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Abstract

Mesoporous polysaccharide aerogels are versatile functional materials for drug delivery

and wound dressing devices. The hydration and wetting of these aerogels control their

application-related performance, e.g. the release of encapsulated drugs. We report a

detailed small-angle neutron scattering (SANS) analysis of the hydration mechanism

of a calcium-alginate aerogel, based on a mathematical modelling of the scattering.

The model accounts for the hierarchical structure of the material comprising a meso-

porous structure, the solid skeleton of which is made up of water-swollen polymers. At

large scale, the mesoporous structure is modelled as a random collection of elongated
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cylinders, which grow in size as they absorb water and aggregate. The small-scale

inner structure of the skeleton is described as a Boolean model of polymer coils, which

captures the progressive transition from a dense dry polymer to a fully hydrated gel.

Using known physicochemical characteristics of the alginate, the SANS data is fitted

using the size of the cylinders as the only adjustable parameter. The alginate aerogel

maintains a nanometer-scale, albeit altered, structure for small water contents but it

collapses into micrometer-sized structures when the water content approaches 1 gram

of water per gram of alginate. In addition to the wetting of aerogels, the model might

also be useful for the small-angle scattering analysis of the supercritical drying of gels.

1. Introduction

Countless natural phenomena and technologies involve nanoporous solids interact-

ing with liquids. Analyzing them experimentally at nanometer-scale is particularly

challenging because the sheer presence of liquids rules out most electron microscopy

techniques. One of the few methods available is small-angle scattering of either x-rays

(SAXS) or neutrons (SANS) (Herrera et al., 2023; Petersen & Weidenthaler, 2022;

Gommes et al., 2021; Fanova et al., 2024).

Scattering techniques are very flexible experimentally, but they only provide indirect

structural information in the form of correlation functions. Strictly speaking, the signal

measured by SAXS or SANS is the Fourier transform of the scattering-length density

correlation function (Glatter & Kratky, 1982; Sivia, 2011). A major challenge when

applying small-angle scattering, therefore consists in developing suitable data analy-

sis methods to convert reciprocal-space intensities into real-space structural insight.

This is particularly challenging for geometrically complex and disordered materials

(Gommes, 2018), and even more so if they are made up of more than two phases, as

is often the case for in-situ studies (Gommes, 2013).
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The materials of interest in this work are aerogels, which are prepared from sol-

vated gels by extracting the solvent using supercritical CO2 in a way to preserve

the nanoscale architecture and the network structure of the mother gels (Ratke &

Gurikov, 2021; Garćıa-González et al., 2021). The structure of aerogels consists of

interconnected and tortuous pore networks, typically in the mesopore range, with

porosity that can be as high as 98%. These materials are notably used in petroleum

refinery and building industries as superior thermal insulation materials. They are also

being developed for separation, sorption and catalytic applications in environmental

technology (Garćıa-González et al., 2019). Intensive research is currently conducted

for developing specific aerogels for biomedical applications, such as drug delivery and

tissue engineering.

Calcium-alginate aerogels have promising uses in drug delivery, wound treatment

and food preservation (Budtova, 2023; Smirnova et al., 2023). Alginates are linear

polysaccharides usually extracted from the brown algae. Their polyanionic chains can

be ionotropically cross-linked and gelled, which is most frequently realized using Ca(II)

cations. The molecular structures of the resulting supramolecular assemblies have

been characterized by the egg-box model for the coordination of the cations, and by

physical models detailing the quaternary structures of the interlinked polysaccharide

chains (Depta et al., 2022). The resulting hydrogels can be converted into aerogels

in a classical way, through solvent exchange with acetone or ethanol followed by its

extraction using supercritical CO2.

A bottleneck for the future development of special aerogels is the lack of understand-

ing of how the nanoscale architecture of these monolithic porous materials governs

their macroscopic physico-chemical properties. Furthermore, a series of complicated

structural changes take place when hydrophilic biopolymer aerogels interact with liq-

uid or vapor-phase water. The in-depth exploration of the mechanisms behind these
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phenomena are of key importance for understanding the application-related perfor-

mance of biopolymer aerogels that are frequently intended to be used in aqueous media

or in humid environments.

In a recent study, the hydration and wetting mechanism of Ca-alginate aerogels

was explored utilizing a set of complementary characterization techniques (Forgács

et al., 2021). A qualitative model was deduced based on the combined results of

liquid state NMR (relaxometry, cryoporometry, diffusiometry), solid state NMR and

SANS measurements. Critical water contents were identified in these studies, where

the physico-chemical properties sharply change, but the quantitative description of

the structural changes could not be deduced. The aim of the present paper is to

propose a SANS data-analysis methodology to analyze the nanometer-scale structural

modification of alginate aerogels when they are increasingly exposed to water.

2. Experimental Section

The detailed description of the preparation of the Ca-alginate aerogel, the procedure of

controlled hydration, and the SANS measurements are given in a previous publication,

together with microscopy and NMR characterization (Forgács et al., 2021).

Alginate is a linear binary copolymer of mannuronic (M) and guluronic (G) acids

assembling in around 285-571 dimeric units (Depta et al., 2022). The sodium algi-

nate used for preparing the present calcium alginate aerogel is from a commercial

source (Sigma Life Science, catalog no. 71238). The G/M molar ratio of this particu-

lar alginate formulation was determined by solid-state NMR to be ca. 50/50 (Forgács

et al., 2021). The preparation of the Ca-alginate aerogel is briefly as follows. Alginate

was gelled ionotropically in a solution of CaCl2. Water in the Ca-alginate hydrogel

was exchanged in a stepwise process to ethanol, which was removed by supercritical

CO2 to obtain the dry aerogel. This preparation procedure ensured that all binding
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sites are occupied by Ca2+, i.e. the ratio of the carboxylate groups and Ca2+ is stoi-

chiometric.The as-prepared aerogel was characterized using N2-sorption porosimetry,

yielding a BET surface area of SBET = 544 m2/g and 98% porosity. The majority of

the pores are in the mesopore range with a mean pore diameter of 42 nm (Forgács

et al., 2021). A thorough account of the material preparation and characterization is

provided in the Supporting Information.

Aerogel samples were then hydrated by directly adding small aliquots of heavy

water (deuterium oxide) to ensure homogeneous wetting, and characterized by Small-

Angle Neutron Scattering (SANS). The SANS measurements were performed at the

Budapest Neutron Centre in the Yellow Submarine instrument, as described earlier

(Forgács et al., 2021; Almásy, 2021).
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Fig. 1. Small-angle neutron scattering (SANS) patterns measured on alginate aerogel
samples with increasing water content. The curves are arbitrarily shifted vertically
for clarity. The labels are the water contents, in g of water per g of polymer. The
red lines are specific power laws that contribute to the discussion.

The scattering patterns measured at different hydration levels are shown in Fig. 1.

The intensity at the largest value of q was considered a background, and subtracted

from each scattering pattern. The points considered in the rest of the paper, are only

those that have an intensity more than 5 % above the so-determined background.

The dry aerogel (uppermost curve) exhibits a two-stage scattering, with a q−1 power-

law scattering at very low q followed by Porod-like q−4 scattering at high q. This

qualitatively points at a mesoporous structure comprising elongated structures. This

is typical of the nanostructured skeleton of Ca-alginate aerogels, which is built from

overlapping dense polymer fibrils that are few nanometers wide (Depta et al., 2022).

Upon hydration, this structure progressively disappears. Macroscopically, the most
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humid sample is a gel. This is also manifest at nanometre-scale through its SANS

pattern (lowest curve in Fig. 1), which exhibits a q−2.5 scattering. The value of this

exponent is typical of polymeric structures in solution (Burchard, 1977; Wei & Hore,

2021) and of gels in particular (Shibayama, 2010).

3. A General Structural Model of Wet Aerogels

In earlier work, the data presented in Fig. 1 were analyzed using Beaucage’s unified

approach whereby radii of gyration and scattering exponents were extracted from the

scattering patterns (Forgács et al., 2021). Because this approach was not specific to

the type of structure investigated it could only provide limited structural insight. Here

we propose a material-specific structural model to quantitatively analyze the SANS

data.

The overall structural model that we propose is sketched in Fig. 2. The starting

dry state is the mesoporous structure of the aerogel, with the solid skeleton made up

of dense polymer (Fig. 2a). The structure of the dry aerogel is known to consist of

nanometer-sized fibrils, but no specific shape is assumed at this stage for the skeleton.

Earlier NMR studies show that water added to the aerogel first adsorbs on the algi-

nate and progressively hydrates the supramolecular chain assemblies thereby induc-

ing a rearrangement of the tertiary and quaternary structures of the macromolecules

(Forgács et al., 2021). These molecular processes cannot be resolved in the context of

a low-resolution method as SANS. Here, we simply assume that water progressively

penetrates into the skeleton, which is possibly accompanied by its swelling and by the

merging of swollen fibers into larger structures (Fig. 2b). At their complete saturation

with water, the latter structures reach macroscopic dimensions (Fig. 2c). During the

entire process, the molecular-scale inner structure of the skeleton progressively passes

from a dry dense polymer to a hydrogel (Fig. 2c1).

IUCr macros version 2.1.6: 2014/10/01



8

Fig. 2. Overall structural model assumed in the paper for the small-angle scattering
data analysis of the aerogels upon hydration. The structures present in the dry
aerogel (a) take up water, swell and eventually merge (b), and finally reach macro-
scopic dimensions (c). At smaller molecular scale, the structure passes from that of
a dense polymer to a gel (c1).

In the following we refer to the volume fraction of the skeleton as φs, so that the

porosity (sketched in white in Fig. 2) is 1 − φs. We also refer to the material as a

polymer because the model is more general than the specific alginate that we focus

on. The volume fractions of water and of polymer within the skeleton are referred to

as ϕw and ϕp. Because the model in Fig. 2 assumes that there is no water or polymer

outside the skeleton, their local relative proportion inside the skeleton is identical to

the macroscopic water content. In other words

ϕw =
V

1 + V
(1)

where V is the overall volume fraction of water over polymer in the macroscopic

sample. This can be expressed in terms of mass fractions as V = (mw/mp)× (ρp/ρw),

where mw (mp) is the mass of water (polymer) in the sample and ρw (ρp) is its density.

Calculating the scattering patterns corresponding to the structures in Fig. 2 poses

two main challenges. The first has to do with the hierarchical nature of the structure,

comprising both the large-scale structure of the swelling skeleton and the small-scale
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gel-like inner structure of the skeleton. The second challenge consists in developing a

suitable model for the inner structure of the skeleton. That model has to be able to

realistically interpolate all structures intermediate between a dense polymer and the

swollen hydrated polymer fibers. We hereafter consider these two aspects successively.

3.1. Hierarchical Two-Scale Structure

The scattering resulting from the two-scale structure of the aerogel can be calculated

using a general modelling approach developed in earlier works (Gommes & Roberts,

2008; Gommes et al., 2016). In that spirit, it is convenient to define the indicator

function of the skeleton Is(x), which takes the value 1 if point x is in the skeleton and

0 otherwise. The indicator function of the polymer Ip(x) is defined similarly. With

these definitions, the space-dependent scattering-length density of the wet aerogel is

written as

b(x) = Is(x) [bw + (bp − bw)Ip(x)] (2)

where bw and bp are the scattering-length densities of water and of the polymer.

Equation (2) accounts for the two scales of the structure. The indicator function of

the polymer Ip(x) is defined as if it occupies the entire volume of the sample. The

multiplication by Is(x) limits it to within the skeleton.

Quite generally, the scattering cross-section is equal to the Fourier transform of the

scattering-length correlation function (Feigin & Svergun, 1987; Sivia, 2011; Glatter,

2018), namely

I(q) =

∫ ∞
0

sin(qr)

qr
C̄b(r)4πr

2dr (3)

with

C̄b(r) = 〈b(x)b(x + r)〉 − 〈b(x)〉2 (4)

In this equation the brackets stand for the average value calculated over all values

of x. In the case of isotropic structures, the vectorial dependence on r reduces to a
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dependence on the modulus r = |r|, as implicitly assumed in Eq. (3).

To separate the contributions of the polymer and skeleton structures to the corre-

lation function Cb(r), it is convenient to define their covariances. The covariance of

any phase X is defined as (Serra, 1982; Ohser & Mücklich, 2000)

CX(r) = 〈IX(x)IX(x + r)〉 (5)

which can be interpreted as the probability that two randomly chosen points at

distance r from each other both belong to X. In the limit of small distances r

the covariance is equal to the volume fraction φX . For very large distances, i.e.

larger than a characteristic size of X, the covariance CX(r) converges towards φ2X

(Torquato, 2002; Jeulin, 2021). The centred covariance is defined by subtracting the

limit value, C̄X(r) = CX(r) − φ2X ; it converges to 0 for large r and has the value

C̄X(0) = φX(1− φX).

Based on the expression for the two-scale scattering-length density in Eq. (2), the

general definition of the correlation function in Eq. (4) leads to the following expression

C̄b(r) = [bw + ϕp(bp − bw)]2 C̄s(r) + φs [bp − bw]2 C̄p(r) (6)

which accounts for the hierarchical structure. When deriving this expression, we have

assumed that the characteristic size of the polymer is much smaller than that of the

skeleton, so that the following classical approximation holds (Gommes & Roberts,

2008; Gommes et al., 2016)

C̄s(r)C̄p(r) ' φs(1− φs)C̄p(r) (7)

This is justified by the fact that C̄p(r) varies much more rapidly with r than C̄s(r),

so that the latter can be approximated as a constant in the product.

Evaluating the Fourier transform of Eq. (6) one obtains the following expression for

the scattered intensity

I(q) = [bw + ϕp(bp − bw)]2 Is(q) + φs [bp − bw]2 Ip(q) (8)
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where Is(q) and Ip(q) are the Fourier transforms of the skeleton and polymer centered

covariances, through Eq. (3). Besides its mathematical derivation, Eq. (8) has also a

clear physical interpretation. The first term accounts for the scattering of the large-

scale structure, with the bracketed factor being the average scattering-length density of

the polymer- and water-containing skeleton considered as a homogeneous phase. The

second term accounts for the scattering of the inner structure of the skeleton, where

the bracketed term is the contrast between the water and the polymer. That second

factor appears to be multiplied by φs, as expected because the considered structure

is present only inside the skeleton and therefore extends over that specific fraction

of space. Equation (8) is quite general, as it does not assume any specific form for

the scattering of the skeleton and for the polymer structure inside it. Next section is

devoted to proposing an expression for the polymer scattering, and specific expressions

for the skeleton scattering will be introduced later when analyzing specifically the

alginate aerogel.

3.2. Boolean Model of Wet Polymer

We propose here a model for the inner structure of the skeleton, which can be used

at all relevant water contents, from the dense polymer to the gel state. Our goal is not

to propose a physically accurate model, which would be already quite challenging for

a dilute gel (Shibayama, 2010; Seiffert & Sprakel, 2012; Paraskevopoulou et al., 2020).

Our goal instead is to propose a model that is structurally realistic enough to capture

the main scattering characteristics of the polymer over a broad range of hydration

states.

From a scattering point of view, the main characteristic of the wet structures in Fig.

1 is the presence of a q−2.5 scattering. Such scattering exponent close to 2 is typical of

polymers in solutions, and it can in principle be modelled through a variety of available
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form factors (Debye, 1947; Burchard, 1977; Pedersen, 1997; Hammouda, 2016; Wei &

Hore, 2021). The main difficulty here is to find a reasonable way to extrapolate these

form factors into the concentrated regime, i.e. for densities so high that individual

polymer coils would touch each other and overlap. On one had, applying uncritically

a diluted polymer model at high concentration would strongly overestimate the scat-

tering. This would indeed amount to adding up the scattering length densities of the

different coils when they overlap (as sketched in Fig. 3b). On the other hand, intro-

ducing a structure factor could mathematically keep the coils away from each other

and prevent their overlapping (Pedersen, 1997). This would, however, be un-physical

in the context of a gel, which is a highly cross-linked structure. We explore here a

third approach, based on Boolean models (Matheron, 1967; Serra, 1982; Lantuéjoul,

2002; Jeulin, 2021).

Fig. 3. Two-dimensional sketch of the Boolean model of concentrated polymer solution,
with (a) the individual polymer coils (each coil in a different color), (b) the wrong
scattering density map that would result from adding the contribution of all coils
(as in a dilute solution approximation), and (c) the Boolean model built from the
same coils. The actual shape of the polymer coils is irrelevant here.

The general principle of Boolean models consists in distributing randomly in space a

given motif - referred to as grains in the materials science literature - and letting them
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overlap whenever they happen to touch each other. The key difference with a dilute-

solution approach is that whenever two grains overlap they are not added; they only

count as one. The approach has been classically used to model scattering of porous

materials using spherical grains for either the solid phase or for the pores (Swiss-cheese

model) (Sonntag et al., 1981; Gille, 2011; Gommes, 2018; Sorbier et al., 2019). Here,

we propose to model gels by using a polymer coil as a grain.

The overall process is sketched in Fig. 3, using 2D random walks to illustrate

the polymer coils. Because overlapping is treated on an all-or-nothing basis, overlap-

ping regions effectively account for the cross-linking of the polymer. In our Boolean

approach, two coils that overlap in one point are structurally equivalent to a four-

branch star polymer. And when a great number of coils overlap, this simply results in

a dense homogeneous polymer region with no microstructure.

The polymer volume fraction in the Boolean model (Fig. 3c) is calculated as (Serra,

1982; Gille, 2011; Gommes, 2018)

ϕp = 1− exp[−θvp] (9)

where vp is the volume of a single polymer coil, and θ is the number of coils per unit

volume. The central structural characteristic for small-angle scattering is the centred

covariance C̄p(r), the Fourier transform of which is the intensity Ip(q) that enters

Eq. (8). In the context of a Boolean model, the centred covariance is calculated as

(Serra, 1982; Gille, 2011; Gommes, 2018)

C̄p(r) = (1− ϕp)2 (exp[θKp(r)]− 1) (10)

where Kp(r) is the geometrical covariogram of the grain. The geometrical covariogram

is defined as the intersection volume of two identical copies of the grain, when they are

translated by a distance r with respect to one another. Using the vocabulary of small-

angle scattering, the Fourier transform of Kp(r) is the form factor of the individual
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polymer coils (normalized in such a way that the value for q = 0 is equal to v2p).

In the limit of small polymer concentrations, the Boolean model is identical to

the dilute polymer solution as it should. In particular Eq. (9) reduces to ϕp ' θvp

for vanishingly small values of θ, which is expected if the overlapping of the coils is

negligible. Also the covariance in Eq. (10) reduces to Cp(r) ' θKp(r), so that the

scattered intensity is proportional to the concentration and to the form factor. For

finite concentrations, however, polymer overlapping cannot be neglected. In that case,

the dependence on the concentration θ is non-linear both for the volume fraction ϕp

and for the covariance C̄p(r). These non-linearities are captured exactly by Eqs. (9)

and (10).

A variety of form factors are discussed in the literature to model small-angle scatter-

ing by individual polymer coils (Debye, 1947; Burchard, 1977; Pedersen & Schurten-

berger, 1996; Pedersen, 1997; Hammouda, 2016). These expressions, however, are dif-

ficult to use in the context of a Boolean model because they do not have a simple

real-space equivalent that can be used as a geometrical covariogram Kp(r) in Eq. (10).

We therefore make the following simpler considerations. A power-law scattering of the

type I ∼ q−D in reciprocal space (with D ' 2 in the case of polymers) corresponds in

real-space to a geometrical covariogram following Kp ' rD−3 (Lighthill, 1958; Teix-

eira, 1988). Because such power law necessarily breaks down when r is either larger

than the polymer coil or smaller than its building blocks, we introduce two upper and

lower cutoff lengths a and b, and we assume a covariogram of the type

Kp(r) = vp exp[−r/a] (1 + r/b)D−3 (11)

In the particular case where D = 2 and b� a, this model coincides with the Lorentz

approximation of a polymer form factor, with a radius of gyration equal toR2
g = 3a2. In

the general case of arbitrary D, the radius of gyration can be calculated by identifying
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the Fourier transform of Eq. (11) with Guinier’s law for small q. This leads to the value

R2
g

a2
=
D(D + 1)

2
(12)

where we have assumed a � b. The volume of the polymer vp is also controlled by

the values of the upper and lower scales a and b. The actual relation is obtained by

expressing that the 3D integral of the covariogram Kp(r) is equal to v2p. The result is

vp
b3

= 4πΓ[D]

(
a

b

)D
(13)

where Γ[] is the gamma function. Note that the specific dependence of vp on the overall

size of the polymer a and on its building blocks b confirms the interpretation of D as

a fractal dimension.

Fig. 4. Small-angle scattering cross-section of the Boolean polymer model, calculated
as the Fourier transform of Eq. (10) with covariogram from Eq. (11), for three
polymer volume fractions ϕp (a). Two-dimensional sketches are shown in b1 to b3,
to illustrate the different overlapping of the coils at the considered volume fractions.
The model parameters correspond to radius of gyration Rg = 300 Å, and lower
cutoff size b = 1 Å.

The value of Ip(q) calculated as the Fourier transform of C̄p(r) in Eq. (10) is plotted

in Fig. 4 for the specific values Rg = 300 Å, b = 1 Å, D = 2.5, and three polymer
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fractions ϕp. The scattering intensity Ip(q) exhibits a plateau at low q (smaller than

about 1/Rg), followed by a distinctive q−D scattering for intermediate values of q.

In principle, the model converges to a Porod-like q−4 scattering at values of q larger

than about 1/b. From a physical point of view, this is not realistic because the very

concept of a polymer phase with homogeneous scattering-length density breaks down

at molecular scale b. The existence of a Porod region for asymptotically large q, is a

mathematical consequence of the linearity of Eq. (11) for asymptotically small values of

r. When it comes to practical data analysis, these considerations are inconsequential

because they concern values of q that are not measured in small-angle scattering

experiments. A more important and interesting aspect of the scattering patterns in

Fig. 4 is their dependency on the density ϕp, which is not monotonous. The scattering

intensity is minimum for values of ϕp close to either 0 or 1, and it passes through a

maximum for values close to ϕp ' 0.5, as expected for any two-phase system.

4. SANS Data Analysis

Section 3.1 presented a general scheme to calculate the scattering cross section of a two-

scale system comprising (i) a large-scale mesoporous structure and (ii) a small-scale

substructure of the solid skeleton. Section 3.2 presented a specific model to describe

the skeleton substructure as that of a water-swollen polymer. Here, we combine the

two to analyze the SANS data of the alginate aerogels presented in Fig. 1. In practice

the data are fitted with Eq. (8) in the following form

I(q) = A×


[
ϕw +

bp
bw − bp

]2
Is(q)

φs
+ Ip(q, ϕw)

 (14)

where A is a numerical factor that accounts for the measurements on relative scale

(i.e. the unknown intensity of the incoming beam and volume of sample irradiated).

Compared to Eq. (8), we have also factored into A the contrast (bp − bw)2 as well as

the solid fraction φs.
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Many of the parameters that enter Eq. (14) are known. A central parameter is ϕw,

which controls both the wet-polymer scattering (second term Ip(q, ϕw)) and the large-

scale skeleton scattering through its contrast with the empty pores (bracketed factor

in the first term). Parameter ϕw is known from the macroscopic amount of water in

the sample, via Eq. (1). The scattering-length densities bp and bw are calculated once

and for all from the composition of the samples. Due to the preparation procedures

(see Sec. 2 and Supporting Information) the alginate aerogel considered here has an

overall composition corresponding to molecular formula C12H14CaO12, with only Ca2+

as counter ions. Based on this composition and on the density of the alginate ρp = 2.02

g.cm−3 (Paraskevopoulou et al., 2020), its scattering-length density is calculated to

be bp = 3.172 10−6 Å−2. This has to be compared with the scattering-length density

of heavy water bw = 6.393 10−6 Å−2. Based on these two values, the contrast term in

Eq. (14) is

bp
bw − bp

' 0.98 (15)

The positive value means that the scattering contrast of the skeleton increases with

increasing water fraction ϕw.

Based on the composition of the alginate dimer and on the polymer density (see Sec.

2 and Supporting Information), one also estimates the volume of individual dimers

to be 332 Å3. Assuming then an average of 500 dimers per polymer, provides the

molecular volume vp ' 161 103 Å3. Rheological as well as scattering measurements

show that alginate polymers in the dilute regime have radii of gyration ranging from

200 to 400 Å (Banerjee et al., 2022). An Rg ' 250 Å has been reported for alginate

chains of ca. 500 dimeric units. Based on these values of Rg and vp, parameters a and

b of the Boolean polymer model are calculated through Eqs. (12) and (13). The only

parameters left for fitting in Eq. (14) are those that characterize the structure of the

aerogel skeleton through Is(q).
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A simple approach for modelling the skeleton contribution consists in noting for

water contents larger than about 0.6 g/g the scattering pattern exhibit no plateau

at low q (see Fig. 1). For those patterns, the characteristic size of the skeleton is

larger than the resolution of the SANS, and it is sufficient to consider only Porod’s

asymptotic value of Is(q), namely

Is(q) '
2πas
q4

(16)

where as is the specific area of the skeleton surface (Debye et al., 1957; Ciccariello

et al., 1988), independently of the skeleton morphology. In that case, from Eqs. (14)

and (16), the only fitting parameter is the mean chord length of the skeleton ls defined

through its volume-to-surface ratio

ls =
4φs
as

(17)

The fits of the alginate aerogel SANS data, with ls as only adjustable parameter are

shown in Fig. 5 as solid lines. Significant deviations from Porod scattering appears at

low q for water contents smaller than 0.44 g/g (see Fig. 5b).

IUCr macros version 2.1.6: 2014/10/01



19

Fig. 5. Fits of the alginate SANS data for increasing water contents: (a) dry aerogel, (b)
0.33 g/g, (c) 0.68 g/g, (d) 1.1 g/g, and (e) 1.9 g/g. The solid and dashed lines are for
the Porod and cylinder models, respectively (the two models are indistinguishable
for high water contents). The two contributions to the scattering are shown: wet
polymer (blue), and skeleton (black), as well as their sum (red). The highlighted
power laws contribute to the discussion.

The fitted values of the chord length ls are shown in Fig. 6b. The geometrical

significance of ls is understood by conceptually drawing a random infinite line in the

sample, and measuring the average length of the intercepts with the solid skeleton

(Ohser & Mücklich, 2000; Torquato, 2002; Gommes et al., 2020). The fitted values of

ls are in the micrometer range. It might seem surprising at first that one can determine

such large sizes from a SANS setup where the lowest q corresponds to 2π/q ' 100 nm.

It has to be kept in mind, however, that the size ls is obtained by analyzing the relative

contributions of the skeleton q−4 scattering and of the polymer q−2.5 scattering, as

clearly visible in Figs. 5c to 5e.
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Fig. 6. Values of the parameters estimated from fitting the alginate SANS patterns,
as a function of water content: mean skeleton chord length ls (blue, right axis)
and median radius of the fibres Rm (black, left axis). The water fraction in the
skeleton ϕw is calculated through Eq. (1) and imposed for the fitting. The inset is a
magnified view of Rm, where the dashed line is the expected size that would result
from swelling alone.

As visible in Fig. 5b, the SANS data deviate from the Porod q−4 scattering for water

contents smaller than about 0.44 g/g. This means that for smaller water contents, the

characteristic size of the skeleton is small enough to scatter inside the measured q

range. To analyze those SANS patterns, a specific model is needed for the skeleton.

Based on the observation of a q−1 scattering at low q in the dry aerogel (Fig. 1) and

on its large porosity (around 98 %) we model the skeleton as a dilute suspension of

elongated cylinders.

In the case where the cylinders are much longer than wide, the classical expression

for the form factor (Pedersen, 1997) simplifies as follows

Icyl(q) =
π2R2

q

[
2
J1(qR)

qR

]2
(18)
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which is expressed here per unit volume of the cylinder (see Appendix A). In this

expression J1 is the Bessel function of the first kind of order 1, and R is the radius.

Equation (18) exhibit oscillations that are not present in the data, which can be

reduced by adding polydispersity. Assuming a radius distribution fL(R), the form

factor becomes

Icyl(q) =
1

π〈R2〉
× 4π3

q3

∫ ∞
0

R2fL(R) [J1(qR)]2 dR (19)

where

〈R2〉 =

∫ ∞
0

fL(R)R2dR (20)

is the second moment of the radius distribution. The division by π〈R2〉 in Eq. (19)

is necessary to express the scattering per unit volume of the cylinders. Note that fL

is here a length-weighted distribution. In the following, we use assume a lognormal

distribution

fL(R) =
1

p
√

2πR
exp

[
−1

2

(
ln(R/Rm)

p

)2
]

(21)

where Rm is the median radius and p is a dimensionless polydispersity index. For

further purposes, it is useful to mention the following relations between the moments

of fL(R) and parameters p and Rm,

〈Rn〉 = (Rm)n exp[(np)2/2] (22)

In particular, this relation shows that the polydispersity index is related to the radius

variance through σ2R/〈R〉2 = exp(p2) − 1. The monodispersed case corresponds to

p = 0, and the standard deviation of the radius is equal to the mean radius for the

particular value p ' 0.83.

Because the expressions for the scattering intensity were calculated per unit volume

of cylinders, the skeleton scattering in Eq. (14) is modelled directly as

Is(q)

φs
= Icyl(q) (23)
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which implicitly assumes a dilute system. The best fit with this model on the dry

alginate aerogel is shown in Fig. 5a as the dashed red line. It was obtained for median

radius Rm ' 14 Å and polydispersity p ' 0.5. A slight upward deviation of the data

from the fit at low q hints a structure factor effect that was neglected here, but the

overall quality of the fit is good. To further check the validity of the fit, the specific

surface area of the cylinders was calculated as follows

A =
2〈R〉
ρp〈R2〉

(24)

where ρp is the density of the alginate, and 〈R〉 and 〈R2〉 are calculated through

Eq. (22). The fitted parameters convert to a specific surface area of 470 m2/g, which

compares reasonably with the BET surface area of 544 ± 70 m2/g measured on the

same sample (Forgács et al., 2021).

The same cylinder model was then fitted to the alginate samples with increasing

water contents, while imposing the polydispersity index p = 0.5 and using the median

radius Rm as the only adjustable parameter. The fitted values of Rm are plotted in

Fig. 6b. These fits exhibit a two-stage wetting process. For water contents lower than

about 0.7 g/g, the fibers grow slightly until they reach a radius of 10 nm (inset of

Fig. 6b). For larger water contents, the growth is much more significant and the fiber

radii reach values in the micrometer range. It is only the latter stage that could be

analyzed with the Porod model.

It is interesting to convert the fitted fiber parameters to an average chord length,

so as to compare the two fitting approaches in the high water-content region. In the

case of an isolated object with volume V and area A, Eq. (17) becomes ls = 4V/A

(Dirac, 1943). Calculating the volume-to-area ratio of long cylinders, the average chord

length of the fitted cylinder model is

ls =
2〈R2〉
〈R〉

(25)
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With polydispersity index p = 0.5, one finds from Eq. (22) that the average chord

length of the cylinder is approximately three times the median radius Rm. This is

found to be well satisfied by the data in Fig. 6b, where the blue and black lines are

barely distinguishable at the scale of the figure.

5. Discussion and Conclusion

We have developed a structurally-realistic mathematical model to quantitatively ana-

lyze small-angle scattering patterns during the progressive hydration of alginate aero-

gels, starting as a dry mesoporous solid and ending as a fully hydrated gel made up of

dissolved macromolecules. Any model is a simplification of reality. An overly detailed

description is seldom useful because it is difficult to robustly identify a large number

of parameters. An overly crude model is also useless if it cannot describe reality. To

paraphrase an apocryphal Einstein quote, we endeavored to develop a model that was

as simple as possible, but not simpler (Robinson, 2018). The model we propose cap-

tures the main structural and scattering characteristics of the wet aerogels. It builds

on robust material properties such as the BET surface area of the dry aerogel, the

radius of gyration and molecular volume of the dissolved alginate, etc. It is also sim-

ple enough to enable one to fit the complete SANS dataset with a single adjustable

parameter, with a clear structural meaning as the size of the hydrated skeleton (see

Figs. 5 and 6b).

A key simplification is our description of the macromolecular structure of the algi-

nate at intermediate hydration states. Our approach builds on a Boolean model

(Fig. 3c) to extrapolate the structure factor of dissolved polymers into the high-

concentration region. From a strictly physical perspective, this approach is inaccurate

as it overlooks the complex interactions of the macromolecules when they approach

each other, except when monomers happen to overlap. From a strictly structural point
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of view, however, the model captures the power-law scattering of the gel with exponent

D ' 2.5, as well as the non-linear dependence of the scattered intensity on the poly-

mer concentration (see Fig. 4). Importantly, this approach leads to a simple analytical

expression for the covariance in Eq. (10), which facilitates least-square fitting.

A second central simplification is the way in which the hierarchical two-scale struc-

ture of the wet aerogels is handled. We applied a general procedure developed else-

where, assuming that the characteristic size of each structural level is very different

from the next (Gommes & Roberts, 2008; Gommes et al., 2016). This assumption

certainly holds for highly hydrated aerogels, for which the micrometer-sized swollen

skeleton is much larger than the radius of gyration of the alginate molecules. The valid-

ity of the assumption is more questionable for almost dry aerogels, but one has to keep

in mind that the dry skeleton has no substructure at all. Therefore, the accuracy of

the hierarchical approach deteriorates only when it stops being needed at all.

From the SANS data analysis alone, the wetting of the alginate aerogels comprises

two distinctly different stages. During the first stage - for water contents smaller than

about 0.6 g/g - the skeleton is seen to undergo a tenfold thickening from the dry

radius R
(dry)
m ' 14 Å to about 100 Å (see inset of Fig. 6). The thickening that would

result from swelling alone, as water molecules dissolve into the skeleton and increase

its volume, can be estimated as

Rm ' R(dry)
m

√
1 + V (26)

where we have assumed cylinders, and V is the same as in Eq. (1), namely the macro-

scopic water-to-polymer volume ratio. This specific dependence is plotted as a dashed

line in the inset of Fig. 6. Because Eq. (26) strongly underestimates the observed

thickening of the skeleton, one can safely conclude that the fibrils present in the dry

aerogel do not only swell. They also aggregate into larger, yet still nanometer-sized,

structures.
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Earlier solid-state and liquid-phase NMR results provide additional molecular-scale

insights into the mesoscale scenario derived from SANS alone (Forgács et al., 2021).

In particular, for water contents lower than 0.4 g/g, it was established that water

absorption into the alginate fibrils hydrates the supramolecular assembly of the algi-

nate chains, and induces the rearrangement of the tertiary and quaternary structures of

the macromolecules. Quite interestingly, the compressive strength of the Ca-alginate

aerogel was found to significantly increase at these low hydration levels. This was

accounted for in theoretical studies (Rege et al., 2020; Külcü & Rege, 2021) by the

same aggregation of the primary fibrils as we infer here from SANS. Additionally,

the NMR relaxation time associated with the hydration sphere of the polymer chains

starts increasing sharply above 0.4 g/g water content. This means that above this

critical water content, the fibers start to swell and dissolve.

When further increasing the water content, SANS reveals a dramatic structural

change around 0.6 g/g. When passing from 0.5 g/g to 0.7 g/g, the characteristic size

of the skeleton suddenly increases by more than two orders of magnitude, passing from

ten nanometers to micrometers (Fig. 6). One might be surprised at first that one is able

determine sizes in the micrometer range using a SANS setup with a resolution limited

to 2π/q < 100 nm. It has to be stressed, however, that the size of the skeleton is inferred

from the intensity of its Porod scattering (proportional to q−4 and to the skeleton outer

area), relative to the gel-like scattering of its inner structure (proportional to q−2.5 and

to the skeleton volume). For large water contents, the size of the skeleton is therefore

estimated as a volume-to-surface ratio, which is why it can be expressed as an average

chord length ls.

It is interesting to note that the hundred-fold increase in skeleton size is accom-

panied by a minimal change of its water content. The volume fraction ϕw increases

by less than 10 % when the water content is increased from 0.5 g/g to 0.7 g/g. The
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dramatic increase of ls therefore results from a major rearrangement and merging of

the domains that make up the skeleton. This strongly reduces their total outer sur-

face while their volume remains almost unchanged. One can only speculate at this

stage about why this transition is so sudden. A plausible assumption would involve a

percolation phenomenon whereby a slight increase in the size of the skeleton domains

would put many of them into contact. In that process one should also consider that

capillary forces build up with increasing water content, which puts the skeleton as

a whole under strong compressive stresses. So the nanostructure of a wet aerogel is

inherently unstable and prone to collapse.

The model we developed to analyze small-angle scattering patterns is more general

than the specific alginate aerogels considered here. Interestingly, many of the struc-

tural changes observed in the case of wetting of aerogels are expected to occur in

reverse in the course of drying of gels. This is notably the case for the supercriti-

cal solvent extraction that is central to aerogel production (Takeshita et al., 2019).

The latter process can in principle be investigated through in-situ small-angle scatter-

ing experiments (Hermida-Merino et al., 2014). Should such a study be undertaken, it

will undoubtedly raise novel scattering data analysis challenges. Hopefully, the present

work can be helpful in that context too.
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Appendix A
Length-dependence of the intensity scattered by long cylinders

Generally, the intensity scattered by a single nanoparticle scales with the square

of the particle’s volume. In the case of cylinder with fixed radius R and increasing

length L, a hasty generalization would suggest an intensity proportional to L2. A

closer examination shows that the correct scaling is L, as in Eq. (18).

The Fourier transform (amplitude) of a single cylinder with length L and radius R,

aligned along z, is

A(q) = πR2L
sin(qzL/2)

qzL/2

[
2
J1(q⊥R)

q⊥R

]
(27)

where qz is the direct of reciprocal space parallel to z, and q⊥ is any orthogonal

direction. The scattered intensity is A2(q).

For randomly-oriented cylinders the scattered intensity is obtained by averaging A2

over all directions, namely

I(q) =
(
πR2L

)2 ∫ π/2

0

[
sin(qL/2 cos(θ))

qL/2 cos(θ)

2J1(qR sin(θ))

qR sin(θ)

]2
sin(θ)dθ (28)

where θ is the angle with axis qz. In the limit where the cylinder is extremely long,

the scattering is concentrated in a very thin layer - with thickness or order 1/L - close

to the qz = 0 plane. This simplifies the rotational averaging as (see ref. (Gommes

et al., 2016), Eq. 60)

I(q) ' (πR2L)2
π

qL

[
2
J1(qR)

qR

]2
(29)

When this is expressed per unit volume of the cylinder, one finds Eq. (18). In physical

terms, the specific scaling in Eq. (18) mean that the scattering is coherent over a

section of the cylinder, but incoherent along its length.

To further support the specific scaling in Eq. (18), one can calculate the total

IUCr macros version 2.1.6: 2014/10/01



28

scattered intensity from Eq. (23), namely

∫ ∞
0

Is(q)4πq
2dq = (2π)3φF [(1− ϕw)bF + ϕwbW ]2 (30)

because of the mathematical identity
∫∞
0 J1(x)2/x dx = 1/2. The right-hand side

of Eq. (30) coincides with the classical expression of Porod’s invari-ant (2π)3φF (1 −

φF )[∆b]2 in the diluted limit (φF � 1), as it should when no structure factor is used

(Glatter & Kratky, 1982; Sivia, 2011).
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Synopsis

We propose a mathematical model to analyze the small-angle neutron scattering of increasingly
wet alginate aerogels, as they progressively transform from a mesoporous solid into an aqueous
gel.
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