
Wiley Online Library

<<

≔

Ð

ARTICLE

Effects of host plants on aphid feeding behavior, fitness, and Buchnera aphidicola titer

View article page

Shen Liu, Xiao-Bei Liu, Tian-Tao Zhang, Shu-Xiong Bai, Kang-Lai He, Yong-Jun Zhang, Fréd ... See all authors

77 CITE

Check for updates

© 2024 Institute of Zoology, Chinese Academy of Sciences. https://doi.org/10.1111/1744-7917.13428

ISSN	1672-9609
elSSN	1744-7917
Accepted	9 July 2024
Revised	5 June 2024
Received	18 March 2024
Pages	n/a - n/a

• • stract

ding plant pacts that depend on th

ORIGINAL ARTICLE

Effects of host plants on aphid feeding behavior, fitness, and Buchnera aphidicola titer

Frédéric Francis² and Zhen-Ying Wang¹

¹State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China and ²Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

Insect Science (2024) 0, 1–16, DOI 10.1111/1744-7917.13428

Shen Liu^{1,2} , Xiao-Bei Liu¹, Tian-Tao Zhang¹, Shu-Xiong Bai¹, Kang-Lai He¹, Yong-Jun Zhang¹,

Abstract Aphids are sap-feeding plant pests that depend on their symbiotic relationships with the primary endosymbiont Buchnera aphidicola to adapt to impoverished diets. However, how the host plant affects the aphid primary symbiont and aphid adaptation to host plant transfer are poorly known. In this study, aphid symbiont screening and genotype identification were used to establish 2 aphid strains (Rhopalosiphum maidis [Rm] and Rhopalosiphum padi [Rp] strains) containing only Buchnera without any secondary symbionts for both wheat aphid species (R. maidis and R. padi). Aphid fitness and Buchnera titers were unstable on some of these host plants after transferring to novel host plants (G1-G5), which were influenced by host plant species and generations; however, they stabilized after prolonged feeding on the same plants for 10 generations. The electropenetrography (EPG) records showed that the allocation of aphid feeding time was significantly distinct in the 6 host plants; aphids had more intracellular punctures and spent more nonprobing time on green bristlegrass which was not conducive to its growth compared with other plants. The content of soluble sugar, soluble protein, and amino acid in the leaves of the 6 host plants were also clearly separated. The correlation coefficient analysis showed that the nutrient contents of host plants had significant correlations with aphid feeding behaviors, fitness, and Buchnera titers. In the meantime, aphid fitness, and Buchnera titers were also affected by aphid feeding behaviors. Also, Buchnera titers of aphid natural populations on 6 host plants showed a visible difference. Our study deepened our understanding of the interaction among aphids, endosymbionts, and host plants, indicating that the host plant nutrient content is a predominant factor affecting aphid adaptation to their diet, initially affecting aphid feeding behaviors, and further affecting aphid fitness and Buchnera titers, which would further contribute to exploiting new available strategies for aphid control.

ː: ⊝ ⊕ ৫; | q +**2**; ... | 🛃