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Abstract

Cardiac surgeries are major interventions prone to serious complications that can
occur during and after the operation. Monitoring the heart allows to anticipate
such complications and has thus become a standard practice to perform through
the perioperative period. Echocardiographic assessment of the myocardial con-
tractility is a common monitoring procedure that is generally performed by visual
inspection. The qualitative nature of this technique makes it highly vulnerable to
the operator’s subjectivity and thus drove cardiologists to develop standardized
quantitative measures of cardiac function, such as strain. Strain estimation still re-
quires manual annotation of images and still suffers from inter- and intra-observer
variability.

This thesis is presented as a contribution towards the complete automatization of
the strain estimation task in transesophageal echocardiographic (TEE) images. A
novel strain estimation pipeline is proposed. It focuses on the estimation of the
longitudinal strain in the basal segments of the 4-chamber, 2-chamber and apical
long-axis views of the heart. This pipeline uses the segmentation model U-Net and
a custom thinning algorithm to automatically extract myocardial points from the
first frame of a B-mode sequence and estimates their motion with optical flow
methods. Strain is then computed based on the estimated displacement of these
points through cardiac cycles. Four optical flow models are experimented, among
which two have a convolutional neural network-based architecture. Integration of
tissue velocity imaging (TVI) data and a novel tracking method based on Kalman
filtering are developed in order to improve the motion estimation and tracking
processes.

U-Net and the two CNN-based models are trained on B-mode recordings from
70 patients. A test set of 18 patients is used to evaluate the tracking and strain
estimation performances of the different models. The myocardial point extraction
algorithm gives usable results in 50% and 57% of the cases when applied to high
and low frame rate B-mode sequences respectively. Three optical flow algorithms
present outstanding tracking performances in five of the six basal segments. It is
shown that exploiting TVI data improves tracking performances. The same ob-
servation is made when the Kalman filtering-based tracking method is applied to
high frame rate sequences. The proposed techniques achieve state-of-the-art strain
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estimation performances. A mean absolute error of (2.74+ 2.38)% is achieved
in the inferoseptal segment. The inferior and anterior segments are the segments
in which the correlation between strain estimates and ground truth values is the
highest: the Pearson correlation coefficient reaches the value 0.77 in the inferior
segment and 0.79 in the anterior segment.
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Chapter 1

Introduction

Preliminary work of this thesis was conducted at NTNU during the Autumn semester
2020 in the framework of the course TFE4590 - Specialization Project. Although
significantly extended, some parts of the introduction and theoretical background
chapters have thus been adapted from the specialization project report.

1.1 Background

Monitoring the autonomic function of the heart has become a standard practice in
various surgical interventions. In high-risk surgeries, such monitoring allows for a
quick and reliable assessment of patients’ health. Indeed, the characteristics exhib-
ited by the autonomic function of the heart are affected by the seriousness of the
undergoing surgical procedure. [1] As for a dysfunction of the automatic nervous
system, cardiovascular function imbalance causes the risk of sudden death in op-
erated patients to rise. [2, 3] Some interventions like cardiac valve replacements
and coronary artery bypass grafting can destabilize the automatic cardiovascular
function, which could potentially decrease myocardial contractility, and in some
cases, lead to atrial fibrillation and myocardial infraction. [4, 5] These are as many
reasons for surgeons to show a growing interest for heart function monitoring
during operations.

In most cases, heart function monitoring is performed visually by analyzing echo-
cardiographic images. [6] Echocardiography consists in building two- or three-
dimensional images of the heart by analyzing the attenuation and reflections
undergone by ultrasound waves in body tissues. Contrary to MRI and computed
tomography scanners, ultrasound imaging techniques are cheap and non-invasive.
This is also a portable technology, which makes it particularly well suited for
real-time monitoring applications and to be used in operating rooms. [7, 8] Tran-
sthoracic echocardiography (TTE) is the most popular technique and uses an
external ultrasound probe placed on the thorax to retrieve images from the heart.
Its popularity is mainly due to its ease of use. [9] Besides TTE, transesophageal
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echocardiography (TEE) has gained in popularity among physicians since its in-
troduction in the 80’s. In this procedure, the ultrasound probe is placed in the
patient’s esophagus. The ultrasound waves can thus reach the heart with a clearer
and more direct path. This results in good-quality ultrasound images of cardiac
structures. [10] Complications that could occur due to a poor probe placement or
manipulation are rare. [11] Moreover, TEE proved itself to be a tool of choice in
the diagnosis of cardiovascular disease and failure such as prosthetic-valve failure
and endocarditis. When used in operating rooms, the TEE probe stays in place for
the entire duration of the surgery. Acquisition of new images is therefore possible
without the need for an operator to be present, unlike TTE. [12]

Reichert et al. [13] proved that the myocardial strain has a prognostic value
in patients undergoing cardiac surgery. In 2010, Dalen et al. [14] proposed some
reference values for myocardial strain in healthy patients. The myocardial strain
is a measure of the myocardial contractility, one of the three factors governing
the systolic volumes of the left ventricle. [15] Consequently, the systolic global
longitudinal strain is highly correlated to the left ventricular ejection fraction
(LVEF), which is the volumetric difference in percent of the left ventricle between
the end-systole and the end-diastole. [16] The latter constitutes a quantitative
assessment of the systolic function of the left ventricle. The systolic function is the
most commonly monitored cardiovascular function: its dysfunction can generally
be interpreted as an early sign of several cardiac complications, such as the con-
gestive heart failure (CHF). [17, 18]

Practically, the strain is computed by assessing the myocardial deformation. This is
only possible if the motion of the myocardium is tracked properly through cardiac
cycles. The literature references three main approaches to solve this task. The
simplest one consists in estimating the displacement of the myocardium by integrat-
ing its velocity, obtained using tissue velocity imaging (TVI). TVI is an ultrasound
imaging technique that uses the Doppler effect in order to measure 1-D tissue
velocities along the ultrasound beam direction. Due to the uni-dimensional nature
of TVI data, this technique provides meaningful results only if a certain degree of
parallelism between the myocardium and the ultrasound beam is achieved. [19,
20] Another approach, called speckle tracking, identifies noticeable speckles in
a B-mode image sequence and tracks them from one frame to the next. A simil-
arity measure is optimized between consecutive frames to do so, which makes
this procedure computationally heavier than the previous one. [19, 21] The last
approach is called deformable image registration. This technique attempts to warp
two consecutive frames on each other. The inverse transformation can then be used
to perform landmark tracking on the myocardium from one frame to the next. [22]
The study led by Heyde et al. [23] showed that deformable image registration and
speckle tracking exhibit similar performances when compared to a gold standard
reference measurement. Even though newly applied in the ultrasound imaging
field, image registration is not a new concept. In 1972, Barnea and Silverman
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[24] presented a class of sequential similarity detection algorithms (SSDAs) to
solve the image registration problem more efficiently. In 1981, Lucas, Kanade et al.
[25] developed an iterative image registration algorithm and applied it to a stereo
vision problem with success.

The image registration problem can be solved by using an optical flow algorithm.
Such an algorithm takes two frames of a video sequence, generally consecutive,
and computes a sparse or dense vector field, called optical flow, describing the
motion between those two frames. Optical flow can then be used to fold one frame
on the other. In 1993, Black and Anandan [26] introduced a new framework for
a robust estimation of optical flow. The presented method was able to identify
image regions where brightness constancy and spatial smoothness assumptions are
violated. Ten years later, Farnebäck [27] developed a robust optical flow estimation
algorithm based on polynomials expansion. More recently, Dosovitskiy et al. [28]
proved that optical flow estimation could be seen as a machine learning prob-
lem. They developed a convolutional neural network (CNN)-based architecture
for optical flow estimation. Although presenting similar performances to state-of-
the-art techniques, this new method performed generally faster. Two years later,
an improved version of FlowNet, called FlowNet 2.0, was presented. A stacked
architecture and a sub-network specialized in small motions estimation drastically
improved the quality of the estimated flow. The scheduled manner the training
data was presented also greatly enhanced the performances. [29] The same op-
tical flow model was used along with the image inpainting model EdgeConnect
[30] to develop an efficient flow-edge guided video completion algorithm. [31] In
2020, Teed and Deng [32] introduced a new deep architecture for iterative optical
flow estimation. This model called Recurrent All-Pairs Field Transforms (RAFT)
stacks a feature encoder, a correlation layer, and a GRU-based update operator.
It achieves state-of-the-art performances while presenting a strong cross data set
generalization. It also requires less iterations than other methods for a same optical
flow quality. The authors won the best paper award at the European Conference
on Computer Vision (ECCV) 2020. While being modern and well-adapted to the
computer era, deep learning-based models for optical flow estimation suffer from
the lack of realistic training data. Indeed, extracting ground-truth optical flow
from a real scene with natural motion is a tedious work. For this reason, most
data sets are synthetic. Among the most popular, the literature references the
MPI-Sintel data set [33], derived for a 3D animated film, the FlyingChairs data
set, introduced by Dosovitskiy et al. [28], and the FlyingThings3D data set [34],
relatively similar to the previous. In 2013, a team from the Karlsruhe Institute
of Technology (Germany) equipped a car with a set of sensors and generated
ground-truth optical flows for different traffic scenarios. The so-called KITTY data
set is, to the author’s knowledge, the only reasonably large data set derived from
real scenes. [35]

Performing strain estimation requires the expertise of a well-trained cardiologist.
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This time consuming process is therefore poorly suited for real-time applications,
like numerous of other medical imaging tasks. Nevertheless, the recent break-
through of deep learning, or machine learning more generally, has disrupted the
field of medical image processing. CNNs are particularly convenient to process
images. In 2018, a CNN model outperformed most of the participating dermatolo-
gists on dermoscopic melanoma recognition task. [36] Kooi et al. [37] analyzed
the performances of another CNN model on a mammographic lesions detection
task. They showed that it outperformed a state-of-the-art system in computer
aided detection (CAD), and performed just as good as a panel of three certified
screening radiologists. In 2015, Knackstedt et al. [38] developed a fully automated
software called AutoLV which was able to perform accurate and reproducible LVEF
measurements and average biplane longitudinal strain. Another convolutional
model, developed by Østvik et al. [39], estimated accurately global longitudinal
strain from echocardiographic images. In 2019, Haukom et al. [22] presented a
deep learning-based model for automatic regional strain estimation in TEE. For
high-quality ultrasound images, this model exhibited satisfying results for basal
strain estimation in 4- and 2-chamber views of the heart, in a time that allows for
real-time applications. The model architecture was based an the work of Vos et
al. [40, 41], who developed a deep learning framework for unsupervised affine
and deformable image registration. Within this framework, models are trained to
perform coarse-to-fine image registration without the need of labeled data. CNNs
also showed promising performances in the segmentation task. In 2015, Ronneber-
ger et al. [42] presented the now famous U-Net, a CNN architecture performing
particularly well in biomedical image segmentation. A year later, Wiehman et al.
[43] proposed an unsupervised pre-training procedure for CNNs that decreased
the output variance of U-Net without affecting its mean performances. U-Net was
later used by Smistad, Østvik et al. [44] to perform 2D left ventricle segmentation.
Their goal was to analyze U-Net performances when trained by a Kalman filter
automatic segmentation tool. Even if the model slightly outperformed the tool it
was trained with, it still required training with annotated ultrasound images to
achieve state-of-the-art performances.

Despite the recent progress made in the field, ultrasound image processing stays
a challenging discipline due to the inherent noise of ultrasound acquisition tech-
niques. Indeed, the speckle noise of commercial echographs alters the ultrasound
image quality in regions of interest. Ultrasound image denoising is therefore a
search field in its own right. In 2001, Zhang et al. [45] developed a novel method
for Doppler ultrasound signal denoising using wavelet frame analysis. They showed
that using wavelet frame analysis instead of wavelet transform analysis leads to
better denoising performances. Several years later, Andria et al. [46] analyzed the
performances of seven different wavelet coefficients linear filtering methods on
ultrasound medical images. In 2011, De Fontes et al. [47] presented a modified
version of the NL-means algorithm adapted for speckle noise reduction in ultra-
sound images. The proposed denoising method had very good performances but
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was computationally heavy. Six years later, Singh et al. [48] presented a hybrid
algorithm for speckle noise reduction. The proposed filter was composed of three
simpler filters connected in cascade: a guided filter, a speckle reducing bilateral
filter, and a rotation-invariant bilateral non-local means filter. This new hybrid
algorithm outperformed all existing speckle denoising algorithms while keeping a
reasonable complexity.

1.2 Aim of current work

Strain estimation from echocardiographic images is a time-consuming process
affected by the inherent subjectivity of cardiologists. With the emergence of deep
learning-based models, a full automation of this task can be considered. This
thesis is an attempt to get closer to this objective. More particularly, it focuses on
the automation of myocardial points tracking, the strain being simply deduced
from the distance between two myocardial points at the end of systole and diastole.

Four optical flow methods are used to estimate the frame-to-frame motion of
cardiac tissues:

1. the Daisy-chaining model, a coarse-to-fine image registration model strongly
inspired from the work of Haukom et al. [22] and Vos et al. [40, 41],

2. the Recurrent All-Pairs Field Transforms (RAFT) method [32],
3. the Lucas-Kanade algorithm [25],
4. and the Gunnar-Farnebäck algorithm [27].

The feasibility of improving optical flow estimates by taking into account tissue
velocity imaging (TVI) data is studied. Two tracking methods are developed in
order to follow points of interest from one frame to the next. They both rely on the
estimation of optical flow between successive frames. One of them implements a
Kalman filter and is proposed as a solution to the point drifting issue. Myocardial
segmentation is also experimented in order to semi-automatically extract interest-
ing points to track. Finally, the ability to estimate accurately the strain in the basal
segments of the myocardium is assessed for every combination of optical flow and
tracking methods.

To sum up, the current work tries to answer the following questions:

• Can frame to frame tracking on TEE images be performed using optical
flow-based motion estimation methods?

• Can TVI data be integrated with the tracking method to improve the quality
of optical flow estimation?

• Can a Kalman filter-based tracking method reduce the drift problem?
• Can a myocardium segmentation tool be developed to extract interesting

points to be used in the strain estimation process?
• Can point tracking on TEE images lead to an accurate estimation of the strain

in basal segments of the myocardium when compared to expert measure-
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ments?

1.3 Outline

A non-exhaustive literature review was made in this chapter. The goal pursued
in this work was established. The second chapter provides all the theory needed
for a deep understanding of the subject: the cardiac anatomy is reminded and the
strain estimation process is detailed. Basics of B-mode and TVI are presented, as
well as fundamentals of deep learning. The different optical flow algorithms are
also presented. The third chapter is dedicated to the description of the data sets
used and the methodology followed in this thesis. The fourth chapter presents the
obtained results which are discussed in the fifth chapter. Finally, a conclusion is
drawn in the sixth chapter.



Chapter 2

Theoretical background

2.1 Cardiac Anatomy

The heart is the organ responsible for blood circulation and acts as a pump. Its
structure is depicted in Figure 2.1.

Figure 2.1: Schematic of the cardiac structure. White arrows indicate blood
flow. Illustration by Wapcaplet - Own work, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=830253.

The heart has four chambers, two atria and two ventricles, and four valves to
delimit them. The two atrioventricular valves, called mitral and tricupsid valves,
separate the atrium from the ventricle in the left and right part of the heart re-
spectively. The aortic valve defines the boundary between the left ventricle and
the aorta, while the pulmonary valve is located at the junction between the right

7

https://commons.wikimedia.org/w/index.php?curid=830253
https://commons.wikimedia.org/w/index.php?curid=830253
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ventricle and the pulmonary artery. The cardiac valves only allow blood flow in
one direction: from an atrium to a ventricle or from a ventricle to an artery. The
heart wall is made up of three layers: an inner layer called endocardium, a middle
layer called myocardium, and an outer layer called epicardium. The myocardium
is the thickest one (colored in pink in Figure 2.1) and consists of muscular fibers
responsible for the cardiac contraction. A protective layer called the pericardium
encompasses the entire organ. [15]

Figure 2.2: Stages of the cardiac cycle. Black arrows indicate blood flow. Il-
lustration by OpenStax College - Anatomy &amp; Physiology, Connexions Web
site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 3.0, https:
//commons.wikimedia.org/w/index.php?curid=30148227.

The time laps separating two heart beats corresponds to a repetition of the cardiac
cycle. This cycle can be detailed stage by stage as followed:

1. Isovolumic/isovolumetric relaxation - The ventricles and atria are in their
relaxation phase. The left atrium is filled with oxygenated blood coming
from the pulmonary vein. The right atrium is filled with de-oxygenated blood
coming from the inferior and superior vena cava.

2. Ventricular filling - The rise of pressure in both atria causes the mitral and

http://cnx.org/content/col11496/1.6/
https://commons.wikimedia.org/w/index.php?curid=30148227
https://commons.wikimedia.org/w/index.php?curid=30148227
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tricupsid valves to open. Both ventricles start to fill with blood.
3. Atrial contraction - Both atria contract and push the blood in the corres-

ponding ventricle.
4. Isovolumic/isovolumetric contraction - Both ventricles start to contract,

causing the mitral and tricupsid valves to close. During this phase, the
ventricular pressure is not sufficient to cause the aortic and pulmonary
valves to open.

5. Ventricular contraction - The ventricular pressure becomes sufficient to
force the aortic and pulmonary valves to open.

6. Ventricular ejection - The ventricular contraction pushes the blood away
from both ventricles to the aortic and pulmonary arteries. After this final
stage, another cycle starts and stage 1 takes place again.

An illustration of the complete cycle is shown in Figure 2.2. The cycle can be
sub-divided into two main phases: the systole and the diastole. The term systole
refers to a contraction phase, while the term diastole refers to a relaxation phase.
Note that those terms can either indicate the atrial or ventricular contraction and
relaxation. In the following, the words systole and diastole designate the ventricu-
lar systole and diastole. [49]

Visualizing a Wiggers diagram can help improve the understanding of the cardiovas-
cular physiology. It shows the temporal relationship that exists between the cardiac
cycle and the electrocardiogram (ECG), the ventricular volume, and the blood
pressure in the ventricles, atria and aorta. A typical Wiggers diagram is shown in
Figure 2.3. The end-of-diastole (ED) and the end-of-systole (ES) are important
cycle time instants that are generally used in the strain estimation process. In this
thesis, the ECG and the position of the mitral valve are used to locate precisely
those time instants. Figure 2.3 shows that the ES coincides with the end of the
T-wave in the ECG signal and with the moment the mitral valve opens. As for the
ED, it corresponds to the highest peak of the QRS-complex in the ECG signal and
to the moment the mitral valve closes. [49, 50]

2.2 Echocardiography: B-mode and TVI images

Ultrasound imaging is the imaging modality that uses ultrasound waves to build
images of tissue structures. More precisely, an ultrasound probe transmits fo-
cused beams of sound waves through body tissues. The level of sound reflected
or scattered back to the transducer depends on the acoustic impedance along the
path of the ultrasound beam. The amplitude and phase of echo waves can thus
be analyzed to determine the structure of the tissues through which the beam
traveled. Array of sound beams with different incident angles are used to build a 2-
or 3-D image. Echocardiography is the ultrasound imaging branch that focuses on
depicting cardiac structures. [51] Depending on the probe orientation, the heart is
observed under different views. In this work, the 4-chambers, the 2-chambers and
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Figure 2.3: Typical Wiggers diagram. Illustration by DanielChangMD revised
original work of DestinyQx; Redrawn as SVG by xavax - Wikimedia Commons,
File:Wiggers Diagram.png., CC BY-SA 2.5, https://commons.wikimedia.org/w/
index.php?curid=18764854.

the apical long-axis views of the heart are used. The two atria and two ventricles
are visible in the 4-chambers view. The 2-chambers view only shows the left atrium
and ventricle. The apical long-axis view shows the left atrium, the left ventricle
and the aorta. A simplified diagram of these views is shown in Figure 2.6.

Two-dimensional brightness-mode (B-mode) is the most widespread ultrasound
imaging mode. B-mode images are cross-sectional scans of tissue and organ bound-
aries. In B-mode imaging, vertical and horizontal dimensions of the image cor-
respond to real spatial dimensions of the scanned tissue area. The brightness of
a point in the image is directly proportional to the amplitude of the ultrasound
echo coming from the corresponding point in the scanned tissue area. The location
of tissue boundaries relative to the ultrasound probe are deduced from the time
of arrival of echoes. Modern B-mode imaging systems still implement this simple
principle, although they may use it within more complex arrangements for the sake
of performance. [51, 52] A B-mode image representing the apical long-axis view of
a human heart is shown in Figure 2.4a. Tissue velocity imaging (TVI), also called
tissue Dopple imaging (TDI), is another well-known ultrasound imaging mode used

https://commons.wikimedia.org/w/index.php?curid=18764854
https://commons.wikimedia.org/w/index.php?curid=18764854
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to measure blood and tissue velocities. In cardiology, it is commonly used to assess
the performances of cardiac valves. This imaging mode makes use of the Doppler
effect: the wave reflected on a surface in motion relatively to the the stationary
ultrasound probe incurs a frequency shift ∆ f which is directly proportional to the
surface velocity. The so-called Doppler shift is given by

∆ f =
−2 f0vd cos(θ )
v + vd cos(θ )

, (2.1)

where f0 is the transmitted ultrasound frequency, vd is the velocity of the moving
surface, θ is the angle formed by the ultrasound beam and the surface velocity
vector, and v is the speed of sound in the considered medium. Since vd is generally
much smaller than v, Equation 2.1 can be approximated by

∆ f ≈
−2 f0vd cos(θ )

v
. (2.2)

The term vd cos(θ ) is computed for each point of the TVI image. Note that this term
represents the projection of vector ~vd on the axis going from the ultrasound probe
to the reflection point. Therefore, the Doppler mode computes the tissue velocity
in the direction of the ultrasound beam only, the component of ~vd perpendicular
to this direction remaining unknown. [51–53] A TVI image of the apical long-axis
view of a human heart is shown in Figure 2.4b.

(a) B-mode image (b) TVI image

Figure 2.4: B-mode and TVI images of the apical long-axis view of a human heart.
Pixel color in the TVI image indicates the velocity of the considered pixel in the
direction of the ultrasound beam.

When it comes to imaging the heart, the ultrasound probe can be placed in several
ways. In transthoracic echocardiography (TTE), the probe is placed on the skin in
an area close to the third and fourth left intercostal space. The ease of setup makes
it the most popular probe placement. In transesophageal echocardiography (TEE),
the ultrasound probe is placed in the patient’s esophagus, as shown in Figure 2.5.
Setting up a TEE probe is more complicated and can lead to complications in
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rare cases [11]. Nevertheless, TEE benefits from an improved visualization power
compared to TTE: the quality of TTE images can sometimes be affected by excess
body tissues, scarring, ribs or collapsed lungs. Moreover, TEE probes do not require
a continual support and adjustment, unlike TTE probes. All B-mode and TVI image
sequences processed in this work were acquired using a TEE probe.

Figure 2.5: Simplified diagram showing the TEE probe placement in the human
body.

2.3 Strain estimation

The ventricular cardiac function can be assessed by measuring the strain resulting
from the local contraction of the myocardium. A local shortening, thickening or
elongation of the myocardium is globally defined as myocardial strain. A measure
of the shortening along the x-, y- and z-axis, and of the shear in the xy, xz and yz
planes gives a full description of the myocardial strain. When strain is estimated
from B-mode images, assessing those six components becomes a tedious task.
A simplified metric called the Lagrange strain is thus preferred. It consists in
measuring the shortening incurred by a specific myocardial region. [54] Given two
material points located at both ends of the considered region, the 1D strain ε(t) is
given by

ε(t) =
L(t)− L0

L0
, (2.3)

where L(t) is the distance between the two material points at time t, and L0 = L(t0),
t0 being the reference time. In this thesis, the end-systolic strain is used to assess
the myocardial contractility. The end-systolic strain is computed by setting t0 = ED
and t = ES in Equation 2.3. [22, 54]



Chapter 2: Theoretical background 13

In 2002, the American Heart Association published a standardized segmenta-
tion model dividing the myocardium into seventeen distinct segments. [55] This
model is illustrated in Figure 2.6 for the 4-chamber, 2-chamber and apical long-axis
views of the heart. For each myocardial segment, the strain can be assessed in
three different directions: longitudinal, radial and circumferential. The longitud-
inal strain assesses the myocardial deformation along the atrioventricular axis1

direction while the radial strain assesses the myocardial deformation along the
perpendicular direction. The circumferential strain assesses the circumferential
shortening of the myocardium around the atrioventricular axis. The quality of TEE
is generally higher close to the cardiac valves and decreases as getting closer to
the apex segment. For this reason, this work focuses on basal longitudinal strain
estimation only (i.e. longitudinal strain estimation in the basal segments visible in
Figure 2.6).

Figure 2.6: 17-segments model of the myocardium proposed by the American
Heart Association. [55] LA, LV and Ao respectively stand for Left Atrium, Left
Ventricle and Aorta. The heart is observed under the 4-chambers, 2-chambers and
long axis views. In this thesis, strain is estimated in basal segments only.

1i.e. the axis passing by the mitral annulus and perpendicular to the plane separating the left
atrium from the left ventricle.
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2.4 Deep learning fundamentals

Machine learning is a relatively new area of research that studies the ability
of computers to learn how to execute a specific task without being explicitly
programmed for it. The branch of machine learning that focuses on the development
of complex models composed of several simpler non-linear estimators is called deep
learning. Deep learning models are so called due to the depth of their forward path2.
The architecture of deep learning models was originally inspired from neuronal
interconnections and was designed to mimic the functioning of the human brain.
Nowadays, there exist several task-specific architectures such as the convolutional
neural networks (CNNs), specific to vision, detection and segmentation tasks, the
recurrent neural networks (RNNs), specific to temporal sequences analysis, and
many others. [56] Architectures relevant to this work will be presented in this
section. In the following, all vectors and tensors are displayed in bold.

2.4.1 Feed-forward neural networks

Feed-forward neural networks are the simplest type of deep learning networks.
Their building block is called neuron or logistic unit. Mathematically, a neuron is
the generally non-linear function h : Rp 7→ R : x → h(x ) described as

h(x ) = φ(w T x + b), (2.4)

where w ∈ Rp is a weight vector, b ∈ R is a bias, and φ(y) : R→ R : y → φ(y)
is a non-linear function called activation function. The sigmoid, rectified linear
unit (ReLU), threshold function and hyperbolic tangent (tanh) are commonly used
activation functions. [56, 57]

Several neurons can be stacked and used in parallel to form a layer. Formally,
with the input x ∈ Rp, a layer h(x ) : Rp→ Rq : x → h(x ) is defined as

h(x ) = φ(W T x + b), (2.5)

where W ∈ Rp×q is the weight matrix of the layer, b ∈ Rq is the vector of bias of
the layer, and where the activation function φ is applied element-wise. Such a
model is called single-layer perceptron and is the simplest example of artificial
neural network (ANN). [56, 57]

The representation capacity of the single-layer perceptron, i.e. its capability to
model multi-dimensional mappings, is very limited. On a classification task, it is
only able to learn linearly separable patterns. A more complex model with a better
representation capacity can be built by stacking several layers of logistic units.
Indeed, deeper models theoretically lead to improved representation abilities. The
same statement stands for models whose layers are composed of more neurons.

2The forward path is the process path that links the output of the model to its input.
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[56–58] This stacked model is called multi-layer perceptron (MLP) and is described
as followed:

h0 = x ,

h1 = φ(W
T
1 h0 + b1),

· · ·

hL = φ(W
T
L hL−1 + bL),

(2.6)

where Wi ∈ Rp×q and bi ∈ Rq are respectively the weight matrix and bias vector
of layer hi . The first and last layers (i.e. h1 and hL) of the MLP are respectively
called input and output layers. Inner layers hl with l ∈ {2, 3, · · · , L − 1} are called
hidden layers. A diagram of a simple MLP is shown in Figure 2.7. The MLP model
is called fully-connected owing to the complete interconnection of neurons of two
adjacent layers.

Figure 2.7: Multi-layer perceptron architecture with three input features, a single
hidden layer with four neurons, and two outputs. Note that the subscription used
here is such that hi, j = [hi] j , bi, j = [bi] j and Wi, jk = [Wi] jk.

2.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) were introduced to overcome shortcomings
of fully-connected models on vision tasks. Indeed, the number of parameters of
fully-connected models increases drastically with the number of input features to
process. This quickly leads to models of intractable size when inputs with large
dimensions like images need to be handled. Moreover, treating vision signals
requires models to have specific properties, like invariance to translation, locality
and hierarchical compositionality, which fully-connected models do not have. [57]
In a convolutional layer, each neuron is only connected to a subset of neurons from
the previous layer, called the receptive field. The same non-linear transformation is
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applied to the receptive field of each neuron in the layer. More rigorously, consider
an input feature map of dimension three, i.e. a 3-D tensor x ∈ RC×H×W . This
could be a RGB image, in which case C = 3, H and W would be respectively the
number of channels, the height and the width of the image. The 3-D convolution
operation is defined by the kernel u ∈ RC×h×w, generally with h� H and w�W .
It produces a 2-D output feature map o ∈ R(H−h+1)×(W−w+1) whose element O ji is
given by

o ji = b ji +
C−1
∑

c=0

h−1
∑

n=0

w−1
∑

m=0

xc,n+ j,m+i · uc,n,m, (2.7)

where b ji is the bias. Since a same kernel is slided along the entire input feature
map, the convolution operation is equivariant3 to translation. D convolutions can
be applied to the same input feature map (with different convolution kernels) in
order to create a 3-D output feature map of dimension D×(H−h+1)×(W−w+1).
[57] Note that the convolution operation has three additional parameters:

• Stride - The step size used to translate the kernel across the input feature
map.

• Padding - Specifies how many columns and rows of zero need to be added
around the input feature map before the operation.

• Dilation - Modulates the expansion of the kernel support by adding rows
and columns of zeros between the kernel coefficients. Dilating the kernel
increase the size of the receptive field of a neuron without increasing the
number of its parameters.

An illustration of the convolution operation is shown in Figure 2.8.

Another layer commonly used in CNNs is the pooling layer. Its role is to de-
crease the input tensor dimensions while preserving its global structure and the
important features it contains as much as possible. Consider a 3-D input tensor
x ∈ RC×rh×sw and a pooling area of size h×w. There exist two pooling operations:

• Average pooling - Produces the output tensor o ∈ RC×r×s such that

oc, j,i =
1

hw

h−1
∑

n=0

w−1
∑

m=0

xc,r j+n,si+m. (2.8)

• Max pooling - Produces the output tensor o ∈ RC×r×s such that

oc, j,i = max
n<h,m<w

xc,r j+n,si+m. (2.9)

An illustration of the max pooling operation is shown in Figure 2.9. Note that this
figure illustrates the max pooling operation on a 2-D input tensor. The generaliz-
ation to 3-D input tensors is trivial and let to the reader. Pooling operations are
invariant4 to any permutation occurring within a pooling cell. This is particularly

3A function f is equivariant to the function g if f (g(x)) = g( f (x)).
4A function f is invariant to a function g if f (g(x)) = f (x).
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Figure 2.8: Illustration of a convolution operation with a 3× 3 kernel. Padding
and stride parameters are both set to 1. No kernel dilation is applied.

useful if the detection of a pattern matters more than finding its exact location. [57]

CNNs are generally built as an arbitrary composition of convolutional layers,

Figure 2.9: Illustration of the max pooling operation with a 3× 3 kernel. The red
frame defines a pooling cell in the input feature map. Each element of the output
tensor is the element with the highest value in the corresponding pooling cell.

pooling layers, linear rectifiers with ReLU activation functions, and fully-connected
layers. Such networks are able to learn a hierarchical composition of complex
patterns, a particularly convenient property for vision signals processing. [56, 57]
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2.4.3 Training neural networks

Deep learning models, and even more generally machine learning models, need
to be trained before being able to perform a given task. Mathematically, every
task underlies an implicit mapping f : X → Y : x → f (x ) where X and Y are
respectively the input and output spaces. Training consists in finding the best
estimate f̂ of f . Three learning paradigms can be used to this end. They are called
supervised, unsupervised and reinforcement learning. [56] In the following, Θ is
the space of the model parameters, and the function f̂ ( · ;θ ) : X 7→ Y : x 7→ f̂ (x ;θ )
refers to the model with parameters value θ ∈ Θ.

Learning paradigms

Supervised learning consists in learning from examples. In this setting, a train-
ing set Xt r ⊂ X and the set of corresponding labels (also called ground truths)
Yt r = { f (x ) | x ∈ Xt r} are accessible to the model. Training consists in adjusting
the model parameters θ so that f̂ ( · ;θ ) estimates at best the actual mapping f .
Practically, a loss metric between the predictions ŷ = f̂ (x ) (x ∈ Xt r) and the true
labels y = f (x ) is defined. Then, an iterative optimization algorithm is used to
update θ and minimize this loss metric. This paradigm is intuitive. However, it
often requires a relatively large training set for the model’s predictions to apply to
previously unseen data. [56, 57, 59] Annotating a large amount of data is often
extremely time consuming, even sometimes not feasible, and thus constitutes a
challenge in itself.

Unsupervised learning covers any learning algorithm that draws inferences from a
training set Xt r ⊂ X without any knowledge about the corresponding labels. This
framework is particularly convenient since it does not require any annotated data.
However, it is not suitable for all tasks. Clustering algorithms are the best example
of unsupervised learning: they find hidden patterns or groups in the input data
with any other knowledge than the data itself. [56, 60] The k-means algorithm
is the most famous clustering algorithm. [61] The deformable image registration
framework developed by Vos et al. [40, 41] also uses this paradigm.

The last learning paradigm called reinforcement learning consists in learning
by experiencing. In this framework, the model is an intelligent agent evolving in
an environment. The agent encounters various situations (i.e. the model receives
inputs) and makes decisions (i.e. produces outputs) based on the situations and
its knowledge of the environment. A feedback is provided for every decision: the
agent is rewarded in case of smart decision, and punished otherwise. The agent’s
goal is to maximize its total reward. It uses the feedback to update its decision
policy and improve its knowledge of the environment. In this framework, the
agent makes decisions while continuously adapting to its environment. For this
reason, reinforcement learning is widely used for artificial intelligence training.
[62] Omron Global developed a robot called Forpheus using this paradigm: this
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tennis-table robot is designed to continuously improve its technique while playing
against real people. [63]

Model parameters optimization

In most cases, reinforcement learning problems are solved using the Q-learning
algorithm developed by Watkins and Dayan [64]. Reinforcement learning tech-
niques are out of the scope of this work and will not be detailed further.

In both supervised and unsupervised settings, the model parameters are updated
by minimizing a loss function over the training set Xt r . Formally, let define the loss
function J : Θ 7→ R : θ 7→ J(θ ) as

J(θ ) = EXt r

�

L
�

f (x ), f̂ (x ;θ )
�	

, (2.10)

where x ∈ Xt r , L(·, ·) is an arbitrary loss metric5, and EXt r
{·} is the expectation

operator over the training set. Model parameters are generally updated according
to a gradient descent method. If subscript t = 0,1,2, . . . denotes the current
iteration of the algorithm, then

θt+1 = θt − γ ·∇θ J(θt)

= θt − γ ·
1
N

N−1
∑

n=0

∇θ L( f (xn), f̂ (xn;θt)), xn ∈ Xt r ,
(2.11)

where ∇θ is the gradient operator with respect to vector θ , N = |Xt r |, and γ is a
training hyper-parameter called learning rate. Computing the gradient over the
entire training set is a costly operation. For this reason, the mini-batch stochastic
gradient descent (SGD) algorithm is generally preferred. This algorithm uses only a
subset Bt ⊂ Xt r to update θt . The batch Bt is built by randomly picking B elements
from the set Xbatches =

�

x ∈ Xt r | x /∈ Bi ,
�N

B

�

·
� B

N t
�

≤ i < t
	

. Equation 2.11 thus
becomes

θt+1 = θt − γ ·
1
B

B−1
∑

n=0

∇θ L( f (xn), f̂ (xn;θt)), xn ∈ Bt . (2.12)

The time period needed by the algorithm to go through the whole training set is
called an epoch. Notice that Xbatches = Xt r at the beginning of each epoch. [57]

The direction of the resulting gradient computed in Equation 2.12 has a high
variance, especially if the batch size is small. In order to dampen large changes in

5Note that the loss metric differs if the supervised or unsupervised training framework is used. In
the supervised case, the loss metric L : Y ×Y 7→ R : (y , ŷ) 7→ L(y, ŷ) measures the error between a
prediction ŷ = f̂ (x ;θ ) and the ground truth y = f (x ), x ∈ Xt r . In the unsupervised case, the loss
metric L : Ξ×Y 7→ R : (ξ, ŷ) 7→ L(ξ, ŷ) assigns a score to a model prediction ŷ = f̂ (x ;θ ), x ∈ Xt r ,
based on another variable ξ ∈ Ξ. In the framework developed by Vos et al. [40, 41], the metric is a
dissimilarity measure between the original image and its warped version. Equation 2.10 refers to
the supervised case.
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gradient direction from one training iteration to the next, some optimizers add
inertia to the updating process. This mechanism is called momentum. Another
common mechanism called adaptive learning rate consists in adapting γ to each
individual component of ∇θ J(θt). Indeed, the curvature of the parameter space
Θ is anisotropic in a lot of cases, and a smaller learning rate should be used in
more curved directions. The Adam optimizer implements those two mechanisms.
Its update rule is given by

st = ρ1st−1 + (1−ρ1)gt

ŝt =
st

1−ρ t
1

rt = ρ2rt−1 + (1−ρ2)gt · gt

r̂t =
rt

1−ρ t
2

θt+1 = θt − γ ·
ŝt

ε+
p

r̂t

,

(2.13)

where all operations involving vectors are performed element-wise, ρ1 and ρ2 are
hyper-parameters usually set to 0.9 and 0.999 respectively, ε is a small constant

to avoid division by zero, and where gt =
1
B

B−1
∑

n=0
∇θ L( f (xn), f̂ (xn;θt)). Adam is

nowadays the default optimizer of most training algorithms. [57, 65]

The value the learning rate γ is crucial: a too high learning rate could prevent the
optimization algorithm from converging while a too small learning rate would
decrease the convergence rate and increase the chances to find a sub-optimal
solution to the problem. The value of the learning rate is generally decreased as
the training progresses. [56, 57]

Each iteration of the updating process of θ requires an important number of
gradients to be computed. The back-propagation algorithm is generally used for
this purpose. In a very time-efficient way, it back-propagates the gradients com-
putation from the last to the first layer of the model architecture. This dynamic
programming algorithm uses the chain rule to compute the gradient of the loss
metric with respect to each parameter of a layer, based on the gradients of the loss
metric with respect to the parameters of the next layer. [66]

Since the parameter space Θ is generally non-convex, the convergence of the
training procedure is not guaranteed. However, there are some rules of thumb to
prevent the optimization algorithm from diverging. One of the most important
ones concerns the model weights initialization. Very little is known about how
to properly initialize the weights, except that it should break symmetry and that
the scale of the weights matters. A good strategy is to control the variance in the
forward and backward paths. Indeed, keeping the variance of the activations (i.e.
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the outputs of the activation functions) constant in the forward pass ensures that
information keeps flowing through layers without having its magnitude reduced or
magnified. In the same idea, maintaining the variance of the gradients with respect
to the activations through the backward pass prevents the gradients magnitude
from vanishing or exploding. Note that maintaining the variances in the forward
and backward paths leads to two contradicting constraints. The best compromise
consists in initializing randomly the model weights Wl from a distribution with
variance

V {Wl}=
2

ql−1 + ql
, (2.14)

where V{·} is the variance operator, and ql−1 and ql are respectively the number of
neurons in layers l − 1 and l. This initialization strategy is called Xavier or Glorot
initialization. [67] It is nowadays the default initialization strategy in most of deep
learning programming libraries.

Splitting training data

The loss function J(θ ) is called empirical risk and indicates how poorly the es-
timated mapping f̂ ( · ;θ ) performs on the training set Xt r . The training process
minimizes the empirical risk. However, the model should have good generalization
properties and be able to predict accurately the output for all possible inputs x ∈ X ,
and not only for x ∈ Xt r . Training should then minimize the expected risk

R(θ ) = EX
�

L
�

f (x ), f̂ (x ;θ )
�	

(2.15)

instead of the empirical risk J(θ ). This is not feasible since only Xt r ⊂ X is
accessible during training. Accordingly, in order to estimate properly the expected
risk during training, the available training data is split into three disjointed sets:

• The actual training set - Gathers all the data the model is actually trained
on.

• The validation set - Acts as an unseen data set, used to periodically assess
the prediction abilities of f̂ ( · ;θ ) during training. The validation data set
does not take part in the model parameters updating process.

• The test set - Used to assess the prediction performances of the final model
on unseen data, when the training phase is over.

When the training phase starts, the training and validation losses6 both decrease.
The training phase should end when the validation loss reaches its minimal value.
Beyond this point, the validation loss rises even if the training loss still decreases.
The model starts overfitting the training data: it becomes too specific to the training
set and its generalization abilities drop. In some other cases, the architecture of
the model is too simple and f̂ ( · ;θ ) is a poor estimate of f , ∀θ ∈ Θ. The model
fails to reach the optimal validation loss and is said to underfit. Those different
scenarios are illustrated in Figure 2.10.

6The training and validation losses respectively refer to the average loss on the training and
validation sets.
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(a) Optimal fitting (b) Underfitting

(c) Overfitting

Figure 2.10: Illustration of the optimal fitting, underfitting and overfitting cases.

2.5 Optical flow models

In this section, an unsupervised training framework for optical flow models is
described and several optical flow models are presented. These optical flow al-
gorithms are at the heart of the models developed in this thesis. They take two
consecutive video frames Ii and Ii+1 ∈ RH×W×C as inputs and output a dense
displacement field D ∈ RH×W×2 with one motion vector per pixel. H and W de-
note the height and width of the input images and C is their number of channels
(RGB images have C = 3 channels, while C = 1 for grayscale images). The third
dimension of D refers to the horizontal and vertical components of the motion
vector of image pixels. Mathematically, it comes

Ii(x , y, c)≈ Ii+1 (x + D(x , y, 1), y + D(x , y, 0), c) , (2.16)

where the input images and the corresponding displacement field are represented as
3-D tensors, and where the notation A(x , y, z) is equivalent to [A]x yz , A ∈ Rl×m×n.

2.5.1 Unsupervised framework for optical flow methods

As mentioned in chapter 1, Vos et al. [40, 41] developed an unsupervised training
framework for deformable image registration, later adapted by Haukom et al. [22].
The adapted version can be used to train any CNN-based optical flow model in an
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unsupervised way. The training procedure is simple. Firstly, two consecutive video
frames Ii and Ii+1 are given as inputs to the considered optical flow model. Secondly,
Ii+1 is warped accordingly to the computed flow7. If this output displacement field
is accurate enough, the warped image Iw

i+1 is such that

Iw
i+1 ≈ Ii . (2.17)

Finally, a dissimilarity measure between Ii and Iw
i+1 is minimized and the paramet-

ers of the optical flow model are updated according to a gradient-descent approach.
A bending penalty is introduced in the optimization process. This tunable penalty
ensures a certain spatial smoothness of the optical flow. A diagram describing the
unsupervised training process is shown in Figure 2.11.

Figure 2.11: Diagram of the unsupervised learning framework developed by Vos
et al. [40, 41] and adapted by Haukom et al. [22]. The dissimilarity measure used
is the negated zero-mean normalized cross-correlation (negated ZNCC).

A good dissimilarity measure is the negated zero-mean normalized cross-correlation
(negated ZNCC). This metric is computed as

−
1

HW
·

H−1
∑

x=0

W−1
∑

y=0
(Ii(x , y)−E{Ii})(Iw

i+1(x , y)−E{Iw
i+1})

Æ

V{Ii} ·V{Iw
i+1}

, (2.18)

where E {Ii} and V {Ii} are respectively the mean and variance of the pixel values
of image Ii . Note that Ii and Iw

i+1 are turned into grayscale images beforehand. A
negated ZNCC value of -1 indicates a perfect similarity between the two images,
while a value of 0 indicates no correlation. The bending penalty P ensures that
the second order spatial derivatives of the computed optical flow D are minimized.

7Note that cubic B-spline interpolation is used beforehand to match the input frames and output
flow spatial resolutions if the model computes a low-resolution displacement field.
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It forces the warping transformation to be globally smooth. [68] Its expression is
given by

P(D) = β
H−1
∑

x=0

W−1
∑

y=0

�

∂ 2D
∂ x2

�2

+

�

∂ 2D
∂ y2

�2

+ 2

�

∂ 2D
∂ x y

�2

, (2.19)

where β is the scaling factor that controls the amount of regularization.

2.5.2 Daisy-chaining model

In 2019, Haukom et al. [22] developed a technique to automatically estimate
regional strain from TEE images. This method relies on deep learning optical flow
models. The Daisy-chaining model exhibited the best performances among the
three presented models. It is made of a succession of three simpler optical flow
CNN units separated by frame warping blocks. The Daisy-chaining model estimates
the displacement field between frames Ii and Ii+1 in a coarse-to-fine manner: a
coarse field is first estimated at low-resolution, and then refined with estimations
of higher resolution. Concretely, the first optical flow unit produces a coarse es-
timation Dcoarse of the motion between the input frames. The warping block that
follows warps input frame Ii+1 onto Ii according to Dcoarse. Then, the following
units apply the same procedure to frames Ii and Iw

i+1, the latter being the warped
version of Ii+1. In this way, the residual displacement field existing between Ii
and Iw

i+1 is estimated in the next stages. The estimations produced by the different
optical flow units are combined to form the resulting displacement field D. Note
that the deeper an optical flow unit located, the higher the resolution of the flow
estimation. In order to match the horizontal and vertical dimensions of a frame,
every flow estimate is upsampled using B-spline interpolation before feeding the
next frame warping block. A schematic describing the estimation process of the
Daisy-chaining model is shown in Figure 2.12. An optical flow unit is composed of
a succession of n 3×3 convolution layers, interleaved with n 2×2 average pooling
layers. Two additional 3× 3 convolution layers followed by two 1× 1 convolution
layers and a B-spline interpolation layer end the unit. Interpolation is necessary to
obtain a dense optical flow with one motion vector per pixel. A diagram showing
the structure of the optical flow unit is given in Figure 2.13.

A Tensorflow implementation of the Daisy-chaining model is available at https://
github.com/torjush/Strain_estimation. Haukom et al. [22] trained the model
using the unsupervised framework presented in subsection 2.5.1.

2.5.3 Recurrent All-Pairs Field Transforms (RAFT) model

The RAFT model is not a coarse-to-fine optical flow model like Daisy-chaining: RAFT
maintains and refines a single high-resolution flow field. This procedure mitigates
several limitations that coarse-to-fine models generally encounter: the complexity
of correcting large errors at coarse resolutions, the proclivity to overlook small
fast-moving objects, and the large number of training iterations usually required

https://github.com/torjush/Strain_estimation
https://github.com/torjush/Strain_estimation
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Figure 2.12: Simplified architecture of the Daisy-chaining model developed by
Haukom et al. [22]. Arrows indicate the flow of inputs and outputs. The output of
a warping block is the warped version of its input frame.

Figure 2.13: Architecture of an optical flow unit of the Daisy-chaining model. The
estimated flow has a resolution 2n times lower than the input frames. B-spline
interpolation is used to match the dimensions of the estimated flow and the input
frames.

by multi-stage cascades to present decent performances. The RAFT model can be
broken down into three stages:

1. Feature and context encoders - The feature encoder is a CNN that extracts
feature maps from both input frames. The extracted feature maps have a
resolution 8 times lower than the input frames. The context encoder has a
similar architecture to the feature encoder and extracts features from the
first frame only. Mathematically, both encoders are mappings from RH×W×3

to R
H
8 ×

W
8 ×256, with H and W the height and width of the input frames.

2. Correlation layer - This layer computes the inner product of all pairs of
feature vectors, producing a 4-D correlation volume of dimensions H ×
W ×H ×W . Then, the two last dimensions of this volume are pooled with
1 × 1, 2 × 2, 4 × 4 and 8 × 8 kernels in order to build a 4-layer pyramid
{C1,C2,C3,C4}, where C k has dimensions H ×W ×H/2k ×W/2k.
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3. Update operator - Produces a sequence of flow estimates {D1, · · · , DN}
according to the update equation Dk+1 = Dk + ∆Dk, with D0 = 0. The
update∆Dk depends on the previous flow estimates, the correlation pyramid,
the context feature map and a latent hidden state specific to the update
operator. The current flow estimate is used to look up values from the set of
correlation volumes. The architecture core of the operator is a sequence of
gated recurrent units (GRUs) where fully connected layers are replaced by
convolutions. The diagram of the GRU is detailed in Appendix A.

A simple diagram representing the architecture of RAFT is shown in Figure 2.14. A
fully-functional PyTorch implementation of RAFT is available at https://github.
com/princeton-vl/RAFT.

Figure 2.14: Simplified architecture of the RAFT model developed by Teed and
Deng [32].

2.5.4 Lucas-Kanade method

The Lucas-Kanade method [25] is an optical flow algorithm that strongly relies on
spatial coherence: it assumes the flow is essentially constant in a local neighborhood
around a considered pixel. This thesis uses the pyramidal implementation proposed
by Bouguet et al. [69]. This method builds two L-level pyramidal representations

{I l
i } and {I l

i+1} of both images Ii and Ii+1 such that I0
j = I j and I l

j ∈ R
H
2l ×

W
2l ,

0≤ l ≤ L. Consider a window of dimension (2ωx + 1)× (2ωy + 1) centered on a
considered pixel u, the method estimates the flow in this window in a coarse-to-fine
manner, pulling up from layer L to layer 0. It starts with guesses GL ∈ R2×2 and
g L ∈ R2 and finds the residual affine matrix AL and residual displacement vector

https://github.com/princeton-vl/RAFT
https://github.com/princeton-vl/RAFT


Chapter 2: Theoretical background 27

d L such that the error

ε
�

d L , AL
�

=
ωx
∑

x=−ωx

ωy
∑

y=−ωy

�

J L
i (x)− J L

i+1(A
Lx+ d L)

�2
(2.20)

is minimized. In this equation, x= [x , y]T and

J L
i (x) = I L

i

�

x+ uL
�

, (2.21)

J L
i+1(x) = I L

i+1

�

GLx+ g L + uL
�

, (2.22)

where the superscript indicates the current layer of the pyramidal representation.
Computations are then propagated to the above layer by setting

g L−1 = 2(g L +GLd L) (2.23)

GL−1 = GLAL . (2.24)

Knowing the affine transformation undergone by pixels in the considered win-
dow, the flow is easily computed. Note that the minimization of Equation 2.20 is
performed iteratively at every pyramidal level. Further details about pyramidal
representation, the optimization of Equation 2.20 and the flow computation can
be found in [69]. Note that this optical flow technique is not a deep learning model
and does not require training. The python library OpenCV provides a practical
implementation of the described method (see OpenCV/doc).

2.5.5 Gunnar Farnebäck method

Farnebäck [27] developed an optical flow method based on polynomial expansion.
In concrete terms, a local neighborhood N of pixels in images Ii and Ii+1 is
approximated by a quadratic polynomial such that

Ii(x)≈ xT A1(x)x+ b1(x)x+ c1(x), (2.25)

Ii+1(x)≈ xT A2(x)x+ b2(x)x+ c2(x), (2.26)

for all x in the neighborhood. Let define

A(x) =
A1(x) + A2(x)

2
(2.27)

and

∆b(x) =
b2(x)− b1(x)

2
. (2.28)

Properties of polynomials show that

A(x)d(x) =∆b(x) (2.29)

https://docs.opencv.org/3.4/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323
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if the polynomial from Equation 2.26 is obtained by translating the polynomial
from Equation 2.25 with the vector d(x). The Gunnar Farnebäk method exploits
this result and finds the motion vector d(x) that minimizes the expression

∑

∆x∈N
w(∆x)‖A(x+∆x)d(x)−∆b(x+∆x)‖2 , (2.30)

where w(·) is an arbitrary weight function for pixels in N . As the Lucas-Kanade
method presented previously, the algorithm also uses a pyramidal representation
of its input images. The optimization of Equation 2.30 is then performed iteratively
at every pyramidal level. The proof of Equation 2.29 and further explanations
about the method can be found in [27]. The python library OpenCV provides a
practical implementation of the described method (see OpenCV/doc).

2.6 U-Net: biomedical images segmentation model

Ronneberger et al. [42] developed an efficient convolutional model for biomedical
images segmentation called U-Net. This neural network allows for a strong use of
data augmentation8, which is particularly convenient when only a small amount
of annotated images is available for training. The model architecture is made
of a 4-stages contracting path, followed by a 4-stages expansive path. Short-cut
connections concatenate the output of each stage of the contracting path to the
input of expansion stage located at the same depth. A stage of the contracting
part consists of two consecutive 3× 3 unpadded convolutional layers (with ReLU
activation functions), followed by a 2× 2 max pooling layer with stride 2. The
number of feature channels is doubled after each stage, starting with 64 feature
channels on the first stage. Stages of the expansion path have the same structure,
except that the max pooling layer is replaced by a 2 × 2 up-convolution layer,
i.e. a 2 × 2 up-sampling operator followed by a 2 × 2 unpadded convolution.
The number of feature channels is divided by 2 at each stage of the expansion
path. A detailed diagram of the architecture is available in Figure 2.15. A python
implementation of U-Net is available at http://lmb.informatik.uni-freiburg.
de/people/ronneber/u-net.

2.7 Point tracking in 2-D video sequences using a Kalman
filter

Consider a point moving along a video sequence. Let assume that this point is
represented on a frame by a single pixel. Its motion can be described by the

8Data augmentation consists in building a larger training set from a small set of annotated inputs.
New data is created by voluntarily altering or/and transforming the available annotated data. In
image processing, image cropping, rotation, translation, flipping,... are common data augmentation
operations.

https://docs.opencv.org/3.4/dc/d6b/group__video__track.html#ga5d10ebbd59fe09c5f650289ec0ece5af
http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
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Figure 2.15: Diagram of U-Net architecture. [42] The dimensions of the images
and features maps are written along their left side. The squared number refers to
the xy-size (e.g. 5122 = 512× 512), the last number refers to the depth.

following discrete-time linear time-invariant model:

xi+1 = Fxi +Gui + ni , (2.31)

where xi ∈ R2 is the coordinate vector of the pixel in frame i, ni ∼N (0, Cn) is the
noise inherent to the process modeled as a Gaussian random vector with covariance
Cn , and ui ∈ R2 is the velocity vector of the moving pixel in frame i. The velocity
is considered as an input to the system. The matrices F ∈ R2×2 and G ∈ R2×2 are
the transition and control matrices. They respectively describe the dynamics of
the system and how the inputs (i.e. the velocity of the point) are coupled to the
system states (i.e. the coordinates of the point). In the case presented here, they
are given by

F = G =

�

1 0
0 1

�

. (2.32)

Kalman filtering is a two-step procedure. Firstly, an estimate x̂+i+1 of the system
state is predicted using

x̂+i+1 = F x̂i +Gui . (2.33)
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The uncertainty in x̂i is given by the estimated covariance

P̂+i+1 = F P̂i F
T + V̂ , (2.34)

where V̂ is an estimate of the process noise covariance Cn. Secondly, the state
and uncertainty estimates are updated with available measurements. The relation
between the measurement zi and the corresponding state can be written as

zi = Hxi + wi , (2.35)

where H ∈ R2×2 is called the measurement matrix, and wi ∼ N (0, Cw ) is a
Gaussian random variable with covariance Cw modeling the measurement noise.
The updated state and covariance are given by

x̂i+1 = x̂+i+1 + K(zi+1 −H x̂+i+1), (2.36)

P̂i+1 = P̂
+
i+1 − KH P̂

+
i+1, (2.37)

where K is called Kalman gain and is computed as

K = P̂
+
i+1H T

�

H P̂
+
i+1H T + Ŵ

�−1
. (2.38)

Ŵ is an estimation of the measurement noise covariance Cw. If the process noise
and the measurement noise actually follow a Gaussian distribution with zero mean,
the Kalman filter constitutes an optimal estimator and x̂ is the best estimate that
can be computed in view of available information. [70] The python library OpenCV
provides an implementation of the Kalman filter (see OpenCV/doc).

https://docs.opencv.org/master/dd/d6a/classcv_1_1KalmanFilter.html


Chapter 3

Materials and Method

3.1 Data

Two data sets were built using two different ultrasound data acquisition techniques.
The first set of data consists of high-rate B-mode sequences of the 4-chamber, 2-
chamber and apical long-axis views of the heart. The second set consists of standard
TVI sequences, acquired on the same patient cohort as the first, recorded simultan-
eously with B-mode sequences of lower frame-rate. The two sets are respectively
referred as the HR and TVI sets.

The set of data used to perform point tracking and strain estimation can have a
big impact on the results. Indeed, high-rate B-mode sequences exhibit smaller
frame-to-frame tissue displacements compared to lower frame-rate sequences,
which could be easier to predict. On the other hand, TVI data gives partial in-
formation about tissue displacements that can be used to improve frame-to-frame
motion predictions in low-rate sequences. Point tracking and strain estimation is
performed on both sets. Optical flow methods are adapted to take advantage of
TVI data when applied on the TVI set.

3.1.1 Data acquisition

B-mode image sequences were recorded for 88 different patients at the Clinic of
Cardiology at St. Olavs University Hospital located in Trondheim, Norway. Record-
ings were made during routine exams by cardiologists from the Echocardiography
Unit. To do so, they used GE Vivid E9, E95 and S70 scanners and a TEE 6VT-D
probe (GE Vingmed, Horten, Norway). No patient selection was performed. The
collection and use of ultrasound data were consented and approved by the patients
involved and the ethics committee of St. Olavs University Hospital. The recordings
of 18 of the 88 patients are used as test set and are not used in the training pro-
cedures described later in this chapter.

The raw DICOM data was scan-converted to an isotropic pixel size of 0.5 mm. The

31
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pixel brightness of B-mode sequences ranges from 0 to 255. The frame rate of HR
B-mode sequences is included in [21.1, 61.2] fps. B-mode sequences from the TVI
set have a frame rate included in [12.4, 33.5] fps, while TVI sequences frame rate
is in [49.5, 111.5] fps. The time resolution is in average four times greater for a
TVI sequence compared to the corresponding low-rate B-mode sequence.

3.1.2 Data pre-processing

A data pre-processing pipeline is applied to the B-mode and TVI sequences before
any further processing. The first stage of the pipeline consists in zero-padding
and/or cropping1 the video frames so that their dimension matches 512×512. Then,
a proprietary contrast enhancement algorithm is applied to B-mode sequences. The
algorithm performs a non-linear mapping of the gray values to enhance the tissue
boundary. B-mode pixel values are then scaled down2 to [0, 1]. Simultaneously, TVI
sequences undergo a polar-to-Cartesian transformation in order to express velocity
in the Cartesian framework of a frame. Then, temporal and spatial alignments of
the TVI and low-rate B-mode sequences are performed. Indeed, the sector size
and the orientation of the ultrasound beam in TVI and B-mode acquisitions differ.
The scan conversion algorithm used to make the TVI and B-mode beam sectors
match can displace of few pixels the origin of the probe in the TVI frames. TVI and
B-mode acquisition starting instants can also differ slightly. Zero-padding is used to
generate TVI images that match the size of the B-mode frames. Temporal alignment
is done by erasing the parts of the TVI and corresponding B-mode sequences that
do not overlap in time. The last stage of the pre-processing pipeline consists in
integrating TVI sequences over several short periods of time. This results in a
sequence of coarse displacement fields, where the field located at index i in the
sequence describes the motion between frames Ii and Ii+1 of the corresponding B-
mode sequence. An illustration of the pre-processing pipeline is given in Figure 3.1.
Additional information concerning the polar-to-Cartesian transformation and the
TVI integration process is available in Appendix B.

3.1.3 Data annotation

Before being able to track points and compute strain values, some data annotations
are required. First, the ES and ED instants are spotted and tagged for every single
B-mode sequence. A graphical user interface is developed for this purpose. It is also
necessary to determine the points at the extremities of the basal segments that will
be used in the strain computation process. This operation needs to be performed
on the first frame of all B-mode sequences, an optical flow model combined with

1Note that cropping a frame does not affect areas that are of interest in the basal strain estimation
process.

2Scaling down brightness values to the range [0, 1] is a common practice when preparing data
to feed CNN -based models.
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Figure 3.1: Diagram of the data pre-processing pipeline. HR and TVI sets are the
two sets of data on which point tracking and strain estimation are performed.

a tracking method taking care of tracking the points the rest of the sequence. A
semi-automatic tool is created to do so. More details about this tool are given in
section 3.2.

3.2 Semi-automatic tool for myocardial point extraction
using segmentation

Basal strain computation requires to measure the distance between the extremities
of basal segments at different time instants. A semi-automatic tool is developed to
place suitable points at those locations on the first frame of every B-mode sequence.
These points are then tracked along the sequence and the distance between them
is used in the strain computation process (see Equation 2.3).

The semi-automatic tool uses U-Net to segment the myocardium surrounding
the left ventricle (LV). A thinning algorithm is then applied to extract the centerline
of the segmented area. The points constituting the centerline are decimated to
keep a user-defined number of equidistant points spread around the LV. The user’s
intervention is finally required to choose four points among the remaining ones
(one for each extremity of both basal segments present on a frame) to be used
for basal strain computation. Even though they do not intervene directly in the
strain estimation process, the points that are not chosen by the user are used by a
tracking method based on Kalman filtering.
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3.2.1 Myocardial segmentation using U-Net

Segmentation data sets

To train U-Net, one-hundred B-mode frames are manually annotated by the author
himself. Each one of them are picked randomly from different B-mode sequences,
themselves chosen randomly among all B-mode sequences of both TVI and HR
sets. The annotation consists in creating a mask for the part of the myocardium
surrounding the LV. Data augmentation is used to increase the size of the training
set from 100 to 5000 images. To do so, all annotated frames are sent 50 times
through a data augmentation pipeline that comprises the following stages:

1. Affine transformation - The same random affine transformation is applied to
the frame and the corresponding mask. The transformation is a composition
of a rotation of angle |α| ≤ 180◦, a translation of vector dtr = [dx , dy] with
dx and dy respectively smaller than 20% of the height and width of the
frame, a scaling operation with a scaling factor k ∈ [0.8, 1.2], and a shearing
operation with horizontal and vertical shear angles ∈ [−10◦, 10◦].

2. Horizontal flip - The frame and its corresponding mask are horizontally
flipped with a probability of 0.5.

3. Vertical flip - The frame and its corresponding mask are vertically flipped
with a probability of 0.5.

4. Gamma augmentation - The frame Iin is modified according to the pixel-
wise operation Iout = Iγin, with γ ∈ [0.5, 1.25]. This operation modifies the
contrast of the frame: γ > 1 enhances the brightness while γ < 1 makes the
image darker.

5. Denoising filter - A denoising filter with a kernel size of 5× 5 is applied to
80% of the annotated frames. Its role is to blur the image in order to smooth
out the speckle noise inherent to B-mode images. The type of filter is either
mean, median, bilateral or Gaussian. Each type is applied to a same number
of frames. This procedure should make U-Net less sensitive to the type of
filter that is used.

Figure 3.2 shows a B-mode frame and its manually annotated mask, along with the
results of two realizations of the data augmentation pipeline. 20% of the training
set (randomly chosen) is used for validation. Therefore, U-Net is trained on 4000
B-mode frames, and validation is run after every epoch over 1000 B-mode frames.

U-Net training

U-Net is trained with the supervised learning paradigm. The binary cross-entropy
is minimized during training. This loss function is defined as

BC E(P, M) = −
1

HW

H−1
∑

i=0

W−1
∑

i=0

Mi j · log2(Pi j) + (1−Mi j) · log2(1− Pi j), (3.1)
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Figure 3.2: Examples of data used to train U-Net for the LV myocardium seg-
mentation task. B-mode frames are given as inputs to U-Net, the masks are the
corresponding labels. The original frame was manually annotated. Augmented
data were obtained by applying a data augmentation pipeline on the original
B-mode frame and its corresponding mask.

where P and M are respectively the predicted and targeted masks, H and W being
their height and width. Note that the pixel values of P and M are in the range
[0,1]. The binary accuracy is used as a validation metric. It is computed as

BA(V) =
1
|V|

∑

I∈V

number of pixels in I correctly predicted
number of pixels in I

, (3.2)

where V is the validation set and |V| is its cardinality. A pixel is correctly predicted if
its predicted category (1 if it belongs to the LV myocardium, 0 otherwise) matches
the category specified by the mask. The validation metric is computed after every
epoch.

U-Net is trained with the Adam optimizer. The batch size is set to 4 and the
model weights are initialized with a truncated normal distribution. The learning
rate is set to 0.001 and is reduced by a factor of 0.8 each time the validation metric
does not improve for more than two epochs. The learning rate is not reduced
further when its value reaches 10−6. The training is stopped when no significant
improvement of the validation metric is observed.

3.2.2 Thinning algorithm and point extraction

Beforehand, the masks produced by U-Net are processed in such a way that only
the largest segmented area is retained. Indeed, U-Net can sometimes produce
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masks that are composed of several pieces. Most of the time, the largest piece is
the desired area of the myocardium while other small pieces are wrongly detected
segment that need to be discarded.

A thinning algorithm is developed in order to extract the centerline of LV myocar-
dium masks. The algorithm can be divided into three stages. The first stage applies
the thinning algorithm developed by Zhang and Suen [71] in 1984. This algorithm
is detailed in Appendix C. It extracts the skeleton of the mask. Since predicted
masks are not perfect, the Zhang-Suen algorithm generally outputs a skeleton that
has several ramifications and/or inner loops rather than a single centerline. The
second stage consists thus in refining this skeleton in order to find the line that
approximates at best the true centerline of the myocardium surrounding the LV.
The refinement process begins by finding the two ends of the skeleton that are
most likely to be the two ends of the desired centerline. Then, the longest path in
the skeleton that joins those two ends is kept as centerline. More details about the
skeleton refining algorithm can be found in Appendix C.

Once the centerline of the myocardium around the LV is found, its pixels are
decimated until only Np equidistant pixels remain. Note that the pixels located at
the extremities of the centerline are among the remaining pixels. The number Np is
defined by the user. Then, the user is asked to select four pixels among the Np left
to be used in the strain estimation process. The entire point extraction procedure
is illustrated in Figure 3.3. Results obtained at the different stages of the pipeline
for three different B-mode frames are shown in Figure 3.4.

3.3 Optical flow methods

Four different optical flow algorithms are tested to predict the frame-to-frame
motion of the points to be tracked: the Daisy-chaining model, the RAFT model, the
Lucas-Kanade method and the Gunnar Farnebäck method. The two first models
are deep learning-based and require some training before being able to produce
meaningful results. On the other hand, the Lucas-Kanade and Gunnar Farnebäck
methods do not have any trainable parameters and do not require any training
before being applied. When applied to the TVI set, the Daisy-chaining model and
the Lucas-Kanade and Gunnar Farnebäck methods exploit the coarse displacement
field computed by integrating TVI data. Modifying the architecture of RAFT to use
TVI data required too much time and is left as future work. The RAFT model is
therefore only used on the HR set.

3.3.1 Daisy-chaining model training

To take advantage of the information provided by the TVI data, a slightly modified
version of the Daisy-chaining model is made: before feeding the model, the second
input frame is folded according to the coarse displacement field obtained by in-
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Figure 3.3: Diagram of the myocardial point extraction pipeline. In this illustration,
the number of points Np extracted from the centerline is set to 20. Blue points
are the points chosen by the user to be used in the strain estimation process. Red
points are still useful to the Kalman filter-based tracking method (see section 3.4).

tegrating the TVI data. This new model version is shown in Figure 3.5. Note that
setting the coarse displacement field to zero everywhere gives the same behavior
as the classical Daisy-chaining model.
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Figure 3.4: Examples of results obtained at the different stages of the myocardial
point extraction pipeline. In this illustration, the number of points Np extracted
from the centerline is set to 20. Blue points are the points chosen by the user to
be used in the strain estimation process. Red points are still useful to the Kalman
filter-based tracking method (see section 3.4).
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Figure 3.5: Adapted version of the Daisy-chaining model for TVI information
exploitation. Arrows indicate the flow of inputs and outputs. The output of a
warping block is the warped version of its input frame.

The Daisy-chaining model is trained using the unsupervised framework described
in subsection 2.5.1. The training set is formed by pairing consecutive B-mode
frames together. A B-mode sequence of n frames produces n−1 pairs. The B-mode
sequences of the TVI set only are used: the HR set was made available to the author
once the training phase of the Daisy-chaining model was done. Training a second
time the Daisy-chaining model on the HR set would have caused too much delay.
However, TVI data is used only half of the time: the model from Figure 3.5 is used
for all pairs, but the displacement field estimate obtained from TVI data integration
is replaced by a zero-field in half of the cases. This practice should improve the
abilities of the model to predict large tissue displacements. Data augmentation is
used to double the number of training pairs. The data augmentation procedure is
the following:

• The first third of the pairs are horizontally flipped. The tensors that represent
the corresponding displacement fields are horizontally flipped and the sign
of the horizontal component of the displacement is inverted.

• The second third of the pairs are vertically flipped. The tensors that represent
the corresponding displacement fields are vertically flipped and the sign of
the vertical component of the displacement is inverted.

• A random zoom is performed on the last third of the pairs. The zoom factor
is chosen randomly in the range [1.3, 3]. The portion of the B-mode frame
on which the zoom is performed is chosen randomly and always contains
moving tissues. Bilinear interpolation is used to resize the zoomed frame.
The same transformation is applied to the corresponding displacement field.

10% of the pairs are used as validation set.

The Daisy-chaining model is trained step-by-step. The first optical flow unit of
the model is trained alone until the validation loss (negated ZNCC) reaches a
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plateau. Then, the second optical flow unit is added. The trainable parameters
of first unit are frozen and the model now composed of two optical flow units
connected in cascade is trained. Once the validation loss reaches a new plateau,
the last optical flow unit is added to the model. The complete model can thus start
to be trained, the trainable parameters of the two previous layers being frozen.
The Adam optimizer is used with a batch size of 16. Xavier initialization is used to
initialize the model weights. The learning rate and the bending penalty scaling
factor β (see Equation 2.19) are initially set to 10−4 and 5 ·10−6 respectively. Once
the validation loss reaches a plateau, fine-tuning is performed. The best results are
obtained by decreasing the learning rate to 5 · 10−5 and resetting β to 5 · 10−7.

3.3.2 RAFT model training

The RAFT model is trained using the unsupervised framework (see subsection 2.5.1)
with a different loss function than the negated ZNCC. The model architecture is not
modified to take advantage of the TVI data and the model is therefore trained using
the HR set only. As for the Daisy-chaining model, the training set is formed by pair-
ing consecutive B-mode frames. Transfer learning is used: the model is initialized
with weights that were pre-trained on the FlyingThings3D data set. This practice
makes training converge faster. Since the pre-trained model already learned how
to compute optical flow and just needs to be more specific to TEE images, it is
believed that the size of the training set is sufficient and that no data augmentation
is needed. Moreover, the diversity generally introduced by augmenting data is also
not absolutely necessary in this case. Indeed, the B-mode sequences that will be
used as test data are really similar to those the model is trained on. Consequently,
the RAFT model should generalize easily to the test set data, as long as overfitting
is avoided. A blurring filter with a 5× 5 kernel is applied to 80% of the B-mode
frame pairs: a Gaussian, a bilateral, a mean and a median filters are used, each of
them filtering a same number of frame pairs.

Minimizing the negated ZNCC between frame Ii and warped frame Iw
i+1 did not

give any satisfactory results. Therefore, other loss functions are experimented to
train the model. Consider two input frames Ii and Ii+1. Let distinguish the forward
optical flow D f , describing the motion from Ii to Ii+1, from the backward optical
flow Db that describes the motion from Ii+1 to Ii . The forward and backward flows
are such that

D f (x , y) + Db
�

x + D f (x , y, 1), y + D f (x , y, 0)
�

= 0, (3.3)

where D f (x , y, 0) and D f (x , y, 1) are the horizontal and vertical components
of the displacement vector D f (x , y) located at coordinates (x , y) in the field D f .
RAFT is used to compute the forward and backward flows. It thus produces the
sequences {D f

n }Nn=1 and {Db
n }

N
n=1 of forward and backward flow estimates, where

N is the number of iterations of the update operator of the model. Let W be the
warping operator that warps an image according to a displacement field. If the
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forward and backward flow estimates D f
n and Db

n are good, it comes



















Iw
i+1 =W(Ii+1, D f

n ) ≈ Ii ,

Iw
i =W(Ii , Db

n ) ≈ Ii+1,

Iww
i =W

�

W(Ii , Db
n ), D f

n

�

≈ Ii ,

Iww
i+1 =W

�

W(Ii+1, D f
n ), Db

n

�

≈ Ii+1.

(3.4)

The first loss function to be experimented is defined as

LRAF T, 1 =
1−η

1−ηN

N
∑

n=1

ηN−n

2

�

P(D f
n ) + P(Db

n )

− 0.2
�

ZNCC(Iw
i+1, Ii) + ZNCC(Iw

i , Ii+1)
�

− 0.8
�

ZNCC(Iww
i , Ii) + ZNCC(Iww

i+1, Ii+1)
�

�

,

(3.5)

where η is a constant ∈ [0, 1[ set to 0.8, P(·) is the bending penalty function, and
ZNCC(Ii , Ii+1) is the zero-mean normalized cross-correlation between images Ii
and Ii+1. The weights 0.2 and 0.8 were chosen empirically. The terms ZNCC(Iww

i , Ii)
and ZNCC(Iww

i+1, Ii+1) try to enforce the relation described in Equation 3.3. Both

terms reach their maximal value if D f
n = Db

n . As for the terms ZNCC(Iw
i+1, Ii) and

ZNCC(Iw
i , Ii+1), they prevent the training procedure from converging towards

the degenerate case D f
n = Db

n = 0. Note that the loss is computed over the full

prediction sequences {D f
n }Nn=1 and {Db

n }
N
n=1, with exponentially increasing weights.

The second loss function to be experimented is defined as

LRAF T, 2 =
1−η

1−ηN

N
∑

n=1

ηN−n

2

�

P(D f
n ) + P(Db

n )

− ZNCC(Iww
i , Ii)− ZNCC(Iww

i+1, Ii+1)

+
1

H ·W

�

‖D f
n − D f

GF‖
2
2 + ‖D

b
n − Db

GF‖
2
2

�

�

,

(3.6)

where ‖ · ‖2 is the L2-norm operator, H and W are the height and width of the
B-mode frames, and where D f

GF and Db
GF are forward and backward flow estimates

computed with the Gunnar Farnebäck method. It was observed that the flows
computed with the Gunnar Farnebäck method are usually quite accurate. The loss
in Equation 3.6 considers D f

GF and Db
GF as ground truth and thus penalizes big

discrepancies between them and the estimates D f
n and Db

n . This also prevents the

training procedure from converging towards the degenerate case D f
n = Db

n = 0.
Other terms appearing in LRAF T, 2 play the same role as in Equation 3.5.

The Adam optimizer is used with a batch size of 4. The learning rate is initially set
to 10−4 and is modified after every batch using the one-cycle learning rate policy
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described in [72]. Fine-tuning showed that 5 · 10−5 is the best value to use for the
bending penalty factor β . The number of iterations N of the update operator of
the model is set to 15.

3.3.3 Lucas-Kanade and Gunnar Farnebäck methods

Both the Lucas-Kanade and the Gunnar Farnebäck methods are used as described
in section 2.5. When they are applied on the TVI set, the optical flow is initialized
with the coarse displacement field obtained by integrating the TVI data. The value
of their parameters is found empirically.

The window size used by the lucas-Kanade method is set to 51× 51. The number
of layers of the pyramidal representation of images is set to 2. At each pyramid
level l, the algorithm performs 10 iterations to incrementally find the best residual
affine matrix Al and displacement vector d l .

The number of layers of the pyramidal representation of images is set to 3 for the
Gunnar Farnebäck method. At each pyramidal level, the algorithm performs 15
iterations.

3.4 Point tracking methods

Two methods are developed to track points from one B-mode frame to the next.
They both rely on the estimation of optical flow between successive frames. They
are referred as the classic and the Kalman auto-correction methods. Consider
M + 1 points in frame Ii represented by their vector of estimated coordinates
x̂m

i = [x
m
i , ym

i ]
T , m= 0, . . . , M . The goal of the tracking methods is to estimate at

best the locations x̂m
i+1 of the points in frame Ii+1 based on x̂m

i and the optical flow
D describing the motion from Ii to Ii+1. Flow D is computed with one of the four
optical flow methods described in the previous section.

3.4.1 Classic method

The classic method is really simple. It computes the new positions using

x̂m
i+1 = x̂m

i + D(xm
i , ym

i ). (3.7)

Note that the optical flow estimate D is a discrete displacement field presenting a
displacement vector for each pixel. Bilinear interpolation is used in the case where
coordinates xm

i and/or ym
i are not integers.

3.4.2 Kalman auto-correction method

This method uses the Kalman filter described in section 2.7. As a reminder, the
Kalman filter updates the position estimates x̂m,+

i+1 = x̂m
i + D(xm

i , ym
i ) with some
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noisy measurements zm
i+1. However, such measurements are not available here.

This issue is circumvented by a little legerdemain. Let assume that the tracked
points are the points found by the semi-automatic point extraction tool, as shown
in Figure 3.4. The sequence of M + 1 points is ordered such that points x0

i+1 and
xM

i+1 are the points closest to the mitral valve. Let also assume that M is large
enough so that three adjacent points are almost located on a straight line. x̂m,+

i+1 is
updated with

zm
i+1 =



















x̂m,+
i+1

if m ∈ {0, M} or if m and i are not

both even or odd numbers,

x̂m−1
i+1 +x̂m+1

i+1
2

if m /∈ {0, M} and if m and i are

both even or odd numbers.

(3.8)

The trick consists thus in correcting the position of a point with the location of
the middle of the segment joining its two adjacent neighbor points. Note that
the correction is made every two frames, alternating between points of even and
odd index m. The points of index m = 0 or M have a single neighbor and are
generally placed in a location that is easy to track (right next to the mitral valve).
Consequently, it is decided that their position is not corrected. The Kalman auto-
correction method is conceived to prevent the points from drifting3. By Imposing
a constraint that links the location of a point to the location of its neighbors, the
set of points acts more as a single deformable entity rather than a set of individual
points. There is therefore less chances a point starts drifting if its neighbors are
not affected by the drift.

The Kalman filter requires to estimate the process and measurement noise co-
variances Cn and Cw. Since the measurements used by this tracking method are
not real measurements but estimates obtained under strong assumptions, the
measurement covariance is set so that more trust is put in the estimate x̂m,+

i+1 than
in zm

i+1. Fine-tuning led to

V̂ = 0.0005 I2×2 ≈ Cn, (3.9)

Ŵ = 0.5 I2×2 ≈ Cw, (3.10)

where I2×2 is the 2× 2 identity matrix.

3.5 Tracking and strain estimation assessment

The expert Erik Andreas Rye Berg provided ground truth strain values for 18 pa-
tients among the 88 who agreed to have their cardiac data used in this work. Those
strain values were computed using the EchoPac package (GE Vingmed Ultrasound,

3It was noticed that one of the difficulties of tracking points through an ultrasound sequence is
to prevent tracked points from slowly and constantly moving away from their initial position. This is
called drifting.
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Norway), a clinically approved tool. The B-mode and TVI sequences of those
18 patients constitute a test set on which the different optical flow models and
tracking methods are tested and compared. It is important to note that the data of
those patients were not used for training any of the deep learning-based models
mentioned in this thesis.

Basal strain is estimated for the entire test set. All possible combinations of data set
types (HR or TVI), optical flow algorithms and tracking methods are tried, except
the combinations pairing the RAFT model and the TVI data set together. The points
to be tracked are obtained using the semi-automatic point extraction tool. If U-Net
fails to segment correctly the myocardium part surrounding the LV, the user has the
possibility to perform the segmentation manually. Strain is computed according to
Equation 2.3 using the four points chosen by the user. Note that for every B-mode
sequence, the same points are tracked whatever the optical flow algorithm and
tracking method that are used. This facilitates the comparison.

The tracking performances are analyzed subjectively by visual inspection: for
every B-mode sequence and every optical flow and tracking methods, the tracking
of the four points used in the strain estimation process is assessed. The percentage
of successfully tracked points is reported for all tried combinations of data set type,
optical flow algorithm and tracking method.

The strain in every basal segment of the three views of the heart is computed
for every cardiac cycle in the considered B-mode sequence. The strain averaged
across all cardiac cycles is then compared to ground truth values. The correlation
ρ between the ground truth and computed strain values is calculated. The mean
and standard deviation, noted MD and σ, of the absolute error between computed
and ground truth strain values are also reported. A variability index is computed
in every view for all combinations of methods used. It is computed as

Variability index =
1
P

P
∑

p=1

Æ

Var{sp}
Mean{sp}

, (3.11)

sp is the vector of strain values of patient p, computed for the considered combin-
ation of methods and data set. In other words,

sp =









strain value of 1st cardiac cycle of patient p
strain value of 2nd cardiac cycle of patient p

...
strain value of last cardiac cycle of patient p









. (3.12)

P is the number of patients among the 18 constituting the test set for which Var{sp}
is not an outlier. The condition to be an outlier is

Var{sp}>Q3 + 3 ∗ (Q3 −Q1), (3.13)
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where Q1 and Q3 are the first and third quartiles of the set
�

Var{sp}
	P

p=1.

The four computed statistics play different roles:

1. The mean absolute error MD between the computed and ground truth aver-
aged strain values measures how close to ground truth the strain estimates
are in average on a considered set of patients (MD stands for Mean Distance).

2. The standard deviation σ of the absolute error gives an indication of the
dispersion of the absolute estimation errors around MD.

3. The Pearson correlation coefficient ρ measures to which extent computed
and ground truth strain values are related to each other. A perfect correlation
between the two gives ρ = 1 while the total absence of correlation gives
ρ = 0.

4. The variability index is proposed as a relative measure of the confidence a
model has when estimating strain: a model that outputs strain values really
different from one cardiac cycle to another will have a large variability index,
while a model that predicts fairly similar strain values for all cardiac cycles
of patient will have a low variability index. Equation 3.13 is necessary to
move aside patients for who unsuccessful tracking leads to an abnormally
large variance term Var{sp}.





Chapter 4

Results

This chapter gathers the results obtained by following the methodology described
in chapter 3. First, the evolution of the metrics monitored during the training of
U-Net, Daisy-chaining and RAFT models is shown. Then, performances of the point
extraction tool are presented, followed by a qualitative analysis of the tracking.
Finally, results of a quantitative strain comparison against expert reference values
are shown.

4.1 Training curves

The evolution of the training and validation loss metrics as a function of the
training step or epoch is shown for the three deep learning-based models used in
this work. Figure 4.1 shows the training and validation curves of U-Net, trained to
segment the myocardial area that surrounds the left ventricle. Curves obtained
during the training phase of the Daisy-chaining model are displayed in Figure 4.2.
The training and validation curves of RAFT are presented in Figure 4.3. Figure 4.3a
shows the evolution of LRAF T,1, defined in Equation 3.5, while Figure 4.3b shows
the evolution of LRAF T,2, defined in Equation 3.6.

47
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Figure 4.1: Training and validation curves of U-Net obtained during its training
phase for the LV myocardial area segmentation. The training loss is the binary
cross-entropy (BCE). The validation loss is 1−BA, where BA is the binary accuracy.

Figure 4.2: Training and validation losses of the Daisy-chaining model as a func-
tion of the training step. The negated zero-mean normalized cross-correlation is
used as training and validation losses.
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(a) Evolution of the RAFT training and validation loss LRAF T,1 as a function of the training step.

(b) Evolution of the RAFT training and validation loss LRAF T,2 as a function of the training step.

Figure 4.3: Training and validation curves of RAFT model. The curves are shown
for both loss functions LRAF T,1 and LRAF T,2, defined in Equation 3.5 and Equation 3.6
respectively.
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4.2 Point extraction tool

The point extraction tool is applied on all first frames of the B-mode sequences
composing the test set. For the HR and TVI sets, the tool extracts points that are
usable for tracking in respectively 50% and 57.4% of the cases. Table 4.1 details the
number of successes and failures of the tool for both sets. Figure 4.4 and Figure 4.5
show 3 examples of successful and failed point extractions for the two different
sets, along with the corresponding masks output by U-Net.

Table 4.1: Performances of the point extraction tool on the test set.

HR set TVI set

# of point
extraction successes

27
(50%)

31
(57%)

# of point
extraction failures

27
(50%)

23
(43%)
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Figure 4.4: Examples of failed and successful point extractions performed by the
semi-automatic tool on frames taken from the HR set. The corresponding masks
output by U-Net are also shown. Extracted points are depicted in red.
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Figure 4.5: Examples of failed and successful point extractions performed by the
semi-automatic tool on frames taken from the TVI set. The corresponding masks
output by U-Net are also shown. Extracted points are depicted in red.
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4.3 Point tracking visual inspection

The point tracking quality is assessed subjectively by visual inspection1. The per-
centage of successfully tracked points is reported for every one of the six basal
segments defined in Figure 2.6, for all tried combinations of data set type, op-
tical flow and tracking methods. The inspection focuses on the points that are
chosen to be used in the strain estimation process. Results are shown in Figures 4.6
to 4.11, each figure corresponding to a basal segment. The diminutives Daisy,
LK, GF, classic and Kalman respectively refer to the Daisy-chaining model, the
Lucas-Kanade algorithm, the Gunnar Farnebäck algorithm, the classic tracking
method and the Kalman auto-correction tracking method. Few examples of tracking
videos obtained by following the procedure described in chapter 3 are available at
https://folk.ntnu.no/kiss/sgoffin/.

1This inspection is performed by the author himself.

https://folk.ntnu.no/kiss/sgoffin/
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Figure 4.6: Percentage of successfully tracked points in the basal inferoseptal
segment of the myocardium (4-chamber view). The percentage is reported for
every combination of data set type (HR or TVI), optical flow model, and tracking
method.

Figure 4.7: Percentage of successfully tracked points in the basal anterolateral
segment of the myocardium (4-chamber view). The percentage is reported for
every combination of data set type (HR or TVI), optical flow model, and tracking
method.
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Figure 4.8: Percentage of successfully tracked points in the basal inferior seg-
ment of the myocardium (2-chamber view). The percentage is reported for every
combination of data set type (HR or TVI), optical flow model, and tracking method.

Figure 4.9: Percentage of successfully tracked points in the basal anterior seg-
ment of the myocardium (2-chamber view). The percentage is reported for every
combination of data set type (HR or TVI), optical flow model, and tracking method.
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Figure 4.10: Percentage of successfully tracked points in the basal inferolateral
segment of the myocardium (Apical long-axis view). The percentage is reported for
every combination of data set type (HR or TVI), optical flow model, and tracking
method.

Figure 4.11: Percentage of successfully tracked points in the basal anteroseptal
segment of the myocardium (Apical long-axis view). The percentage is reported for
every combination of data set type (HR or TVI), optical flow model, and tracking
method.
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4.4 Strain estimation

The average strain in all six basal segments of each patient of the test set are
computed for all tried combinations of data set type (HR or TVI), optical flow and
tracking methods. Figures 4.12 to 4.25 plot the computed strain values against
their corresponding ground truth. The mean and standard deviation of the absolute
error between computed and ground truth strain values are reported in Table 4.2,
Table 4.3 and Table 4.4. They are respectively referred as MD and σ. The Pearson
correlation coefficient ρ and the variability index are also provided. Best values
are displayed in green for each basal segments.
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Figure 4.12: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the HR set, using the Daisy-chaining
model with the classic tracking method.
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Figure 4.13: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the TVI set, using the Daisy-chaining
model with the classic tracking method.
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Figure 4.14: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the HR set, using the Daisy-chaining
model with the Kalman auto-correction tracking method.
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Figure 4.15: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the TVI set, using the Daisy-chaining
model with the Kalman auto-correction tracking method.
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Figure 4.16: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the HR set, using the Lucas-Kanade
algorithm with the classic tracking method.
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Figure 4.17: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the TVI set, using the Lucas-Kanade
algorithm with the classic tracking method.
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Figure 4.18: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the HR set, using the Lucas-Kanade
algorithm with the Kalman auto-correction tracking method.
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Figure 4.19: Basal strain estimates plotted against the corresponding ground truth
values. Strain estimation is performed on the TVI set, using the Lucas-Kanade
algorithm with the Kalman auto-correction tracking method.



66 GOFFIN S.: Improved Strain Computation for TEE Acquisitions

Figure 4.20: Basal strain estimates plotted against the corresponding ground
truth values. Strain estimation is performed on the HR set, using the Gunnar
Farnebäck algorithm with the classic tracking method.
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Figure 4.21: Basal strain estimates plotted against the corresponding ground
truth values. Strain estimation is performed on the TVI set, using the Gunnar
Farnebäck algorithm with the classic tracking method.
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Figure 4.22: Basal strain estimates plotted against the corresponding ground
truth values. Strain estimation is performed on the HR set, using the Gunnar
Farnebäck algorithm with the Kalman auto-correction tracking method.
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Figure 4.23: Basal strain estimates plotted against the corresponding ground
truth values. Strain estimation is performed on the TVI set, using the Gunnar
Farnebäck algorithm with the Kalman auto-correction tracking method.
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Figure 4.24: Basal strain estimates plotted against the corresponding ground
truth values. Strain estimation is performed on the HR set, using RAFT model
with the classic tracking method.



Chapter 4: Results 71

Figure 4.25: Basal strain estimates plotted against the corresponding ground
truth values. Strain estimation is performed on the HR set, using RAFT model
with the Kalman auto-correction tracking method.
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Table 4.2: Comparison between ground truth and estimated strain values in
percent in the 4-chamber view. MD, σ and ρ are respectively the mean absolute
difference, the standard deviation and the Pearson correlation coefficient. Best
results are displayed in green.

4-chamber view

Basal inferoseptal segment

MD σ ρ
Variability

index

Daisy + classic + HR set 3.79 2.59 0.48 0.44
Daisy + classic + TVI set 3.07 1.77 0.68 0.52
Daisy + Kalman + HR set 3.54 2.89 0.52 0.39
Daisy + Kalman + TVI set 3.68 2.68 0.65 0.43

LK + classic + HR set 5.14 3.39 0.28 0.38
LK + classic + TVI set 5.12 4.42 0.38 0.34
LK + Kalman + HR set 5.12 2.85 0.16 0.38
LK + Kalman + TVI set 5.31 5.83 0.21 0.52
GF + classic + HR set 4.63 3.61 0.13 0.34
GF + classic + TVI set 2.74 2.38 0.53 0.37
GF + Kalman + HR set 4.53 2.61 0.33 0.45
GF + Kalman + TVI set 4.03 2.69 0.41 0.33
RAFT + classic + HR set 5.29 5.83 0.26 0.41

RAFT + Kalman + HR set 4.34 4.12 0.32 0.26

Basal anterolateral segment

MD σ ρ
Variability

index

Daisy + classic + HR set 5.61 3.69 0.51 0.39
Daisy + classic + TVI set 9.14 7.39 -0.16 0.37
Daisy + Kalman + HR set 5.47 3.54 0.62 0.42
Daisy + Kalman + TVI set 6.57 3.9 0.28 0.54

LK + classic + HR set 6.24 4.05 0.49 0.24
LK + classic + TVI set 5.28 3.1 0.5 0.36
LK + Kalman + HR set 6.9 5.43 0.43 0.3
LK + Kalman + TVI set 10.01 13.82 0.44 0.38
GF + classic + HR set 5.57 4.45 0.52 0.39
GF + classic + TVI set 7.93 4.53 0.1 0.36
GF + Kalman + HR set 5.24 3.14 0.59 0.44
GF + Kalman + TVI set 8.58 5.84 -0.02 0.44
RAFT + classic + HR set 5.7 2.88 0.54 0.32

RAFT + Kalman + HR set 5.2 4.12 0.57 0.26
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Table 4.3: Comparison between ground truth and estimated strain values in
percent in the 2-chamber view. MD, σ and ρ are respectively the mean absolute
difference, the standard deviation and the Pearson correlation coefficient. Best
results are displayed in green.

2-chamber view

Basal inferior segment

MD σ ρ
Variability

index

Daisy + classic + HR set 4.4 3.3 0.61 0.35
Daisy + classic + TVI set 3.87 3.4 0.6 0.39
Daisy + Kalman + HR set 3.92 2.16 0.69 0.47
Daisy + Kalman + TVI set 4.32 2.25 0.56 0.4

LK + classic + HR set 4.02 2.81 0.44 0.19
LK + classic + TVI set 4.77 3.52 0.51 0.29
LK + Kalman + HR set 5.39 3.75 0.48 0.34
LK + Kalman + TVI set 5.52 4.2 0.68 0.39
GF + classic + HR set 3.87 2.91 0.77 0.29
GF + classic + TVI set 4.63 2.03 0.68 0.38
GF + Kalman + HR set 4.37 2.73 0.69 0.37
GF + Kalman + TVI set 4.28 3.07 0.71 0.37
RAFT + classic + HR set 4.08 2.77 0.75 0.24

RAFT + Kalman + HR set 3.44 3.23 0.69 0.3

Basal anterior segment

MD σ ρ
Variability

index

Daisy + classic + HR set 4.03 2.75 0.71 0.32
Daisy + classic + TVI set 3.72 2.49 0.73 0.43
Daisy + Kalman + HR set 4.37 2.59 0.69 0.27
Daisy + Kalman + TVI set 3.0 2.76 0.79 0.35

LK + classic + HR set 3.51 2.56 0.7 0.2
LK + classic + TVI set 3.8 2.76 0.66 0.26
LK + Kalman + HR set 3.42 2.62 0.74 0.23
LK + Kalman + TVI set 5.15 2.97 0.52 0.34
GF + classic + HR set 3.72 3.39 0.76 0.3
GF + classic + TVI set 5.01 4.41 0.5 0.35
GF + Kalman + HR set 4.34 2.19 0.76 0.26
GF + Kalman + TVI set 5.33 3.58 0.55 0.43
RAFT + classic + HR set 5.6 3.26 0.56 0.23

RAFT + Kalman + HR set 5.1 3.19 0.64 0.2
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Table 4.4: Comparison between ground truth and estimated strain values in
percent for the apical long-axis view. MD, σ and ρ are respectively the mean
absolute difference, the standard deviation and the Pearson correlation coefficient.
Best results are displayed in green.

Apical long-axis view

Basal inferolateral segment

MD σ ρ
Variability

index

Daisy + classic + HR set 3.77 3.34 0.5 0.43
Daisy + classic + TVI set 4.19 3.89 0.54 0.43
Daisy + Kalman + HR set 4.25 3.36 0.49 0.42
Daisy + Kalman + TVI set 4.29 3.34 0.49 0.38

LK + classic + HR set 5.58 4.41 0.32 0.25
LK + classic + TVI set 5.18 4.18 0.37 0.36
LK + Kalman + HR set 5.93 4.93 0.38 0.31
LK + Kalman + TVI set 6.74 5.65 0.25 0.43
GF + classic + HR set 5.87 3.65 0.41 0.26
GF + classic + TVI set 4.74 3.89 0.51 0.46
GF + Kalman + HR set 4.58 3.6 0.49 0.34
GF + Kalman + TVI set 5.53 5.24 0.32 0.37
RAFT + classic + HR set 5.81 3.88 0.51 0.32

RAFT + Kalman + HR set 5.33 3.01 0.59 0.35

Basal anteroseptal segment

MD σ ρ
Variability

index

Daisy + classic + HR set 3.98 2.26 0.45 0.46
Daisy + classic + TVI set 5.1 3.5 0.19 0.6
Daisy + Kalman + HR set 3.71 2.32 0.59 0.47
Daisy + Kalman + TVI set 5.19 3.77 0.2 0.56

LK + classic + HR set 3.81 3.37 0.6 0.36
LK + classic + TVI set 3.98 2.52 0.67 0.34
LK + Kalman + HR set 4.6 3.65 0.57 0.39
LK + Kalman + TVI set 5.88 4.19 0.17 0.5
GF + classic + HR set 4.95 4.14 0.12 0.5
GF + classic + TVI set 6.07 3.71 0.04 0.47
GF + Kalman + HR set 5.19 3.24 0.65 0.51
GF + Kalman + TVI set 5.7 4.43 0.12 0.55
RAFT + classic + HR set 5.5 3.92 0.29 0.46

RAFT + Kalman + HR set 4.85 3.81 0.38 0.38
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Discussion

5.1 Training curves

5.1.1 U-Net model

U-Net is trained over more than 70 epochs. The training and validation curves are
shown in Figure 4.1. The training loss is the binary cross-entropy (BCE) and the
validation loss is 1-BA, where BA stands for binary accuracy. The curves exhibit
the expected shape: both the training and validation losses decrease as training
progresses. The rate at which they evolve decreases as the training epoch grows.
This is a typical behavior. Indeed, at the beginning of training, U-Net produces
masks of very poor quality and learns a lot from every training batch. As training
continues, the model improves and output masks become better and better. The
model has to learn finer and finer details to continue improving and the amount
of useful information extracted from batches drops.

Unexpectedly, the validation loss still marginally decreases after more than 70
training epochs and does not present any sign of overfitting. This is probably
due to a high correlation between the validation and training sets. Indeed, data
augmentation was used excessively to increase the number of annotated examples
from 100 to 5000. Although different, images output by the data augmentation
pipeline of U-Net still have numerous features in common with the image they are
originated from. Since the training-validation split was performed after the data
augmentation, images from the validation set present a relatively great similarity
with some images of the training set. This prevents the binary accuracy from
dropping when the model starts to overfit. To tackle this issue, the segmentation
performances of U-Net are regularly assessed during training by visually inspecting
the masks output for non-annotated images: the training procedure is stopped
before a significant drop in the output masks quality is observed. Another solu-
tion would consists in performing the training-validation split on the manually
annotated data, and then performing data augmentation independently on both
sets. However, this alternative requires more annotated examples to ensure that

75
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both training and validation sets present enough diversity to be representative
populations of the U-Net input space.

5.1.2 Daisy-chaining model

The evolution of the training and validation negated ZNCC is shown in Figure 4.2.
The training and validation curves exhibit an atypical shape, with sudden jumps
due to the step-by-step training procedure. The sharp transitions in the validation
loss occurring at steps 12700 and 16500 mark the beginning of the training of the
second and third optical flow units of the model. The first, second and third optical
flow units were respectively trained for 12700, 3800 and 12700 training steps.
Note that each unit was actually trained until no improvement is observed. The
weights giving the best validation performances were stored and used for the rest
of the training procedure. Fine-tuning starts at step 29200. It greatly improves the
model performances, causing the negated ZNCC to drop from −0.937 to −0.949.
The periodical nature of the training curve is due to the fact that training data was
not shuffled between epochs. This should not have any impact on performances.

5.1.3 Raft model

The evolution of LRAF T,1 and LRAF T,2 as a function of the training step is shown
in Figure 4.3. LRAF T,1 decreases really slowly compared to LRAF T,2. This could be
expected. Indeed, LRAF T,1 mainly depends on the results of warping operations. The
link between the loss and the computed flows is thus very complex from an optim-
ization point of view. As for LRAF T,2, it takes into account the discrepancy between
the output flow and the flow computed with the Gunnar Farnebäck algorithm. This
term is faster to minimize since it depends on the output flows in a more direct way.

The values of LRAF T,1 and LRAF T,2 computed over the training and validation sets
cannot be compared since they measure the model performances in a different
way. Instead, the performances of the models trained with LRAF T,1 and LRAF T,2 are
assessed by visually inspecting the tracking achieved using the output flows and
the classic tracking method on few B-mode sequences chosen randomly. The model
trained with LRAF T,1 presents slightly better results than the other. A plausible
explanation is that the Gunnar Farnebäck method produces sometimes optical
flows that are not accurate enough to be considered as ground truth. The model
trained with LRAF T,2 is then misled in its learning process. The model trained with
LRAF T,1 is used for the following tracking and strain estimation assessment.

5.2 Semi-automatic point extraction tool

The performances of the automatic tool developed to find suitable points to track
around the left ventricle are not optimal but promising (50% and 57% of success for
the HR and TVI sets). The point extraction algorithm fails when the interesting area
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of the myocardium is segmented in several pieces. This phenomenon is responsible
for most of the failure cases. It is the case for five of the six failure examples shown
in Figure 4.4 and Figure 4.5. Too dark images seems to be another source of failure.
As shown in Figure 4.5, the frame located in the top-left corner of the figure is
too dark to allow U-Net to segment accurately the myocardium. Note that too
dark images can also cause the interesting area to be segmented into several pieces.

A good avenue of improvement would consist in providing the tool with some
information about the locations of the mitral valves and the apex. This information
could be exploited to help U-Net generating masks of better quality, and more im-
portantly, it could greatly help the thinning algorithm to extract the best centerline
from a mask, even though the mask is in several pieces. Increasing the size of the
training set by manually annotating more frames would also be beneficial.

5.3 Tracking visual inspection

The visual inspection of tracking videos led to the results displayed in Figures 4.6
to 4.11. The influence of the optical flow algorithm is first analyzed. Then, the
impact of the tracking method and test set (HR or TVI) on tracking performances
is discussed. Finally, important observations about tracking performances are
summed up. It is strongly recommended that the reader keeps Figures 4.6 to 4.11
at hand while reading this part of the discussion.

Influence of optical flow method

Looking at Figures 4.6 to 4.11, it can be seen that the choice of optical flow method
has a big impact on performance. Consider the data set type and the tracking
method as fixed. A first obvious observation is that the Daisy-chaining model leads
to the worst tracking performances, whatever the basal segment that is considered.
The tracking video analysis reveals that this model suffers from heavy point drift-
ing. This phenomenon is accentuated when the tracked point is located in darker
areas. Performing gamma augmentation on the B-mode frame pairs the model is
trained on could help to mitigate this problem: the Daisy-chaining model would
be trained to perform better in areas with a lower contrast. It is also noticed that
the Daisy-chaining model fails at estimating large and fast displacements. This is a
well-known limitation of coarse-to-fine optical flow models.

The tracking performances obtained using Lucas-Kanade, Gunnar Farnebäck and
RAFT algorithms are good in most basal segments. Only the basal anterolateral
segment (4-chamber view) seems to pause a problem: an overall drop in perform-
ances is observed, whatever the optical flow method that is used. Looking at the
tracking videos, it can be noticed that the anterolateral segment often enters an
obstructed area of the scanning sector1 during cardiac cycles. This shadowing

1i.e. a zone where the ultrasound beam is obstructed and where tissues cannot be imaged.
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(a) Anterolateral segment visible (b) Anterolateral segment not visible

Figure 5.1: Illustration of the shadowing problem. The basal anterolateral segment
(4-chamber view) disappears from the frame during a cardiac cycle.

poblem is illustrated in Figure 5.1. This issue causes any optical flow method to fail
since their functioning is based on a brightness constancy assumption underlying
Equation 2.16: the brightness of a tracked pixel is assumed to be almost constant
along the entire video sequence. In the other segments, these three methods estim-
ate the points displacement pretty accurately. The few cases of failure are either
caused by drift or shadowing issues. It is difficult to determine at first sight which
one of the Lucas-Kanade, Gunnar Farnebäck and RAFT algorithms leads to the best
tracking performances overall.

Impact of test set and tracking method

The choice of data set (HR od TVI) affects the tracking performances. Looking at
Figures 4.6 to 4.11, three observations can be made:

1. When the classic tracking method is used, exploiting TVI data (i.e. using the
TVI set) improves or maintains the performances for almost all optical flow
methods, and all basal segments. The only three exceptions occur when the
Daisy-chaining model is used in the basal inferoseptal segment (4-chamber
view), and when the Lucas-Kanade and Gunnar Farnebäck methods are used
in the basal anterolateral segment (4-chamber view). Using TVI data with
the classic tracking method can cause an increase in the percentage of points
successfully tracked of up to 20%.

2. When the Kalman auto-correction tracking method is combined to the Gunnar
Farnebäck algorithm, using the TVI set degrades the tracking performances
in all basal segments. The drop in the percentage of successfully tracked
points can go up to 32%.

3. When the Kalman auto-correction tracking method is combined with the
Daisy-chaining model or the Lucas-Kanade algorithm, using the TVI set
gives mixed results. Performances are degraded in half of the segments
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and improved in the other half for the Daisy-chaining model. As for the
Lucas-Kanade method, performances are improved in two segments only,
the performances being degraded in the others.

The degradation of the tracking performances occurring when the Kalman auto-
correction method is applied on the TVI set is probably not caused by the use of
TVI data in itself. It is rather due to the lower frame rate of the B-mode sequences
of this set. As a reminder, the Kalman auto-correction tracking method updates
the position estimate x̂m

i+1 of point m with the fake measurement zm
i+1 defined in

Equation 3.8. Since the period of time separating consecutive B-mode frames is
in average two times longer in the TVI set than in the HR set, the time between
two updates of x̂m

i+1 is doubled. zm
i+1 is therefore more likely to be far from the

true position of point m if points m− 1 and/or m+ 1 start to drift. If it is the case,
the estimate x̂m

i+1 is corrected with a completely erroneous value and the Kalman
auto-correction method amplifies the drift problem rather than solving it. The fact
that the Lucas-Kanade method and the Daisy-chaining model present sometimes
better tracking performances when the Kalman-based tracking method is applied
to the TVI set could hypothetically be due to the beneficial use of TVI information.

The last observations do not mean that the Kalman auto-correction tracking method
is inefficient. Indeed, Figures 4.6 to 4.11 reveal that, on the HR set, applying the
Kalman auto-correction method rather than the classic method maintains or im-
proves the tracking performances for all optical flow algorithms in almost all basal
segments. The inspection of tracking videos recorded on the HR set shows that
the Kalman-based tracking method helps reducing the drift problem. In few cases,
it can even limit the harmful influence of shadowing. The only exceptions occur
for the Daisy-chaining model in the inferoseptal segment (4-chamber view), the
Gunnar Farnebäck method and RAFT model in the anterior segment (2-chamber
view), and the Lucas-Kanade model in the anteroseptal segment (apical long-axis
view). This observation corroborates the hypothesis that a lower frame rate causes
the Kalman auto-correction tracking technique to be less efficient, or even harmful.

Visual inspection summary

The visual analysis of tracking videos revealed that:

• The Daisy-chaining model provides optical flows of poor quality overall,
and achieves low tracking performances. It heavily suffers from drift and
shadowing issues.

• The RAFT model and the Lucas-Kanade and Gunnar Farnebäck methods
provide optical flows of good quality overall, and can be used to perform an
efficient tracking. They mitigate the drift problem quite well, but are still
heavily affected by shadowing.

• Integrating TVI data and exploiting the resulting displacement information
(i.e. using the TVI set) is beneficial in almost all cases involving the classic
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tracking method.
• Applying the Kalman auto-correction tracking method on the HR set generally

mitigates the drift issue and leads to better tracking performances.
• Applying the Kalman auto-correction tracking method on the TVI set most

often degrades the tracking performances. The most probable cause to this is
the low frame rate of B-mode sequences composing the TVI set. Nevertheless,
further analyses are still required to assure that this is not caused by the use
of TVI information in itself.

The combinations of data set type, optical flow algorithm and tracking method
that give the best tracking performances for each basal segment are gathered in
Table 5.1.

Table 5.1: Combinations of data set type, optical flow algorithm and tracking
method giving the best tracking performances for each basal segment.

Basal segment Best combination Successful tracking

Inferoseptal (4-CH) HR + GF + Kalman 88.2%

Anterolateral (4-CH)
HR + LK + classic

HR + LK + Kalman
61.8%

Inferior (2-CH)
TVI + LK + classic
HR + LK + Kalman

HR + RAFT + Kalman
77.8%

Anterior (2-CH)
HR + GF + classic
TVI + GF + classic

HR + RAFT + classic
77.8%

Inferolateral (LAX) TVI + LK + classic 86.1%

Anteroseptal (LAX) TVI + LK + classic 88.9%

5.3.1 Strain estimation

First, Figures 4.12 to 4.25 that show the estimated strain values against the ground
truth values are discussed. General observations concerning the relation between
the combination of data set type, optical flow method and tracking algorithm,
and strain estimation performances are made. Then, the statistics gathered in
Tables 4.2 to 4.4 are analyzed. It is strongly recommended that the reader keeps
the appropriate figures and tables at hand while reading this part of the discussion.
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Computed against ground truth strain values

Looking at Figures 4.12 to 4.25, a large spread around the diagonal is observed for
all possible combinations of data set type, optical flow model and tracking method.
This was expected as the strain estimation procedure developed in this thesis is
tarnished by several sources of inaccuracy. Firstly, the placement of the points
used in the strain estimation process defined in Equation 2.3 and the annotation
of the ES and ED were not performed by a cardiologist. Secondly, the accuracy
with which optical flow methods estimate displacements of cardiac tissues can be
degraded by various factors. Unsuccessful tracking, mainly caused by drifting and
shadowing, may introduce large variations in the estimated strain values. Moreover,
ground truth values were computed using a commercial speckle tracking method.
Even though speckle tracking methods are commonly utilized and commercially
accessible, their output should not be considered as an absolute truth. These tech-
niques suffer from considerable inter- and intra-observer variability, as well as
inter-vendor variability. [73]

The average strain estimates obtained using the Daisy-chaining model are rel-
atively accurate for the tracking of poor quality this optical flow method offers. It
is possible that averaging strain estimates across multiple cardiac cycles mitigates
the harmful effect drifting can have on the estimation process.

Comparing Figures 4.12 to 4.25, it is difficult to spot a combination of data set type,
optical flow algorithm and tracking method that really outperforms the others in
the strain estimation task. Strain estimation performances of a given combination
really depend on the basal segment that is considered. Drawing a parallel between
the combinations gathered in Table 5.1 and their corresponding strain estimation
abilities, it seems that better tracking performances do not necessary lead to a
better strain estimation.

Even if they are not as accurate as desired, the strain estimates produced by
some combinations of data set type, optical flow algorithm and tracking method
are somehow strongly correlated to the corresponding ground truth values. This
is for example the case in the inferoseptal (4-chamber) and inferior (2-chamber)
segments for the Gunnar Farnebäck method when it is combined to the classic
tracking algorithm and applied on the TVI set (see Figure 4.21). The Lucas-Kanade
and Gunnar Farnebäck methods seem to lead to an underestimation of the strain
in the basal segments of the 2-chamber and apical long-axis views when they are
combined to the Kalman auto-correction method and applied on the TVI set. This
observation shows once again that the Kalman auto-correction method should not
be applied on the TVI set.
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Strain estimation statistics

The best values of MD, ρ and variability index for every basal segment are depic-
ted in green in Tables 4.2 to 4.4. The statistics confirm that tracking and strain
estimation performances are weakly correlated in the case of the methods imple-
mented in this thesis. Indeed, the lowest mean absolute error is achieved by the
Daisy-chaining model in three of the six basal segments (anterior, inferolateral
and anteroseptal) despite the poorest tracking performances. The same obser-
vation is made for the Pearson correlation coefficient: the Daisy-chaining model
achieves the highest correlation in three of the six basal segments (inferoseptal,
anterolateral and anterior). However, the combinations that involve the Daisy-
chaining model have a variability index among the highest in almost all basal
segments. This indicates a lack of consistency in the Daisy-chaining strain estimates.

The correlation coefficient achieved by a combination depends quite a lot on
the considered segment. It can be noticed that all combinations achieve a relatively
high correlation in the inferior and anterior segments in the 2-chamber view.

5.4 Limitations of study and future work

The point extraction tool developed in this thesis is semi-automatic in the sense
that it requires the user’s intervention in order to select suitable points to use in
the strain estimation process. This is clearly a major shortcoming of the proposed
estimation pipeline that limits its use for real-time applications. Designing a model
able to find automatically the points required to estimate the myocardial strain is
a complex but necessary task in order to reach the end-goal of full automatization
of the basal longitudinal strain estimation process in TEE. At present, the methods
developed in this thesis cannot be used in real-time applications due to their long
inference time. Their implementation should be optimized towards this goal while
taking into account the actual hardware available in the operating theater.

The performances of the point extraction tool could be improved by training
the segmentation model U-Net on a larger data set. This would require manually
annotating a considerable amount of segmentation masks. Training a separate
instance of U-Net for each view (4-chamber, 2-chamber and apical long-axis) would
probably also improve the quality of output segmentation masks: the variation
of the patterns to detect in input images would be reduced, thus decreasing the
complexity of learning and allowing U-Net to be more specialized. The skeleton
refining algorithm could also be made more robust against masks divided into
several pieces. An interesting lead consists in performing morphological closing
at both ends of oblong segmented areas in order to unify potential pieces of the
desired area to segment.

Tracking performances can be improved by fine-tuning more carefully the train-
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ing hyper-parameters of the Daisy-chaining and RAFT models and parameters of
the Lucas-Kanade and Gunnar Farnebäck methods. The same training procedure
should also be applied to the Daisy-chaining and RAFT models in order to compare
their performances on the same basis. As U-Net, a separate optical flow model
could be trained for each view. This would only apply to the Daisy-chaining and
RAFT models since Lucas-Kanade and Gunnar Farnebäck are not trainable methods.

The unsupervised framework for optical flow methods described in subsection 2.5.1
could potentially be improved by designing a training loss that progressively goes
from LRAF T,2 to LRAF T,1: using the Gunnar Farnebäck method to supervise the model
at the beginning of its training phase could speed the convergence up. More weight
would then be progressively accorded to LRAF T,1 to smoothly switch to a completely
unsupervised training. This modification still does not require optical flow ground
truth.

It would be interesting to establish a benchmark procedure for a more accur-
ate strain estimation assessment. The developed methods should be compared to
recent state-of-the-art approaches, such as the FlowNet-based technique introduced
by Østvik et al. [39]. Carrying this comparison on a same and larger test set would
provide a more detailed view of the strengths and limitations of the suggested
methods.





Chapter 6

Conclusion

This thesis aimed at automatizing the regional basal strain estimation proced-
ure in transesophageal echocardiographic (TEE) images. Novel approaches were
suggested, consisting of myocardial point extraction and tracking, and strain com-
putation. A semi-automatic tool was developed to extract interesting myocardial
points to track. Myocardial tissues displacement was estimated using optical flow
methods. Four models were experimented, including two deep learning-based
models trained using an adapted version of the Deep Learning Framework for
Unsupervised Affine and Deformable Image Registration initially suggested by
Vos et al. [40, 41]. The integration of tissue velocity imaging (TVI) data and a
novel tracking method based on Kalman filtering were proposed as attempts of
improvement of the motion estimation and tracking processes.

Training and testing data consisted in unselected transesophageal echocardio-
graphic images of the 4-chamber, 2-chamber, and apical long-axis views of the
heart. The remarkably good tracking performances obtained in five of the six
basal segments using the RAFT, Lucas-Kanade and Gunnar Farnebäck optical flow
algorithms proved that optical flow-based motion estimation is highly suitable for
frame to frame tracking on TEE images. Experiments showed that the integration of
TVI data with the classic tracking method improves in most cases the quality of op-
tical flow estimation. The Kalman filtering-based tracking method proposed in this
work also helped to reduce the drift problem on high frame rate B-mode sequences.

The segmentation model U-Net was successfully combined to a custom thinning
algorithm in order to create a myocardial point extraction tool. Major improve-
ments can still be made but decent performances were achieved, showing that
myocardium segmentation can be used to extract the points necessary to the strain
estimation process.

Strain estimation performances did not reflect the good tracking quality achieved
with three of the optical flow methods experimented in this thesis. However, strain
estimates were highly correlated to ground truth values, especially in the inferior
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and anterior basal segments. Despite these promising results, the suggested meth-
ods are still affected by multiple sources of error that will need to be tackled in
order to reach a strain estimation accuracy comparable to expert measurements.

Strain estimation from TEE images is a challenging task. However, this thesis
proved that optical flow-based methods can be used to perform accurate tracking
of myocardial tissues. This constitutes a step closer to the full automatization of
the regional basal strain estimation procedure.
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Appendix A

RAFT: update operator GRU

The update operator of the RAFT model is composed of a sequence of gated recur-
rent units (GRUs) where fully connected layers are replaced by 3× 3 convolutions.
A diagram of the structure of such unit is given in Figure A.1. The input xt is
the result of the concatenation of flow, correlation, and context features. Math-
ematically, the update gate zt , the reset gate rt and the output state ht are such
that

zt = σ (conv3×3([ht−1,xt], Wz)) , (A.1)

rt = σ (conv3×3([ht−1,xt], Wr)) , (A.2)

eht = tanh (conv3×3([rt � ht−1,xt], Wh)) , (A.3)

ht = (1− zt)� ht−1 + zt � eht , (A.4)

where σ is the sigmoid function, � is the element-wise multiplication operator,
and Wz , Wr and Wh are the parameters of the convolution layers.
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Figure A.1: Structure of the gated recurrent unit composing the update operator
of RAFT model. σ is the sigmoid function. The input xt is the result of the concat-
enation of flow, correlation, and context features. ht−1 and ht are the input and
output states of the unit.



Appendix B

Pre-processing pipeline

B.1 Polar-to-Cartesian transformation

The polar-to-Cartesian transformation undergone by the TVI sequences in the
pre-processing pipeline is formally defined by the system

¨

vx = −vpsin(θ )x̂ ,

vy = −vpcos(θ ) ŷ .
(B.1)

vp is the value of the considered pixel, x̂ and ŷ are the unit vectors defining the
Cartesian orthonormal framework of the frame, and vx and vy are the components
of the pixel velocity vector vp (in the ultrasound beam direction) in this Cartesian
framework. The situation is depicted in Figure B.1.

Figure B.1: Illustration of the polar-to-Cartesian transformation applied to TVI
images.
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B.2 TVI data integration

A coarse displacement field between two B-mode frames is computed by integrating
the corresponding TVI sequence over the time period separating those frames. Let
consider a B-mode sequence taken from the TVI set and its corresponding TVI
sequence. The TVI sequence is chopped into chunks of m frames, with

m=
TVI frame rate

B-mode frame rate
. (B.2)

Dividing the velocity vector (or its components vx and vy) of a pixel by the TVI
frame rate gives its displacement vector from the current TVI frame to the next.
The resulting displacement vector of all pixels is computed over the m frames of a
chunk. This way, an optical flow describing the motion of each pixel between the
two considered B-mode frames is created. Note that this displacement field is a
poor estimate of the actual pixel displacement since TVI only captures speed in
the ultrasound beam direction. Nevertheless, it constitutes a good first estimate
for the optical flow methods developed in this thesis. TVI integration is illustrated
in Figure B.2 for a single pixel.
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Figure B.2: Illustration of the TVI data integration process for a single pixel. The
considered pixel is represented by a black dot. vp,k is the velocity vector of this
pixel in TVI frame k. dp is the resulting displacement vector of the considered
pixel over a chunk of TVI frames.





Appendix C

Thinning algorithm

C.1 Zhang-Suen thinning algorithm

The algorithm developed by Zhang and Suen [71] is a thinning algorithm used
for extracting the centerline of any shape in a binary image. Let consider a binary
mask of the LV, where the pixel value is 1 if the pixel is part of the LV, 0 otherwise.
Let consider a given pixel P1 that is not located on the border of the image. P1
has 8 neighbors, ordered as shown in Figure C.1. Let define A(P1) as the number

Figure C.1: Convention taken by Zhang and Suen [71] to represent the 8 pixel
neighbors of a pixel P1.

of transitions from 0 to 1 in the sequence P2P3P4P5P6P7P8P9P2, and B(P1) as the
number of pixel of value 1 among the 8 neighbors of P1. The algorithm is described
by the following steps:

• Step 1 - Iterate over all pixels P1 of value 1 that have 8 neighbors. Keep in
memory (without performing any modification) the pixels that satisfy the
following conditions:

1. 2≤ B(P1)≤ 6,
2. A(P1) = 1,
3. At least one of P2, P4 and P6 has the value 0,
4. At least one of P4, P6 and P8 has the value 0.
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Once all pixels P1 of value 1 that have 8 neighbors are tested, set the value
of the pixels kept in memory to 0.

• Step 2 - Iterate a second time over all pixels P1 of value 1 that have 8
neighbors. Keep in memory (without performing any modification) the pixels
that satisfy the following conditions:

1. 2≤ B(P1)≤ 6,
2. A(P1) = 1,
3. At least one of P2, P4 and P8 has the value 0,
4. At least one of P2, P6 and P8 has the value 0.

Once all pixels P1 of value 1 that have 8 neighbors are tested, set the value
of the pixels kept in memory to 0.

• Step 2 - Repeat Step 1 and Step 2 until no image pixels are changed.

The output of the algorithm is illustrated for three different LV masks in Figure C.2.

Figure C.2: Illustration showing three LV masks and their corresponding center-
lines computed with the Zhang-Suen algorithm. [71]

C.2 Skeleton refining algorithm

The LV myocardium masks generated using U-Net are not perfect, and the skeleton
of the segmented area can present ramifications and/or inner loops. The skeleton
refining algorithm is charged to prune the unwanted ramifications and break the
inner loops of the skeleton in order to keep a single centerline for the mask. First,
the algorithm tries to find the two skeleton ends that are the most likely to be the
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the extremities of the desired centerline. To do so, the skeleton image is split into
two parts. The cut is made in the height direction at the location of the ultrasound
probe. The skeleton end in each image part that is the closest to the location of
the ultrasound probe is chosen as extremity of the desired centerline. If one of the
part of the image does not contain any skeleton end, then the algorithm chooses
the ends that are the closest to the location of the ultrasound probe, regardless of
the part of the image they are located in. The longest path in the skeleton joining
those two ends is then kept as centerline. It can happen that a skeleton has only
one or no end. This is the case if the skeleton is made of one or several loops
interconnected together. In this case, a small portion of the skeleton is erased.
This creates two new ends and the algorithm can be applied as before. The erased
portion is 10 pixels long and is the closest to the ultrasound probe location in the
image. The skeleton refining algorithm is illustrated in Figure C.3. Note that this
algorithm fails to find a suitable centerline when the LV myocardium mask is too
far from the one expected. In this case, the user has the possibility to manually
segment the myocardium around the LV.

Figure C.3: Illustration of the skeleton refining algorithm applied to two cases.
The skeleton on the left is a classic case. The skeleton on the right is a special
case in the fact that it has a single end. The red portion of the skeleton is thus
erased and two new ends are created. It also illustrates the case where one side of
the cut has no end. The chosen skeleton path is used as centerline. The B-mode
frames for which the centerline is to be found are displayed in transparency for
the purpose of illustration.
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