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Abstract—Power distribution networks are designed to oper-
ate as balanced three-phase systems, but achieving and main-
taining network balance is challenging, particularly with the in-
creasing adoption of distributed energy resources (DERs) such
as photovoltaic panels (PVs), electric vehicles (EVs), and heat
pumps (HPs). Phase unbalance introduces inefficiencies into the
network, including increased energy losses and difficulties in
maintaining voltage levels within acceptable limits. This paper
proposes a computationally efficient methodology to optimize
customer phase configurations in networks with high DER
penetration. The approach focuses only on load unbalance,
eliminating the need for power flow outputs and extensive smart
meter (SM) installations across the network, typically required
for voltage and current values. The methodology is validated
using a real-world Belgian distribution network featuring high
DER penetration. Results show improvements with a 46%
reduction in load unbalance, improved voltage profiles, and
a 12% decrease in line losses.

Index Terms—Power Distribution Systems, Phase Balancing,
Distributed Energy Resources, Network Optimization

I. INTRODUCTION

The massive integration of distributed energy resources
(DERs) into power grids, including photovoltaic panels
(PVs), electric vehicles (EVs), and heat pumps (HPs), poses
significant challenges for distribution system operators
(DSOs). Among these challenges, managing network phase
unbalance has become increasingly important for ensuring
stable and efficient grid operation. Phase unbalance arises
when the loads across the phases of a network are not
evenly distributed, leading to unequal voltage and current
between the phases. Both issues can accelerate equipment
aging, increase energy losses, and raise operational costs
for the DSOs.

Phase unbalance in power distribution networks is
influenced by their structural characteristics. Factors such
as asymmetrical feeder layouts, differences in line lengths,
and impedance often create unbalances. The unbalanced
issue is further intensified by uneven customer assignments
to phases, variability in load consumption patterns, and
the unpredictable behavior of distributed energy resources
(DERs).

There are three main types of solutions for network
unbalance: i) re-phasing, ii) phase balancers, and iii) active
network management [1]. In general, the last two solutions
require the deployment of new devices such as phase
balancers, storage systems, or other controllable equipment.
While effective, the additional equipment represents a
significant capital investment and increases operational
complexity for DSOs. In contrast, re-phasing focuses on
changing customer phase configuration to balance the
networks without additional physical equipment.
Re-phasing has been widely studied in the literature, with
various strategies addressing the phase unbalance problem.
The authors in [2] focus on re-phasing single-phase
customers to improve the voltage and current unbalance
while keeping the number of phase adjustments below
a given number established by the DSO. Authors in [3]
propose a statistical method to identify the networks that
may benefit from re-phasing, considering two consumption
scenarios: yearly average and day-by-day consumption. In
[4] an optimization problem is built to identify the minimum
number of phase connection changes in a network to meet
a specific phase unbalance tolerance. In [5] authors apply a
Vortex search algorithm to minimize the total power loss of
several IEEE networks. The authors in [6] build a strategy
to minimize the current unbalance, feeder energy-loss cost,
customer-interruption cost, and labor cost. In [7] authors
propose the application of devices such as soft open points
(SOPs) and phase switch devices (PSDs) to re-phase the
network in real-time and to improve network stability and
reduce costs, including the energy curtailment costs of PVs
and wind turbines (WTs).
Most studies on network re-phasing focus on short-term
scenarios, typically considering only single-day balancing
and limited integration of DERs. Table I provides a
summary of the works in the field, categorizing them
based on their approaches. Moreover, the table compares
these studies with the methodology proposed in this paper,
highlighting the contributions of our approach.

This work contributes to phase unbalance mitigation in



power distribution networks by proposing an alternative
optimization problem without relying on non-linear power
flow calculation outputs. The proposed approach formulates
a linear optimization problem aimed at minimizing the
unbalance between customer load curves across phases while
simultaneously reducing the number of required customer
reconfigurations. Our methodology focuses on customer con-
nections in single and multi-phase configurations, reflecting
the structure of the DSO’s network. The optimization is
conducted over a year and accommodates different DER
technologies such as PVs, EVs, and HPs, providing a robust
a solution to manage phase unbalance.
The code and data of this work are available at
github.com/PhaseReconfiguration/PhaseReconfiguration.

TABLE I. Key features of various phase reconfiguration
methods proposed in the literature, compared to our ap-
proach.
V = Voltage, I = Current, RC = Reconfiguration count, L = Energy losses,
FL = Feeder load, DI=Distance Impact

Feature | paper [2] [3] [4] [5] [6] [7] ours
1/2/3-phase

customer connections
1 3 1, 2 3 1, 2, 3 3 1, 2, 3

Objective
function

V, I, RC I FL, RC V I, L V, I, L FL, RC, DI

One year
optimization

# G# # # # #  

Real-time
reconfiguration

# # # # #  #

DERs ∅ ∅ ∅ ∅ ∅ PVs, WTs PVs, EVs, HPs

The rest of the paper is organized as follows. Section II in-
troduces the mathematical formulation of power distribution
networks, which serves as the foundation for our method.
Section III presents the definition of the problem. Section IV
shows the methodology applied to an example network. The
results of the real Belgian network are reported in Section V.
Section VI concludes the work and discusses possible future
works. Appendix A describes the process of assigning time
series data to each customer.

II. NETWORK MATHEMATICAL FORMALIZATION

A. Network graph

A power distribution network can be modeled as a directed
graph, denoted by G = (N , E), where N represents the
set of nodes and E represents the set of directed edges.
Each node corresponds to a network component, such as
a transformer or a customer. Each edge e ∈ E , commonly
referred to as lines, establishes a connection between two
nodes of the set N .

B. Network phases

Generally, power distribution networks operate as three-
phase systems, where power is distributed across three
phases to ensure balanced operation and maximize effi-
ciency. Both nodes and lines are associated with one or
more phases. The set of phases in the network is denoted
as Φ, with Φ = {A,B,C}, representing the three distinct
electrical phases.

We define the set of all possible phase configurations, Ψ, as
the collection of all customer phase assignments.
For networks with 1-phase, 2-phase, and 3-phase connec-
tions, the set Ψ contains 15 distinct possible configurations,
representing permutations of the phase without repetition.
Here are included some of the possible configurations:

Ψ = {(A), (B), (C), (1)
(A,B), (A,C), (B,A), (B,C), (C,A), (C,B),

(A,B,C), (A,C,B), (B,A,C), ..., (C,B,A)}.

For a given node n ∈ N or line e ∈ E , their respective phase
configurations are denoted as nψ and eψ , with ψ ∈ Ψ. A
single phase of a configuration ψ ∈ Ψ is denoted as ϕ ∈ ψ.

C. Network feeders

In typical power distribution networks, particularly the ones
designed in a radial configuration, each feeder radiates
outward from a single source, such as a transformer, toward
consumption points, such as customers. The set of all feeders
is defined by F , where each feeder f ∈ F is a subgraph of
G, f ⊂ G.
Every node and line in the network belongs to a specific
feeder. A node of a given feeder is denoted as n ∈ Nf

with f ∈ F and Nf ⊂ N . Given a feeder f ∈ F and a
customer in that feeder c ∈ Cf , the phase configuration of
the customer is indicated as cψ with ψ ∈ Ψ.

D. Phase matrices

Some matrices are used to represent the initial, feasible,
and track the phase configurations of the customers in the
network.

1) Initial configuration matrix: the initial phase con-
figuration of each customer is represented by the matrix
Binit ∈ {0, 1}|C|×|Ψ|, where a value of 1 indicates a
connection to a specific phase configuration, and 0 indicates
no connection. An example of the matrix Binit is given
hereafter:

Binit
example=

ψ1 ψ2 · · · ψ10 · · · ψ|Ψ|


c1 1 0 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

ci 0 0 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

c|C| 0 0 · · · 1 · · · 0

. (2)

Equation 2 shows how each customer c ∈ C is connected
to a particular phase configuration ψ ∈ Ψ. For example,
customer c1 is connected to a single phase A (configuration
ψ1 ∈ Ψ), while the last customer, c|C|, is connected to
the three-phase configuration (A,B,C) (configuration
ψ10 ∈ Ψ).

https://github.com/PhaseReconfiguration/CustomerPhaseReconfiguration


2) Complement configuration matrix: we introduce the
matrix Binit as the complement of the matrix Binit where
each value is inverted. This is expressed as:

Binit = 1 −Binit, (3)

where 1 is a matrix of ones with the same dimensions as
Binit. The operation results in swapping the values of 0
and 1 in Binit. The matrix Binit is used later in Eq. 10 to
count the number of reconfigurations of customer phases.

3) Solution configuration matrix: DSOs can change the
phase configuration of each customer to achieve a more
balanced network. The matrix B represents the final phase
configuration matrix obtained after solving the optimization
problem, as described in Section III. Each element of B
indicates the assigned phase configuration for a customer.

4) Feasible configuration matrix: not all phase configu-
ration changes are allowed, as there are constraints on cus-
tomer connections. Specifically, a customer must maintain a
configuration with the same number of phases as their initial
setup, meaning a customer assigned to a single-phase con-
nection cannot be switched to a multi-phase configuration,
and vice versa. For instance, a customer connected to the
single phase A (e.g., Binit

c1,ψ1
= 1) can therefore only be

switched to another single phase, but cannot be connected
to a multi-phase configuration, such as (A,B,C).
The matrix Bfeas represents the set of feasible phase config-
uration changes. Considering the example matrix Binit

example

in Eq. 2, Bfeas
example is given as follows:

Bfeas
example=

ψ1 ψ2 ψ3 ψ4 · · · ψ|Ψ| c1 1 1 1 0 · · · 0
...

...
...

...
...

. . .
...

c|C| 0 0 0 0 · · · 1

. (4)

Equation 4 shows the matrix Bfeas, with a focus on
the customer c1. Since this customer has a one-phase
connection, the feasible configurations are only A, B or
C (Bfeas

c1,ψ1
= Bfeas

c1,ψ2
= Bfeas

c1,ψ3
= 1). For all other phase

configurations, the corresponding values are 0.

E. Customer power dynamics

The DSO evaluates the behavior of the network over a
finite number of time steps. The set of all time steps is
denoted as T , and a single time step is denoted as t, with
t ∈ T .
At any time step t, customers can consume or produce a
given amount of power. The term P+

ϕ,c,t represents the power
consumed on the phase ϕ ∈ cψ by the customer c ∈ Cf of
the feeder f ∈ F during the time step t ∈ T . This power
consumption includes miscellaneous loads, EVs, and HPs
consumption (with P+

ϕ,c,t ≥ 0). Similarly, P−
ϕ,c,t represents

the power produced by PVs (with P−
ϕ,c,t ≤ 0). The total

power for each phase of each customer at any given time
step is calculated as the sum of the power consumed and the
power produced, expressed as:

Pϕ,c,t = P+
ϕ,c,t + P−

ϕ,c,t. (5)

The matrix Pϕ,c,t captures the net power flow for each
customer, phase, and time step, providing a representation of
the network dynamic behavior. The values in the matrix can
be positive or negative, depending on whether consumption
exceeds production or vice versa.

III. PROBLEM STATEMENT

The DSO aims to determine optimal customer phase
configurations in the distribution network, balancing con-
sumption across phases while minimizing the associated
reconfiguration costs. The optimization problem is defined
as follows:

min
B

λP · P unb + λΨ ·Ψ chg + λD ·Dwgt (6a)

s.t.
Ψ∑
ψ

Bc,ψ = 1, ∀c ∈ C (6b)

Bc,ψ ≤ Bfeas
c,ψ , ∀c ∈ C,∀ψ ∈ Ψ (6c)

Bc,ψ ∈ {0, 1}, ∀c ∈ C,∀ψ ∈ Ψ (6d)

A. Objective terms

• Phase unbalance impact: represents the sum over time
of the deviations of the load in each phase from the
average load across the three phases. Minimizing the
term in Eq. 7 aims to achieve a more balanced load
distribution across the phases of each feeder.

P unb =

T∑
t

F∑
f

Φ∑
ϕ

|Aϕ,f,t − µA
f,t| (7)

where:
– Aϕ,f,t represents the aggregate load of the cus-

tomers connected to phase ϕ of feeder f at time
t:

Aϕ,f,t =

Cf∑
c

Pϕ,c,t (8)

– and µA
f,t is the average load across phases of feeder

f at time t:

µA
f,t =

∑Φ
ϕ Aϕ,f,t

|Φ|
. (9)

• Reconfiguration impact: counts the number of cus-
tomer phase reconfigurations:

Ψ chg =

C∑
c

Ψ∑
ψ

Bc,ψ ·Binit
c,ψ . (10)



• Customer distance impact: considers the influence of
customer distance from the transformer on the network
performance:

Dwgt =

C∑
c

1

cdist
·

Ψ∑
ψ

Bc,ψ ·Binit
c,ψ (11)

where cdist represents the distance of the customer c
from the transformer, with cdist > 0.
Customers farther from the transformer have a greater
impact on network performance due to higher voltage
drops and line losses. Maximizing Eq. 11 prioritizes
configuration changes that have the most significant
impact on the network, typically those located farther
away from the transformer, often at the end of the
feeder.

B. Scaling factors

The factors λP , λΨ, and λD are scaling parameters:
• λP reflects the cost of phase unbalance, including

technical losses and operational inefficiencies caused
by uneven load distribution between the phases.

• λΨ represents operational costs associated with chang-
ing customer phase configurations, including labor and
potential downtime.

• λD represents the importance of reconfigurations for
customers farther from the transformer, where changes
have a greater impact on the network due to voltage
drops and line losses.

C. Constraints

The objective function in Eq. 6 is constrained by Eqs. 6b
and 6c, which guarantee the feasibility of the solution.

• Unique configuration assignment (Eq. 6b): ensures
each customer is assigned to one and only one phase
configuration.

• Feasibility (Eq. 6c): restricts phase changes to feasi-
ble configurations, maintaining the original number of
phases for each customer.

IV. CONCEPTUAL EXAMPLE

This section illustrates the methodology for customer
phase reconfiguration using a simplified conceptual example
of a power distribution network. The example demonstrates
the impact of phase configuration optimization on network
unbalance.

A. Network setup

The example network consists of a 3-phase system
with main lines configured for 3-phase connections, while
customer connections may be single-phase or multi-phase.
Figure 1 provides a visualization of the network and the
phase configurations. The primary components include the
transformer, feeders, lines, and customer nodes.
Each customer is initially assigned a phase configuration,

shown as blocks of different colors. The height of each
block corresponds to the phase load relative to its total
capacity.

Moreover, customers can install DER technologies, includ-
ing PVs, EVs, and HPs. The penetration rates for these DERs
are as follows:

• 83% for PVs (5 out of 6 customers in Fig. 1),
• 50% for EVs, and
• 50% for HPs.

Time series for PVs, EVs, and HPs are assigned following
the methodology explained in Appendix A.

B. Optimization process

Figure 1 visualizes the network’s phase configuration
both before (Fig. 1a) and after (1b) applying the proposed
optimization. The initial configuration, Binit

example, is
presented in Eq. 2, with the feasible configurations
specified in Eq. 4.

In this scenario, the DSO identified voltage issues on the
A phase of the transformer, primarily due to overloading.
To address these issues, an optimization process is used
to mitigate phase unbalance, following the methodology
described in Section III.
The optimization algorithm adjusts customer phase con-
figurations to reduce stress on the overloaded A phase,
leading to a more balanced load distribution among the three
phases. For instance, Fig. 1b shows that the configurations
for customers c1 and c6 were updated from A and (A,B,C)
to C and (C,B,A), respectively.

(a) Before optimization (b) After optimization

Fig. 1. Phase configurations before and after rebalancing. Each color
represents a phase: A, B and C.

The resulting solution matrix, Bexample, is given in Eq.
12. This matrix represents the final configuration, reducing
voltage stress on the A phase and achieving a more balanced



load across all phases.

Bexample=

ψ1 ψ2 ψ3 · · · ψ10 · · · ψ|Ψ|


c1 0 0 1 · · · 0 · · · 0
...

...
...

...
. . .

...
. . .

...
c3 1 0 0 · · · 0 · · · 0
...

...
...

...
. . .

...
. . .

...
c6 0 0 0 · · · 0 · · · 1

(12)

V. CASE STUDY RESULTS

The test network used for this study is a digital represen-
tation of a Belgian distribution network [8]. It is a 3-phase
network, featuring 3-phase connections in main lines, with
customer connections being either single-phase or multi-
phase.
A specific test scenario is designed to evaluate the per-
formance of the proposed method and to demonstrate the
impact of the methodology. In this scenario, the penetration
rates for different DERs are set as follows: 85% for PVs,
75% for EVs, and 70% for HPs. Time series for PVs, EVs,
and HPs are assigned following the methodology explained
in Appendix A.
Table II shows some details about the considered network
and scenario.
TABLE II. Description of the considered low-voltage distri-
bution network.

Category Number of elements
transformer 1

feeders 2
nodes 44
lines 42

customers 23
customers with PV 20
customers with EV 17
customers with HP 16

The optimization is performed over one year with a
15-minute resolution time series, therefore |T | = 35040.
For visualization purposes, data from only five days
are selected for the figures. These days correspond to the
15th, 40th, 162nd, 241st, and 324th days of the year (DOY).

Figure 2 shows the load unbalances for each feeder and
phase before the optimization. Figure 2a presents the load
distribution across feeders and phases, while Fig. 2b provides
a view of the unbalances for each feeder. The unbalances
are calculated using Eq. 7. Load peaks can be observed,
including high peaks primarily caused by EV charging and
HP usage during periods of low PV production, and low
peaks resulting during periods of low consumption combined
with high PV production.

Figure 3 displays the load unbalances in the network after
optimization. Specifically, Fig. 3a shows that the load curves
across the phases of each feeder are now much closer to the

(a) (b)

Fig. 2. Feeder load distribution and unbalances before optimization.

mean, significantly reducing the deviations observed before
optimization.

(a) (b)

Fig. 3. Feeder load distribution and unbalances after optimization.

Figure 4 compares the unbalance in the network before
and after the optimization for the two feeders. It is possible
to see that in both feeders the unbalance was reduced. In
particular, the load unbalances were decreased by 46% for
feeder 1 and 44% for feeder 2, achieved with 7 and 1
configuration changes, respectively.

(a) (b)

Fig. 4. Load distribution and unbalances across feeders.

A power flow is executed before and after the optimization to
test whether reducing the load unbalance affects the voltage
and losses in the network.

(a) (b)

Fig. 5. Voltage curves of the phases across feeders.

Table III presents the results of the power flow analysis
before and after the optimization. The results show that



TABLE III. Voltage and line losses comparison before and
after the optimization.

Feeder Phase Voltage max [p.u.] Voltage min [p.u.] Line Losses [kW]
before after before after before after

1
A 1.0763 1.0495 0.9011 0.9247 3926 2170
B 1.0347 1.0408 0.9611 0.9279 951 2170
C 1.0241 1.0404 0.9310 0.9448 1068 1501

2
A 1.0104 1.0200 0.9732 0.9698 136 362
B 1.0238 1.0208 0.9653 0.9667 519 404
C 1.0273 1.0161 0.9657 0.9695 516 309

minimizing the load curve unbalance has a positive effect on
the network’s voltage profile and line losses. For feeder 1, the
found customer configurations improve voltage conditions
in phase A, which was overloaded before optimization. The
maximum voltage decreases from 1.0763 p.u. to 1.0495 p.u.
bringing them inside the acceptable limits of 1.05, while the
minimum voltage increases from 0.9011 p.u. to 0.9247 p.u.
However, a side effect is observed in phase B of the same
feeder, where the minimum voltage increases from 0.9611
p.u. to 0.9279 p.u. In terms of line losses, the optimization
reduces the total losses across the network by approximately
12%. However, some phases experience slight increases in
losses (for example, phase C in feeder 1) as a trade-off for
achieving better overall balance and operational efficiency.

VI. CONCLUSION

Phase imbalance in electrical distribution networks can
lead to inefficiencies, increased losses, and operational
challenges for distribution system operators (DSOs),
especially in networks with high penetration of distributed
energy resources (DERs). Addressing these issues by
reconfiguring customer phase connections offers a possible
solution to improve network performance.
In this work, we presented an optimization problem for
addressing phase unbalance in power distribution networks
by reconfiguring customer phase connections without
relying on power flow outputs. While detailed power
flow-based optimization could provide highly accurate
solutions, the computational burden of solving such an
optimization for a year-long horizon with 15 minutes
resolution makes it mostly impractical. This paper proposes
a computationally efficient alternative that delivers robust
solutions to improve network conditions. The optimization
reduced phase unbalance by 46% in feeder 1 and 44%
in feeder 2, with a total of 8 customer reconfigurations.
Voltage profiles improved particularly in overloaded phases,
bringing maximum voltages within acceptable limits.
However, a slight worsening in voltage and losses was
observed in some phases, highlighting the trade-offs
inherent in phase balancing.

While the re-phasing solution does not require significant
upfront investments, it is not entirely cost-free, as there may
be operational expenses involved in reconfiguring customer

connections, such as labor cost. Additionally, it is a tem-
porary solution that may need to be repeated periodically
as customer demand patterns evolve over the years. This
makes it potentially less efficient than more permanent so-
lutions like phase balancers or active network management.
Therefore, future work could explore options combining re-
phasing strategies and strategies requiring more significant
investments.
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APPENDIX

A. Time series and phases assignation

In this section, we provide details on the implementation
of the optimization problem introduced in Section III. In
particular, this section explains how time series (TS) data
for load, PV generation, EV charging, and HP usage are
assigned to each customer.

Different information is available for each customer. In par-
ticular, each customer’s total annual consumption, household
size, and the number of phases they are connected to are
known. For customers equipped with SMs, additional real-
time data is available, including:

• TS information on the customer’s load;
• the presence of PVs;
• TS generation profiles for customers with PV installa-

tions.
For customers without SM, detailed information on their
connections and consumption/generation is generally un-
available to the DSOs. In such cases, assumptions are made
regarding phase configurations and TS curves for load,
PVs, EVs, and HPs when the information is missing. The
assumption process is summarized in Fig. 6.

Fig. 6. Flowchart of data availability and assumption processes.

The assumptions are primarily driven by the annual
customer consumption, household size, and the number of
phases the customer is connected to, as represented by the
red, green, and blue squares in the flowchart.

The installation size of the technologies can be different for
the customers. In particular, for each technology, there are
two main sizes, summarized in Table IV.

The score for a single customer c ∈ C, considered in Table
IV, is calculated as follows:

scorec =
c hh size

µhh sizes
+

|cψ|
µΦ

(13)

where:
• chh size is the customer household size;

TABLE IV. Installation sizes and requirements for technol-
ogy installations

Technologies Small installation Large installation
Size Requirements Size Requirements

PVs 2 kWp
scorec ≤ 3 &

|cψ | ≤ 2

18 kWp
scorec > 3 &

|cψ | > 2
EVs 3 kW 15 kW
HPs 3.5 kW 13 kW

• µhh sizes is the average of the household group sizes;
• |cψ| represents the number of phases the customer is

connected to;
• µΦ represents the average number of phases available.

The score evaluates how likely a customer is to install a
technology of a given size.

After collecting (or assuming) the TS for each customer, a
phase configuration is assigned to those without SM. Figure
7 illustrates the methodology used to assign consumption
and production for each technology (load, PVs, EVs, and
HPs) to the phase(s).

Fig. 7. Phase configuration assignment methodology.

The process for phase assignment follows these steps:
• Single-phase configuration: If the customer is con-

nected to only one phase, all technology consumption
and generation are assigned to that phase.

• Multi-phase configuration: If the customer is con-
nected to more than one phase, the assignment process
depends on the size of the installation:

– If the consumption or generation is large, the load,
or generation, is divided almost equally across the
three phases where almost equal means that the
phase distribution is based on a random variable
drawn from a normal distribution.
This randomized approach ensures a realistic di-
vision of consumption or generation across the
phases, accounting for slight variations occurring
in real-world power systems.

– If the consumption or generation is small, it is
assigned to the least loaded phase.
This scenario reflects the practical reality that
distributing small amounts of power across phases
often requires specialized equipment (for example,
3-phase inverters for PVs), which may not be cost-
effective.
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