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Thalamocortical interactions shape
hierarchical neural variability
during stimulus perception

Adrià Tauste Campo,1,8,* Antonio Zainos,2 Yuriria Vázquez,2,7 Raul Adell Segarra,1 Manuel Álvarez,2

Gustavo Deco,3,4 Héctor Dı́az,2 Sergio Parra,2 Ranulfo Romo,5,* and Román Rossi-Pool2,6,*
SUMMARY

The brain is organized hierarchically to process sensory signals. But, how do functional connections within
and across areas contribute to this hierarchical order? We addressed this problem in the thalamocortical
network, while monkeys detected vibrotactile stimulus. During this task, we quantified neural variability
and directed functional connectivity in simultaneously recorded neurons sharing the cutaneous receptive
field within and across VPL and areas 3b and 1. Before stimulus onset, VPL and area 3b exhibited similar
fast dynamics while area 1 showed slower timescales. During the stimulus presence, inter-trial neural vari-
ability increased along the network VPL-3b-1 while VPL established twomain feedforward pathways with
areas 3b and 1 to process the stimulus. This lower variability of VPL and area 3b was found to regulate
feedforward thalamocortical pathways. Instead, intra-cortical interactions were only anticipated by
higher intrinsic timescales in area 1. Overall, our results provide evidence of hierarchical functional roles
along the thalamocortical network.

INTRODUCTION

Perception results from the interaction of neural networks that follow a hierarchical connectivity organization that extends from the receptors

up to the cortex.1–3 The thalamus is known to play a key role in gating the flow of information to the cortex.4 To unveil the intricacies of the

thalamocortical network, several past studies have investigated the feedforward and feedback connections that link the thalamus and cor-

tex.5–7 On this matter, a vast number of experimental studies on different sensory modalities8–10 have provided a detailed model of the

flow of sensory information processing in the thalamocortical network. This evidence has shown that it is composed of first-order thalamic

nuclei that act as sensory relay (feedback-driven) between the brainstem and the cortex and of higher order nuclei that mediate cortico-

cortical communications.4,11,12 In either case, thalamic nuclei have been shown to be drivers of cortical signals in contexts such as sensory

representation13,14 and sensory adaptation.15,16

Over the last decades, the structural picture of the thalamocortical network has been refined thanks to functional connectivity studies on

electrophysiological simultaneous recordings in both anesthetized17 and awake animals.18,19 Moreover, we have recently described the level

of feedforward and feedback single-neuron functional interactions between the ventral posterior lateral (VPL) nucleus of the thalamus and

areas 3b and 1 of the primary somatosensory (S1) cortex during a vibrotactile detection task performed by trained monkeys.20 The results

showed that feedforward prevailed over feedback interactions during stimulus perception and indicated the presence of zero-lag synchro-

nization as a putative hallmark of active thalamocortical transmission. However, how these interactions were integrated into the hierarchical

connectivity organization of the somatosensory network21–24 remained unaddressed. In particular, it is unclear how functional connections in

the thalamocortical network are constrained by the local properties of VPL25,26 and subareas 3b and 1 of S1.27,28 For instance, how are somato-

sensory interactions related to the capacity of neurons in each area to encode information? Are the interactions between VPL and each sub-

area of S1 different enough to support the relay role of area 3b? Or is VPL interacting analogously with neurons from areas 3b and 1? Further,

are the intra- and inter-area interactions affected by the response variability of the neurons29–31? Recently, the study of the brain’s hierarchical
1Computational Biology andComplex Systemsgroup, Department of Physics, Universitat Politècnica deCatalunya, AvingudaDr.Marañón, 44-50, 08028 Barcelona, Catalonia,
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Fargas 25-27, 08005 Barcelona, Catalonia, Spain
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Figure 1. Detection task, psychophysical performance, recording sites, and neuronal responses during the task

(A) Vibrotactile detection task. Trials began when the stimulator probe indented the skin of one fingertip of themonkey’s restrained right hand (probe down, PD);

themonkey reacted by placing its left, free hand on an immovable key (key down, KD). After a variable prestimulus period (1.5–3 s), a vibratory stimulus of variable
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Figure 1. Continued

amplitude (1–34 mm, 20 Hz, 0.5 s duration) was presented on one-half of the trials; no stimulus was presented on the other half of the trials. Following the stimulus

presentation period (whether the stimulus was present or not), themonkey waited for 3 s until the probewas lifted off from the skin (PU, probe up), then the animal

releases the key (KU, key up) and pressed one of two push buttons (PBs) to report whether the stimulus was present (lateral button) or absent (medial button).

Stimulus-present and stimulus-absent trials were randomly interleaved within a run.

(B, Left) Mean psychometric function depicting the probability of the monkey’s reporting yes (presence) as a function of the stimulus amplitude (th = 8 mm,

detection threshold). (B, Right) Behavioral responses depending on the stimulus presence (Hit or Miss) or stimulus absence (CR, correct rejection; FA, false alarm).

(C) Recording sites in the thalamus ventral posterior lateral (VPL) nucleus (green) and in areas 1 (dark blue) and 3b (light blue) of the primary somatosensory

cortex (S1).

(D) Scheme depicting how the neural activity from single neurons in the VPL and S1 (3b or area 1) sharing the same cutaneous receptive field was simultaneously

recorded during the detection task.

(E) Mean firing rate for the simultaneously recorded VPL (n = 96 units), area 3b (n = 84 units), and area 1 (n = 336 units) neurons supra-threshold hits (top) and

correct rejections (CR, bottom). The timescale is aligned to the minimum variable period, 1.5 s before stimulus onset. Gray rectangle (top) represents

stimulation period, whereas gray rectangle (bottom) represents the possible period of stimulation, according to task design.

(F) Probability density of the neuronal response latencies with respect to stimulus onset during hit trials.

ll
OPEN ACCESS

iScience
Article
organization through the estimation of neural timescales (or time constants) has become a topic of intense research.21,32–34 Specifically, the

area’s intrinsic timescale provides a quantification of the period in which the neurons of an area can integrate their input and is often asso-

ciated with the strength of intra-area recurrent excitation.1 In this context, it is therefore natural to ask: how are functional interactions in the

somatosensory network related to the capacity of the neurons to integrate inputs? In other words, are the intra-area interactions related to the

intrinsic timescale of each network?

In the present study, we investigate the above questions by first measuring neural variability across two dimensions (inter-trial and intra-

trial) as a proxy to infer the distribution of Fano factors and timescales of each area and assess their concordance with their hierarchical or-

ganization.1 Upon unraveling directed interactions across VPL and areas 3b and 1 during the stimulus presence, we report that VPL establishes

transient parallel feedforward connections with area 3b and area 1, respectively, that are concurrent to intra-area 1 connectivity. In other

words, area 3b/area 1 can be regarded as a secondary feedforward pathway in the touch processing route. In addition, while outgoing feed-

forward connections are mainly supported by small thalamic and large area 3b Fano factors, intra-area 1 connectivity is supported by cortical

neurons with high timescales. Thus, our refined analysis of thalamocortical functional connectivity20 is shown to be integrated into the somato-

sensory hierarchical organization23 reflecting a gradation along the pathway VPL-area 3b-area 1, by which the individual variability of neurons

from VPL and area 3b is particularly tuned to facilitate feedforward communication, while the variability of neurons from area 1 is aimed to

supporting recurrent cortical connections. These results provide strong evidence that a hierarchical order in the somatosensory network could

be established by employing variabilitymeasures, intrinsic timescales, and directed information (DI) measures across the different areas of the

thalamocortical network.
RESULTS

To study the mutual influence between neural interactions and local firing rate variability, we analyzed the thalamocortical neuronal record-

ings obtained in four trained monkeys during a vibrotactile detection task in which the monkey received a mechanical vibration of variable

amplitude and had to report whether the stimulus was present or absent by pressing a push button (Figure 1A; see18,25,35 for details). Spe-

cifically, during those trials in which monkeys correctly performed the task, denominated as stimulus-present hits, or stimulus-absent correct

rejections (Figure 1B), we analyzed the time-varying activity of neurons sharing receptive fields from the VPL nucleus (n = 96 neurons) and S1

neurons (n= 420; see Figures 1C and 1D). Here, we classified the neuronal activity of S1 into two subareas: area 1 (n= 336) and area 3b (n = 84;

Figures 1C and 1D and Tables 1 and 2). Raster plots of nine neurons recorded from the three areas are shown as exemplary cases in Figure S1.

First, we examined themean firing rate in each population during stimulus-present (>8 mm) hit trials and correct rejections (CR; Figure 1B). This

firing-rate analysis revealed at least three main electrophysiological stages for supra-threshold stimuli (Figure 1E, top), while the responses

during CRs maintained a consistent differentiation between the three areas (Figure 1E, bottom). Specifically, during the first half of the stim-

ulus period (0–0.25s), area 1 showed larger firing rates than the converging values of area 3b and VPL. Note that during the second half of the

stimulus (0.25–0.5s), the firing rate of the three areas decreased to a similar average value. The latency distributions in each area (Figure 1F)

highlighted the shift tendency observed across the somatosensory processing: VPL-3b-1.

To unravel the link between neural variability and thalamocortical interactions during stimulus perception, we explored two sources of

spiking variability: (1) within-trial temporal variability, measured by the autocorrelation decay parameter known as the intrinsic timescale;32

(2) inter-trial variability, measured by the Fano factor, evaluated across trials recorded during a fixed experimental condition. We next char-

acterize the neuronal activity of each area according to both sources of variability.
Intrinsic timescales exhibit a thalamocortical hierarchical organization

To infer the intrinsic timescales of the recordedpopulations in VPL, area 3b, and area 1, we followedMurray et al.32 andmore recent works.33,34

The timescale constant studied for this purpose was the exponential decay rate of the baseline (resting state or foreperiod) autocorrelation.

We focused on the spontaneous spiking activity of each unit during a common fixed period of 1.5 s before stimulation onset. We separately

estimated the intrinsic timescale for single neurons and for each area (STARMethods). In both cases, we calculated and fit the corresponding
iScience 27, 110065, July 19, 2024 3



Table 1. Classification of stimulus-responsive neurons: distribution across brain areas and monkeys

VPL Area 3b Area 1

M1 49 15 57

M2 16 0 0

M3 0 36 37

M4 0 3 43

Total 65 54 137

Related to Figure 1.
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autocorrelation function (either one per neuron or one per area) via an exponential function with t parameter equal to the intrinsic timescale.

First, to obtain a t for each neuron separately, we constructed the autocorrelation function by averaging accumulated autocorrelation values

across time bin pairs of the same temporal distance. Then, to estimate densities, we only considered the neurons that showed sufficient

convergence guarantees in the parameter fitting solution (STAR Methods). When inspecting the timescale distribution in each area (Fig-

ure 2A), the broader distribution of area 1 in contrast to VPL suggested a larger diversity of autocorrelation decay rates in this sensory cortex

than in the thalamus. Furthermore, the intrinsic timescale was significantly smaller in VPL than in area 1 (VPL, median t = 8.46 ms; area 1, me-

dian t= 12.15ms, rank-sum test, p< 0.05). Moreover, neurons in area 3bwere positioned in between (median t= 8.64ms) showing timescales

that were closer to VPL values and that were significantly smaller than in area 1.

On the other hand, to obtain intrinsic timescales at the population level, we constructed a single autocorrelation function per area by aver-

aging pooled values across neurons and time bin pairs. The parameter-fitting results obtained with this second approach (Figures 2B–2D)

were shown to be stable for VPL (t = 9.98 ms, Figure 2B) while they were slightly shifted to greater values for area 3b (t = 10.11 ms, Figure 2C)

and area 1 (t = 14.06 ms, Figure 2D). Taken together, these results exhibited the same hierarchical ordering than the median timescales ob-

tained from single-neuron distributions, reflecting how the timescale becomes longer across the somatosensory network. In particular, the

resulting timescales suggest a larger average level of integration of S1 as compared to the VPL in agreement with previous results obtained

in the rodent visual pathway.34 These findings also pinpoint the existence of specific neural dynamics associated with different regions (area

3b, area 1) within S1.

The Fano factor correlates with the hierarchical somatosensory network

To complement the previous analysis, we also examined the inter-trial variability inherent to each area, estimating the Fano factor of each

neuron across correct trials (Figure 3, STAR Methods). The Fano factor measures the overdispersion of a given multiple-trial sample with

respect to the Poisson distribution under a fixed experimental condition.29–31,36 Importantly, it has been recently discussed that the practical

estimation of the Fano factor can be largely biased by neuronal firing rate fluctuations,31,37 and its applications on spiking datasets exhibiting

super-Poisson variability during stimulus presence are questionable.30 Nevertheless, previous studies have employed this metric to establish

a hierarchy across the visual pathway,38 to differentiate different network states39 or to exhibit a widespreadmechanism to decrease variability

across the cortex.36

Here, we estimated the Fano Factor through the slope of the best linear fit of data formed by each pair of mean and standard deviation

across each stimulus-amplitude value. By this approach, we obtain a single value per neuron and plot its variation during the time course of

stimulus-present trials in each area (Figure 3A). A visual inspection of the dynamic plots in Figure 3A suggested that both the baseline average

value and the stimulus-driven decline increased across the hierarchy. Particularly, while area 1 exhibited amuch higher Fano factor during the

baseline period, it diminishedmuchmore sharply during the stimulus. Again, the Fano factor values during the baseline period and its decline

visually established a hierarchical processing across the somatosensory network.

To further analyze this decline during the stimulus period, we examined the mean-to-variance spike-count relationship (Figure 3B). These

plots suggested the existence of a sublinear dependence between variance and mean firing rate across areas: VPL, area 3b, and area 1.30

Then, we pooled the Fano Factor for neurons from each area to compute their distributions (Figure 3D). Importantly, both the median of

each distribution (FVPL = 0.692; FArea 3b = 0.731; FArea 1 = 0.899) and the median of the Fano factor drop during the first half of the stimulus

period (FVPL = 0.17; FArea 3b = 0.36; FArea 1 = 0.66) showed again a hierarchical ordering across the three areas (FVPL<FArea 3b<FArea 1). Overall,

these results demonstrate that the stimulus-driven inter-trial variability also reflects a hierarchical ordering, showing that area 3b neurons lay in

between the distributions associated with VPL and area 1, respectively.

Importantly, in both variability metrics, time constant decay and Fano factor, there is a slight difference between VPL and 3b responses. By

contrast, there is a notable difference between VPL and area 1.With the aim to examinewhether differences are present at the firing rate level,

we performed a classification procedure. By using a nonlinear dimensionality reduction technique based on the topological similarities be-

tween the firing rate profile (STAR Methods,40,41) between areas we found no groups between VPL and 3b (data not shown) but larger differ-

ences between VPL and area 1 (Figure S2A). The dimensionality reduced data fed a non-linear support vectormachine to find the best frontier

between the activity of both areas (dashed line in Figure S2A). The overall performance of the classifier was 66%G 25% with cross-validation

using 20% of data in the testing epoch. Complementarily, the population mean firing rate for amplitudes 0, 6, and 24 mm is shown in Fig-

ure S2B. The figure shows a notable decay in the first milliseconds of the stimulus (related to adaptation to the stimulus). Thereafter, the
4 iScience 27, 110065, July 19, 2024



Table 2. Classification of stimulus-responsive simultaneously recorded neuron pairs: distribution across brain areas and monkeys

Area 1–area 1 Area 3b–area 3b VPL–VPL Area 3b–area 1 VPL–area 1 VPL–area 3b

M1 28 5 5 6 64 13

M2 0 0 6 0 0 0

M3 35 35 0 25 0 0

M4 59 1 0 4 0 0

Total 122 41 11 35 64 13

Related to Figure 1.
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activity in the VPL remains almost constant, while in area 1, it decreases slowly. This procedure was employed recently to exhibit hierarchy

differences between areas 3b and 1 in a bimodal task.42 Importantly, to the best of our knowledge, this is the first evidence of the similarities

in the activity of VPL and area 3b and, at the same time, showing a clear hierarchy between area 3b/VPL and area 1.

Additionally, we examined the relation between the intrinsic timescale and the Fano factor across neurons during stimulus-present trials

(Figure S3) for VPL and areas 3b and 1. Note that both variability metrics (t and Fano) exhibit an inherent correlation during the baseline

period. The correlation traces show a hierarchical decay across areas during the first half of the stimulus period (1.5-2s, VPL, |Dr| = 0.03;

area 3b, |Dr| = 0.15; area 1, |Dr| = 0.43). Hence, correlation between variability and intrinsic times diminish during stimulation. Further,

area 1 displays the stronger decorrelation during stimulation, providing evidence that both sources of variability become uncoupled as

the sensory information is projected from the thalamus to S1.
Parallel feedforward pathways between VPL-area 3b and VPL-area 1 emerge during stimulus arrival

To estimate the directed information interactions across the studied areas during correctly detected trials (0–4 s), we employed a method-

ology developed in previous works.20,43 Briefly, we used a non-parametric method that measures the directed coupling between the simul-

taneously recorded spike trains of pairs of neurons in single trials and within slicing time windows of 0.25 s. The method is illustrated in Fig-

ure 4A. We first estimated delayed versions of the directed information-theoretic measure in both directions for every pair of neurons at the

short time delays (0,2,4, ., 20 ms). To infer the significance of each estimation, we defined a maximizing-delay statistic and built the corre-

sponding null distribution (Figure 4A, middle). For each directional spike-train pair, the method assessed the significance of the statistic

together with an unbiased estimation of the statistic value and the maximizing delay (Figure 4A, right). Spike-train pairs associated with sig-

nificant estimators (a = 0.05) are referred to as Directional Information (DI) trials and will be represented for different experimental conditions

as a percentage over the corresponding pairs and trials.

When studying DI for pairs of spike trains belonging to different areas along the somatosensory network VPL-3b-1, we assume that feed-

forward interactions are composed of VPL/area 3b, VPL/area 1, and area 3b/area 1. Analogously, we assume that feedback interactions

are composed of area 1/area 3b, area 1/VPL, and area 3b/VPL.Moreover, we also considered bidirectional interactions.20 These types of

interactions are mounted by bidirectionally coupled spike trains, that is, spike trains that are statistically coupled in both possible directions

and usually occur at delay of 0 ms.20 For the sake of clarity, Figure 4B shows a schematic representation for the three types of interactions.

The estimation of interactions across inter-area pairs in VPL-3b-1 (Figure 4C) revealed that feedforward DI (purple curves) prevailed over

feedback DI (red curves) during the stimulus period for both VPL-area 3b and VPL-area 1 pairs. In general, DI percentage after the stimulus

period did not differ from pre-stimulus values, suggesting a stimulus-driven DI modulation in these areas. In both cases, the percentage of DI

after stimulus onset (1.5–1.75 s) significantly increased with respect to pre-stimulus values (VPL/area 3b, P < 0:01; VPL/area 1, P < 0:01).

Thus, feedforwardDI is comparable between VPL-area 3b and VPL-area 1. So, even if a hierarchical ordering could be established across these

areas, the thalamic influence appears to be akin. For pairs area 3b-area 1, feedforward DIs were also significant during the stimulus, however,

were lower in magnitude in comparison to VPL feedforward interactions (Figure 4C, right). In sum, these results suggest a parallel processing

occurring at area 1 and area 3b being partially orchestrated by thalamus (VPL).

In addition, the stimulus-driven nature of the described results was supported by the replication of Figure 4C during correct rejected trials

(without stimulation, Figure S4). Indeed, Figure S4 shows that there were no significant DI variations with respect to the baseline period during

neither the possible stimulation window44 nor any posterior task interval.

To further corroborate our results, we reproduced Figure 4 using cross-correlation (CC) but following the same statistical analysis (surro-

gate testing, see STARMethods). Employing the lag, wewere able to differentiate feedback, feedforward, and bidirectional CCs (Figure S5A).

Notably, Figures S5B and S5D demonstrate that the interaction trends are preserved using CC. Nevertheless, CC falls short to capture the

same percentages of interactions across areas as the DI during the stimulus period, which might reduce the statistical power in relating con-

nectivity outcomes with variability measures.

Given that feedforward DI from VPL is analogous between area 3b and 1, it suggests that area 3b is not an indispensable relay in broad-

casting the sensory information that arrived from VPL toward area 1. To further test this conjecture, we analyzed the feedforward DI delays

associated to each inter-area (Figure S6). Importantly, the histograms displayed in Figure S6C showed that the feedforward median delay

between VPL and area 1 ( bD = 8 ms) was incompatible with the addition of feedforward VPL/area 3b ( bD = 6 ms) and area 3b/area 1
iScience 27, 110065, July 19, 2024 5
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Figure 2. Areas’ intrinsic timescales are hierarchically ordered across the somatosensory network

Autocorrelation functions were computed on the spiking activity recorded during the baseline period (1.5 s) before stimulus onset. An exponential decay function

was fit to the resulting autocorrelation function. Confidence intervals for the decay rate parameter intrinsic timescale (t) were estimated through non-parametric

bootstrap.

(A) Distribution of neuronal t in each area (green, VPL, n = 21 units, median t = 8.46 ms; light blue, area 3b, n = 31 units, median t = 8.64 ms; dark blue, area 1, n =

87 units, median t = 12.5 ms.).

(B–D) Population autocorrelation and fitted exponential decay function by each area. Colored filled dots represent the average autocorrelation values for each

time bin difference (across pairs and neurons). Solid lines represent the fitted exponential decay function. (B) VPL (green, t = 9.98 G 2 ms).

(C) Area 3b (light blue, t = 10.11 G 2 ms).

(D) Area 1 (dark blue, t = 14.06 G 3 ms).
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( bD = 12ms). This result does not support the relay role hypothesis for area 3b. Further, it agrees with Figure 4C (right) that shows that feedfor-

ward interaction between areas 3b and 1 was much less modulated than those originates from VPL. Moreover, only bidirectional area

3b4area 1 DI appeared with akin modulation. These results suggest that simultaneous inputs might be delivered to both areas that synchro-

nize their activity. This means that information appears to be streamed in parallel pathways from VPL to areas 3b and 1.

Finally, we analyzed the dynamics of bidirectional interactions over the time course of the task (Figure 4C, orange). This coupling was

shown previously to be a relevant feature for effective vibrotactile stimulus detection.20 Note that all areas interactions demonstrated a sig-

nificant bidirectional DI modulation during the stimulus period. Our results demonstrate that a common synchronization among the three

areas emerged during stimulation. This coordination across areas may play a mechanistic role in the transmission and stability of sensory in-

formation from VPL to S1.20

Stimulus-driven intra-area interactions in area 1

Afterward, we focus on the interaction within each area (VPL, 3b, and 1). In this case, DI estimations could be of two types: (1) unidirectional

interactions, in which spike-trains from the same area were coupled in one out of the two possible directions; (2) bidirectional interactions

synchronization, when spike trains were coupled in both directions. Figure 4D shows a schematic representation for both types of interactions.

Figure 4E shows the percentage of DI within each area across supra-threshold trials (Figure 4E). We found that the arrival of stimulus elicited

only a significant unidirectional and bidirectional intra-area DI in area 1 (P < 0:01). Then, the intra-area interactions in VPL and area 3bwere not

significantly modulated during stimulation. We replicated these results for stimulus-absent trials (Figure S4B) to manifest the stimulus-driven

effect observed in Figure 4E.

In conclusion, the abovementioned results suggest different roles for the inter- and intra-area interactions across these areas. Our data

show that upon stimulus arrival, VPL establishes comparable stimulus-driven feedforward DI to both somatosensory areas, leading to a rapid

synchronization across the three areas (VPL4area 3b4area 1) to strengthen these interactions. Further, area 1 concurrently exhibits a
6 iScience 27, 110065, July 19, 2024
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(A) Time-varying average Fano factor during hit trials for each area (VPL, n = 55 units; area 3b, n = 43 units; area 1, n = 123 units). Values for each neuron are

computed and averaged over all amplitudes with enough hit trials (%5). Error bars denote the SEM with respect to the mean over neurons in each area.

Shaded area highlights the stimulus period.

(B) Relationship between the average and the variance of the number of spikes during stimulus period intervals. Each dot corresponds to a different stimulus

amplitude for each neuron. The red dashed line plots the identity straight line (mean = variance) that should follow a Poisson distribution.

(C) Histograms and estimated probability density of Fano factor per neurons during the first half of the stimulus period. The median value of each distribution are

FVPL = 0.692, FArea 3b = 0.731 and FArea_1 = 0.899.
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significant increase of local interactions (Figure 4E right) that do not arise in either VPL (Figure 4E left) or area 3b (Figure 4E middle). This in-

crease (Figure 4E right) is also concurrent to a deep decay of area’s 1 Fano factor (Figure 3A right). Therefore, area 1 is equipped with longer

timescale, modulated stimulus-driven variability and displays stronger intra-area stimulus-driven interactions, essential features to integrate,

transform, and maintain sensory information.
Relationship between Fano factor and thalamocortical interactions

In this section, we quantify the interplay between local variability measures and thalamocortical interactions. First, we computed the associ-

ation between the Fano factor (Figure 3A) and the inter-area feedforward DI during the stimulus period. To illustrate the associations between

Fano factor and feedforward DI, in Figures 5A and 5B we divided neurons from each area into two groups (low [light] and high [dark] Fano

factor neurons) according to the area’s median Fano factor during the first half od the stimulation. Figure 5A shows that, for VPL and area 1

especially, this division of neurons separated low and high Fano factor neurons throughout the entire task, which demonstrated that variability

is a representative feature of each neuron. Afterwards, in Figure 5B- and 5C we computed the percentage of outgoing feedforward DI from

VPL to area 1 (Figure 5B ), and from area 3b to area 1 (Figure 5C) while in Figure 5D we computed the percentage of incoming feedforward DI

to area 1 from VPL, for low and high Fano factor neurons. Indeed, we further illustrate that both the low variability group in VPL (Figure 5B) and

the high variability group in area 3b (Figure 5C) yielded larger feedforward DI during the stimulus period (P < 0:01). In contrast, no directional

information differences across groups were observed in area 1 (Figures 5D and 5G). Then, the incoming feedforward DI to area 1 was totally

uncoupled from the inter-trial variability throughout the entire task. Taken together, these findings report that variability may play a relevant

role for establishing feedforward DI in VPL and area 3b, but this effect is diluted in area 1. In particular, the roles of VPL and area 3b variability

were found to be the opposite when establishing feedforward connections with area 1. While feedforward DI to area 1 was sustained by low

Fano factor neurons in VPL, that is, neurons with more capacity to encode stimulus information, it was driven in area 3b by neurons with the
iScience 27, 110065, July 19, 2024 7
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Figure 4. Inter- and intra-area directional interactions in the thalamocortical network

(A) Sequential scheme representing themethod to infer DI at single-trial level. Left: information-theoretic measure is estimated between single-trial spike trains of

the simultaneously recorded neurons in VPL and area 1 for delays (0, 2, 4,/ , 20ms). Middle: significance is locally determined via non-parametric testing (a=0.05)

of a maximizing-delay statistic. Right: every significant trial (P<a) is denoted as Directional Information (DI) trial and is associated with an unbiased value and a

delay.

(B) Scheme showing feedforward, feedback, and bidirectional interactions across VPL, area 3b, and area 1. The arrows connecting VPL and area 1 are slightly

darker colors to indicate the relationships in (C). Darker colors represent direct interactions without passing through area 3b as an intermediary.

(C) Percentage of DI trials for feedforward (purple), feedback (red), and bidirectional (orange) interactions is shown along the task during supra-threshold hits.

Left: VPL-area 3b neuron pairs (n = 346 trials). Middle: VPL-area 1 pairs (n = 1,665 trials). Right: area 3b-area 1 pairs (n = 811 trials). Error bars denote the SEM.

Asterisks denote significant differences (p < 0.01) between a pre-stimulus baseline (1 s) and stimulus periods with sufficiently high effect size (HR 0.1). H (Cohen’s

H) measures the effect size of each DI type: VPL/area 3b, H = 0.26; VPL4area 3b, H = 0.17; VPL/area 1,H = 0.22; VPL4area 1, H = 0.12; area 3b/area 1, H =

0.1; area 3b4area 1, H = 0.11 (0–0.25 s of stimulus period). Shaded area highlights the stimulus period (500 ms).

(D) Scheme showing unidirectional and bidirectional interactions within VPL (left), area 3b (middle), and area 1 (right).

(E) Percentage of DI trials for unidirectional (lighter color) and bidirectional interactions (darker color) are shown throughout the task during supra-threshold hit

trials. Error bars denote the SEM. Asterisks denote significant differences (p < 0.01) between a pre-stimulus baseline (1 s) and stimulus periods with sufficiently

high effect size (H R 0.07). Left: VPL-VPL pairs (n = 1,014 trials). Middle: area 3b-area 3b pairs (n = 1,450 trials). Right: area 1-area 1 pairs (n = 4,866 trials).

H (Cohen’s H) for each significant DI type during first half of stimulation: area 1/area 1, H = 0.075; area 14area 1, H = 0.15.
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highest inter-trial variability (and hence, less neural coding capacity), thus providing further evidence that the area 3b/area 1 pathwaymight

be less relevant for information processing.

To verify that the differences in DI observed across the two Fano groups could not be explained by firing rate changes, we also split the

neural responses based on their mean firing rate (Figures 5E and 5F). We found that this division of neurons did not generate significant dif-

ferences throughout the stimulus period. The abovementioned results suggested a relation between the firing rate variability (but not the

pure firing rate) of VPL and area 3b neurons and their feedforward associations with area 1. More precisely, it meant that the less variable

the neurons of VPL were across trials, the more prone they were to establish significant feedforward interactions. Therefore, more reliable

neurons in VPL (low Fano factor) tend to create more feedforward interactions with the somatosensory cortex during the stimulus.
8 iScience 27, 110065, July 19, 2024
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(A) Average Fano factor during the task in VPL (left), area 3b (middle), and area 1 (right) as a function of two groups of neurons (low [light-colored] and high [dark]

Fano factor neurons). These groups are split by the population median during the first half of the stimulus.

(B andC) Percentage of feedforward interactions from VPL to area 1 (B) and from area 3b to area 1 (C) during the task (0–4 s) for two groups split by VPL (B) and the

area 3b (C) Fano factor median during the stimulus, respectively.

(D) Percentage of feedforward interactions from VPL to area 1 during the task (0–4 s) for two groups split by the area 1 Fano factor median during the first half of

the stimulus.

(E and F) Percentage of feedforward interactions from VPL to area 1 (E) and from area 3b to area 1 (F) during the task (0–4 s) for two groups split by VPL (E) and the

area 3b (F) firing rate median during the first half of the stimulus, respectively.

(G) Percentage of feedforward interactions from area 3b to area 1 during the task (0–4s) for two groups split by the area 1 Fano factor median during the first half of

the stimulus. Error bars denote the SEM. Shaded areas highlight the stimulus period (1.5–2 s).

Asterisks denote significant differences (*, p < 0.05) in percentage of outgoing/incoming feedfoward interactions between both groups of neurons.
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Relationship between intrinsic timescales and inter- and intra-area interactions

Subsequently, we study the relationship between thalamocortical DI and each area’s intrinsic timescale (Figure 2). Unlike the Fano factor, the

timescale was estimated once, during the pre-stimulus period. Analogous to Figure 5, we estimated the association across neurons’ time-

scales and their feedforward DI. We divided neurons from each area into two groups (low [light] and high [dark] t neurons) according to

each neuron’s timescale with respect to the area’s median value. For each group, we computed the percentages of intra-area DI for VPL (Fig-

ure 6A, left), area 3b (Figure 6B, left), and area 1 (Figure 6C, top left). Concordantly, looking at the individual neurons, we observed a significant

correlation between timescales and intra-area DI in area 1 (Figure 6C, bottom left, p < 0.0001). On the other hand, the influence of timescale

on intra-areaDI was not significant in VPL (Figure 6A, left) andmuchmoremodest in area 3b (Figure 6B, left). These findings supportmodeling

works that establish a differentiated relationship between intrinsic timescales and intra-area recurrent interactions along the somatosensory

pathway VPL /area 3b /area 1.1

Finally, we extended this analysis to the inter-area results.We split the neurons from each area (Figure 6A VPL; Figure 6B area 3b; Figure 6C

area 1) according to their timescale, and for each group we calculated the feedforwardDI from VPL/area 1 (Figure 6A, right), from area 3b to

area 1 (Figure 6B, right), from VPL to area 1 (Figure 6C, top right), and from area 3b to area 1 (Figure 6C, bottom right). We did not find sig-

nificant differences between feedforward DI from each group. Interestingly, in contrast to intra-area DI, the timescales from neurons in area 1

did not play a significant role regarding the incoming feedforward DI (Figure 6C, right).
DISCUSSION

In brief, we show compelling evidence that a hierarchical order in the somatosensory network could be established by employing variability

measures, intrinsic timescales, and DI measures across the different areas of the thalamocortical network. Although these measures quantify
iScience 27, 110065, July 19, 2024 9
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Figure 6. Cortical intra-area interactions area associated with intrinsic timescales

Percentage of intra-area incoming unidirectional interactions (left) and feedforward interactions (right) in each area during the task for two groups of neurons (low

[light-colored] and high [dark] intrinsic timescale neurons). Error bars denote the SEM, and shaded areas highlight the stimulus period (0–0.5 s).

(A) Effect of VPL intrinsic timescales. Left: percentage of intra-VPL unidirectional DI. Right: percentage of feedforward interactions from VPL to area 1.

(B) Effect of area 3b intrinsic timescales. Left: percentage of intra-area 3b unidirectional incoming interactions. Right: percentage of feedforward interactions from

area 3b to area 1.

(C) Effect of area 1 intrinsic timescales. Left top: percentage of intra-area 1 unidirectional incoming information. Left bottom: scatterplot highlighting the

correlation (r = 0.43, n = 79 pairs, p < 10�4) between the intrinsic timescale and the percentage of incoming intra-area interactions across area 1 neurons

during the first half of the stimulus period. Right top: percentage of feedforward interactions from VPL to area 1. Right bottom: percentage of feedforward

interactions from area 3b to area 1. Asterisks denote significant differences (**, p < 0.01; *, p < 0.05) in percentage of directional interactions (incoming intra-

area or feedforward) between both groups of neurons.
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various aspects of the network dynamics, a hierarchical picture1 could be established through assessing the associations between them.

Therefore, this work establishes a relationship between these metrics, contributing thus to a better understanding of the role of neural vari-

ability in this network.

While time constants may play a relevant functional role to determine the period over which areas integrate their inputs,1,21,32 inter-area DI

represents the degree of recurrent interplay. Here, we provide evidence that relates the timescales with recurrent interactions. As it is known,

brain circuits require a diversification of recurrent connectivity and timescales during perceptual processes.45 Under this requirement, long

time constants and strong recurrent interaction may promote the sensory transformation that depends on signal integration or its mainte-

nance. However, long time constants, strong variability, and inter-area information flow could be an impediment when generating a precise

representation of the stimulus. Then, networks with more modest recurrent interaction are still necessary. This might yield a connection be-

tween functional and structural heterogeneities.

Functional insights on the thalamocortical circuit

Based on previous anatomical evidence, VPL is viewed as a first-order relay nucleus,11 where somatosensory information is conveyed to areas

3b and 1. Our results provide further evidence to support this idea by showing that the intra-area information flowwithin VPL is notmodulated.

Then, in contrast to areas 3b and 1, recurrent processing (intra-area interactions) is not modulated during the sensory input within VPL. In

agreement with this result, autocorrelation decay is much smaller in VPL than S1, indicating a modest reverberation. Moreover, VPL shows

smaller firing rate variability than both subareas of S1. Further, VPL neurons with smaller Fano factor tend to communicate more information

to cortical neurons, whichmeans that the VPL tendency to display a small variability is relatedwith itsmain goal to transmit reliable information

to the cortical somatosensory network.

Historically, VPL and S1 were considered as sensory areas, implicated in pure phase-locking responses.3,46,47 Additionally, areas 3b and

1 were both considered as part of S1, with analogous responses and few or nonclear differences between them.48,49 Further, recent

anatomical evidence has suggested that both areas show akin amounts of synaptic projected from VPL.50 Here, we confirmed that during

the perceptual detection of the vibrotactile stimulus, the amount of incoming feedforward interactions during the stimulus period is com-

parable in area 3b and area 1. Additionally, contrary to the hypothesis that propose area 3b as an information relay to area 1, feedforward

interactions during stimulation were poorly modulated and mainly sustained by neurons in area 3b with large firing rate variability (hence,

with low encoding capacity). Then, even if discrepancies were found between these areas, they are not established by differences in VPL

inputs. One hypothesis is that they emerge because of structural differences in these networks.1 In relation to this conjecture, we identified

a functional difference between these areas. Whereas neurons from area 3b exhibit similar variability properties to VPL such as small Fano

factor decays during stimulus presentation and intrinsic timescales, area 1 yields much higher variability and time constant. This result

might imply that one area (area 3b) is more equipped to represent VPL inputs, while the other (area 1) to process and integrate somato-

sensory information that has already reached the cortex. Importantly, even when area 1 exhibited a higher functional hierarchy than area

3b, advanced cognitive process such as decision-making or cross-modal interactions emerge in later stages of the pipeline. In this direc-

tion, a recent study in a bimodal detection task suggests that both subareas are unimodal.42 Additionally, previous work has suggested

that neurons from both subareas did not encode decision or choice.48 Then, even when there is a neural code transformation between 3b

and area 1, these results indicate that higher abstract representations emerge at forward stages of sensory information processing.

Remarkably, our results show that transformation from VPL to S1 and similarly that from 3b to area 1 reported by previous studies is a

continuous one;42 in consequence, there are no clusters of activity.

Connecting neural variability and inter- and intra-area connectivity

Although recording in isolated neurons exhibit stochastic variability, they appearmuchmore stable than recording frombrain areas.51 Then, a

portion of the variability occurs from variations in the synaptic currents associated to each network.29,30 Previous studies have suggested that

such degree of variability at a single-neuron level increases with the stages of sensory processing, being lowest in the periphery and highest in

cortical structures.30,34,38 Importantly, VPL, area 3b, and area 1 displayed hierarchical difference between their variability during resting state

and stimulation period. Notably, area 1 shows the highest variability during the baseline period and the strongest decrease during the stim-

ulation period. Additionally, during this period, the area 1 single-cell timescales decorrelate with their inter-trial variability and increase the

relation with the intra-area interactions. Moreover, the inter-area feedforward input from VPL does not correlate with the area 1 variability.

These findings exhibit dynamics differences between these areas. While variability in VPL and area 3b are affected by feedforward interac-

tions, inputs to area 1 are diluted by network processing.

Estimating statistical interactions via percentage of directional information

It is important to emphasize that our analytical approach employs Bayesian estimation and nonparametric significance tests to compute

the percentage of significant DI to estimate the interaction between and across areas.52 Previous studies have shown that DI has a weak

dependence on the firing rate of neurons. Indeed, it estimates the interaction across neurons in a quasi-orthogonal dimension to the neu-

ral activity. Therefore, unlike other multiple-trial methods,53 DI quantifies, in a single trial and for any given time window, how much infor-

mation can be obtained from the recent delayed past of a given neuron about the present spike train of another, simultaneously recorded

neuron. Here, we additionally provided a comparison of the DI method with surrogate-corrected cross-correlation54,55 applied to the same

dataset, which highlighted the larger percentage of interactions that the DI method detected when the estimation signal-to-noise ratio was
iScience 27, 110065, July 19, 2024 11
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sufficiently high (stimulus period). Finally, we remark that our results rely on a correlation analysis between functional interactions estimated

at a single-trial level (and averaged across trials) and variability measures estimated at a multiple-trial level, thus adding additional robust-

ness to potential sample biases.
Concluding remarks

To conclude, we would like to point out that the synergy between feedforward and feedback interactions and inherent dynamical features like

the ones computed here shape the function of each brain network. Diversification of structural and dynamics features among cortical and

subcortical networks may be central to discerning brain function and computations during cognitive processes.
Limitations of the study

Some of the main limitations of our study are related to the experimentally challenging protocol to have one neuron from a thalamic nucleus

to be simultaneously recorded with other neurons from cortical areas. This lowered the number of neurons that could be simultaneously re-

corded from the three areas (VPL, and area 3b, and area 1) and prompted us to control their inherent neuronal variability via the definition of

appropriate selection criteria prior to perform each initial independent analysis (timescale, Fano factor, and DI). Particularly, to analyze inter-

area comparisons that included VPL, we had to focus on analyzing interactions across pairs of neurons. Because of this circumstance, we chose

a pairwisemeasure that does not consider the activity of more than two neurons simultaneously.56,57 Second, our experimental protocol relies

on recordings of neurons in VPL and areas 1 and 3b of S1, and hence, the effects of subcortical areas as ventroposterior inferior thalamus, basal

ganglia, or secondary somatosensory cortex are out of the scope of this study. In addition, our recording protocol does not consider the

cortical layers of the recorded neurons, which is needed for a deep characterization and understanding of the cortico-cortical and cortico-

thalamic interactions. Furthermore, activity inactivation techniques would be desirable to leverage our results and hypothesis; however,

changes in the network due to the inactivation of the whole part would result in changes in no obvious ways at the interaction levels and would

even obscure some interpretations. Additionally, in this article, we do not consider other levels of interaction, such as interactions between

fields and spikes or field-field interactions.58 Thesemethodological procedures will be addressed in our future research. Further, we analyzed

the comparison of the results of our measure with cross-correlation. However, it remains to be examined how the applied methodology com-

pares with other linear methods relying on kernel couplings.59,60 Finally, we did not propose here amodel explaining the reported differential

integration of VPL and cortical inputs by area 1. Yet, we believe that deep convolutional neural networks that hierarchically transform infor-

mation across areas61,62 could serve for this purpose in future follow-up works.

One important question for future research is how oscillation signals like the local field potentials (LFP) are affected by variability, time-

scales, and local and inter-area interactions. Is it possible to observe these differences in hierarchy looking at the inter and intra-area oscil-

latory coherence? Furthermore, future experiments involvingmulti electrodes recording are essential to clarify the role of the different cortical

layers.63 Are there any differences in variability and time constant across each cortical column? How do the intra-, feedforward, and feedback

information flow change across the different cortical layers? Is it possible to establish a hierarchy of processing across these layers?
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Materials availability

This study did not generate new unique materials.

Data and code availability

� Data: Data files are publicly available at Zenodo (https://zenodo.org/record/11107219).
� Code: Code is publicly available at github.com/AdTau/DI-Inference, github.com/mvilavidal/DI-Inference-for-Python and github.com/

RaulAdSe/Thalamocortical-interactions-shape-hierarchical-neural-variability-during-stimulus-perception/tree/main.
� Additional information: Any additional information required to reanalyze the data reported in this paper is available from the lead con-

tact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Our analysis relied on previously recorded data frommonkeys in previous studies. No new samples were collected for the present study.Mon-

keys were handled according to the institutional standards of the National Institutes of Health and Society for Neuroscience. All protocols

were approved by the Institutional Animal Care and Use Committee of the Instituto de Fisiologı́a Celular of the National Autonomous Uni-

versity of Mexico (UNAM). Study approval number, AZR165-21.

METHOD DETAILS

Detection task

The detection task and neural recordings follow along the same lines as.20,25,64 Vibrotactile stimuli were delivered to the skin of the distal

segment of one digit of the restrained hand, via a computer-controlled stimulator (BME Systems, MD; 2-mm round tip). The initial probe

indentation was 500 mm. Vibrotactile stimuli consisted of trains of 20 Hz mechanical sinusoids (20 ms duration), with amplitudes of 1-

34 mm (Figure 1A). These were interleaved with an equal number of trials where no mechanical vibrations were delivered to the skin (ampli-

tude = 0). A trial beganwhen the probe tip (PD) indented the skin of one fingertip of the restrained, right hand, uponwhich themonkey placed

its free, left hand on an immovable key (KD). After a variable pre-stimulus period (1.5-3 s), a vibrotactile stimulus could be presented or not (0.5

s). Note that the possible period of stimulation lasts 1.5s longer than the stimulus, as can be seen in the differences in shadow areas in Fig-

ure 1E (top) and Figure 1E (bottom). After a fixed delay period (3 s), the stimulator probe was lifted off from the skin (PU), indicating to the

monkey that it could initiate the response movement (KU) to one of two buttons (PB). The button pressed indicated whether the monkey

felt the stimulus (henceforth referred as ‘yes’ and ‘no’ responses, respectively). They were rewardedwith a drop of liquid for correct responses.
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Psychometric detection curves were obtained by plotting the proportion of ‘yes’ responses as a function of the stimulus amplitude (left panel

of Figure 1B). Depending on whether the stimulus was present or absent and on the behavioral response, the trial outcome was classified as

hit, miss, false alarm or correct rejection (right pane of Figure 1B).
Recordings

Neuronal recordings were obtained with an array of fourteen independent, movable microelectrodes [2–3MU;4,25,64] inserted into S1 (seven),

medial to the hand representation in such a way that allowed us to lower the microelectrodes into the VPL (seven). This maximized the prob-

ability of mapping the hand area in the VPL. At the end of each penetration, microlesions weremade by passing 5-10 mA through the tip of the

microelectrodes for 5s, to aid reconstruction of the penetration. Neurons were classified as belonging to areas 3b and 1 according to previous

studies of the cytoarchitecture of the monkey postcentral gyrus. One array was inserted into S1 normally to the cortical surface (cyan spot on

the figurine of the left panel of Figure 1C), in the cutaneous representation of the fingers (areas 1 or 3b; middle panel of Figure 1C). The other

array was located lateral and posterior to the hand’s representation (green spot on the left panel of Figure 1C) of the Ventral Posterior Lateral

thalamus (VPL).We located themicroelectrodes in the cutaneous representation of the fingers in the VPL. Recordingswere performed contra-

lateral to the stimulated hand (right) and ipsilateral to the responding hand (left). Each recording began with a mapping session to find the

cutaneous representation of the fingers in VPL. Subsequently, wemapped neurons in S1 sharing receptive fields with the neurons of VPL (Fig-

ure 1D). Additionally, neurons from S1 were classified into areas 1 (n=336) and 3b (n=84). The neuronal signal of each microelectrode was

sampled at 30 kHz and spikes were sorted online. A more extensive description of the task and recording procedure can be found in previous

publications.4,25,64 Here, we report data frommultiple recording sessions during which spikes were obtained. For the experimental condition,

we recorded neurons from VPL (n=96) and S1 (n=420) during 85 sessions with 100�140 trials per session. The number of pairs recorded simul-

taneously organized per area is: 142 for area1-area1, 57 for area1-3b, 75 for 3b-3b, 71 for VPL-area1, 52 for VPL-3b and 119 for VPL-VPL. All

activity is aligned to theminimumduration of the variable period, 1.5s before stimulus onset. During neural recording, the location and size of

the receptive field were estimated by stimulating the glabrous skin of the stimulated hand. Then by keeping only neurons with small receptive

fields (which could be shared with neurons in VPL).
QUANTIFICATION AND STATISTICAL ANALYSIS

Intrinsic timescales estimation

We computed the intrinsic timescales following the samemethod described in32,33 applied at single neuron level. Let us first model the time-

binned spike counts of a spike train as a doubly stochastic process in which each time bin is of durationD. Then, the autocorrelation R(.), being

a function of the time lag kD (k=1,2,.) between pairs of time bins indexed by their onset times iD and jD (k=|i-j|), can be approximated by the

exponential decay function:

RðkDÞ = A
�
e� kD

t + B
�

(Equation 1)

where A is a multiplying constant, t is the decay rate constant measuring the intrinsic timescale, and B accounts for the contribution of time-

scales longer than the observed windows.

We computed the autocorrelation function R(.) in our datasets along similar lines of previous works.32–34 First, from every single spike train,

we obtained a spike-count time series binned in steps ofDms and windows widths ofWbms during a baseline period of 1.5s following the KU

event and prior to stimulus onset. Then, in every neuron, for each pair of bins (iD and jD, i,j=1,2,.,isj) we computed the Pearson correlation

between the spike count values at bins iD and jD, respectively, over all recorded trials. Finally, to obtain the autocorrelation function R(kD),

Pearson correlation coefficient values were accumulated and averaged over at each time bin difference kD (k=|i-j|). The maximum time dif-

ference is Dmax=kmax D. To obtain the above autocorrelation function for every single neuron, we accumulated and averaged the correlation

coefficient over all time bin pairs at each time bin difference kD. Then, the autocorrelation functions were fit by the exponential decay function

[Equation 1] using nonlinear least-squares fitting via the Levenberg-Marquardt algorithm. For each brain area under study, we only selected

neurons whose fitting outcome was sufficiently good base on either the fitted parameters converged to a solution, or the residual difference

was less than a specified tolerance ð10� 6Þ over a maximum number of iterations (500). In the following we call these neurons well-fitted neu-

rons. As a result, we obtained an estimation of the intrinsic timescale t per well-fitted neuron.

To obtain an autocorrelation function at the population level, we accumulated correlation coefficient estimates over all time bin pairs and

well-fitted neurons within an area, averaging them at each time bin difference kD. After undergoing the fitting procedure, we obtained an

estimation of the intrinsic timescale t per area. In parallel, to assess the robustness of this estimation, we computed the autocorrelationmatrix

for each well-fitted neuron separately and averaged the matrices across neurons. Then, we defined the autocorrelation function at each time

bin difference kD by averaging the coefficient estimates over the corresponding time bin pairs in this matrix. This alternative method yielded

approximately the same quantitative results, thus validating the initial estimation.

In agreement with a previous work,33 we applied the above procedures with steps of D=20ms, windows widths of Wb =40ms, and

maximum time difference of Dmax=500ms. The results did not change qualitatively for variationsG10% of D andWb. In our dataset, the per-

centage of well-fitted neurons per area was 32% in VPL (n=21 units), 57% in area 3b (n=31 units), and 63% in area 1 (n=87 units). Finally, con-

fidence intervals for the intrinsic timescales were estimated using non-parametric bootstrapping.65
16 iScience 27, 110065, July 19, 2024
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Classification of stimulus-responsive neurons for Fano factor and DI estimation

During neural recording, the location and size of the receptive field were estimated by stimulating the glabrous skin of the stimulated hand.

We focused our analysis on neurons with small receptive fields located in the stimulation zone. This allowed us to concentrate on neurons

more likely to be the most responsive to stimuli, resulting in more reliable Fano factor and Directional information measurements. From

this initial ensemble, a selection wasmade according to the following procedure. Each neuron’s firing rate responses were subjected to linear

regression analysis, comparing their activity upon initial stimulus presentation with the stimulus amplitude. Neuron’s quality response was

selected based on a minimum threshold of 0.35 for the linear regression coefficient. Following the initial filtering process, we examined

the individual neurons and neuron pairs. The presented tables illustrate the distribution of these neurons/neuron pairs across the three areas

and four monkeys (three males and one female of 9, 9, 10 and 11 years old respectively).

Fano factor estimation

LetN(w) be a counting process describing the number of spikes in a time interval (0,w), of lengthw>0, in which the time zero is conventionally

set a priori. The Fano factor is a measure of the variability of N(w) defined as the variance to mean ratio of the number of spikes in a time

window of a length w:30,31,37

FðwÞ = Var ðNðwÞÞ
EðNðwÞÞ ; w > 0 (Equation 2)

The Poisson process is an example of a counting process for which the above variance-to-mean ratio equals one. Since Poisson processes

have traditionally been a popular model to model stimulus-evoked spike counts,29 the Fano factor has been employed in many studies to

characterize the degree of overdispersion of the observed neural firing rate with respect to the Poisson distribution. Hence, in practice, a

Fano factor significantly larger or smaller than 1 is an indicator that the variability of the observed counting process is larger or smaller

than the variability of a Poisson process, respectively.

In practice, the Fano factor for a single neuron in a limited timewindow is estimated based on n independent observed spike counts during

repeated trials of a fixed experimental condition (e.g., trials in which a vibrotactile stimulus of the same amplitude is delivered). The standard

estimator of the Fano factor is then based on the ratio of unbiased estimators of the variance and mean of the n spike counts (see for

instance,31, Equation 20 therein). In our study, for every neuron and task interval of 250 ms, we estimated the Fano factor over n hit trials

at a fixed amplitude and averaged the Fano factor estimates across amplitude values. For each Fano factor estimation, we selected n to

be equal or larger than 5 trials. We removed Fano factor estimates lying 3 standard deviations above and below the median value prior to

perform the stimulus-amplitude average. On the other hand, during stimulus-absent trials, we estimated the Fano Factor from correctly re-

jected trials (nR5). Hence, during both conditions (hit and correct rejected trials), we obtained one Fano factor estimate per neuron and task

interval.

Although the Fano factor has been popularly used inmany neuroscience studies,36,38,39,66 recent works have showed that the estimation of

the F(w)might be influenced by the neuronal firing rate and advocate for unbiased definitions of neural variability.30,31,37 However, in our study

we obtainedone variabilitymeasure per neuron, and the resulting values only showeda significant dependence on themean firing rate in VPL,

which was of negative sign and temporally localized outside the stimulus period. Consequently, we discarded introducing any firing-rate

correction in the analysis.

Directional information (DI) estimation

The method used to estimate directional interactions at a single-trial level was also described in detail in20. We estimated directional infor-

mation between every neuron pair within a population using a Bayesian estimator of the directed information-theoretic measure43 between a

pair of discrete time series that were assumed to be generated according to a Markovian process. In more specific terms, for a pair of

observed time series (xT , yT ) of length T, where xT = ðx1;.; xT Þ and yT = ðy1;.; yT Þ are realizations of the randomvectors $X^T= (X_1, cdots,

X_T)$ and $Y^T = (Y_1, cdots, Y_T)$, respectively, a time delay DR 0, and Markovian orders equal to M1 > 0 and M2 > 0, respectively, the

directed information-theoretic measure between the underlying stationary processes of xT and yT , i.e., (X, Y ), is estimated through the

formula:

bIDðX /Y Þb1

T

XT
t = 1

X
yt

bP�Yt = yt
���Xt�D

t�D�M2
= xt�D

t�D�M2
; Y t� 1

t�M1
= yt� 1

t�M1

�
� log

bP�Yt = yt
���Xt�D

t�D�M2
= xt�D

t�D�M2
;Y t� 1

t�M1
= yt� 1

t�M1

�
bP�Yt = yt

���Y t� 1
t�M1

= yt� 1
t�M1

� ;

(Equation 3)

Equation 3 quantifies the information that the past of XT at delay D, i.e., Xt�D
t�D�M2

, has about the present of YT , i.e., Yt , given the most

recent part of YT , i.e., Yt� 1
t�M1

. Prior to estimating the directed information-theoreticmeasure, we preprocessed our data as follows. For a single

trial, we first binarized spike-train trials using bins of 1ms (mapping 1 to each bin with at least one spike and 0, otherwise). Second, in stimulus-

present trials, we removed the variable-time pre-stimulus period in every trial and aligned all trials to the stimulus onset time. In contrast, in

stimulus-absent trials, we aligned the trials to the probe down event (PD). We then divided each trial time series into sixteen non-overlapping

task intervals of 0.25s (250 bins). At each task interval, the spike train was assumed to be generated by a random process that satisfied the
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estimator requirements with a maximummemory of 2ms (M1 = M2 = 2 bins) both for the joint and the marginal spike-train processes. Under

the estimator requirements, it can be easily checked that the directed information-theoreticmeasure is asymptotically equivalent to the trans-

fer entropymeasure in the limit of the time-series length. Finally, we ran the delayed directed information-theoreticmeasure estimator at time

delays D=0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ms.

We dealt with the multiple test problem over delays by using the maximum directed information-theoretic measure over all preselected

delays as a test statistic:

ISTAT ðX/Y ÞbmaxD˛ ½0:2:20� bID ðX/Y Þ (Equation 4)

To assess the significance of the above statistic (Equation 4), we used a Monte-Carlo permutation test. In this test, the original (i.e., non-

permuted) estimation was compared with the tail of a distribution obtained by performing 20 equally spaced (to maximize independent sam-

pling) circular shifts of the target spike train YT within the range [50, 200]ms and computed the corresponding P-value. Hence, the significance

test provides three outputs: the significance assessment (0=1), the statistic value and themaximizing delay bD . In particular, any spike-train pair

during a trial is considered to convey directional information (DI) at a given task interval if the corresponding test yields significance. The soft-

ware to perform such estimations is available as a package (‘‘DI-Inference’’) in both Matlab (https://github.com/AdTau/DI-Inference) and Py-

thon (https://github.com/mvilavidal/DI-Inference-for-Python) languages. The package includes an exemplary script with simple simulated toy

models to evaluate the method’s performance.67
Inter-area and intra-area interaction types

As in,20 when studying DI interactions for two simultaneous spike trains at a given time interval (e.g., 0.25 s) one may consider three disjoint

cases: the spike trains are coupled in only one direction, in only the opposite direction or simultaneously coupled in both directions. In prin-

ciple, these three cases correspond to neurons in each pair taking three different roles: driver, target, or both. According to this notion, we

classified DI estimates per trial by pairing the role (driver, target) of each neuron with its location according to the presumed directionality of

the somatosensory pathway VPL/area 3b/area 1. In short, we defined as feedforward interactions the DI estimates obtained fromgenuine

driver-target pairs (VPL, area 3b; VPL/ area 3b), (VPL, area 1; VPL/ area 1), and (area 3b, area 1; area 3b/ area 1). Similarly, we defined as

feedback interactions the ones obtained from the genuine driver-target pairs (area 3b, VPL; area 3b/ VPL), (area 1, VPL; area 1/VPL), and

(area 1, area 3b; area 1/ area 3b). Finally, pairs where both neurons were simultaneously drivers and targets were labelled as bidirectional

interactions (VPL⟷ area 3b, VPL⟷ area 1, area 3b⟷ area 1). In contrast, for intra-area interactions, since potential target or drivers were a

priori functionally similar, we grouped all non-bidirectional cases as unidirectional interactions (e.g., area 1/area 1) and separated them from

the bidirectional type. (e.g., area 1 ⟷ area 1).
Comparison with linear connectivity (cross-correlation)

The reproduction of theDI results (Figure 4) with the cross-correlationmeasure (Figure S4) was conceptually the same as previousworks based

on correlation measures with jitter correction.54,55 However, in this case, for the sake of a fair comparison between both measures, the sig-

nificance testing followed the same procedure used for the DI. Hence, for each possible directed (ordered) spike train pair, the cross-corre-

lation was computed over the delay range [0,2,..,20]ms and its significance was assessed using the same circular-shift surrogates. Then, direc-

tionality was assigned using the same rules used for the DI (See the section above). Finally, the outcomes of this analysis were represented as

the percentage of significant cross-correlation estimates of each type (e.g. feedforward, feedback, etc.) over all trials.
Statistical analysis: Quantification of significant effects on DI percentages

Themainmetric used in Figure 4 was obtained by aggregating eachDI type (feedforward, feedback, and zero-lag interactions) over all neuron

pairs and trials at individual task intervals and computing their percentage over the total amount of trials. Specifically, the stimulus-driven

change in the percentage of DI illustrated in Figure 4, was tested as an unpaired comparison using a non-parametric test for correlated sam-

ples68 relying on Cohen’s effect size (Cohen’s H;69) statistic, which measures the distance between two proportions p1 and p2 as:

H
�
p1;p2

�
= 2

�
arcsin

ffiffiffiffiffi
p1

p � arcsin
ffiffiffiffiffi
p2

p �
(Equation 5)

The use of this statistic allows to straightforwardly quantify the size of any significant effect by comparing its value with standardized thresh-

olds (H = 0.2, small effect size; H = 0.5, mediumeffect size; H = 0.8 large effect size), thus avoiding sample size biases. Non-parametric tests for

correlated samples were performed through 1000 group-based permutations68 where groups were defined to be single trials and group sam-

ple sizes were maintained in each permutation. Thus, our analysis avoided introducing any statistical bias to the sampled reference

distribution.
Correlation of Fano factor and intrinsic timescales with percentage of DI

To assess the potential association between spike-train directionality across pairs of somatosensory areas and local neuronal variability, we

correlated the percentage of the DI with the intrinsic timescale and the average Fano factor across all neurons of each area using Spearman’s

rank-order correlation (r). In this analysis, we mainly focus on the percentage of feedforward information during the first half of the stimulus
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period (0-250ms). This choicewasmadebecause feedforward informationwas shown to be largelymodulated by the stimulus presence in real

data and the DI in general was shown to be sufficiently robust to additive noise at the firing rates of the stimulus period in simulated models

(See ref.20, Figure S5). To compute the correlation (r), we obtained one directionality value per neuron by averaging the percentage of DI over

its recorded pairwise interactions. By doing so, we avoided introducing repeated measures per neuron in the analysis.

For both, the intrinsic timescales and the Fano factor computed during the stimulus interval, we correlated the corresponding variability

metric (t or Fano) obtained for every single neuronwith the percentage of incoming/outgoing feedforward information.We particularized the

above analysis within each area (VPL, area 3b and area 1) leading to three distinct computations: the correlation of t/Fanowith the percentage

of (outgoing) VPL-S1 feedforward information across VPL neurons; the correlation of t/Fano with the percentage of (incoming) VPL-Area 3b

feedforward information across area 3b neurons, and the correlation of t/Fano with the percentage of (incoming) VPL-area 1 feedforward

information across area 1 neurons.
Neural activity classifier

To assess the differences between area’s activity we developed a classifier by using a non-linear support vectormachine (nSVM). This classifier

received as input the 2d-reduced firing rate. This reduction was performed by a non-linear dimensionality reduction algorithm called UMAP

(Uniform Manifold Approximation and Projection).70 UMAP weights the local and global similarities by constructing a graph and after

collapsing it. To build such a graph we selected a Euclidean distance. After the dimensionality reduction epoch, we trained and tested

the nSVM by using a cross validation scheme with 25% of the data as testing and 75% as training. These codes were based on the Python

Scikit-learn suite.
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