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Abstract 

For historical reasons, many distribution system operators (DSOs) do not have complete and accurate information about their 
networks. In particular, the topology of the distribution power grid, which is required to carry out numerous analyses necessary 
to the energy transition, is generally imprecise. This research work presents a novel approach to verify the distribution network 
topology on the basis of imperfect data. More precisely, the dynamic data retrieved from a partial coverage of smart meters are 
utilised for that purpose. Relying on the clustering of electrical phases on the basis of the correlation between voltage time 
series, the algorithmic solution proposed has the key advantage of yielding interpretable results, in contrast to black-box models. 
Promising results are reported for a real test case: an area managed by RESA, a Belgian DSO, with a coverage of smart meters 
inferior to 20%. Numerous ambiguous situations in the dataset of the DSO have been correctly identified by the algorithm, 
whose output was perfectly logical from a human’s perspective. To finish with, the interpretability of the results helped to 
identify ideas to be investigated as future work in order to further improve the algorithmic solution presented. 

 

1 Introduction 

Distribution System Operators (DSOs) are expected to play an 
important role in the ongoing energy transition. Indeed, the 
electrification of many uses is impossible without a major 
update of the electrical distribution network. Nevertheless, 
effectively upgrading the power grid is far from being trivial. 
This key task requires up-to-date and in-depth knowledge of 
the distribution network, an information that many DSOs 
currently lack. In fact, the data available to the DSO are 
generally incomplete, inaccurate, and outdated. This situation 
motivates the ongoing research on topology discovery for the 
distribution power grid. Among others, having access to an 
accurate topology of the network enables valuable analyses, 
including the computation of hosting capacity and the 
prioritisation of investments. 

In the context of DSOs, topology discovery involves the 
identification of the path of electricity for each customer 
connected to the distribution power grid. In other words, such 
an exercise boils down to associating each meter to the right 
feeder. The scientific literature includes interesting studies 
focused on discovering the topology of distribution power 
grids using imperfect data, see e.g. [1]-[3]. However, even the 
best algorithms can still be affected by inaccurate input data, 
leading to possible errors in the results. 

In the energy transition process, DSOs need to leverage all 
available resources to overcome such challenges effectively. 
In this context, this research work suggests a verification of the 
reconstructed network topology by leveraging dynamic data 
collected by smart meters, whether they are fully or partially 
deployed. More precisely, the proposed method serves as a 
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processing block besides topology identification, providing 
updated information on the connection phases of the customers 
equipped with smart meters. In contrast to the previous studies 
on the subject [4]-[5], this research work focuses on a practical 
scenario where transformer measurements are not always 
available, and where the deployment of smart meters is 
limited. Moreover, designed on the basis of an intuitive 
methodology, the algorithmic solution proposed has the key 
advantage of yielding interpretable results, as opposed to 
black-box models. 

 
2. Problem formalisation 

As previously explained, the problem studied in this research 
work can be summarised as the verification of the distribution 
network topology on the basis of dynamic data measured by 
smart meters. In order to achieve this objective, the present 
scientific article suggests, for each feeder, clustering the 
electrical phase(s) measured by all the smart meters 
presumably assigned to that feeder. 

More formally, the input information available includes two 
key elements: 

• The topology reconstructed on the basis of another 
methodology (e.g. with static data), which includes 
the set of pairs {meter, feeder}; 

• The voltage time series data collected by all types of 
smart meters and feeders over a certain time period. 

As output, the algorithmic solution has to provide a set of 
triplets {meter, phase, feeder}. This output will also highlight 
the potential errors identified in the previous topology. 

A major complexity of the topology problem studied is the 
unavailability of a relevant ground truth, for obvious reasons. 
Therefore, no quantitative criteria can be defined to rigorously 
evaluate the performance of algorithmic solutions. Instead, 
performance assessment has to be carried out qualitatively 
from a human perspective. 

 

3. Methodology 

The core idea of the novel methodology proposed is, for each 
feeder of the distribution power grid, to cluster the voltage time 
series into four different clusters: three for the electrical phases 
and one for the potential outliers. The Pearson correlation 
coefficient has been selected as the distance criterion between 
two time series. This particular criterion has been empirically 
preferred over the Spearman and Kendall approaches, which 
have also been tested. If this correlation is below a certain 
threshold, it is an indication that the smart meter analysed may 
potentially not be associated to the feeder initially assigned. 

Not systematically having the transformer measurements 
(three phases for each feeder), the main complexity with this 
methodology is identifying a relevant reference whose three 
electrical phases will serve as starting points for the three 
clusters. When there is a single three-phase smart meter 
assumed within the feeder, it can serve as the reference. When 
there are additional three-phase meters available, the cross-
correlation matrix between these smart meters is computed. 
The reference selected is the three-phase smart meter whose 
cumulative correlation is the highest. But, in the case of a very 
poor coverage of smart meters or lack of three-phase ones, 
such a representative reference may not always be available. 
In that case, the algorithmic solution proposed is unfortunately 
not applicable for these feeders. 

The correlation threshold is an important parameter of the 
proposed methodology. As illustrated in the results section, the 
first experiments conducted highlighted the necessity to 
consider a function for this threshold instead of a constant. 
Indeed, the correlation has been observed to be strongly 
dependent on three elements in practice: 

• The length of the power line connecting the reference 
to the smart meter analysed; 

• The number of production/consumption points in 
between the reference and the smart meter analysed; 

• The structure of the lines connecting the reference to 
the smart meter (e.g., division, loop, end of line). 

While the first two are taken into consideration in the 
algorithmic solution proposed, the latter is left as future work. 
More formally, the correlation threshold is defined as follows. 
Let 𝐶! be the correlation threshold, it can be mathematically 
expressed as the function: 

𝐶! = max	[𝐶, 𝐶"#$],     where 𝐶 =	𝐶"%& − 	𝛼 × 𝐿 − 	𝛽 × 𝑁, 

with the following parameters: 

• 𝐶"#$ ∈ [0, 1] being the minimum value for the 
correlation threshold; 

• 𝐶"%& ∈ [0, 1] being the maximum value for the 
correlation threshold; 

• 𝐿	 ≥ 0 being the length of the power line connecting 
the reference and the smart meter analysed; 

• 𝑁 ∈ ℕ being the number of production/consumption 
points in between the reference and meter analysed; 

• 𝛼	 ≥ 0  and 𝛽	 ≥ 0  being parameters quantifying the 
expected decrease in correlation with both the length 
of the power line and the number of consumers in 
between the reference and the smart meter analysed. 
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If the correlation between a smart meter and the reference 
three-phase meter is inferior to the threshold, this particular 
smart meter is labelled as a potential outlier. Once the 
clustering operation has been performed for all feeders, the 
potential outliers undergo an additional analysis. For each 
smart meter, the correlation with the three clusters (phases) of 
the neighbouring feeders within a certain range is computed. 
If the maximum correlation is superior to the corresponding 
threshold, a suggestion is issued to associate the smart meter 
to this alternative feeder. Otherwise, the smart meter is 
definitively tagged as an outlier requiring special treatment. 

The pseudocode in Fig. 1 outlines the main steps of the smart 
meters clustering operation, when measurements are available 
at the transformation points. Moreover, Fig. 2 presents the 
approach for generating suggestions of topology correction. 

 

Fig. 1 Pseudocode of the clustering of smart meters. 

 

Fig. 2 Pseudocode of the suggestions for topology correction. 

4 Results 

As previously hinted, the algorithmic solution presented has 
been tested on a real-world case involving two areas managed 
by RESA, a Belgian DSO. Naturally, the quality of dynamic 
data recorded by real smart meters varies significantly, with a 
significant number of missing or abnormal values. Such a 
situation surely presents an additional challenge, but it is 
representative of reality and enables to assess the robustness of 
the proposed methodology. 

For this reason, the dynamic data go through some important 
pre-processing operations before being processed by the 
algorithmic solution presented in Section 3. Firstly, abnormal 
voltage values which are outside of a range [Vmin , Vmax] are 
replaced by NaN values. Secondly, the number of consecutive 
NaN values is determined, and time series with a gap larger 
than t are discarded (typically one day). Finally, the remaining 
NaN values are replaced by the average voltage across all the 
time series present in the dataset for this specific area. 

Before getting to the analysis of the results achieved, the 
hyperparameters used in the experiments are provided for the 
scope of reproducibility. These parameters are summarised in 
Table 1 hereafter. 

Table 1 Hyperparameters used in the experiments presented. 

 

As hinted in Section 3, the correlation is expected to decrease 
when the reference three-phase meter and the analysed meter 
are further apart. Such a behaviour not only happens when the 
length of the power line connecting the two meters increases 
and when the number of production or consumption points in 
between increases, but also when the structure of the power 
grid is more complex. Such a claim may seem perfectly logical 
or even trivial, but it is important to validate with practical 
data. Fig. 3 illustrates this phenomenon. In the following 
figures, the map is represented on the basis of GIS data. Each 
rhombus represents a smart meter, the colour indicating the 
result of the clustering operation (green for validation and red 
for outlier detection). The coloured circles protray traditional 
meters for which dynamic data are not available, their colour 
being indicative of their feeder. Finally, the bold lines 
represent the different power lines, coloured once again 
according to the associated feeder. 

 

Fig. 3 Decrease in correlation when meters are further apart. 
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Very promising results are reported for the novel algorithmic 
solution presented in Section 3. Indeed, numerous ambiguous 
situations in the dataset of the DSO have been correctly 
identified by the algorithm, whose output was perfectly logical 
from a human’s perspective. Moreover, the methodology 
proposed offers the key advantage of yielding interpretable 
and reasoned results, in contrast to black-box models. Such a 
feature is of utmost importance to DSOs, which have to 
manage critical infrastructures. 

As a first example, Fig. 4 depicts a case for which it is almost 
certain that the algorithmic solution achieves a good result, 
despite having no ground truth available. In this figure, the 
outlier smart meter is represented by the red rhombus. The 
latter was initially assigned to the blue feeder on the right of 
the figure. However, the correlation with its reference (0.664) 
is below the threshold (0.71), indicating a potential outlier. The 
analysis of the neighbouring feeders reveals that there is a 
higher correlation (0.988) above the corresponding threshold 
with the reference of another feeder coloured in pale grey. 
Therefore, the suggestion to reallocate the smart meter 
analysed to this grey feeder is generated by the algorithmic 
solution. This seems perfectly logical from a human 
perspective, therefore validating this result. 

 

Fig. 4 Positive result achieved by the algorithmic solution. 

As another example, Fig. 5 shows a more complicated case, 
for which the authors are confident about the output of the 
algorithmic solution in the absence of ground truth. In this 
configuration, the smart meter analysed is located near a 
crossroad, in a street presumably equipped with three power 
lines belonging to three different feeders. On the basis of the 
static data present in the database of the DSO, this smart meter 
is connected to the feeder coloured in yellow. Nevertheless, 
the analysis of dynamic data reveals that the correlation with 

the associated reference (0.717) is inferior to the threshold 
(0.75) despite having this reference being located very close. 
On the contrary, the correlation with the reference three-phase 
meter of the pink feeder (0.866) is superior to the 
corresponding threshold (0.771). Consequently, a suggestion 
is issue by the algorithmic solution, which appears to be logical 
from a human’s perspective. 

 

Fig. 5 Probable good detection of the algorithmic solution. 

To finish with, the experiments conducted on this large-scale 
distribution network in practical situations have also revealed 
several other challenging scenarios for smart meter clustering. 
Typically, these inconsistencies occur in three configurations. 
Firstly, when there are very few smart meters available. 
Secondly, when the reference and the analysed smart meters 
are far apart. Lastly, when the structure of the power grid is 
more complex. An example of this observation is provided in 
Fig. 6 hereafter. In this case, the potential outlier detected is 
probably a false positive from a human’s perspective. Indeed, 
there is a single feeder supposed in this street, and the other 
smart meters seem to be in line with the topological data. Such 
a problematic behaviour is assumed to originate from the 
specific situation of the smart meter: 

• A division of the power line (Y shape) linking the 
reference to the analysed meter; 

• The end of the power line (and municipality). 
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Fig. 6 Probable false positive detected by the methodology. 

 

5 Future work 

In addition to achieving interesting results, the algorithmic 
solution previously presented is expected to have room for 
further improvement. The following list summarises the main 
ideas to be investigated in the future: 

• As previously hinted, the structure of the network 
(e.g., Y shape, end of line) could be taken into 
account when computing the correlation threshold. 

• The order of the clustering operation could be altered 
so that the analysis starts from the reference selected 
and progressively propagates towards the end of the 
power line. The idea is to have a continuously 
updating reference, which would steadily grow and 
be composed of more than one three-phase smart 
meter or feeder. In this case, the reference time series 
would become a combination of the different signals 
with appropriate weights. 

• In order to gain in robustness, the algorithmic 
solution presented could be applied on several time 
periods (e.g., the four seasons), followed by a 
comparison of the different results achieved. 

• Once the clustering analysis is completed, the 
silhouette score of every sample within its cluster can 
be evaluated in order to identify additional outliers. 

• If there is no three-phase element available (feeder or 
smart meter) to serve as reference, an alternative 
methodology is necessary to perform the clustering of 
the single-phase smart meters. 

 

 

 

 

6 Conclusion 

To conclude, this research work introduces a novel approach 
to verify the topology of the distribution power grid by taking 
advantage of the dynamic data collected by smart meters. 
More precisely, the methodology relies on the clustering of the 
electrical phase(s) measured by the smart meters, on the basis 
of correlation between voltage time series. The algorithmic 
solution presented yields positive results on a real-world case 
involving data collected by a Belgian DSO. These promising 
results inspired new ideas to be investigated in the future to 
further improve the performance of the algorithm. Moreover, 
the solution proposed is expected to serve other purposes, such 
as effectively balancing the electrical phases in the power grid. 
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