respectively. Extended analysis of these systems is provided in Figure 6.1, and
reproducibility of the data is displayed in Figure 6.2. This type of cellular process is
quite simple since it involves two inputs, i.e., the absence of glucose or its limitation,
and the presence of either lactose or arabinose as an alternative carbon source. Since
these cultures were conducted in continuous mode, it was quite easy to ensure glucose
limitation. Furthermore, the gene circuitry behind the activation/deactivation of these
two operons is well documented in the literature, making them ideal case studies. The
maximal growth rate of these alternative carbon sources is close to that of glucose.
Further, despite the production of GFP, the induced phenotype still has a maximal
growth rate above the dilution rate imposed in continuous cultivation. Thus, a feature
of these two systems is that their activation does not result in a reduction in growth
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rate in these conditions, which we will from now on refer to as a fitness reduction or
switching cost. An extended analysis of the switching cost for the different systems
can be found in Supplementary Note 2 and Supplementary Figs. 6.5 and 6.4. We
thus decided to investigate other systems involved in more complex cellular processes
known to lead to a higher switching cost. We first chose to consider the general stress
response in E. coli and selected the promoter of the bolA gene as a representative σS-
dependent system (Figure 2.7 c). To extend our analysis to another biological system,
we also selected a gene circuit involved in the accumulation of glycogen in yeast, i.e.,
Pglc3, as a representative reporter of bet-hedging in S. cerevisiae (Figure 2.7 d). Both
genes are involved in very complex regulons, making it difficult to find an external
trigger. However, these general stress response reporter systems are known to share
common features in the sense that their expression is anticorrelated with the growth of
individual cells, making them very useful for analyzing cell collective behavior such
as bet-hedging. We then decided to use the external glucose concentration as the main
actuator for these two systems. Glucose-limited chemostats were then run as reference
conditions.

For Segregostat experiments, glucose was pulsed instead of lactose or arabinose, al-
lowing it to generate feast-to-famine environmental transitions. Segregostat cultivation
of all four cellular systems investigated led to entrainment and sustained oscillation of
gene expression (Figure 2.7 a-d). Based on the analysis of the entropy H(t) and the
flux of cells F (t) over time, we observed that for all systems, entrainment phases were
accompanied by an increased flux of cells switching to the alternative phenotype and
a corresponding decrease of entropy H(t) at the time of pulsing (Figure 2.7 where the
analysis is shown for the ParaB : GFP system, Supplementary Note 1, Supplemen-
tary Fig. 6.1). However, entropy increases during the relaxation phase (GFP dilution
upon cell division). In addition to these four gene circuits, two more were analyzed: a
T7-based expression system in E. coli and a circuit involved in sporulation in B. sub-
tilis. These two systems exhibit a very high switching cost, leading to very specific
population diversification profiles that will be described in the next section.

2.5. Phenotypic switching associated with extreme fitness cost
gives rise to a bursty diversification regime
We investigated the diversification dynamics of two other systems known for their

high impact on cellular fitness; the T7-based expression system in E. coli BL21 (pET28 :
GFP )—a typical heterologous protein production platform—and the sporulation reg-
ulon in B. subtilis (PspoIIE : GFP ). The T7 expression system is inducible by lactose
and PspoIIE : GFP is expressed when glucose is limiting, thus acting as an early
trigger for sporulation. The pET28 : GFP system is a T7-based expression vector
inducible with lactose. When lactose is pulsed, cells are turning green, and GFP is
diluted by growth when lactose pulsing is turned off (glucose is added continuously
according to a classical continuous mode of cultivation at a dilution rate D=0.5 h−1
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Figure 2.7: Time scatter plots (in hours) binned into 50 cell clusters (fluorescence bins) for
cultivations made in chemostat and Segregostat for a the ParaB : GFP system in E. coli. b

the PlacZ : GFP system in E. coli. c the PbolA : GFP system in E. coli. d the Pglc3 : GFP
system in S. cerevisiae. Animated movies for the time evolution of the FC raw data for each

system are available. For Segregostat experiments, environmental forcing has been performed
based on nutrient pulsing (the type of nutrient shown in the drawings for cell switching). e

Computation of the flux of cells and the entropy (higher values mean more heterogeneous) for
the ParaB : GFP system cultivated in Segregostat mode (Supplementary Note 1,

Supplementary Fig. 6.1). Reproducibility of the data has been assessed based on two
biological replicates (n = 2) for each system. All FC measurements contain 20,000 analyzed

cells (Supplementary Note 1 and Supplementary Fig. 6.2). The color bar alongside the
scatterplot represents the number of cells. Source data are provided as a Source Data file.
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D=0.5 h−1. The PspoIIE : GFP system is induced upon glucose limitation. In our
case, this system is cultivated at a very low dilution rate (0.1 h−1) in order to generate
glucose limitation and stimulate cell switching to sporulation. When too many cells
are switching, additional glucose is pulsed in order to keep the population under con-
trol. For both, the phenotypic switch leads to a drastic growth reduction. Surprisingly,
even in chemostat (with lactose present for the T7 system), FC profiles reveal bursts
of diversification and a subsequent high entropy at the population level. These bursts
are the result of a subpopulation of cells deciding to switch and being washed out
from the continuous cultivation device due to the associated fitness cost. Then, upon
environmental forcing based on Segregostat cultivation (lactose pulse, if more than
50% of cells are not induced with the T7 system and glucose is pulsed if more than
20% of cells express PspoIIE : GFP ), the number of bursts is reduced, and the fluxes
of cells involved in the process are increased, leading to a substantial but temporary
reduction of the entropy for the population. These results point out that Segregostat
transiently reduces the average entropy of gene circuits with a high fitness cost despite
very complex dynamics. It has been suggested in the literature that the stochasticity
in cell switching is associated with its associated fitness cost and is important for the
survival of the whole population. This feature is well illustrated in this case, where a
phenotype switch induces a dramatic loss of growth rate, leading to the wash-out of
these cells in continuous cultivation conditions.

However, this stochasticity can be reduced by applying environmental perturbations
at a rate matching the phenotypic switching rate of cells. In the context of the T7 sys-
tem, this approach led to the periodic maximization of cells in the GFP-positive state,
suggesting that it could be used for mitigating metabolic burden and maximizing pro-
ductivity in continuous bioprocesses. Indeed, the flux of cells to the high fluorescence
bins is more regular for Segregostat conditions (Figure 2.8 a).

2.6. Coordinated gene expression does not necessarily lead to a
more homogeneous cell population
Based on the analysis of the population diversification profiles exhibited by the six

systems investigated, both similarities and differences can be observed. All six sys-
tems exhibit coordinated gene expression upon environmental forcing in the Segrego-
stat device. This feature can be notably quantified based on F(t). On the other hand,
the same systems display different H(t) profiles (Figure 2.9). We computed the average
entropy H(t) for the six systems upon cultivation in chemostat and observed systems
exhibiting a low basal entropy of around 2.2 bits (i.e., ParaB : GFP , PlacZ : GFP
and PbolA : GFP ) and systems exhibiting a higher basal entropy of more than 3 bits
(i.e., Pglc3 : GFP , PT7 : GFP and PspoIIE : GFP ) (Figure 2.9 a). For each sys-
tem, the impact of Segregostat control system on the entropy was then investigated.
We use entropy as an indicator of control because one would expect a controlled sys-
tem to exhibit a more homogeneous phenotype and, therefore, a lower H(t). How-

59



Thesis draft

Figure 2.8: Temporal diversification profile for the PT7 : GFP system in E. coli a and the
PspoIIE : GFP system b cultivated in chemostat (from 0 to 40 h for PspoIIE : GFP ) and
Segregostat modes (from 40 to 100 h for PspoIIE : GFP ). Below Segregostat cultivation

modes, vertical lines indicate times of pulsing with the concentration (in g/L) displayed on the
y-axis. Only the continuous phase of the cultivation is shown on the graphs. Bursts of

diversification are highlighted in red on the fluorescence bins data. In both cases, the entropy
H (t) and the fluxes of cells in the phenotypic space F(t) have been computed from the binned
fluorescence data. The reproducibility of the data has been assessed based on two biological
replicates (n = 2) for each system. For each time interval, 20,000 cells have been analyzed by
FC (Supplementary Note 1 and Supplementary Fig. 6.2). The color bars represent the number
of cells for the fluorescence time scatter plots and the number of cells per minute for the F(t)

scatter plots. Source data are provided as a Source Data file.

60



Chapter 2. Fitness cost as an essential parameter that drives population dynamics

ever, based on this definition, we observed that not all systems were controllable with
Segregostat, as some of them showed no decrease in entropy despite their coordi-
nated gene expression. In particular, (1) the systems exhibiting a low basal entropy
(ParaB : GFP , PlacZ : GFP , and PbolA : GFP ) showed no decrease in entropy.
PlacZ : GFP even showed an increased entropy instead, probably due to the leakiness
of the promoter during the relaxation phase of the diversification cycles (Figure 2.9
b, c). 2) The systems exhibiting a high basal entropy (Pglc3 : GFP , PT7 : GFPP
and PspoIIE : GFP ) showed a homogenization of the population. (Figure 2.9 b, c).
We thus propose this criterion as a classification of the cellular systems, where trying
to control a homogeneous cell population in chemostats produces no benefits and can
even lead to an increased heterogeneity, while heterogeneous systems in chemostats
can, by contrast, be made much more homogeneous (Figure 2.9 c). Based on this cri-
terion, it can be observed that the Pglc3 : GFP system in S. cerevisiae exhibits a higher
level of controllability than the other systems. Indeed, in this case, Segregostat culti-
vation led to a drastic decrease in H(t) by comparison with the reference condition in
chemostat. This effect was then verified in microfluidics. Stress response pathways in
yeast are known to be involved in bet-hedging strategies, leading to a trade-off between
growth and expression of stress-related genes [34, 35]. The glc3 gene belongs to this
category. Accordingly, cells activating glc3 exhibit reduced growth. This phenomenon
has been characterized based on microfluidics single-cell cultivation (MSCC) [36] ex-
periments allowing to exposure of yeast cells to tightly defined glucose concentrations
(Supplementary Fig. 6.4).
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Figure 2.9: a Basal entropy (represented as a boxplot with whiskers where the interquartile
range as extremities of the box, the median is the horizontal line in the box, and the whiskers
as data extremes) recorded based on automated FC during chemostat experiments for the six

biological systems investigated (values of entropy are computed from the population
diversification profiles over the entire cultivation). Experiments have been done in duplicates
(n biological replicate = 2) for each cellular system and cultivation conditions (chemostat or
Segregostat) and exhibit a high reproducibility, see Supplementary Fig. 6.2. b Computation

of the controllability (gain in entropy from chemostat to Segregated conditions represented as
a boxplot with same structure than for plot A) for the six biological systems investigated.
These average gains have been obtained by subtracting the mean value of H(t) recorded in

Segregostat (considered as the controlled condition, i.e., cell population under environmental
forcing) from the basal entropy. c Different diversification profiles, with different levels of

controllability, can be observed based on the comparison of the H(t) profiles between
non-controlled (chemostat) and controlled (Segregostat) conditions. d Single-cell traces of

yeast Pglc3 : GFP cells cultivated in a dMSCC device fluctuating between 1 and 0.1 mM of
glucose (T1mM = 3 h; T0.1mM = 0.8 h). Between 10 and 40 cells have been tracked in four
different cultivation chambers over two biological replicates (mean fluorescence is shown in
bold). Pictures of a micro-colony taken at regular time intervals are shown (Supplementary

Movie 3).
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e Comparison of the mean fluorescence profile obtained in dMSCC with the ones obtained in
classical MSCC at high (1 mM) and low (0.1 mM) glucose concentrations. The shaded region
around the lines represents the standard deviation computed from the measurement (between

10 and 40 cells have been tracked in four different cultivation chambers over 4 biological
replicates (n = 4) for each condition). f Mean values of the entropy over the whole

microfluidics experiments run at different glucose concentrations and standard deviation
across chambers (n microfluidic chambers = 4 observed over one experiment). Each mean

value over a cultivation run in a chamber is represented as a dot, and the mean of all replicates
with the standard deviation across them as a black dot with error bars. Source data are

provided as a Source Data file.

Unlike with FC analyses where only population snapshots are captured, these ex-
periments let us monitor cell traces and thus analyze the fitness cost (growth reduc-
tion upon switching) associated to the switching. At low glucose concentration (<0.2
mM), a single cell fully activates the stress reporter and stops growing. At a higher
glucose concentration, the growth of the microcolonies is faster, but some stochastic
switching events can be clearly observed, with cells suddenly expressing the fluores-
cence reporter and stopping their growth. In order to confirm the beneficial impact of
Segregostat condition on the Pglc3 : GFP , we used dynamic microfluidic single-cell
cultivation (dMSCC) [37] where we applied environmental fluctuations between 0.1
and 1 mM of glucose at the frequency recorded in Segregostat conditions. These fast
and sharp transitions are an idealized scenario of Segregostat cultivation, but similarly,
we observed a very homogenous gene expression pattern with cells turning green in
perfect synchrony (Figure 2.9 d). The growth of all cells was comparable; the stress
level was kept at a low-level thanks to the fluctuating environmental conditions. If
we compare the experiments run in MSCC and dMSCC, it can be observed that cul-
tivated cells under fluctuating glucose concentration lead to an intermediate scenario,
both at the level of the mean fluorescence profile (Figure 2.9 e) and the global entropy
(Figure 2.9 f). It seems that when phenotypic switching is associated with a loss of
fitness, there is more stochasticity in the diversification pattern followed by the popula-
tion. However, when the nutrient level is changed at a given frequency, switching and
growth can be kept under control, leading to a drastic reduction of the phenotypic het-
erogeneity of the cell population. Another parameter that can explain the differences
observed between the Pglc3 : GFP system and the PT7 : GFP and PspoIIE : GFP
systems (Figure 2.9 b, c) is the rate of switching.

It can be reasonably assumed that gene expression and cell growth are slower in
Eukaryotes than in Procaryotes [38] , potentially explaining why it is easier to main-
tain the H(t) profile at a very low level in Segregostat conditions for the Pglc3 : GFP
system since cells are switching more slowly in this case. The concept of control-
lability refers to the extent to which environmental forcing provided based on Seg-
regostat cultivation reduces or not the global entropy of the population. So far, we
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have used information entropy as a proxy for the quantification of the heterogeneity
of cell populations. However, information entropy can also be used to evaluate the
mutual information (MI), i.e., the reduction in entropy of the cell population when
appropriate external stimulations are applied (Supplementary Note 3, Supplementary
Figs. 6.6-6.9). We then computed MI for a system exhibiting low (ParaB : GFP ) and
high (Pglc3 : GFP ) controllability (Supplementary Note 3, Supplementary Fig. 6.10).
Based on this analysis, we concluded that the MI is already maximal in chemostat
conditions for the ParaB : GFPP system, explaining the low controllability measured
in this case.

2.7. Fitness cost drives the appearance of different dynamical
regimes with different levels of controllability
According to the datasets acquired from the different biological systems, we ob-

served three types of diversification regimes named respectively constrained, dispersed
and bursty (Figure 2.10). We proceeded to an in-depth analysis of the potential fac-
tors influencing the three observed modes of diversification. The key distinguishing
factor between the systems displaying low and high basal entropy and controllability
lies in the fitness cost linked to phenotypic switching. When the fitness cost associ-
ated with the switching is low or non-existent, we observe a constrained diversification
regime where the population switches upon environmental change and adopts a homo-
geneous distribution. In that case, the stimulation of the population with controlled
environmental pulsing does not homogenize it (since information transmission is al-
ready maximal in the non-controlled conditions). When there is a fitness cost associ-
ated with the switch, what we call a dispersed diversification regime can be observed.
In that case, cells react to environmental changes but then adopt a more heterogeneous
population structure.
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Figure 2.10: The constrained diversification regime is observed at low switching costs.
According to the regime, all cells switch from the OFF state to the ON state according to a

relatively homogeneous diversification process, and the population exhibits a low H(t) there is
no increase in entropy upon activation of cells. The dispersed and bursty regimes are observed

at high switching costs. Accordingly, cells switch from the OFF to the ON state in a quite
heterogeneous way. The resulting stochastic switching is hypothesized to play a role in the

stabilization of the cell population under continuous cultivation as a way to mitigate the fitness
cost associated with switching. Upon diversification, the population exhibits a higher entropy.

In this case, the application of controlled environmental perturbations allowed a sub-
stantial reduction in population heterogeneity. For the bursty diversification regime
(higher fitness cost), cells switch in bursts, leading to a very heterogeneous popula-
tion structure. The application of controlled environmental perturbations reduces the
number of bursts and increases the number of cells involved in these bursts, leading
to a transient decrease in population heterogeneity. It seems that the regime depends
on the fitness cost associated with the phenotypic switching event. In order to ver-
ify that fitness cost is indeed the driver for the diversification pattern adopted by cell
populations, we conducted in silico experiments. For this purpose, we considered the
kinetic parameters obtained from the inference of the ParaB : GFP system in yeast
and conducted stochastic simulations based on FlowStocKS (Supplementary Note 4).
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profile in a chemostat in function of the fitness cost (here expression as the percentage of
reduction of the initial growth rate prior phenotypic switching). These values are equivalent to

the basal entropy shown in b Evolution of the mean flux of cells recorded during chemostat
experiments in the function of the fitness cost associated with phenotypic switching (see

Figure 2.6 for more details about the computation of the flux of cells). c Selected simulated
time scatter fluorescence plots illustrating the different diversification regimes observed at

different fitness costs (the whole simulation dataset can be found in Supplementary Movie 4).
d Selected simulated time scatter fluorescence plots illustrating the progressive transition
between the dispersed and constrained diversification regimes. e Selected simulated time

evolution for the fluxes of cells recorded for different values of fitness cost. The bursty regime
is characterized by the spontaneous generation of flux of cells (bursts) in chemostat

cultivations. f Reduction of the entropy upon environmental forcing in the function of the
fitness cost associated with phenotypic switching. The entropy values have been computed by

subtracting the mean entropy value recorded for the chemostat experiment from the
corresponding ones obtained in Segregostat and are equivalent to the controllability shown in

Figure 2.9

We conducted 32 different chemostat simulations by varying only the value for the
fitness cost and computed the entropy H (Figure 2.11 a) and the fluxes of cells (F) in-
volved in phenotypic switching (Figure 2.11 b). Solely based on the fitness cost asso-
ciated with the switching, we were able to reproduce the three types of diversification
regimes experimentally observed during the experiments (Figure 2.11 c). Complete
wash-out of the cells was observed for extreme fitness cost (>99% reduction in growth
rate). We then wondered if we could observe clear transitions between the different
regimes. Such transition was observed between the bursty and the dispersed regime
based on the computation of the flux of cells F. Indeed, while the transition between
the dispersed and constrained regime is progressive (Figure 2.11 d), the bursty regime
is marked by the appearance of a strong variation in flux of cell which is not observed
for the other two regimes (Figure 2.11 e). FlowStocKS was also able to reproduce the
behavior of the population under Segregostat cultivation, and the reduction in entropy
upon environmental forcing was computed (Figure 2.11 f). Again, reduction in en-
tropy depended on the associated fitness cost and thus was observed for the dispersed
and bursty regimes, in accordance with our experimental observations.
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2.8. Discussion
We used Segregostat to better characterize cell population diversification dynamics

by generating successive diversification cycles during the same experimental run. The
basic principle behind this technology is to revert the environmental conditions when
a fraction of cells (50 % or 10 % of the total population, depending on the investigated
system) crosses a predefined fluorescence threshold. This approach allows to maintain
a cell population in a dynamic switching state during the experiment. Based on the
analysis of the MI, i.e., the amount of information transferred from the extracellular
conditions to the cell systems [39],[31],[40], we determined that for the ParaB : GFP
system, the chemostat drives a similar amount of information to the Segregostat. On
the other hand, we observed a drastic reduction in entropy when entraining stress-
related systems, such as the Pglc3 : GFP system in yeast, in Segregostat. In this
case, we determined that the high entropy observed in the chemostat was related to a
trade-off between growth and gene expression [41] [35],[42] [43], which was further
confirmed based on a microfluidics experiment. To better relate the switching cost to
the resulting population structure, we then considered two additional systems where
phenotypic switching induced a huge fitness cost i.e., the sporulation system in B.
subtilis and the T7-based expression system in E. coli. Based on all the data accumu-
lated by automated FC for six different biological systems, we found that cell popula-
tions diversified according to three distinct regimes associated with increasing fitness
costs, i.e., constrained, dispersed, and bursty. The most noticeable difference between
these regimes is the level of entropy of the cell population, the entropy being a mea-
sure derived from information theory giving a robust estimate of population dispersion
[31],[44]. The lowest entropy values were associated with the constrained regime and
the highest ones were seen for dispersed and bursty regimes. The other difference was
observed in the cultivation of cell populations under fluctuating environmental condi-
tions. In Segregostat, a reduction of entropy compared to chemostat cultivation was
associated with the dispersed and bursty regimes but not the constrained one. Taken
altogether, the data suggested that on top of affecting the population heterogeneity, the
phenotypic switching mechanism changes the controllability of the system. All these
observations were confirmed based on stochastic simulations (FlowStocKS), suggest-
ing that the proposed diversification framework could be generalized for characterizing
diversification dynamics for any kind of cellular system. Harnessing phenotypic het-
erogeneity of microbial populations has been the subject of much research, leading
to the design of various technologies aiming at homogenizing gene expression in cell
populations [45]. We have shown that the level of diversification of microbial popu-
lations cultivated in continuous bioreactors depends mainly on the fitness cost. Since
many applications involve gene circuits whose activation leads to a substantial burden
for the cellular system [46],[47], active diversification processes have to be expected
in a number of cases [48]. For example, bursty diversification profiles have been ob-

68



Chapter 2. Fitness cost as an essential parameter that drives population dynamics

served for two cellular systems exhibiting high switching costs. According to this
regime, marked cycles of diversification can be observed even in chemostat cultures.
These cycles are due to the rapid switching (burst) of a fraction of the population that
lower the average growth rate of the population and are washed out of the system.
These cells are then replaced by the next burst of diversification, starting from a sub-
population of non-diversified cells. This type of temporal profile has been previously
observed, but it is based on spatially organized cells equipped with synthetic circuits
[49], [50], [51]. Here, we show that it is possible to reproduce such a complex but
organized diversification profile with cells in suspension in a bioreactor and that the
complex dynamics behind phenotypic heterogeneity are linked to the fitness cost asso-
ciated to the switch.
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Chapter 3. Biological oscillations without genetic oscillator or external forcing

The switching cost associated with the activation of a given gene circuit appears to
be a significant contributor to the population diversification dynamics observed dur-
ing continuous cultivation. One notable example of such diversification dynamics is
the bursty pattern, where cells diversify in waves and exhibit an oscillatory behavior.
This finding was surprising, as traditional textbook knowledge suggests that the stable
and limiting conditions imposed by a chemostat promote a stable population outcome
known, as a steady state. In this study, we explore the reasons behind the departure
from this stable state and provide explanations for the observed oscillatory behavior.

Pre-print Biological oscillations without genetic oscillator or external
forcing Vincent Vandenbroucke, Lucas Henrion, Delvigne Frank bioRxiv
2024.09.20.614027; doi: https://doi.org/10.1101/2024.09.20.614027

1. Abstract
Oscillators play a crucial role in biological systems, enabling complex behaviors

such as cell division and circadian cycles. As a result, researchers have been studying
both natural and synthetic genetic oscillators. Interestingly, oscillating cellular behav-
iors are often linked to biological oscillators. In a previous study [1], we discovered
sustained oscillations related to phenotypic switching in different cellular systems and
gene circuits, without any external forcing. These oscillations were associated with the
induction of slow-growing phenotypes. In this paper, we aim to understand when and
why such phenotypic instabilities can arise, leading to oscillations in cell populations.
To achieve this, we developed a simple mathematical model of a stress phenotype and
solved it analytically to determine the range of operating conditions in continuous cul-
ture for which the gene expression should not reach a stable equilibrium. This range of
conditions is expected to exhibit an unstable biological behavior, which we verified in
Bacillus subtilis cultures. Our findings demonstrate that oscillations can occur in the
absence of genetic oscillators or external forcing, departing from the classical Monod
model. While we explain this phenomenon for the stress response in continuous cul-
ture, it is likely that similar unexpected behavior can occur in any long-term culture
where there is environmental feedback connecting the inducer and the cellular system
considered.

2. Introduction
Oscillating behaviors are ubiquitous through biology, appearing at multiple scales

from single cells to multicellular organisms and controlling a sizable portion of their
metabolism[2][3]. Their study yielded the discovery of natural gene circuits acting as
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biological oscillators, e.g., the circadian clock of cyanobacteria[4] or the E.coli cell
cycle[5]. These discoveries were complemented by the creation of synthetic oscilla-
tors[6], such as the repressillator, involving three repressor proteins to generate spon-
taneous oscillations in gene expression[7]. Oscillations in gene expression can also be
generated based on external forcing. So far, biological oscillations can be produced
based either on specific gene circuits[7], external forcing [8], or a combination of both
[9].

Previous examples in the field have thus shown that, typically, when cells cultured
in stable conditions exhibit oscillating gene expression, a biological oscillator is the
cause[7]. However, we previously observed that highly burdensome gene circuits can
oscillate when grown in a simple chemostat [1], a continuous cultivation device with
stable operating conditions designed to promote stable conditions for the cells to grow
in[10]. Notably, the two gene circuits that exhibited this behavior, the T7 expression
system in E.coli BL21, and the sporulation of B.subtilis, do not have gene network ar-
chitectures prone to generating oscillations. To understand the cause of these unstable
behaviors, we focus our attention on the latter sytem because it can be reduced to 1)
two defined phenotypes, i.e., growth and no growth, 2) one trigger, glucose, also acting
as the carbon source.

To this end, we first developed a simple mathematical model of the stress response
under a stable nutrient influx (a chemostat), where stress is induced when the nutrient
concentration is too low. This model shows that even under stable operating condi-
tions, there is a range of dilution rates for which no stable population profile can be
found. To verify these predictions, we performed experiments on B.subtilis and ob-
served that sporulation can exhibit oscillating profiles, observed as successive bursts
of sporulation in the population.

3. A mathematical model predicts instabilities in gene
expression for a specific range of dilution rate
As a first step toward the understanding of the observed oscillations, we designed

an ODE model of stress response taking into account the dynamics of two phenotypes
i.e., the non-stressed biomass X1 and the stressed biomass X2 (Eq. 6.5-6.11).
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A. Mathematical model solution for S and unstable region

B. Unstable simulation

TetR

λ cl LacI

X1

X2S

≈

C. The cell population motif is analogous to a repressilator

Substrate 

Dilution rate

Only 

Only 

Unstable

+

Wash-out

Figure 3.1: Representation of the solution of the mathematical model at steady state. A.
There are two sides to the set of equations. At high dilution rates, only the non-stressed

phenotype is present, as the sugar concentration is above the threshold KI . At low dilution
rates, the stressed phenotype is present as the sugar concentration is below KI . In between
those two cases, however, there is a region where no steady-state exists and oscillations are
possible.B As long as there is a delay in stress response, oscillations appear in silico in the
unstable region. Here, a system with similar values to B.subtilis sporulation is represented

with D = 0.1 h-1 and a delay of 0.5 h, but very small changes in parameters can have a very
large impact on the results. C The system, here represented schematically for bacillus

sporulation (right), acts as a repressilator system (left)[7]. When sporulation or stress is
induced, the amount of unstressed cells decreases. This causes the sugar concentration to

increase and inhibit sporulation, letting the unstressed cells take over anew.
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The stressed phenotype may not grow as fast as its counterpart, and its maximum
growth rate was described as µmax,2 = kµmax,1 where k ∈ [0, 1]. A step function
H1(S) was used to account for the phenotypic switch from X1 to X2 when the cells
are stressed (Eq. 6.11). Accordingly, the transition rate is considered a constant H
belowKI and none existing above. Since the stressed phenotypeX2 grows slower and
the proteins responsible for stress are mainly diluted by growth, the opposite transition
from X2 to X1 was neglected.

dS
dt

= (Sin − S)D − µX1

YX1
− kµX2

YX2
(3.1)

dX1

dt
= (µ−D)X1 −H1(S)X1 (3.2)

dX2

dt
= (kµ−D)X2 +H1(S)X1 (3.3)

µ = µmax
S

KS + S
(3.4)

H1(S) =

{
H if S ≤ KI

0 if S > KI

(3.5)

Where Sin is the sugar concentration in feed, D is the dilution rate, YXi are the
yields of each phenotype, and KS is the sugar concentration at half maximum of the
growth rate. Solving this model analytically (see SI Appendix) showed that there is a
range of dilution rates where equilibrium between the different state variables cannot
be reached and the system is unstable (Fig. 3.1 A). Within this region, the substrate
concentration S cannot get to the substrate concentration predicted by the traditional
Monod curve, as that is below the switching concentration KI . It cannot reach the ex-
pected equilibrium where cells switch to the stressed phenotype either, as that would
be above KI . Instead, the cells must constantly respond to their environment and
S should approach KI . This constant response is a negative feedback loop for the
growth of the population, and, combined with a delayed response to changing condi-
tions, the outcome is an oscillator analogous to the repressilator[7] (Fig. 3.1 B and
C). The oscillations, their appearance, and their persistence are expected to depend on
the importance of the delay and the accuracy of the step function to approximate the
switch to a stressed phenotype, but the range of dilution rate in which they appear can
be verified experimentally.
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4. Experimental confirmation of instability region un-
der multiple dilution rates in chemostat
Thus, the model predictions were challenged under continuous cultivation condi-

tions, a type of cultivation commonly used to promote stable conditions and set the
residual substrate concentration S through the dilution rate. As a case study, Bacillus
subtilis and one of its stress responses, sporulation, were selected. In this case, X1 is
the non-stressed biomass and X2 is the stressed biomass, i.e., the spores. Sporulation
is triggered when the residual glucose concentration drops below a concentration KI

and can be monitored with automated flow cytometry (FC) using a GFP transcriptional
reporter, i.e., PspoIIE::GFP. Given the values of H , KI , µmax and KS determined in
batch cultivation (SI Appendix) and the absence of growth rate for the stressed phe-
notype, the model predicts that when D is high and the residual glucose concentration
is above KI , only the vegetative cells X1 are present. If D is low and the residual
glucose concentration should be equal or below KI , both X1 and X2 can be observed
with the abundance of X2, the spores, periodically increasing. As predicted (Fig. 3.2),
at high dilution rates, where the residual glucose concentration exceeds the switching
threshold, cells do not activate the sporulation cascade, and the entire biomass consists
of X1. Upon decrease of the dilution rate, the residual concentration falls below the
switching threshold, and bursts of gene expression fromX1 toX2 appear. This tempo-
ral instability in gene expression persists for at least five retention times and gradually
decreases in amplitude.
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A. Dilution rate sweep reveals instability in gene expression

B. Confirmation of the instability

D=0.32 D=0.13 D=0.10 h-1

* *
*

* *
*

Figure 3.2: Mapping of cell population dynamics based on automated flow cytometry. The
line indicates the 75th percentile of the fluorescence data. Large oscillations are highlighted
with a ’∗’. A. According to the model, the gene expression dynamics depend on the dilution
rate. At a high dilution rate (D = 0.32 h-1) cells are not sporulating but once the dilution rate
goes down (D = 0.13 h-1) cells sporulate as burst that can be seen based on the activation of
the PspoIIE::GFP. The bursts gradually fade away when switching to a dilution rate of 0.1 h-1.
B. To confirm the observed instability in gene expression at a low dilution rate, we performed

another chemostat (D = 0.11 h-1) and observed similar outcome.
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5. Conclusion and Perspectives
The results displayed in this work show how the output of a gene network without

oscillating properties can nevertheless oscillate without the need for environmental
forcing. This finding challenges the long-held assumption that microbial populations
grown in chemostat exhibit a stable phenotype, instead suggesting that the population’s
characteristics can fluctuate over time. These oscillations are the result of a strong en-
vironmental feedback that could also be observed for many other phenotypic switches
associated with an important reduction in growth. Eventually, oscillations fade away
in the case of Bacillus. This deviation from the model prediction is speculated to orig-
inate from an over simplistic view of the switching that does not follow exactly a step
function but more a hill one that allow for some heterogeneity in the response. Further,
if a single sharp transition in phenotype causes unstable oscillations, there is no telling
how multiple gene network interacting both with each other and the environment might
create emergent behaviors on top of the ones predicted by current synthetic biology.

If cells can show such instabilities under stable operating conditions, then other cul-
ture conditions such as fed-batch (SI Appendix), turbidostat, or periodically refreshed
cultures may be subject to the same or worse effects. In fact, similar oscillations in-
volving stress related genetic switches have already been observed in a microfluidic
where the feed was periodically interrupted [11].

Once those effects are brought to light, it may be necessary to take them into ac-
count when studying the biological system of interest. By doing so, researchers can
gain a more comprehensive understanding of population dynamics and develop more
effective strategies to control and manipulate cellular behavior.

6. Material and methods
Additional details of the materials and methods are available in the SI Appendix, and

the relevant data is available in the Supplementary Dataset.
Three sets of experiments were performed for this paper: first, the growth param-

eters of a Bacillus subtilis 168 with the PspoIIE::GFP construction were determined
with a triplicate batch experiment. During this experiment, on-line flow cytometry
was employed to measure the sporulation status as indicated by the spoIIE reporter,
and samples were regularly taken to measure the OD and glucose concentration over
time. Glucose was measured with a glucose assay kit (D-glucose enzymatic assay kit;
Megazyme, Bray, Ireland). These results were used to approximate reasonably well
the parameters needed, although the fast variations in sugar towards the end of the
culture made KI and KS very uncertain.

Second, two chemostat experiments with successive dilution rates going from 0.3 h-1

to 0.1 h-1 were performed to observe the limits of the instability region. Just like with
the batches, online flow cytometry was used to measure the sporulation state of the
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population. Further, samples from the 0.3 h-1 dilution rate were used to provide a
better approximation of KS .

Finally, an additional chemostat at 0.11 h-1 was performed to showcase the differ-
ence in equilibrium time between different starting points (here, a batch, in previous
experiments, a continuous culture where some cells had already sporulated).
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Chapter 4. Lowering the switching cost related to the activation of burdensome gene
circuits promotes cell population homogeneity and productivity

In chapter 2, the link between the switching cost (also sometime refer to as fitness
cost) associated to the activation of a gene circuit and the heterogeneity in its activation
was underlined. This is of particular applied interest because:

• As we define switching cost as the growth rate reduction associated with the
activation of a gene circuit, it is analogous to production load. Consequently,
a significant production load leads to substantial cell-to-cell differences in the
expression of the gene of interest.

• This observation was made in the context of continuous cultivation, a process
that, despite its numerous advantages, is not yet widely adopted due to the het-
erogeneity in expression it is associated with.

In the following work, we address the reasons why the expression of burdensome
genes in continuous cultivation results in significant heterogeneity. Additionally, we
explore control methods to promote a more homogeneous outcome, with the hope that
this homogenization will actually lead to a more productive bioprocess.

Pre-print Lowering the switching cost related to the activation of burdensome
gene circuits promotes cell population homogeneity and productivity
Lucas Henrion, Vincent Vandenbroucke, Juan Andres Martinez Alvarez,
Julian Kopp, Samuel Telek, Andrew Zicler, Frank Delvigne bioRxiv
2024.10.14.618176; doi: https://doi.org/10.1101/2024.10.14.618176

1. Abstract
The activation of gene circuits can impose a significant burden on cells, leading to

heterogeneous expression and reduced productivity. In this work, we focused on the
T7 production system in E. coli BL21, a prime example of a burdensome gene circuit,
to investigate the main cause for this gene expression heterogeneity and methods to
mitigate it. Based on continuous cultivation analyzed and control by automated flow
cytometry, we quantified the trade-off between cellular growth and gene expression
and tracked the cell-to-cell heterogeneity in gene expression (measured as entropy).
We concluded that the growth reduction associated to the activation of the burdensome
gene circuit, i.e., the switching cost, is at the origin of the population heterogeneity.
The loss of growth rate imposed by the burdensome activation of the gene is compen-
sated at the population level by the overgrowth of less induced cells that safeguard the
population by generating entropy. We tried to homogenize the population by pulsing
the inducer with increasing frequency but found that the population escapes control
through promoter mutation, leading to a genotype exhibiting reduced gene expression,
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but also, reduced entropy. To engineer a more homogeneous population without sac-
rificing gene expression, we decreased the switching cost associated to the induction
by lowering the quality of the main carbon source. This strategy successfully led to
a more homogeneous and productive population. Our approach allows for a precise
quantification of the trade-off between growth and gene expression in cell population
cultivated under dynamic conditions and highlights the importance of the switching
cost for designing efficient approaches of cell population control.

2. Introduction
Even in a uniform environment, genetically identical cells still display significant

differences in gene expression [1, 2, 3]. This heterogeneity stems from two primary
sources, i.e., intrinsic noise, which is an inherent characteristic of biochemical re-
actions, and extrinsic noise, which arises from variations in the content of macro-
molecules between cells [4]. This noisy expression can have functional consequences
at the population level by generating phenotypically distinct sub-populations further
improving population fitness by providing robustness against sudden environmental
changes [5, 6, 7]. The beneficial impact of phenotypic heterogeneity on population
fitness has been reported several times for microbial populations evolving in a natu-
ral context [8, 9, 10]. However, in bio-production, cell-to-cell heterogeneity is still
perceived negatively [11, 12]. Indeed, within cell populations engineered for bio-
production of recombinant molecules, important cell to cell variability in production
and viability was observed [13, 14, 15, 16]. To better control the outcome of gene
expression, synthetic biology approaches have been used to engineer more robust and
predictable gene networks [17, 18] yielding more homogeneous induction. Despite all
these efforts, the impact of cell diversification dynamics on bio-process performances
is still an open question. In this context, our previous work suggests that the char-
acteristics of the gene circuit alone are insufficient to explain the observed degree of
heterogeneity in gene expression [19]. Instead, analysis of the heterogeneity in gene
expression across diverse gene circuits in multiple model organisms revealed that het-
erogeneity increases with the switching cost associated to the activation of the gene
[19]. In that work, which focused on the study of cellular heterogeneity in continu-
ous cultivations, switching cost was defined as the reduction in growth rate associated
with the activation of a gene circuit. This definition is analogous to production load
or metabolic burden and highlights the importance of this previous observation in the
context of bio-processes.

To control gene expression, it was proposed that the inducer could be pulsed instead
of being added continuously in the cultivation device [20, 21, 22]. The efficiency
of this approach was previously confirmed with a optogenetics system where the ex-
pression of a fluorescent protein was more homogeneous across the population when
applying light as pulses instead of continuous supplied [23]. It was suggested that pul-
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satile induction homogenizes expression because the transcription factors expression
itself is bursty [24]. Previously, we also observed the benefit of pulsing the inducer
instead of feeding it continuously, but only for gene circuits exhibiting a important
burden [19]. This current work aims to shed light on why the expression of burden-
some genes is more heterogeneous than non-burdensome genes and to propose new
approaches for promoting the homogeneous activation of such genes. To this end, the
activation of the T7 system in E. coli BL21 (DE3) was selected as a case study for our
analysis since its activation results in a significant burden [19] and is characterized by
an unstable induction in continuous cultivations [25].

3. The increase in cell population entropy reflects a
trade-off between growth and gene expression at the
single cell level
To understand the origin of the heterogeneous expression of burdensome genes dur-

ing continuous cultivation, the T7 expression system in E. coli BL21 containing the
pET28 : GFP plasmid was periodically stimulated to characterize the induction and
relaxation phases. The activation of the T7 system was followed by the expression
of EGFP, the production both mimicking the expression of a heterologous protein in
a bio-process while being easily quantified at a single cell resolution with a flow cy-
tometer (FC). For this purpose, the strain was grown in a Segregostat, where glucose
is supplied continuously while lactose (the inducer) is conditionally added in pulses
(Fig. 4.1 a). These pulses are triggered when FC analysis indicates that less than 50%
of the population exceeds a pre-set fluorescence threshold that is much greater than the
basal auto-fluorescence of the strain (here 1,000 f.u.). The fluorescence data, collected
in the FL1-A channel of the FC, can be combined to create a visual representation of
expression levels over time. This is achieved by concatenating the data from multiple
analysis cycles, resulting in a time density plot that provides a comprehensive overview
of the expression patterns (Fig. 4.1 b). The fluorescence values in the time density plot
can be binned, each bin containing a proportion of the population. This binning allows
for the quantification of heterogeneity using a metric derived from information the-
ory, Shannon entropy. Unlike the standard deviation or Fano factor, the entropy is not
biased by the mean and does not assume a normal distribution. Measured in bits, en-
tropy increases with the degree of cell-to-cell heterogeneity in gene expression. The
second type of data that can be extracted from the time density plot is the growth rate
of cells as a function of gene expression intensity. This can be achieved by analyzing
the fluorescence decrease of each quartile during a relaxation phase (SI Note 1). This
decrease in florescence is driven by growth and thus this approach quantifies the trade-
off between gene expression (fluorescence level) and growth (Fig. 4.1 c). For the T7
system, gene activation can lead to a dramatic loss of growth rate, termed switching
cost, of more than 80% of the initial growth rate.
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With this quantitative metric of heterogeneity, entropy, we analyzed the dynamics of
cell population in the Segregostat. As expected, the mean fluorescence rises during in-
duction (following lactose addition) and falls during the relaxation phase, until the next
pulse (Fig. 4.1 d). More intriguingly, the observation of entropy reveals that the popu-
lation becomes more homogeneous during induction and spreads out during relaxation
(Fig. 4.1 d). Further investigation demonstrated that the increased heterogeneity dur-
ing relaxation was driven by the trade-off between growth and gene expression (Fig.
4.1c). Specifically, cells that are less induced grow faster than those that are more in-
duced, their GFP content decreases faster, and the population gets more heterogeneous.
To sum up; the activation of a burdensome gene threatens the population survival in
the reactor since if all cells were to have the same degree of activation, the population
would be washed out. But the cells with a lower expression of the gene compensate
for this burden by outgrowing the others and rescuing growth. This phenomenon is
termed Burden-Entropy (B-E) compensation (Fig. 4.1 e).
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Figure 4.1: Heterogeneity in the expression of a burdensome gene circuit derives from a
burden entropy compensation mechanism: a The Segregostat is a cell-machine interface

allowing to draw automatically samples from a cultivation device (in our case, a continuous
bioreactor) and trigger FC analyses. The collected data are then compared to a pre-set

fluorescence threshold that triggers the regulation. b The collected data (20,000 cells per
analysis) is plotted as a time density plot with the fluorescence on the Y axis (here FL1-A to
measure GFP abundance) and the time in hours on the x-axis (two biological replicates SI

Figure 6.13, n=2). The y-channel values are binned to compute entropy (H) as a quantitative
proxy for heterogeneity. The fluorescence relaxation can be analyzed by measuring the

decrease in quartile values.c Looking at three relaxation phases and assuming the GFP gets
solely diluted by growth, the growth rate associated to the GFP content can be computed

(slope of the decay the log10 values of fluorescence quartiles).

93



Thesis draft

This reveals that a higher initial fluorescence corresponds to a much lower growth rate. d The
mean fluorescence increases after each pulsing (0.5 g of lactose per pulse in a 1 l reactor with
a OD of 5 as shown by red v-lines below the main graph). H decreases when pulsing and goes
up during relaxation. e The activation of the burdensome gene reduces the maximum growth
rate achievable by the population because of the switching cost. The maximum growth rate

achievable by the population was computed from the median fluorescent content and
corresponding growth rate gathered from the switching cost curve (c) it is associated with.

The population growth rate is nevertheless limited by the dilution rate. Before the population
growth rate drops below the dilution rate and the population gets washed-out, the cells with a
lower induction overgrow the other highly induced ones and compensate for their low growth
rate. We can observe here that growth is restored upon population diversification (measured

based on entropy).

4. Reducing cell population entropy based on forced
induction cycles gives rise to mutational escape
These initial data show that the trade-off between growth and gene expression pro-

motes the heterogeneity of the population. But there also point out that applying a
sharp induction phase by pulsing lactose can transiently reduce entropy. We therefore
hypothesized that by progressively increasing the induction frequency, the population
could be uniformly driven towards higher fluorescence (f.u.) values and reduced en-
tropy (H). Ultimately, this strategy should result in a washout when the population
becomes sufficiently homogeneous, such that the median fluorescence (fu) leads to
a growth rate of the population lower than the dilution rate (D) imposed by the cul-
tivation device. According to this hypothesis, we considered three cell population
outcomes depending on the induction frequency (Figure 4.2 a).

We hypothesized that at low pulsing frequencies, the B-E compensation is the main
mechanism influencing the population dynamics, rescuing the growth rate loss as-
sociated with the harsh induction. As a result, the growth rate of the population is
determined by the dilution rate imposed on the population and the population remains
highly heterogeneous. Then, as the periodic homogenization of the population in-
creases with higher pulsing frequencies, B-E has less time to enable population di-
versification, and thus entropy decreases to the benefit of the mean induction. At a
critical point, if the share of the population with high induction is too high. There is
not enough heterogeneity to compensate the burden imposed on the population, and
the system is washed out.

We then experimentally tested our hypotheses in a continuous culture where increas-
ing frequencies of lactose pulses were applied (Figure 4.2 b). We applied three suc-
cessive cycles of increasing pulsing frequency to the cell population. Unlike the pre-
dictions (Figure 4.2 a), the cell population never washed-out.
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Figure 4.2: High pulsing frequencies fail at lowering entropy while increasing induction:a
The population growth rate corresponds to the growth rate of a cell with a median

fluorescence content (fu). Following the B-E compensation theory, at low pulsing frequency,
a wide diversity of induction (blue shade on the graph) is present with a median induction (fu)

above the mean (fu).
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When increasing the pulsing frequency, the median should not increase but the mean
induction should go up, resulting in a lower heterogeneity (entropy). It was speculated that as

the pulsing frequency increases further, ultimately the population would be washed out
because the burden would be too high ((f.u.) so high that the population growth rate would

fall below the dilution rate). b Unexpectedly, the time density plot (20,000 cells per analysis)
shows that an intermediate population appears and that the population does not washout

throughout the three cycles of increasingly high pulsing frequency (two biological replicates
SI Figure 6.14, n=2). c While at first the median induction increased (during the first cycle), it

quickly starts going down whilst the entropy increases. Once the intermediate population
becomes more prevalent, the entropy is much lower but the mean induction as well.

During the first pulsing cycle, the mean fluorescence increased upon increasing the
lactose pulsing frequency, but the entropy remained quite constant over time (Figure
4.2 c). The entropy dropped only for the highest lactose pulsing frequency, but mainly
due to the appearance of a new sub-population exhibiting a lower gene expression. The
appearance of this sub-population was not expected, and thus before applying a second
cycle, the population was left un-stimulated during five retention time to clear out any
potential memory effect. Despite this time, as soon the pulsing sequence resumed,
the intermediate sub-population appeared again and increased in abundance over time
before taking over during the third cycle (Figure 4.2 b). This sub-population appeared
to have lost in induction strength but was more homogeneous. Sequencing revealed
that the strong lacuv5 promoter that drives the expression of the polymerase T7 had
mutated back to the weaker lac wild-type promoter. This mutation had previously
been described and is known to lower the expression of the polymerase, leading to a
reduction of the switching cost associated with gene expression [26]. Again, this data
suggests that the trade-off between growth rate and gene expression greatly impacts
the entropy exhibited by the whole cell population.

5. Reducing the switching cost promotes population
stability and productivity
The initial effort to promote higher population induction by reducing heterogeneity

led to mutational escape, an irreversible outcome that has been reported several times
as a major cause of decrease in productivity for various bio-processes [15]. However,
this outcome showed another path to promote a more homogeneous population, re-
ducing the growth rate loss associated with the activation of the gene circuit, i.e, the
switching cost. In essence, the mutation reduced the burden as it resulted in a weaker
induction. Thus, the mechanism of burden entropy compensation is weakened because
there the gap growth rate gap between the induced an un-induced cells is lower. To pro-
mote a more homogeneous population without losing growth potential, we thus need
to reduce this growth rate gap between the induced cells and the others without reduc-
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ing the promoter strength. Reducing the dilution rate imposed on the system should
not promote a more homogeneous population because it does not impact the switching
cost and thus the competition within the reactor would remain the same. Thus, we pro-
pose to reduce the maximum achievable growth rate of the cells. Since the switching
cost is the difference between the maximum growth rate of the non induced cells and
the growth rate of the induced one, this option is the only way to reduce the switching
cost without reducing gene expression strength. We screened the maximum growth
rates of E. coli on various alternative carbon sources (SI Figure 6.15). Among the
eight carbon sources tested, arabinose and xylose were selected. Arabinose reduced
the maximum growth rate by 15% and xylose by 50% compared to glucose, while
both maintaining growth rates above the dilution rate used in continuous cultivations
of this work. We then assessed the impact of this strategy on population induction by
conducting chemostat experiments, continuously co-feeding lactose with glucose (1 g
of lactose per 5 g of the other carbon source), arabinose and, finally, xylose (Figure 4.2
a). As hypothesized, cell population induction exhibited lower entropy when xylose
was the main carbon source by comparison with glucose (Figure 4.2 b). Additionally,
unlike the previous pulse-based approach to homogenize the population, this strategy
reduces the trade-off with production, resulting in a significantly higher average induc-
tion with xylose than with glucose, as reported based on the mean fluorescence level
(Figure 4.2 c).
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Figure 4.3: Reducing the global growth rate of the cell population lowers entropy and
increases induction: a In chemostat cultures, the times-scatter plot (20,000 cells per analysis)

shows that the population is highly heterogeneous when grown with glucose as the main
carbon source. However, when switching to arabinose, and then to xylose, the population is
more homogeneously induced (three biological replicates SI Figure 6.14, n=3). b The mean

induction increases simultaneously with the decrease in entropy, as shown in further analysis.
c Reducing the switching cost leads to a significantly (p<0.001) more productive population.

d This increased productivity stems from a cell-to-cell heterogeneity in gene expression
(measured as information entropy) that is significantly (p<0.001) smaller when xylose is used

as the main carbon source compared to glucose.

6. Discussion
The interplay between growth and gene expression is a crucial factor influencing

cell population behavior. However, the nature of relationship between this trade-off
and the degree of heterogeneity (entropy) within cell populations remains unclear.

Our previous research has identified a link between the growth-gene expression
trade-off and cell population heterogeneity, entropy. We found that the switching cost
associated with activating burdensome gene circuits is a major driver of cell popula-
tion dynamics. Specifically, we discovered a burden entropy compensation mechanism
that promotes the stability of cell populations upon the activation of burdensome gene

98



Chapter 4. Lowering the switching cost related to the activation of burdensome gene
circuits promotes cell population homogeneity and productivity

circuits. In essence, the loss of growth resulting from burden is compensated by an
increase in cellular entropy, leading to the emergence of cells with reduced gene ac-
tivation levels and, consequently, reduced burden within the population. Our latest
results show that the cell population exhibited a robust growth rate, but at the cost of
reduced expression of the target gene expression and important cell to cell difference
in the level of expression (Figure 4.4 a). To address this loss of potential, we explored
the possibility of reducing cell population entropy and increasing T7 system activa-
tion by increasing the frequency of induction. This control method turned out to be a
dead end, we observed mutational escape when increasing the frequency of induction,
resulting in the emergence of mutant cells with reduced gene expression (Figure 4.4
b). This rapid escape is likely due to the increase in mutation rate associated with the
degree of burden experienced by cells [15].

An alternative strategy for mitigating the switching cost is to slow down the maxi-
mum growth rate of the population (Figure 4.4 c), i.e., limiting the ability of cells with
a lower induction to overgrow the producing population. In this study, we employed
less effective carbon sources to this end, such as arabinose and xylose. Notably, xy-
lose, which led to the lowest growth rate, was particularly effective in reducing the
impact of the switching cost on cell population entropy while increasing the level of
T7 system induction throughout the cultivation. Interestingly, the population does not
appear to escape control by mutation as fast as it did when we tried controlling it by
applying high frequencies of induction. This is likely a result of this softer control
method where we did not periodically force harsh inductions but instead reduced that
competition between highly induced and less induced cells. Our approach is comple-
mentary to the use of "host-aware" gene circuits, which are designed to mitigate in
vivo metabolic burden generated by the synthesis and accumulation of various bio-
products [27]. Microbial strains engineered to exhibit reduced growth rates could also
be explored in the future. Taken together, our approach contradicts the conventional
bioprocess design principles, which typically aim to encourage cells to work harder
and faster. Our findings reveal that B-E compensation is a critical factor in maintain-
ing the stability of cell populations expressing a burdensome gene. Moreover, a deeper
understanding of this phenomenon can lead to the development of innovative strategies
for designing more robust continuous bio-process technologies.
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Figure 4.4: Representation of the growth-production trade-off curve on the population
induction: a In a traditional continuous cultivation, E. coli is grown with glucose, a carbon

source providing a high growth rate, and tasked with the production of a burdensome protein.
The important switching cost leads to a high Burden Entropy compensation (BE) that harms
population homogeneity and productivity. b Trying to reduce this heterogeneity by applying

periodic pulses can lead to mutational escape, resulting in a population that is more
homogeneous but less productive. c An alternative way of reducing the switching cost is to
reduce the maximum growth rate of the cells, which can be done by lowering the quality of
the main carbon source. This enables the creation of a more productive and homogeneous

population.
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7. Material and methods
Strain and growth media
Experiments performed in this work focused on E. coli BL21 DE3 with a pET28 :

GFP plasimd (Plasmid 60733) deposited on Addgene by Matthew Bennett. In all
cultivations, the strain was grown in a minimal mineral media containing (in g/l):
K2HPO4: 14.6; NaH2PO4 · 2H2O: 3.6; Na2SO4: 2; (NH4)2SO4: 2.47; NH4Cl: 0.5;
(NH4)2H− citrate: 1; glucose: 5, thiamine: 0.01, tryptophan: 0.05. The medium is
supplemented with a trace element solution totaling 11 ml/l assembled from the fol-
lowing solutions (in g/l), 3/11 of FeCl3 · 6H2O: 16.7 , 3/11 of EDTA: 20.1, 2/11 of
MgSO4: 120 and 3/11 of a metallic trace element solution. The metallic trace element
solution contains (in g/L): CaCl2 · 2H2O: 0.74; ZnSO4 · 7H2O: 0.18; MnSO4 ·H2O:
0.1; CuSO4 · 5H2O: 0.1, CoSO4 · 7H2O: 0.21. Both the trace element solution and
tha kanamycin for plasmid maintenance (50 µg/l) filter sterilized (0.22 µm). For
bioreactor cultivations, antifoam was added (KS911, 2 drops per liter).

Bioreactor cultivations and FC analysis
Bioreactor cultivations were performed in a 1 L Bionet F1 lab-scale bioreactor. The

batch was inoculated at an initial optical density (OD) of 0.5 from an overnight precul-
ture (baffled flask, 1 L total volume, 0.1 L working volume). The continuous culti-
vation was started once oxygen levels began rising at the end of the batch, signaling
the transition from exponential to stationary phase. All cultivations were performed at
37°C, 1 VVM, pH 7, and 1000 revolutions per minute (RPM).

In the chemostat, the feed contained 5 g/L of the main carbon source (glucose, ara-
binose, or xylose) and 1 g/L of lactose, the inductor. In the Segregostat, the feed only
contained the carbon source (5 g/L glucose) and the inductor was added as a condi-
tional pulse (0.5 g of lactose per pulse). In the experiments where the pulsing fre-
quency varied, each pulse consisted of 1 g of lactose and was automatically triggered
from a pre-set .csv file. The automated flow cytometry platform was already described,
but briefly: every 12 minutes, a sample is drawn from the bioreactor using a capillary
tube and a peristaltic pump. The sample is introduced into an analysis chamber that
also contains the flow cytometer. The sample is diluted based on the number of events
per microliter (µL) recorded at the previous flow cytometry (FC) analysis by succes-
sively flushing and filling the chamber with phosphate-buffered saline (PBS). Then,
a FC analysis of 40,000 events is automatically performed, followed by the chamber
being cleaned by flushing it multiple times with PBS, and the cycle starts again. In the
Segregostat, if more than 50% of the cells are below a fluorescence threshold (1000
arbitrary units on the FL1-A channel), a pulse is triggered.
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Sequencing
At the end of the third cycle of increasingly high pulsing frequency where the appear-

ance of a lesser induced subpopulation, a sample of 1 ml was taken from the reactor
and plated to recover 10 random individual colonies. Each colonies was then re-grown
in LB with kanamycin, the genome extracted and the region of the lac promotor driving
the T7 polymerase was amplified with the following primers:

FW Sequencing
CGCCGTTAACCACCATCAAAC
RV Sequencing
CGCAACTCGTGAAAGGTAG

The same procedure was done from a pre-culture used to start the cultivation to verify
that the reactor was not inoculated with a mutant to begin with. All PCR products
were then sent for sequencing (Sanger sequencing, Eurofins). All colonies from the
pre-culture had the lac uv5 strong promotor and but 30 % of the one from the end of
the cultivations had a lac wt promotor.

Maximum growth rate determination
The maximum growth rate under glucose, arabinose, xylose, fructose, and mannose

was determined by performing batch cultivations of E. coli BL21 (DE3) pET28 :
GFP in mineral media containing 5 g/l of the carbon source and 5 g/l of MOPS buffer
to maintain a pH of 7. The batch cultivations were conducted in a flower plate (37°C;
1000 RPM) with a cultivation volume of 1 ml, using a Biolector (Beckman Coulter)
instrument, where the backscatter signal was recorded for 5 wells per condition.
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Chapter 5. General discussion and outlook

1. Population dynamics needs a system biology approach
to be studied and controlled
The objectives of this thesis were twofold. The fist, was to improve our understand-

ing on the population heterogeneity drivers, specifically in the context of continuous
bioproduction, and the second was to propose control strategies. Over this work, it ap-
peared that to fully understand the complex dynamics of gene expression heterogeneity
across a microbial population, a holistic approach is essential. The level of gene ex-
pression and the degree of heterogeneity cannot be solely attributed to the gene circuit
or environmental conditions. In their work on the noisiness of numerous promoters in
E. coli, Silander and colleagues found that bolA and araB are highly noisy [1]. Our re-
sults [2], however, are in direct contradiction with these observations. The discrepancy
between the two works likely originates from the different growing conditions used:
batch cultivation in a shake flask for Silander’s study, versus continuous cultivation
with glucose as the limiting element in our work. A system biology approach to un-
derstand microbial population dynamics highlights the importance of considering the
complex interplay between gene properties, environmental conditions, and population
dynamics. By adopting this approach, we can better appreciate the context-dependent
nature of cellular systems and the limitations of reductionist approaches that focus
solely on the gene network architecture.

To sum up the conclusion to the first objective; cells interpret environmental cues
and respond to them in both a responsive and stochastic manner by expressing mul-
tiple phenotypes. This ratio between stochastic and responsive is under evolutionary
pressure that shapes, among others, the gene network architecture, gene copy number,
and even regulatory protein and region structure. This ratio is also a question of signal
interpretability. In E. coli, arabinose induction is highly responsive when arabinose is
absent (no induction) or present at a concentration above 1 g/l, but every concentration
in between result in an important share of stochastic switching. Thus, this response
function is characterized by its leakiness, dynamic range, and sharpness.

Then, the choice of cells operating in the population is further impacted by compe-
tition, certain phenotypes may have a greater growth than others. Labeled as burden
entropy compensation in this work, it has been shown to heterogenize the population
further in the context of continuous cultivation. But the complex interaction between
the population phenotypic composition and the environment does not stop there. As
the environment is shared among the population, usually the choice of one cell to adopt
a phenotype will change the chance of the following cells to do so. This environmental
feedback was exemplified in the case of sporulation in Bacillus subtilis, where it leads
to oscillatory behavior under certain operating conditions.

The activation of the T7 expression system in E. coli exemplifies further the multi-
factorial nature of phenotypic heterogeneity and how it shapes population dynamics.
This system was described in this work as a prime example of burden entropy com-
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Figure 5.1: Multiple components come into play to form the population dynamics over time.
The response function of a gene circuit is characterized by a given leakiness and sharpness,

which together with the perceived inducer concentration shape the population induction. This
initial heterogeneity can be amplified by the difference between these phenotypes (growth,

survival, sporulation, etc.). Additionally, the population interacts with the inducer
(environmental feedback) by, for example, consuming it. All three of these components

(induction dictated by the response function, burden entropy compensation, and
environmental feedback) happen simultaneously, with each having an impact on the

population dynamics with varying strengths.
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pensation, but in this system as well and similarly to the sporulation of B. subtilis,
bursts of expression can be observed. These bursts suggest again a role for environ-
mental feedback in the dynamics of this system as well. It can only be speculated that
there, glucose again is the culprit of these oscillations and not lactose. Glucose is the
main carbon source but also impacts the induction dynamics because its shortage is
required to lift the catabolic repression and trigger a strong induction to lactose. If the
induction is strong enough, it could be envisioned that the associated growth rate loss
is accompanied by an increase in glucose concentration, thus inhibiting induction and
forming an oscillatory behavior very similar to the one described for the sporulation in
B. subtilis. Ultimately, this work proposes that to understand the population dynamics,
one has to consider the following questions:

1. How does a cell population react to an inducer? In other words, what is the dose-
response relationship that links a gene circuit to its inducer (leakiness, sharpness,
dynamic range)?

2. How do the resulting phenotypes structure themselves? Is a phenotype going to
have the capacity to overtake others?

3. How will the environmental conditions be modified once taking into account the
presence and abundance of these phenotypes?

Understanding the parameters at play behind gene expression dynamics across a
population is key if one wants to infer new control methods, the second objective of
this work. Methods such as the one proposed in this work, where it was shown that
using a lower-quality carbon source for the population actually increases the homo-
geneity of the induction of the T7 system only make sense once the reasons behind
the heterogeneity become apparent. Again, understanding population dynamics is a
multifactorial issue that cannot be tackled solely with a process or biology approach,
but rather a system biology one (Figure 5.1).

It is also within this framework that whether phenotypic heterogeneity is bad or good
should be answered. Although probably asked in many ways by many scientists, this
question was debated within this research team when asked by Pr. Grünberger. The
answer that appeared to win was, it depends. The other answer was, that it depends on
who you ask this question to. Phenotypic heterogeneity is a survival mechanism that in
a natural context improves the population fitness [3]. However, within the bioprocess
community, it is often viewed as a loss that hampers bioprocess productivity [4]. Many
have attempted to eliminate it, but our work reveals that it actually safeguards the
population when tasked with expressing burdensome genes. Nevertheless, we show
that while it should not be eliminated, it can be reduced at the benefit of increased
productivity.
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2. Open source and standardization
Humans have cultivated cells for a very long time but the comprehension of the pop-

ulation characteristics at a single cell level is young. Single-cell analysis tools provide
invaluable insight into the functionality of this noise and its causes, but the obtained
data are also challenging to treat. Artificial intelligence based segmentation is facilitat-
ing the conversion of images (such as the one provided by microfluidics) into numeri-
cal values but even then, the question of how to treat these data is not straightforward
[5] [6]. Fortunately, these tools (AI based segmentation, flow cytometry toolbox, data
treatment workflow) are being shared more freely, in part thanks to the trend of open
science.

Figure 5.2: With the standard deviation it would be easy to assume that population B is more
heterogeneous than population A. Yet, most of the cells are concentrated within certain area

of gene expression in population B, thus more homogeneous.

With new tools and data, new ways of interpreting those are also needed. Compar-
ing two populations, one of which is normal and the other one not, with the standard
deviation can lead to wrong conclusions (Figure 5.2). With biological systems this
is an important issue if one wants to quantify heterogeneity, since gene expression is
often skewed or even binomial. Additionally, the standard deviation is not very ro-
bust to outliers. This sheds light on the importance to develop new proxies to quantify
the heterogeneity in the population, such as among others, entropy. Shannon Entropy,
offers the advantage of being distribution independent, robust to outliers and thus has
been extensively used throughout this work to provide a quantitative analysis of hetero-
geneity. Using entropy as a noise measurement comes with the added benefit that it is
linked with another important metric, mutual information. This metric that describes,
how much information, is conveyed by a given environmental condition is analogous
to the dose response curve.

But even using the same metrics, there is also the question of data interpretability
between research groups. As an example, plate readers and flow cytometers give nu-
merical values in arbitrary units. Two brands of such devices will give values in a
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totally different range. But work has also been done at this level. Universal calibra-
tion are being proposed to convert plate reader arbitrary unit output into protein counts
[7]. As suggested [7], absolute protein counts could probably be implemented in flow
cytometer by immobilizing the proteins on beads.

It feels like the quest to understand living organisms has barely started, let alone
to engineer and control them. Through this work, I have discovered many tools that
enabled me to benefit from the work of others. Of course, having access to articles in
open source is important, but tools that compile the information such as BioNumbers
massively facilitate others work. Repositories like Addgene permit easy exchange
of genetic material others have built, and codes used in research dropped on GitHub
smooths out the learning curve for beginners in modeling and data treatment as well
as providing new ideas to others.

The complexity in collecting and treating data on DNA construction also happens
the development of standard DNA parts. A common principle in engineering is to rely
on characterized and standard parts. As stated in the first line of Tom Knight’s essay
(Idempotent Vector Design for Standard Assembly of Biobricks) on this matter "The
lack of standardization in assembly techniques for DNA sequences forces each DNA
assembly reaction to be both an experimental tool for addressing the current research
topic, and an experiment in and of itself.". In an effort to solve this issue and as a prime
example of how standardization and open science can help the community, Knight
proposed the concept of BioBrick, a library of parts that can be easily assembled to
form genetically engineered E. coli. The BioBricks are now commonly used during
the iGEM competitions and have also been used in many other scientific works [8].

3. Engineering long term stability by reducing geno-
typic escape
A crucial component of population dynamics that has not been addressed in this

work is genotypic escape. While it is recognized that in a clonal population, phe-
notypic heterogeneity is the first to shape the population dynamics, cells eventually
mutate and mutation spreads. It is especially important to tackle this issue because the
mutation rate increases with burden, i.e., production load [9]. Interestingly, our work
shows that burden, on top of promoting genotypic escape, also promotes phenotypic
heterogeneity. In this work, the importance of phenotypic heterogeneity to preserve
the population fitness was outlined. It was also shown that reducing this crucial het-
erogeneity could actually be quickly met by mutations reducing productivity. While
eventually, it was found that the population could be homogenized without applying
harsh periodic inductions, it is a certainty that over time, a mutation leading to the
population functionality loss will arise.

As an outlook, maybe phenotypic heterogeneity could be engineered to promote
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population stability at the genetic level as well. There, the noisiness in the expression
of a recombinase, such as the Bxb1 recombinase in E. coli or the CRE-lox system in
yeast, could generate partial differentiation. This would trigger the segregation of a
population into two groups, growers and producers. Such differentiation has already
been successfully built before and has yielded encouraging results [10] [11]. Because
the mutation rate is greater when the production load is important, and cells with a
high production load are also the easiest to out-compete, any mutations that occur in
a system without differentiation quickly invades the population. With a differentiable
system, mutants will outgrow the producers but probably not the growers. There, the
growers out-compete even the producers that mutated and thus safeguard the produc-
tion potential. In this scenario, phenotypic heterogeneity in the activation of a gene
circuit is leveraged by, for example, inducing the population with very low concentra-
tions of inducer, promoting noisy responses, to periodically generate new producers
from the growers.

Going further, the differentiation system could be engineered in a way that once trig-
gered, the producers would lose out any ability to grow. This terminal differentiation
has already been proposed and would totally eliminate any possibility of a producer to
manage to mutate and overtake the rest of the population [11]. In a way, since these
cells lose their growth capacity, it could be argued that they are no longer alive, and
that such terminal differentiation is a self-sustained cell-free expression system. These
cells, incapable of growing, are not subjected to a burden entropy compensation mech-
anism nor are they to mutations. This strategy would then eliminate two bottlenecks
that limit the adoption of continuous bio-manufacturing, genotypic and phenotypic
heterogeneity.
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1. Supplementary information chapter 2
Supplementary Notes
Supplementary Note 1: Determination of the entropy (H) of the population

from automated FC data and reproducibility of these data
Determination of the entropy (H) of the population from automated FC data and

reproducibility of these data. Information theory has been used in this work to charac-
terize the response of cell populations to environmental perturbations. This framework
involves the computation of entropy H, which can be regarded as a measurement of
uncertainty about the response of the cell population (output) in function of the en-
vironmental stimulation (input). This input-output relationship, which is the basis of
information theory, will be detailed in Supplementary Note 3. In this note, we will
concentrate on the description of the entropy H as a measurement of the level of het-
erogeneity of the population. Entropy can be considered as a measure of uncertainty
about the outcome of a draw from a probability distribution1. As an example, if we
pick randomly a cell in our population, how much are we surprised to pick one cell
with a given GFP level?
In our case, we can measure the entropy based on fluorescence distribution acquired
with automated FC based on the following equation:

H = −
n∑
i=1

mip(xi) log2(pi) (6.1)

With m being the number of states observed (i.e., GFP classes in our cases) and p
being the probability to observe this state. The probability to observe different classes
of fluorescence can be easily determined based on automated FC. The computation of
H has been exemplified based on fictive population of cells clustered in three fractions
according to the level of GFP exhibited by cells (Supplementary Figure 1). As an
example, the computation for the first population distribution (Supplementary Figure
1a) is performed as
H : −(0.1 log2(0.1)) + (0.6 log2(0.6)) + (0.3 log2(0.6)) = 1.29bits.

Based on this first example, the entropy of the population can be either increased
(Supplementary Figure 1b), the maximum entropy value being reached when cells
are equally distributed into the 3 different clusters. On the opposite, H can be de-
creased and set to zero when all the cells exhibit the same fluorescence range (Sup-
plementary Figure 1c). This approach has been applied to automated FC data (ani-
mated movies of the automated FC data for all the biological systems considered are
available at GitLab [https://gitlab.uliege.be/mipi/published-software/mipi-model-and-
simulation-database/] for computing the evolution of H(t) for different types of cell
population (Supplementary Figure 2 for three out of six of the cell systems investi-
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gated)). In this case, we applied 50 bins for the computation of H(t). Reproducibility
of the corresponding experiments conducted in Segregostat is provided in Supplemen-
tary Figure 3.

Supplementary Note 2: Determination of the fitness cost associated with phe-
notypic switching

For the systems exhibiting high switching cost, the quantification of this parameter
was a bit difficult because cells switched stochastically from the OFF state to the ON
state. This was particularly true for the P glc3 :GFP system in yeast where only a small
fraction of cells decided to switch under normal cultivation conditions. This effect can
be observed based on MSCC experiments run at different glucose concentration (Sup-
plementary Figure 4). However, the determination of the switching cost was easier
in the case of the pET28 : GFP (T7 polymerase) system in E. coli BL21(DE3),
this system being inducible upon addition of lactose. Accordingly, we cultivated sys-
tems exhibiting low (ParaB : GFP and PlacZ : GFP in E. coli W3110) and high
(pET28 : GFP system in E. coli BL21(DE3)) in a multiplate cultivation device (Bi-
olector) (Supplementary Figure 5). Based on these data, it can be observed that the
effect of gene circuit activation itself and the change of carbon source are coupled
most of the time. However, we can also see that, in most of the cases, the activation of
the gene circuit itself drives the switching cost. It can be seen that the E. coli W3110
strain exhibit slightly reduced growth when cultivated on lactose and arabinose, inde-
pendently of the presence of a fluorescent reporter. On the opposite, we can see that
the E. coli BL21(DE3) strains exhibit a huge reduction in growth upon cultivation on
lactose, mostly due here to the activation of the chromosomal insert of the T7 RNA
polymerase.

Supplementary Note 3: Experimental determination of the response function
for the ParaB : GFP system in E. coli and the Pglc3 : GFP system in S. cerevisiae
and computation of the mutual information (MI)

Information theory relies on the characterization of the input-output relationship for
various systems, and has been applied recently to the analysis of signal propagation in
biological systems 23 . Basically, MI allows to quantify how much we can know about
an input (e.g., change in environmental condition) from the output (i.e., in our case, the
fluorescence distribution of the population). The first step for the computation of MI is
to calculate the entropy of the population exposed to defined environmental conditions.
These conditional distributions represent the response function of our cellular systems,
and more precisely the ParaB : GFP system in E. coli (Supplementary Figure 6) and
Pglc3 : GFP system in S. cerevisiae (Supplementary Figure 7).

Characterization of the response function for the S. cerevisiae Pglc3 : GFP sys-
tem

The response function of the Pglc3 : GFP in S. cerevisiae was determined by grow-
ing culture at different dilution rates in chemostat (Supplementary Figure 7). For this
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purpose, the dilution rate of a chemostat was progressively increased to release the
stress response of the population. This procedure is known as accelerostat (A-stat). In
our case, the pump flow rate was modified with a step change every 2 hours, resulting
in a progressive increase of the dilution rate of 0.002 h−1 per hour. This incremental
range was chosen in order to ensure pseudo steady-state for each increment. The entire
process was followed by automated FC for mapping the GFP distribution of the cell
population (Supplementary Figure 7).

Computation of mutual information (MI) based on the response function of a
cell population

Knowing the response function, and the corresponding conditional GFP distribution,
it is possible to compute the MI of a specific cellular system. This computation will
be exemplified for the Pglc3 : GFP reporter in S. cerevisiae. The environmental input
for this system is the glucose uptake rate determined based on the value of the dilution
rate, as well as based on glucose and biomass measurement. The conditional fluores-
cence distributions were then acquired for different substrate uptake rates and H was
computed accordingly (Supplementary Figure 8a). If all the fluorescence distributions
are summed up, the corresponding entropy value is the total entropy of the system. MI
is then computed according to (Supplementary Figure 8b):

MI(y, x) = H(x)−H(x, y) (6.2)

With H(x) being the total entropy for output x and H(x,y) being the conditional
entropy computed from the conditional distribution of the output x (x, being GFP
distribution and y being the sugar uptake rate). When doing so, it is important to
adjust the number of bins used for computing the entropy. In our case, this number
was set to 50 bins and leads to a precise computation of MI without increasing the
computing power (Supplementary Figure 9). In order to explain the differences in
controllability between the different systems investigated, we computed the mutual
information (MI) between the environmental conditions and the activation of the target
gene circuit for the ParaB : GFP and Pglc3 : GFP systems. MI is a proxy derived
from information theory 26,27 and involves the computation of the entropy of the
cell population, as defined in the previous section. In short, MI tells us how much
we can learn about the input (i.e., in our case the environmental stimulus used for
entraining the cell population) from the output (i.e., in our case the distribution of
GFP in cell population, the dispersion being quantified based on the entropy). Thus,
in our case, MI is a proxy for information transfer efficiency between the inducer
concentration and the cell population induction. The total entropy for each system was
evaluated by summing up all the conditional probabilities obtained by exposing cell
populations to different cultivation conditions (Supplementary Figure 10). MI was
obtained by subtracting the time-dependent entropies to the total entropies recorded
for each system. For the P araB :GFP system, MI is already relatively high in the
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chemostat, leaving little room for improvement in the Segregostat (Supplementary
Figure 10). It means that a reduction in entropy between the two cultivation modes has
to be expected when the amount of information conveyed in chemostat condition is low
(e.g., when cells cultivated in chemostat do not sense the inducer and, accordingly, do
not activate the corresponding gene circuit). This is exactly what happened during
the chemostat culture of the P glc3 ::GFP system (Supplementary Figure 10d). MI
analysis had pointed out that there was still room for additional reduction in entropy
(Supplementary Figure 10), and this was observed in Segregostat where glucose pulses
reduced the average entropy (Supplementary Figure 10).

Supplementary Tables
SI table 1. Sequences and primers used in this work.

Primer name Sequence (5’-3’)
Fw_sgRNA_20N agctagctcagtcctaggtataatactagtCGCCCGCAGGATATTCGTCG

gttttagagctagaaatagcaagttaaaa
Fw_fragment1 gttaaacgagtatcccggcagca
Rv_fragment1 cgtttcactccatccaaaaaaacgg
Fw_fragment2 tggagtgaaacgtgactgtataaaaccacagccaa
Rv_fragment2 catcggcctcgtagacggtaac

Table 6.1: Primer sequences to make ∆araBAD strain

SI table 2. Operating conditions used for cultivations

Strain Process conditions Control conditions
E. coli W3110 D = 0.45 h−1 pH = 7 T = 37 °c Chemostat: none
ParaB : GFP Aeration = 1 L/min Segregostat:

Agitation = 1000 min−1 Regulation threshold = 50 % cells
[Glucose feed] = 5 g/L below 1000 F.U.
[Arabinose feed]Chemostat = 1.5 g/L Regulation = Pulse 0.15 g arabinose
[Arabinose feed]Segregostat = 0 g/L

E. coli W3110 D = 0.45 h−1 pH = 7 T = 37 °c Chemostat: none
PlacZ : GFP Aeration = 1 L/min Segregostat:

Agitation = 1000 min−1 Regulation threshold = 50 % cells
[Glucose feed] = 5 g/L below 1000 F.U.
[Lactose feed]Chemostat = 1.5 g/L Regulation = Pulse 0.15 g Lactose
[Lactose feed]Segregostat = 0 g/L

E. coli BL21 D = 0.45 h−1 pH = 7 T = 37 °c Chemostat: none
pET28 : GFP Aeration = 1 L/min Segregostat:

Agitation = 1000 min−1 Regulation threshold = 50 % cells
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[Glucose feed] = 5 g/L below 1000 F.U.
[Lactose feed]Chemostat = 1.5 g/L Regulation = Pulse 0.5 g Lactose
[Lactose feed]Segregostat = 0 g/L

E. coli W3110 D = 0.45 h−1 pH = 7 T = 37 °c Chemostat: none
PbolA : GFP Aeration = 1 L/min Segregostat:

Agitation = 1000 min−1 Regulation threshold = 50 % cells
[Glucose feed] = 5 g/L above 2000 F.U.

Regulation = Pulse 0.2 g glucose

S. cerevisiae D = 0.1 h−1 pH = 5 T = 30 °c Chemostat: none
Pglc3 : GFP Aeration = 1 L/min Segregostat:

Agitation = 1000 min−1 Regulation threshold = 50 % cells
[Glucose feed] = 5 g/L above 5000 F.U.

Regulation = Pulse 0.2 g glucose

B. subtilis 168 D = 0.1 h−1 pH = 7 T = 37 °c Chemostat: none
PspoIIE : GFP Aeration = 1 L/min Segregostat:

Agitation = 1000 min−1 Regulation threshold = 20 % cells
[Glucose feed] = 5 g/L above 1000 F.U.

Regulation = Pulse 0.2 g glucose

Table 6.2: Operating conditions

SI table 3: Parameters used for running FlowStocKS simulations

Parameter Description Value Unit Source
µmax_glucose Maximal growth 0.54 h−1 10

rate on glucose
Ksmax_glucose Affinity constant 0.034 g/L 10

for glucose
Y glucose Substrate to 0.5 g/g 11

biomass yield
n Hill coefficient -2 This study
k 50 % probability 0.05 This study

switching concentration
GFPprod Mean value of GFP 1e5 fu This study

production burst given a gamma
discribution of scale 2
and growth inhibition
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KI Growth inhibition From 0 to 1e99 fu This study
delay (τ ) Delay 0.4 h This study

Supplementary figures

Figure 6.1: Computation of the entropy and flux of cells for different cellular systems. a
PlacZ : GFP (E. coli), b PbolA : GFP (E. coli) and c Pglc3 : GFP (S. cerevisiae).
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Figure 6.2: Assessment of the reproducibility of the Segregostat experiments. Evolution of
the median fluorescence (plain line) and interquartile range (shadowed area around the plain

line) between two biological replicates for a E. coli ParaB : GFP in chemostat and b in
Segregostat.c E. coli PlacZ : GFP in chemostat and d in Segregostat.e E. coli PbolA : GFP
in chemostat and f in Segregostat.g E. coli PlacZ : GFPP in chemostat and h in Segregostat.i
S. cerevisiae Pglc3 : GFP in chemostat and j in Segregostat.k B. subtilis PspoIIE : GFPP in

chemostat for 40 h followed by Segregostat.
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Figure 6.3: Examples of computation of the entropy H for a cell population clustered in three
bins (computation according to Equation 1). Each bin corresponds to a subpopulation of cells
with a givenfluorescence range i.e., low, medium or high, leading to different level of entropy
H with a medium level of H, b maximum level of H for a three states system and c minimum

level of entropy H.

Figure 6.4: Pictures of yeast Pglc3 : GFP microcolonies cultivated in a MSCC device at
different glucose concentrations
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Figure 6.5: Experimental evaluation of the switching costs: Growth of different strains, the
maximal growth rate of each triplicate is presented as a blue dot (plots on the right) and the

means and standard deviations as a black dot with error bar. (Top) Determination of the
maximal growth rate from Biolector cultivation with automated biomass measurement (n=3)

for E. coli W3110, E. coli W3110 ParaB : GFP and E. coli W3110 PlacZ : GFPP on
glucose, arabinose and lactose as carbon sources. (Bottom) Determination of the maximal

growth rate from Biolector cultivation with automated biomass measurement (n=3) for E. coli
BL21 (DE3) pET28 : GFP on glucose and lactose and E. coli BL21 (DE3) on glucose and

lactose. The red horizontal line is the dilution rate (0.45 h−1) used for the continuous
cultivations.
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Figure 6.6: Analysis of the input-output relationship for E. coli ParaB : GFP : Scatter plots
of cell size (FSC-A) versus GFP fluorescence (FL1-A) for E. coli W3110 ∆ araBAD

ParaB : GFP exposed to arabinose concentrations of a 0, b 0.025, c 0.05, d 0.1, e 0.15, f
0.20, g 0.25, h 0.30, i 0.50, j 1.00 and k 2.00 g/L. The red line stands for the fluorescence
threshold (i.e., 1000 F.U.) used for computing the GFP positive fraction of cells. Each FC

analysis comprises 20,000 analyzed cells. The experiment was repeated twice with the similar
results.
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Figure 6.7: Analysis of the input-output relationship for S. cerevisiae Pglc3 : GFP : A-stat
experiment monitored based on automated FC. The GFP level distribution (FL1-A channel)
was determined for each dilution rate (D). The red line highlights the progressive release of

the stress response at the population level based on the deactivation of the Pglc3 : GFP
reporter. Each FC analysis comprises 20,000 analyzed cells, the cultivation was performed in

triplicate with similar outcomes (the three biological replicates are displayed).
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A

B

Total entropy of the system

Figure 6.8: Evaluation of the mutual information (MI):a Evolution of the conditional entropy
for the Pglc3 : GFP in S. cerevisiae exposed to different uptake rates. b MI can be deduced

by subtracting the value of the total entropy of the system (2.49 bits in this case) by the
corresponding conditional entropy.
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Figure 6.9: Impact of the binning procedure (number of bins considered) on the estimation of
MI for the Pglc3 : GFP in S. cerevisiae (data extracte from A-stat experiments).
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Figure 6.10: Comparative analysis of the entropy profile for the a PbolA : GFP system in E.
coli. b PlacZ : GFP system in E. coli. c ParaB : GFP system in E. coli. d Pglc3 : GFP
system in S. cerevisiae. For the ParaB : GFP and Pglc3 : GFP systems, the conditional

probabilities, i.e., the GFP distribution of the population exposed at different environmental
conditions, have been experimentally determined (Supplementary Note 2), allowing the

computation of the mutual information (MI). e MI for the ParaB : GFP system exposed to
different arabinose concentrations. The MI distribution for the ParaB : GFP system suggests
that, at high arabinose concentration, a gain of information of approximately 0.5 bit has to be
expected (the value has been reported by a red line on Figure 3C). f MI for the Pglc3 : GFP

system exposed to different sugar uptake rates in a accelerostat cultivation device
(Supplementary Figure 4). The MI distribution for the Pglc3 : GFP system suggests that, at
high glucose concentration a gain of information of approximately 1 bit has to be expected

(the value has been reported by ared line on Figure 3d)

134



Chapter 6. Supplementary information

2. Supplementary information chapter 3
Supplementary Notes
Supplementary Note 1: Model of stress phenotype expression and resolution

A chemostat is usually modelled with the following equations:

dS
dt

= (Sin − S)D − µX

Y
(6.3)

dX
dt

= (µ−D)X (6.4)

However, often, cells have a second state that can be induced when they are stressed,
in which case their growth rate decreases. We can represent those two states in a
chemostat with the following equations, if we consider that the stressed state is irre-
versible and cannot go back to non-stressed. As the time required to dilute the stress
proteins is quite long, and made longer by the lower growth rate caused by stress,
switching to a stress state is much faster and this is a reasonable assumption for a
simplified approach. That is without considering the fact that, in a chemostat with
non-stressed cells, the stressed-cells would be overtaken slowly and, if not renewed,
are likely to simply be washed out before they can go back to their non-stressed state.

dS
dt

= (Sin − S)D − µX1

YX1
− kµX2

YX2
(6.5)

dX1

dt
= (µ−D)X1 −H1(S)X1 (6.6)

dX2

dt
= (kµ−D)X2 +H1(S)X1 (6.7)

µ = µmax
S

KS + S
(6.8)

µmax,1 = µmax (6.9)

µmax,2 = kµmax (6.10)

H1(S) =

{
H if S ≤ KI

0 if S > KI

(6.11)

Where the variables are defined as:
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D the dilution rate.
k the ratio of the growth rate of the slower phenotype to the

growth rate of the faster phenotype.
KI the threshold substrate concentration for the switch.
KS the half-saturation constant of the Monod equation.
H the switching rate of the faster to the slower phenotype.

H1(S) the switch function from the faster to the slower phenotype.
µ the instantaneous growth rate of the faster phenotype.

µmax the maximum growth rate of the faster phenotype.
S the substrate (usually glucose) concentration in the reactor.

Sin the substrate concentration in the feed.
t the time.

X1 the concentration of the faster phenotype in the reactor.
X2 the concentration of the slower phenotype in the reactor.
YX1 the yield of the faster phenotype.
YX2 the yield of the slower phenotype.

We can note the following conditions on the parameters based on the parameters:

• All variables are positive due to the constraints of reality and considering grow-
ing phenotypes.

• D, YXi, µmax, KS , KI and H are strictly positive.

Considering those equations for a chemostat, the question that now occurs is:
What happens at steady state?

Due to the switch to a stress conditions, we have two kinds of steady-state to con-
sider: ones where the substrate concentration is above the threshold KI , and ones
where the substrate concentration is below the threshold KI . Separating those cases
let us replace H1(S) by H or 0 in the equations, greatly simplifying the system. Note
that by definition, the steady-state requires the residual substrate concentration S to be
constant, therefore all the possible steady-state can be found by splitting the equations
this way.

To jump to the solution of the steady-state, go to section 2.
When S > KI

In this case, at steady-state (derivatives are null), there is no switching and we can
replace equations 6.5 to 6.7 by the following:

0 = (Sin − S)D − µX1

YX1
− kµX2

YX2
(6.12)

0 = (µ−D)X1 (6.13)

0 = (kµ−D)X2 (6.14)
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According to the latter 2 equations, there are 4 possible cases:

1. X1 = 0 and X2 = 0.

2. X1 = 0 and D = kµ.

3. X2 = 0 and D = µ.

4. If k = 1, D = µ

These are the expected steady-states and show already known results: in the absence
of switching, at steady-state, either the two populations are washed out or not initially
present (case 1); and there is an unstable case where if both phenotypes have exactly
equal growth rates, they can both survive, in any proportion as they behave as a single
population and this whole model becomes irrelevant (case 4).

For the sake of this argument, we can consider k 6= 1 as that is a trivial and uninter-
esting case.

Both phenotypes cannot coexist in this case if k 6= 1, as one existing, in the absence
of switching, imposes a specific dilution rate that implies, at steady-state, the other no
being there.

The last case, a wash-out of both/either phenotype, will always happen for a popu-
lation if (µ−D) = 0 is impossible. To show when it is forced, finding out when it is
possible is the easiest way.

Then, re-writing equations6.12 to6.14 for a steady-state with a single phenotype:

(Sin − S)D =
Xi

YXi
µmax,i

S

KS + S
(6.15)

µmax,i
S

KS + S
= D (6.16)

where i indicates either phenotype, whichever is present since we established that in
this case only one can be present.

Since YXi, D and KS are strictly positive, we can deduce:

µmax,i
S

KS + S
= D ⇒ D

µmax,i
=

S

KS + S
(6.17)

Sin − S =
Xi

YXi
⇒ S = Sin −

Xi

YXi
(6.18)
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Therefore:

D

µmax,i
=

S

KS + S

= 1− KS

KS + S

⇔ KS

KS + S
= 1− D

µmax,i

=
µmax,i −D
µmax,i

⇔ KS + S =
µmax,iKS

µmax,i −D

⇔ S =
µmax,iKS

µmax,i −D
−KS

=
DKS

µmax,i −D
(6.19)

Plugging equation 6.19 into equation 6.18 and solving for Xi gives:

Sin −
DKS

µmax,i −D
=

Xi

YXi

Xi = YXi

(
Sin −

DKS

µmax,i −D

)
(6.20)

Thus, eventually, from equations 6.17, 6.18, 6.19, and 6.20 we get:
D = µmax,i

S
KS+S

S = DKS
µmax,i−D = Sin − Xi

YXi

Xi = YXi

(
Sin − DKS

µmax,i−D

)
= YXi(Sin − S)

(6.21)

at steady states, for cases 2 and 3. And since S ≥ 0 andXi ≥ 0, for this to be possible,
we need:

• µmax,i > D for S ≥ 0. When a given phenotype is initially present, a wash-out
and no biomass is leftover at steady-state (it becomes case 1) if the maximum
growth rate of the phenotype is lower than the dilution rate (as expected).

• Sin > DKS/(µmax,i −D) for Xi > 0. This can be rearranged (as per standard
chemostat equations) asD < µmax,iSin/(KS + Sin) < µmax,i, dilution rate above
which there is no glucose consumption at equilibrium as there is not enough
substrate to sustain the population.
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Those equations and deductions are only valid when S > KI , or:

DKS

µmax,i −D
> KI (6.22)

Firstly, we established that, when there is no wash-out, and there is biomass at
steady-state, µmax,i > D is required. Therefore, the left hand-side of the inequal-
ity is always positive.

We can examine when transform the inequality to examine when it is possible or:

DKS

µmax,i −D
> KI

⇔ DKS > KI(µmax,i −D) since: µmax,i > D

⇔ DKS +DKI > KIµmax,i

⇔ D(KS +KI) > KIµmax,i

⇔ D >
KIµmax,i
KS +KI

since: KS ,KI > 0 (6.23)

Therefore, steady-state without switching can be reached when µmax,iSin/(Sin +KS) >
D > µmax,iKI/(KS +KI) for each phenotype if the three parameters allow (although,
for the stressed phenotype, we are assuming that there is no switch back to the first one,
which is probably wrong if waiting long enough in this high substrate concentration
case).

As a summary of this section, we have for each case described at the start:

1. Wash out of all the cells initially present, when D > µmax,i
Sin

(Sin+KS)
for all i

phenotypes non-zero in the initial conditions.

2. a steady state with only the second phenotype present, which could happen if all
cells switched to the second phenotype, and never switched back, maybe in the
case of differentiation:

X1 = 0

D = kµmax S/KS + S

S = DKS/kµmax −D = Sin − X2/YX2

X2 = YX2(Sin − S)

0 ≤ S ≤ Sin
kµmaxSin/(Sin +KS) > D > kµmaxKI/(KS +KI)

(6.24)
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3. A steady state with only the first phenotype present:

X2 = 0

D = µmax S/KS + S

S = DKS/(µmax −D) = Sin − X1/YX1

X1 = YX1(Sin − S)

0 ≤ S ≤ Sin
µmaxSin/(Sin +KS) > D > µmaxKI/(KS +KI)

(6.25)

When S ≤ KI

A similar reasoning can be applied to the alternative case, where the switching al-
ways occurs.

At steady-state, we get:

0 = (Sin − S)D − µX1

YX1
− kµX2

YX2
(6.26)

0 = (µ−D −H)X1 (6.27)

0 = (kµ−D)X2 +HX1 (6.28)

The equations can be solved easily when X1 = 0 and X2 = 0, as this means there
is no biomass. Notably, this case is incompatible with the assumption that there is
switching regardless as Sin = S in that case, and in a bioreactor Sin > KI , so we
come back to the previous section.

In case X1 = 0, the equations become identical to the previous section. The only
difference is the condition of existence derived at the end, which becomes D <
µmax,iKI/KS +KI instead. This completes all cases where only the second pheno-
type is present with a region where it is actually likely that all cells stay in the second
phenotype, as the substrate concentration would be too low to permit switching back
to the first phenotype.

Thus the only case of interest to discuss here is when both X1 and X2 are non-zero.
Re-arranging equations 6.26 to 6.28 with those assumptions:

(Sin − S)D =
µX1

YX1
− kµX2

YX2
(6.29)

µ = µmax
S

KS + S
= D +H (6.30)

(D − kµ)X2 = HX1 (6.31)

Interestingly, equation 6.30 implies that the first phenotype, through D, H , µmax
and KS , fully determines the substrate concentration, with only H differing from a
normal chemostat and no direct influence of the phenotype ratio in the culture.
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Based on equation 6.30, we can deduce:

S =
(KS + S)(D +H)

µmax

⇔ S

(
1− D +H

µmax

)
= KS

D +H

µmax

S
µmax −D −H

µmax
=

⇔ S =
KS(D +H)

µmax −D −H
(6.32)

Equation 6.31 can easily be re-arranged into:

X1 =
D − kµ
H

X2 ⇔ X2 =
H

D − kµ
X1 (6.33)

From there, we can plug into the remaining equation 6.29:

(Sin − S) D =
µX1

YX1
+

kµ

YX2

H

D − kµ
X2

⇔ X1 =
(Sin − S) D

µ
YX1

+ kµH
YX2 (D−µk)

(6.34)

and (Sin − S) D =
(D − kµ)µ

HYX1
X2 +

kµX2

YX2

⇔ X2 =
(Sin − S) D

µ
(
(D−kµ)
HYX1

+ k
YX2

) (6.35)

We can thus write the solution for this case of the steady-state as:

S = KS(D+H)
µmax−D−H

µ = µmax
S

KS+S
= D +H

X1 = (Sin−S) D
µ/YX1+kµH/YX2 (D − µk)

X2 = (Sin−S) D
µ ((D − kµ)/(HYX1)+k/YX2)

X1
X2

= D−kµ
H

(6.36)

For this solution to be possible, we need:

• S > 0

• X1 > 0
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• X2 > 0

Since X1 = X2(D − kµ)/H, we need for both to be positive:

D > kµ (6.37)

Since D +H = µ, we actually need:

D

D +H
> k (6.38)

Note that this condition can only be true if k < 1, as the left hand side is always
smaller than 1. Thus, if the induced phenotype were to grow faster than the initial one,
it would be impossible for the two phenotypes to coexist in the reactor. In this case,
we are considering a stress phenotype, so k < 1 is a reasonable assumption.

In other musings, this condition means at its origin that the dilution rate will be faster
than the instantaneous growth rate of the second phenotype.

The condition can be easily re-arranged in terms of D as well:

D

D +H
> k ⇔ D >

kH

1− k
(6.39)

This ensures that both X1 and X2 have the same sign. To ensure they are positive,
we need:

Sin > S (6.40)

which is always true if cells grow.
Finally, we need for S ≥ 0:

D < µmax −H (6.41)

The latter also implies that, for both phenotypes to coexist,

µmax > H (6.42)

is required.
Those conditions, combined with the one required by this section, S ≤ KI , are

the only conditions required for the existence of a steady-state with both phenotypes
present.
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The latter condition can be developed:

KS(D +H)

µmax − (D +H)
< KI

⇔ KS(D +H) < KI (µmax − (D +H)) "<" sign unchanged since (6.41)

⇔ DKS +HKS < µmaxKI −DKI −HKI

⇔ D(KS +KI) < µmaxKI −H(KS +KI)

⇔ D <
µmaxKI

KS +KI
−H (6.43)

Similarly to condition 6.42, we can deduce that

µmax
KI

KS +KI
> H (6.44)

from the previous condition.
Note that condition 6.43 is stronger than condition 6.41, as:

µmax −H >
µmaxKI

KS +KI
−H

⇔ µmax > µmax
KI

KS +KI
(6.45)

Inequation 6.45 is always true, as KI
(KS+KI)

is smaller than one, so condition 6.41 is
irrelevant. The deduced condition on the relationship is similiarly stronger in (6.44)
than in (6.42).

In summary, the steady-state with both phenotypes present is possible with the non-
trivial conditions:

• (µmaxKI)/(KS +KI)−H > D > kH/(1− k)

• µmaxKI/(KS +KI) > H

Solution of the steady-state
The different states and conditions in which they exist can be gathered as seen on

Figure
There is a dilution rate region where no steady state exist. In that region, any attempt

to reach steady-state when S > KI causes the biomass to increase and S to decrease.
When S < KI , the cells start switching and substrate consumption decreases, cause S
to increase above KI again. Since cells do not respond instantaneously to change, and
in this region where S is close to KI small changes in concentration can cause large
changes in responses, the cells may oscillate between the two states.
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d(SV )

dt
= F (t) Sin −

µXV

Y
(6.46)

d(XV )

dt
= µXV (6.47)

dV
dt

= F (t) (6.48)
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Limitations of the model and additional notes
There are a few additional things that can be added on this model, in no particular

order:

• While it was derived for a chemostat, it can be applied to an exponential fed-
batch reactor as well (see section 2). For a fed-batch with less than exponential
feeding, the effective growth rate decreases over time. In other words, it would
not be a question of whether the region without equilibrium is reached, but when.
Then the second question is whether that will cause oscillations or not, which
will depend on the exact biological system, and how long the cells stay in the
problematic region.

• This model predicts that there is a region where there is no steady-state when
there are sharp transitions in cell metabolism, such as with stress induction,
or induction of burdensome production with lactose. Oscillations may appear
thanks to the delay in response time of the cells, and very small changes in sub-
strate concentration causing large changes in cell response. However, the switch
is not a perfect step function, and the delay will be shorter or longer depending
on the cells. Further, a constant switching speed may not be a good approxima-
tion, at least when close to the switching threshold. All in all, oscillations may
appear, but they may be dampened, or the system may stabilize quickly in an
intermediate state that this model is incapable of representing.

• In the demonstration, we considered what happens when KI < S and KI > S.
When KI = S, the details of what happen in the model depend on how H1(S)
was defined (here, H1(KI) = H , therefore the KI = S would be the limit of
the KI < S case). In practice, however, reality is not completely discontinuous,
and this is the edge of an undefined region regardless, so the mathematics of this
particular fictional point do not really matter, only the limit region between the
cases does.

• We consider here that both phenotypes are growing, no matter how slowly. If
the slower phenotype were to have a death rate instead (k < 0), several things
would happen:

– No region would exist where only the second phenotype can survive, as
even a batch culture would eventually have no cells left. This is expressed
by condition 6.39 being always true.

– Nothing else would change, as in no place in section 2 is there any division
by k for any condition. We can therefore expect exactly the same dynamics
and region of uncertainty as with k ≥ 0.
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• For a case such as the induction of burden with a second carbon source (such as
the induction of BL21 with lactose (co-feeding of glucose and lactose), where
oscillations were observed as well [1]), considering co-consumption of carbon
sources, the inequations are inverted such that equations 6.21 is valid only when
D < µmaxKI/KS +KI , and equations 6.36 is valid only when µmax − H >
D > µmaxKI/KS +KI − H and D > Hk/(1− k). Further, the case of only the
second phenotype being present should be stable between kµmaxKI/(KS +KI)

and kµmax. Therefore, a steady-state (or more than one) always exists at least
as long as the induced phenotype is not washed out, and oscillations may only
be an intermediate state that will eventually stabilize. Accounting for those os-
cillations would require investigation of the exact dynamics of the system of
interest, and probably require taking into account carbon catabolite repression
(When induced, cells stop growing, this increases both glucose and lactose con-
centrations. Increasing glucose concentration would inhibit induction by carbon
catabolite repression, from which similar dynamics to the stress case would fol-
low).

Exponential fed-batch
The traditional equations for a fed-batch reactor are:

d(SV )

dt
= F (t) Sin −

µXV

Y
(6.49)

d(XV )

dt
= µXV (6.50)

dV
dt

= F (t) (6.51)

Where F (t) is the flow rate added to the reactor, and D is the expected growth rate
of the cells. In case of exponential feeding, V and dV/dt are defined as:

V (t) = C0 + C1e
Dt (6.52)

dV
dt

= C1De
Dt (6.53)

Where C0 is the integration constant, so that V (0) = V0 the initial volume, and C1

modulates the state of the exponential. Traditionally, C1 is defined as V0 (see [2]),
which makes C0 = 0 and simplifies the equations significantly. In [3], however, the
authors report a common value of C1 = V0X0/SinY for B. subtilis. We can note that,
if the initial glucose concentration is equal to Sin, then we can approximate C1 ≈ V0.
Regardless of the exactitude of that approximation, for the fed-batch to make sense,
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we need V0 > C0 > 0. Therefore, since we are here interested in steady-states only,
we can t0 the original time of the reactor such that V (t0) = V0, which means that C0

can arbitrarily set to 0 and the steady-states will be identical.
The equations for the fed-batch can be adapted like for the chemostat:

d(SV )

dt
= F (t) Sin −

µX1V

YX1
− kµX2V

YX2
(6.54)

d(X1V )

dt
= V X1µ−H1(S)X1V (6.55)

d(X2V )

dt
= V X2kµ+H1(S)X1V (6.56)

dV
dt

= F (t) = C1De
Dt (6.57)

V (t) = C1e
Dt (6.58)

Those equations can be set back into concentrations by using the chain rule for A =
S,X1, X2 in the following equation:

d(AV )

dt
=

dA
dt
V +A

dV
dt

= V
dA
dt

+AF (t) (6.59)

The equations become:

dS
dt

=
F (t)

V
(Sin − S)− µX1

YX1
− kµX2

YX2
(6.60)

dX1

dt
= (µ− F (t)

V
−H1(S))X1 (6.61)

dX2

dt
= (kµ− F (t)

V
)X2 +H1(S)X1 (6.62)

Since F (t)/V = D, these equation become exactly identical to a chemostat, and the
same conclusions can be drawn.

Supplementary Note 2: Extended materials and methods

Strain and growth media
All experiments were performed in minimal mineral media containing (in g/l): K2HPO4:

14.6; NaH2PO4 · 2H2O: 3.6; Na2SO4: 2; (NH4)2SO4: 2.47; NH4Cl: 0.5; (NH4)2H− citrate:
1; glucose: 5, thiamine: 0.01, tryptophan: 0.05. The medium is supplemented with a
trace element solution totaling 11 ml/l assembled from the following solutions (in g/l),
3/11 of FeCl3 · 6H2O: 16.7 , 3/11 of EDTA: 20.1, 2/11 of MgSO4: 120 and 3/11 of a
metallic trace element solution. The metallic trace element solution contains (in g/L):
CaCl2 · 2H2O: 0.74; ZnSO4 · 7H2O: 0.18; MnSO4 ·H2O: 0.1; CuSO4 · 5H2O: 0.1,
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CoSO4 · 7H2O: 0.21. Both the trace element solution and the amino acids were filter
sterilized (0.22 µm). To monitor the switching to the sporulating phenotype, Bacillus
subtilis 168 was modified to express gfpmut2 under the control of the SpoIIE promoter.
The strain, B. subtilis 168 PspoIIE : gfpmut2, was built by AmyE chromosomal
integration of a casette containing the promoter, gfpmut2 and the selection maker,
kanamycin.

Cultivation conditions and flow cytometry analysis
Precultures were started from single colonies picked from a LB plate and grown

overnight. To avoid starting bioreactor cultivations with sporulating populations, the
precultures were done in overfilled shake flasks (20 % of filled volume) without baffles
to reach oxygen limitation before glucose. All bioreactor cultivations were performed
at 37°c, pH 7 and aeration at 1 VVM. For growth and switching parameters determi-
nation, experiments were performed in DASBox mini - bioreactors (Eppendorf) with a
stirring speed of 400 rpm and a cultivation volume of 160 ml. Continuous cultivations
were performed in Bionet F1 bioreactor with a cultivation volume of 1 l at an agita-
tion speed of 1000 rpm. The transition from batch to continuous was triggered once
oxygen rose, signaling the transition from exponential to stationary phase.

Bioreactor cultivations were monitored with a custom made sampling device (the
Segregostat) that automatically draws a sample from the reactor and dilutes it with PBS
before flow cytometry (FC) analysis (BD Accuri, C6 for the parameter determination
and C6+ for the continuous cultures). A total of 40,000 cells were analyzed in each
sample where the FL1-A channel is used to visualize the GFP content.

Growth and switching parameter determination
A triplicate batch cultivation in the DASBox was performed to estimate µmax and

switching (KI , H) parameters of our strain. To this end, each bioreactor was inoc-
ulated with a OD of roughly 0.08 and samples were collected throughout the batch
to assess the OD and the residual glucose concentration. The residual glucose con-
centration was determined using a D-glucose enzymatic assay kit from Megazyme in
98-well plates with a plate reader. During the batch, FC analysis was performed with
our custom platform, the Segregostat, to observe when and at what speed cells were
sporulating. The KS was defined based on the analysis the residual glucose concen-
tration at steady state at a high dilution rates (where cells are not sporulating) during
the chemostats with varying dilution rates.

The following parameters were measured or estimated:

• H: 1.1 h−1 → Average from 0.83, 1.2, and 1.3 with r2 = 0.98, 0.99 and 0.99
respectively (computed by linear regression over the time there is switching)

• KS : 0.14 g/L→ Based on the concentration at D=0.32 h-1, measured as 0.2761
and 0.2432 g/L. From D = mumaxS/(K + S), we get KS = mumaxS/D − S
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• KI : [0.01,0.1] g/L→ Explained below

• µmax: 0.49 h−1→ Average from 0.52, 0.47 and 0.48 with r2 > 0.99 for all three
(computed by linear regression over the time of exponential growth)

• k: 0→ Sporulating cells are considered non-growing

To determine the start of sporulation, we considered the time at which the measured
optical density dropped. That drop likely corresponds to a change in morphology of
the cells. For that stretch of time, samples were taken more often than the automated
flow cytometry, providing a better time resolution, in addition to having no absolutely
no cross-contamination (using the segregostat with our DasGip in triplicate setup, a
few percent leftover from each sample may be measured with the next sample), which
is relevant when looking at very low percentages of induction. Based on these OD
measurements, we considered the induction threshold was passed during the preceding
measured time interval. This corresponds to 0.013 to 0.097 g/L, 0.009 to 0.068 g/L
and 0.010 to 0.282 g/L for reactors 1, 2 and 3 respectively. Thus we estimated KI to
be in the range of 0.01 to 0.1 g/L, although considering the cells need time to switch,
KI ’s order of magnitude is likely the higher end of the range.

Based on these measurements, we could compute the unstable range of dilution
rates for B. subtilis. The lower end of the range is at D = 0 -1, as k = 0 and
(µmaxKI)/(KS +KI) −H < 0 (µmax < H). The upper end depends on KI . Based on
the estimated range of KI , it should be between (µmaxKI)/(KS +KI) ∈ [0.03, 0.2] h-1.
The first replicate of the experiment showcasing a range of dilution rates showed the
start of the instability at D = 0.17 h-1, which would correspond to a KI of 0.075 g/L.

3. Supplementary information chapter 4
Supplementary Notes
Supplementary Note 1: Growth production trade-off determination
To compute the growth rate of the strain as a function of the induction strength

(fluorescence content) from FC population snapshots, two assumptions are needed:

• GFP is not degraded and thus its concentration in the cells only decreases though
growth

• The expression system driving the production of GFP is tight, in other words,
during the relaxation phase cells do not produce GFP at all

Both assumptions are reasonable, since: A) GFP is a protein, no degradation tags
have been linked to it and the time scale associated to this analysis (only a few hours)
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is rather small. B) The T7 expression appears really tight as in the batch phase where
no lactose is provided, no fluorescence above the auto-fluorescence of a non GFP
containing E. coli is observed.

From there, the growth rate associated to different level of GFP can be retrieved from
multiple FC analysis gathered during the relaxation phase, i.e., when the population
fluorescence is decreasing after the increase that followed induction. With these FC
files, the fluorescence of the cells can be sorted and characterized with quartiles. These
quartiles are collected over a few FC analysis to grasp how their value decreases over
time. If the GFP production did not impact the growth, the value of each quartile would
drop at a same rate, the population growth rate. Instead of this, what we observe in
the case of E. coli BL21 (DE3), is that the greater the quartile is, the slower its value
decreases over time. A log scale transformation of the quartile values make a simple
linear regression sufficient to retrieve the growth rate (the slope of the line) associated
with each quartile (Figure 6.11).

Figure 6.11: Overlapping the quartile values on the density plot during a relaxation phase
shows that the slope of the quartile value decrease is inversely proportional to the quartile

value.
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Supplementary Figures

Figure 6.12: Time scatter plot of a replicate Segregostat cultivation of E. coli BL21 where
lactose is added as pulse (0.5 g) once 50% of the population exhibits a fluorescence below

1000 fluorescence units (in FL1-A channel)

Figure 6.13: Time scatter plot of a replicate of the cultivation where lactose is pulsed at an
increasingly high frequency three times in a row with 5 retention times in between.
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Figure 6.14: Time scatter plot of a replicate of a chemostat where the cultivation starts with
glucose as the main carbon source, followed with arabinose and then xylose.

Figure 6.15: Maximum growth rate of E. coli BL21 (DE3) on multiple carbon sources (n=5).
The mean maximum growth rate on glucose, glycerol, arabinose, fructose, xylose and

mannose are respectively 1.09, 1.22, 0.93, 0.98, 0.55 and 0.51 h−1.
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