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Climate change heavily threatens planetary and human health. Arboviral

infections are best studied using the One Health concept, due to their reliance

on complex interactions between environmental factors, arthropod vectors and

vertebrate hosts. This review focuses on two arboviruses, namely West Nile Virus

(WNV) and Usutu Virus (USUV), both causing emerging public health issues in

northern Europe. They are both maintained in an enzootic cycle involving birds

and Culex spp mosquitoes. WNV has demonstrated its sensitivity to the

consequences of climate change and there is already evidence that global

warming contributes to its expansion in Europe. Future WNV indigenous

transmission in northern Europe is therefore plausible. Usutu is a lesser known

arbovirosis, sharing similar vectors and hosts as WNV. USUV has a similar

geographic expansion to WNV, exhibiting some level of co-circulation. It is

therefore crucial to monitor these viruses in the hitherto relatively spared

regions of northern Europe.
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1 Introduction

The climate is changing (1). While it is still of crucial importance to mitigate these

changes, it is also increasingly recognized that it cannot be avoided and have now to be

taken into account (2).
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Human health, in particular, is heavily threatened by future and

current climate changes (2). One of the domains in which global

change impacts human public health is related to infectious diseases

(3). Among these, some are of particular interest in the OneHealth

perspective: arboviral zoonoses. Arboviruses – arthropod-borne

viruses – depend on the biology of arthropods, which are

ectothermic animals, whose physiology is therefore largely driven

by the abiotic parameters controlled by the local and global climate

(4). Therefore, arboviruses are extremely influenced by the climate

changes (4, 5). Most of arboviral diseases are zoonotic, and the

implication of non-human hosts, often acting like reservoirs,

increases the complexity of the epidemiology and the difficulty to

control the associated diseases (6).

In this review, we focus on two arboviruses, namely the West

Nile and Usutu viruses, to illustrate zoonose cases.
2 West Nile virus

2.1 Virus and cycle

West Nile Virus (WNV), a member of the Flaviviridae family,

was first isolated in 1937 in Uganda (7). If the strains were originally

grouped into two lineages, today 7 of them are recognized, among

which the most common in Europe are lineage 1a and lineage 2 (8).

The main cycle (illustrated in Figure 1) of this WNV is sylvatic

and involves birds, mainly passerines, and several species of

mosquitoes, mostly belonging to the Culex genus (10). Mammals,

especially humans and horses, can be infected, but usually

constitute dead-end hosts, meaning they do not develop sufficient

viremia to infect mosquitoes during a blood meal (11). Other

uncommon hosts are reptiles and amphibians, with diverse levels

of viraemia and altogether only an anecdotical contribution to the
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overall viral circulation and impact (12). West Nile Virus can also,

even rarely, be transmitted via transfusion of infected blood

products (13). Congenital infection has also, albeit uncommonly,

been reported (14). Occupational exposure can occur among

workers in close contact with animals or in a laboratory facility (15).

In Europe, Cx pipiens and Cx modestus are the main proved

competent vectors for the transmission of the WNV (16–18). The

first is the most common, widely present in all Europe, with a well-

known competence as an arboviral vector. Two distinct forms (or

biotypes) are described. Culex pipiens f. pipiens is mostly

ornithophilic, capable of diapause and found in open urban and

peri-urban habitats (19, 20) while Cx pipiens f. molestus is mostly

found in underground urban areas, do not enter diapause, mate in

confined space and bite mammals (19, 20). A certain degree of

hybridization is found to occur in zones of sympatry and the

hybrids Cx pipiens pipiens x molestus feed on both avian and

mammal species, constituting a potential bridge vector (20–22).

Culex modestus, firstly described in 1889 in Italy, is historically

found in central and southern Europe, where it breeds in permanent

water bodies in rural zones (23). In recent years, it has been found to

be established in ever northern parts of the European continent

(24), including in Denmark since 2011 (25), in United Kingdom

since 2010 (26) and in Belgium since 2018 (27). The hypothesis of a

recent introduction in United Kingdom (the alternative being an

only recent correct identification of a long-established population)

is supported by an analysis of genetic diversity in Europe (28). In

addition to what seems to be an expansion of its geographical range,

Cx modestus also shows an increase in abundance in its historical

endemic zone in central and southern Europe (29, 30). Its

competence as a WNV vector has been proven both in laboratory

and in-field conditions (23, 31). Culex modestus is considered a

bridge vector, as it feeds on avian population and on humans (23).

Also, Ae. albopictus, the tiger mosquito, demonstrates its
FIGURE 1

WNV cycle, with an illustration of most common hosts in Europe. Modified from ECDC (9).
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competence for the transmission of WNV under laboratory

condition. Its role in the circulation of the virus is likely limited

due to its feeding preference for mammals, which constitute dead-

end hosts (16, 18, 32).
2.2 Clinical manifestations

Birds, as the main reservoir of WNV, are to variable degrees

affected by the disease. Birds species more commonly affected by

WNV are passerines species (33, 34). Strains belonging to the

lineage 1 of WNV, and in particular NY, the strain introduced in

North America in 1999, show higher virulence among avian species

(34). Variants in non-structural proteins of the virus constitute

some of the determinants of this higher virulence (35, 36). Mortality

from WNV infection in birds is most often related to a

multisystemic disease, with a particular tropism of the lesions for

cerebral and cardiac tissues (37). Infected birds can show an

alteration of general condition as well as diverse neurological

signs (38).

Human WNV infection is most often asymptomatic. It is

responsible for a mild flu-like disease, with fever and headache in

20% of cases (39). However, it also causes a potentially severe

neuroinvasive disease (meningitis, encephalitis or flaccid paralysis)

in less than 1% of the cases (39, 40). Risk factors for severe disease

include older age, male gender and the presence of comorbidities

(41, 42). The mortality rate of the neuroinvasive WNV disease is

close to 10%, with high variability depending on the syndrome

(flaccid paralysis being the most fatal) (43, 44). In 50% of cases,

survivors present long-term after-effects (mainly motor and

neuropsychological) (44).

The West Nile Virus also affects horses. The proportion of

neurological manifestations is higher, reaching 20% and mortality

rate is around 30% (45–47). Neurological manifestations in horses

are diverse, with ataxia as the most common finding (48, 49). As in

birds, NY99 is suspected to show a higher virulence towards equine

species (49).
2.3 Current distribution

WNV is historically enzootic in the Old World, particularly in

Africa and a southeastern part of Europe (50). Its human circulation

in Europe remained limited to sporadic cases and limited outbreaks

in the south of the territory until 1990s (51). In 1999, the virus was

imported to the USA, where it colonized the territory with

astonishing speed, until becoming endemic (32). In the 1990s,

WNV was also caused its first major epidemics in Eastern Europe

(50). The West Nile Virus spreads to new territories mainly occurs

via infected birds (migratory or passively imported), leading to

potential establishment if a suitable vector and a reservoir host are

present (8). The WNV circulation can remain unnoticed, within an

enzootic cycle, for months or even years before the occurrence of a

human case (8). The virus is currently circulating in Europe mainly
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around the Mediterranean basin and in the southeastern part of the

territory (notably in certain regions of France, Germany, Italy,

Austria, Spain, Greece), where it is considered endemic (8, 52–54).

The 2018 year was an exceptional time in terms of cases number

in Europe, with 2083 indigenous infections, which was more than

the cumulative numbers of cases since 2010 (55). Even if the yearly

number of human indigenous infections in Europe has dropped

during the years after this exceptional season, the pattern of

geographical expansion, especially towards northern European

countries, persists (56). In 2023, human cases were reported in 11

European countries (57).

The Netherlands case exemplifies the way this geographical

expansion can be observed, with first cases of birds (common

whitethroat) and mosquitoes indigenous infection by WNV

reported in August 2020, in the region of Utrecht, with a rapid

subsequent information given to healthcare providers (58). In October

of the same year, the first human indigenous case was diagnosed in the

same region, leading to 5 more retrospective diagnoses among patients

with unexplained encephalitis and their relatives (59). These successful

early detections, contributing to the global knowledge of the

underlying mechanisms of the geographical colonization of WNV,

took place in the context of a national monitoring of arbovirosus with

a structural One Health approach (60).

Before 2010, the main lineage identified during outbreaks in

Europe was Lineage 1a. A shift has occurred and since 2013, Lineage

2 is the dominant lineage (61). This lineage shift is associated with

the northward expansion and overwintering capacity of the

virus (61).
2.4 Impact of climate change

Climate change involves an increase in average as well as

extreme temperatures, and altered rainfall, leading to an increased

risk of both flooding and drought episodes.

Life history traits of Cx. pipiens are heavily altered by increasing

mean temperatures, with an increase in development rate

(especially below 24°C) and an increase in mortality (especially

above 28°C) (62). Models integrating these effects associated to field

studies showed that the maximum biting adult population is

reached for a mean temperature around 25°C (63). This optimal

temperature could even be higher for southern populations of Cx.

pipiens (64). Temporality of the exposure to higher temperature also

plays a role, with high temperatures in spring resulting in an earlier

onset of the breeding season and an increase in the total number of

biting mosquitoes while high summer temperatures results in an

increase of adult mortality (65).

Increase of temperature causes a shortening of the incubation

period and an increase in infectivity forWNV in the mosquito (66, 67).

Depending on the strain, the effect of the temperature could even be

non-linear (68). The environmental factors that best predict a WNV

outbreak include high summer and annual temperature, low

precipitation and the presence of wetlands (69–73). A particularly

mild winter could also be a factor involved (74).
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Rainfall regimen has also a strong impact on mosquitoes’

population. An increase in (early) spring precipitation increases

the summer population of Cx. pipiens (65). On the opposite,

drought during the summer seems to maintain suitable larval

habitats undisturbed during the breeding season and then to

promote mosquitoes proliferation (75). Drought also increases the

density of contacts between the vectors and the birds, favoring the

WNV circulation (76, 77).

Another complex and less-known impact of climatic and global

change on the distribution and outbreaks of WNV is thought to

happen via their effect on the population of birds (71).Migratory routes

are altered by climatic change (78), and migratory birds have been

observed to reach their breeding locations earlier as an effect of rising

temperatures (79, 80). This could have an effect on the timing, location

and intensity of the introductions of WNV in Europe. Moreover, there

is a concern that highly-vulnerable birds, in response to the loss and

fragmentation of their habitat, thrive in a more urban habitat, closer to

human populations (81). It is still difficult to assess precisely the part of

endemicity and the part of annual reintroduction via migratory birds,

stressing the importance of a deeper understanding of the complex

interactions between the changing climate, the avian populations, the

mosquito vectors and human health (82).

It is therefore not a surprise if the environmental factors that

best predict a WNV human outbreak include mild winter, hot

summer and warm annual temperature, low precipitation and the

presence of wetlands (69–74, 83, 84). In northern Europe, epidemics

could happen following an introduction of the virus during late

Spring (85). They would be best predicted by high summer

temperatures (86).

Aside from climate changes, other human-related global

changes are proven to have a high impact on infectious, especially

arboviral and zoonotic, diseases (87, 88). In particular, globalization

and introduction of invasive species are well-known factors driving

the colonization of already climatically-suitable habitats (88, 89).

Reduction of biodiversity and wildlife could lead to a decrease

in non-amplifying hosts, decreasing their dilution effect and

increasing the circulation of the virus (90). Changes in

agricultural methods towards deforestation, intensification and

increased irrigation causes an increase of the interfaces between

different species with an increased risk of spillover, a reduction of

biodiversity and the creation of habitats suitable for the breeding of

mosquitoes (91–93). Urbanization, human population growth and

migration also contribute to the fragmentation of habitats, the

reduction of biodiversity and to an increase of the human

population at risk (87).

There is already evidence that global change contributes to the

current increase of incidence and the geographical expansion of

WNV in Europe (94–96). Projections predict an increase in

WNV transmission in Europe, even in the northern regions,

during the next decades (97, 98). In North America, an expansion

of the range of the disease is also predicted at the continental scale

by the end of the century (99). It therefore seems plausible that in
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the short-term autochthonous cases of WNV will be observed in

Northern Europe.
3 Usutu

3.1 Virus and cycle

Usutu virus (USUV) is an Orthoflavivirus, first isolated in 1958

in South Africa from a Culex neavei mosquito (100). It is closely

related to WNV and undergoes a sylvatic cycle involving several

species of birds (the predominant host being blackbirds) and

mosquitoes (100–102). Mosquito vectors appear to belong mostly

to the Culex genus, with Cx. pipiens as a proven competent vector in

Europe (103, 104). It could also play a role in the virus winter

persistence (in female overwintering mosquitoes and by vertical

transmission) (105). Culex modestus could also support the spread

of the virus and act as a bridge vector (106, 107). The competence of

Ae. albopictus for Usutu transmission is still discussed, with

contradictory results between experimental infections and in-field

contaminations (104, 108). Interestingly, co-circulation of both

viruses is widely demonstrated in Europe (109–112). Like for

WNV, humans (and to a lesser extent, other mammals species

such as horses) are accidental, dead-end hosts of Usutu (101, 113).

Until the beginning of the century, USUV infections had never

been reported outside the African continent, where only two (mild)

human cases have been observed (114). In 2001, a significant

mortality excess among avian populations in Austria highlighted

the USUV circulation on the European continent (100).

Retrospectively, evidence of its presence was found already in

1996 in Tuscany, Italy (115). Phylogenetic studies have since

concluded that USUV was introduced several times from Africa

to Spain, Austria and Germany during the last century, but started

to spread in the European continent after 2000 (116, 117). After

2001, the similarities with the spectacular spread of WNV in the

USA, highlighted by a massive die-off of local birds, have attracted

attention and a surveillance network was put in place. Circulation of

the virus has since been observed in many European countries

(118). Northwestern European countries are not spared, with

human as well as bird cases reported in Germany, France and the

Netherlands (54, 118–120) (see also Figure 2). In Belgium and

Luxembourg, to date no human case has been reported, but the

virus has been identified in birds (118, 121). Epizootics affecting

several countries in Northern Europe were recorded in 2016 and

2018 (101, 122).
3.2 Clinical manifestations and detection

Usutu virus is a common cause of disease and death in

reservoirs birds, mainly passerines and raptors. Clinical

syndromes caused by the virus are still poorly understood but
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include neurological involvement (torticollis, seizures,

opistothonos, inability to fly) as well as unspecific signs (apathy,

anorexia) (122, 123)

The exact human pathogenicity of the Usutu virus remains

unknown. In 2012, a seroprevalence study on blood from donors in

Italy and Germany demonstrated the silent circulation of the virus

in the human population (124, 125). Two first cases of

neuroinvasive syndrome were demonstrated in 2009 in Italy, in

two severely immunocompromised patients (126, 127). Since then,

several neuroinvasive syndromes (mainly encephalitis and

meningoencephalitis) have been reported in Europe, some in

immunocompetent patients (111, 112, 128–131). Mild

symptomatic flu-like cases have also been identified, but the

proportion is difficult to assess in such a small sample (around

100 cases in Europe) (128, 131).

To date, no clinical cases of USUV infection have been described

in equids, which can present a subclinical seroconversion and serve as

a sentinel species to detect the circulation of the virus (132, 133).

The large co-circulation between USUV and the closely related

flavivirus WNV adds another layer of complexity to the already

difficult detection of this virus (134). The similarities of surface

proteins of the two viruses causes a cross-reactivity of antibodies

and makes it difficult to distinguish between the serological

response against WNV and USUV (135). Even when using the

virus neutralization test, a cross-neutralization occurs with a certain

level of asymmetry at the expense of USUV detection (136).
3.3 Impact of climate change

Since the emergence of USUV in Europe, the impact of climate

change on the intensification and spreading of the circulation of the

virus has been questioned. There is a suspected association between
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climatic factors (abnormally high temperatures), the local

abundance of the vector and significant circulation of the virus

(120). A model developed in Austria in 2009, based on different

climatic change scenarios showed a high risk of endemicity of

USUV in Central Europe (137).

This climate change susceptibility, together with the current

increase of the geographical range of the USUV and the probable

underestimation of its current circulation suggest a current and

future impact of this virus on human health in northern European

countries and strongly advocate for a better surveillance of the

circulation of this virus.
4 Conclusions

West Nile and Usutu viruses are closely related and ecologically

similar Orthoflaviviruses, transmitted by Culex spp for which birds

are amplifying hosts and humans are dead-end, accidental hosts.

They both have a recent history of rapid expansion to ever more

northern regions of Europe and of a dramatic global increase in the

number of human cases. They show a large co-circulation and

important antigenic similarities making their discrimination difficult.

Their reliance on an ectothermic vector is a key – but not unique –

factor of the observed and predicted impact of climate change on the

distribution of the diseases they cause. Aside for anthropogenic climate

change, human actions have multiple direct and indirect impacts on

their circulation. Modelization and observational data converge to

identify Northern Europe as a territory at risk for future outbreaks

and establishment of USUV and WNV.

The complexity and multiplicity of anthropogenic changes and

their effects on per se complex cycles of transmission make it

illusory to try to identify predictive factors for the transmission of

the virus by focusing only on one aspect of its circulation. It is
FIGURE 2

Detection in mosquitoes or vertebrate hosts of Usutu Virus in countries of the European Environment Agency 2012-2021. Data from the ECDC (118).
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therefore a subject whose importance in terms of public and global

health and whose multi-disciplinary nature - requiring the

collaboration of specialists in climatology, virology, entomology,

human and veterinary medicine - strongly advocate a One

Health approach.
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20. Osório HC, Zé-Zé L, Amaro F, Nunes A, Alves MJ. Sympatric occurrence of
Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in
Portugal, Western Europe: feeding patterns and habitat determinants. Med Vet
Entomol. (2014) 28:103–9. doi: 10.1111/mve.12020

21. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M,
et al. Emerging vectors in the culex pipiens complex. Science. (2004) 303:1535–8.
doi: 10.1126/science.1094247

22. Kent RJ, Harrington LC, Norris DE. Genetic differences between Culex pipiens f.
molestus and Culex pipiens pipiens (Diptera: Culicidae) in New York. J Med
Entomology. (2007) 44:50–9. doi: 10.1093/jmedent/41.5.50

23. Soto A, Delang L. Culex modestus: the overlooked mosquito vector. Parasit
Vectors. (2023) 16:373. doi: 10.1186/s13071-023-05997-6

24. Culex modestus - current known distribution: October 2023 (2023). Available
online at: https://www.ecdc.europa.eu/en/publications-data/culex-modestus-current-
known-distribution-october-2023 (Accessed March 27, 2024).

25. Bødker R, Klitgård K, Byriel DB, Kristensen B. Establishment of the West Nile
virus vector, Culex modestus, in a residential area in Denmark. J Vector Ecology. (2014)
39:1–3. doi: 10.1111/jvec.12121

26. Golding N, Nunn MA, Medlock JM, Purse BV, Vaux AGC, Schäfer SM. West
Nile virus vector Culex modestus established in southern England. Parasit Vectors.
(2012) 5:32. doi: 10.1186/1756-3305-5-32
frontiersin.org

https://www.ipcc.ch/report/ar6/syr/
https://www.ipcc.ch/report/ar6/syr/
https://doi.org/10.1016/S0140-6736(22)01540-9
https://doi.org/10.1038/nature06536
https://doi.org/10.1038/nature06536
https://doi.org/10.3390/biology11111628
https://doi.org/10.1080/20477724.2019.1598127
https://doi.org/10.1080/20477724.2019.1598127
https://doi.org/10.3390/ijerph19020893
https://doi.org/10.4269/ajtmh.1940.s1-20.471
https://doi.org/10.2807/1560-7917.ES2015.20.20.21135
https://www.ecdc.europa.eu/en/west-nile-fever/facts
https://www.ecdc.europa.eu/en/west-nile-fever/facts
https://doi.org/10.1001/jama.2013.8042
https://doi.org/10.1016/S1474-4422(07)70030-3
https://doi.org/10.1007/s10096-003-1085-1
https://doi.org/10.1056/NEJMoa030969
https://doi.org/10.3390/microorganisms11020433
https://doi.org/10.3390/pathogens13020157
https://doi.org/10.1038/emi.2017.82
https://doi.org/10.3390/v11111059
https://doi.org/10.1371/journal.pntd.0011144
https://doi.org/10.1371/journal.pntd.0011144
https://doi.org/10.1093/aesa/saab038
https://doi.org/10.1111/mve.12020
https://doi.org/10.1126/science.1094247
https://doi.org/10.1093/jmedent/41.5.50
https://doi.org/10.1186/s13071-023-05997-6
https://www.ecdc.europa.eu/en/publications-data/culex-modestus-current-known-distribution-october-2023
https://www.ecdc.europa.eu/en/publications-data/culex-modestus-current-known-distribution-october-2023
https://doi.org/10.1111/jvec.12121
https://doi.org/10.1186/1756-3305-5-32
https://doi.org/10.3389/fviro.2025.1544884
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Laverdeur et al. 10.3389/fviro.2025.1544884
27. Wolf K DE, Vanderheyden A, Deblauwe I, Smitz N, Gombeer S, Vanslembrouck
A, et al. First record of the West Nile virus bridge vector Culex modestus Ficalbi
(Diptera: Culicidae) in Belgium, validated by DNA barcoding. Zootaxa. (2021) 4920:
zootaxa.4920.1.7. doi: 10.11646/zootaxa.4920.1.7

28. Hernández-Triana LM, Brugman VA, Pramual P, Barrero E, Nikolova NI, Ruiz-
Arrondo I, et al. Genetic diversity and population structure of Culex modestus across
Europe: does recent appearance in the United Kingdom reveal a tendency for
geographical spread? Med Vet Entomol. (2020) 34:86–96. doi: 10.1111/mve.12412

29. Balenghien T, Fouque F, Sabatier P, Bicout DJ. Horse-, bird-, and human-seeking
behavior and seasonal abundance of mosquitoes in a west nile virus focus of southern
France. J OF Med ENTOMOLOGY. (2006) 43:936–46. doi: 10.1093/jmedent/43.5.936
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