

BCCM/UCL, a public collection to preserve *ex-situ* cyanobacterial strains, including their marine diversity

Maria Christodoulou¹, Haifaa Savora¹, Luc Cornet¹, Annick Wilmotte^{1,2}

- 1. BCCM/ULC culture collection of Cyanobacteria, InBios, University of Liège, Liège, Belgium
- 2. InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liège, Belgium

Curator

Technician

Manager Bioinformatician

Director, Senior Research Associate FRS-FNRS

Conference 'Centre Interuniversitaire de Biologie Marine' (CIBIM)

A) BCCM-ULC culture collection of cyanobacteria

B) *Ex-situ* preservation of marine biodiversity

2 examples:

- blue-green travelers on loggerhead turtles' carapaces
- type strains of new marine taxa

Conference 'Centre Interuniversitaire de Biologie Marine' (CIBIM)

A) BCCM-ULC culture collection of cyanobacteria

B) *Ex-situ* preservation of marine biodiversity

2 examples:

- blue-green travelers on loggerhead turtles' carapaces
- type strains of new taxa

A) The BCCM Consortium

7 decentralised culture collections, coordinated by a Central team at the Belgian Science Policy Office

https://bccm.belspo.be/

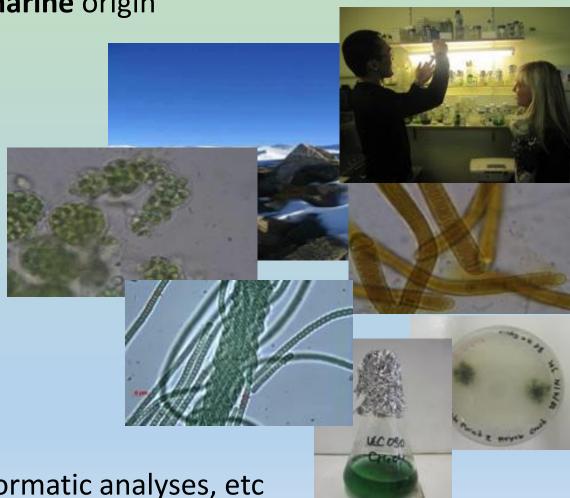
2011

Culture collections are important because « we publish and then, we move labs, we change jobs, or we perish »

Therefore, important biological material and related information might be lost forever.

```
Hi Annick,
Unfortunately I don't have them either in the move to __h about five years ago I think they did not move over.
Sorry about that...
```


BCCM/ULC public collection of cyanobacteria


- > 400 unicyanobacterial strains, of which 85 of marine origin

- **ISO 9001** certification for deposit, safe deposit, and distribution services

- **Geographic focus**: cyanobacteria from a large variety of biotopes

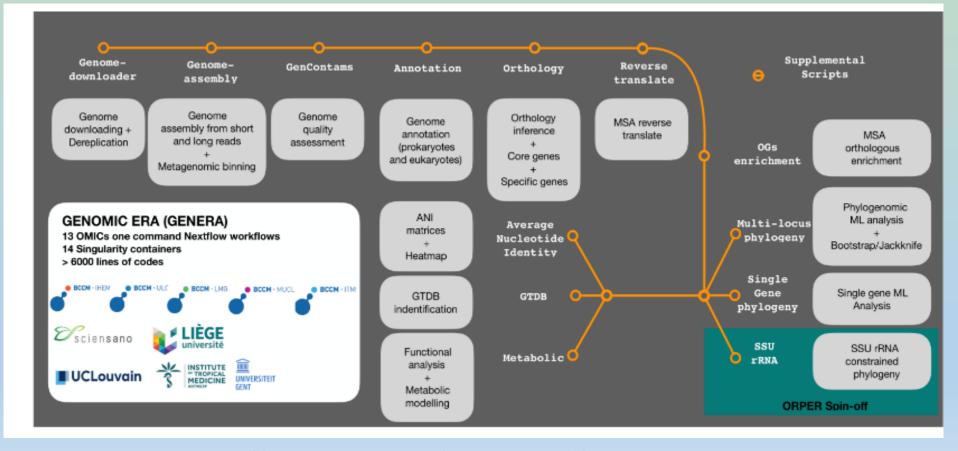
-Taxonomic focus: obtain type strains, representative biodiversity, biotechnologically interesting strains, ...

- Paid services like trainings, identifications, bioinformatic analyses, etc

Diversity of BCCM/ULC strains

Identification of strains by morphology and molecular characterization (16S rRNA and ITS sequencing)

53 genera
More than 90 OTUs (99% 16S rRNA similarity)


12 genomes in progress 22 cyanobacterial 'type' (reference) strains

GEN-ERA workflows for genome sequencing

Unified and **reproducible** workflows for research in microbial genomics Nextflow workflows are launched by a **single command** and based on **Singularity** containers to increase reproducibility

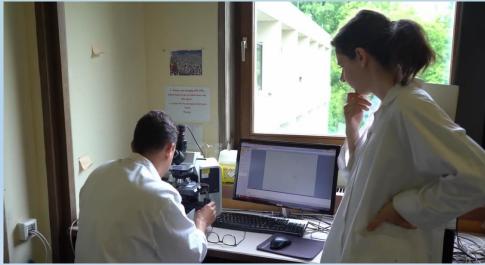
Collaboration:
Prof. Denis Baurain
InBios-Phylogenomics

https://github.com/Lcornet/GENERA

Conference 'Centre Interuniversitaire de Biologie Marine' (CIBIM)

A) BCCM-ULC culture collection of cyanobacteria

B) Ex-situ preservation of marine biodiversity


2 examples:

- blue-green travelers on loggerhead turtles' carapaces
- type strains of new marine taxa

B) Ex-situ preservation of marine biodiversity

BLUE-GREEN TRAVELERS: CULTIVATION OF CYANOBACTERIA ASSOCIATED WITH SEA TURTLES

2-month training of Lucija Kanjer, Zagreb University, Croatia

SEM of biofilm sample

- 10 isolated cyanobacterial strains
- morphological characterisation
- deposited into Public Collection BCCM/ULC of cyanobacterial strains (Liège, Belgium)
- isolated 16S-ITS sequences
- strain ULC772 (Cy015) had the genetic potential for microcystin production

Loggerhead sea turtle with green biofilm on its carapace

ULC 773 *Leptolyngbya* sp.

ULC 772 *Leptolyngbya* sp.

ULC 771 *Spirulina* sp.

ULC 770 Spirulina sp.

ULC 769 *Spirulina* sp.

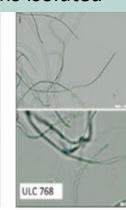
ULC 768 *Leptolyngbya* sp.

ULC 767 *Leptolyngbya* sp.

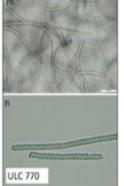

ULC 766 *Pseudanabaena* sp.

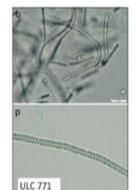
ULC 765 *Lyngbya* sp.

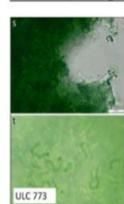
ULC 764 Lyngbya sp.


BLUE-GREEN TRAVELERS: CULTIVATION OF CYANOBACTERIA ASSOCIATED WITH SEA TURTLES

Microphotographs of strains isolated





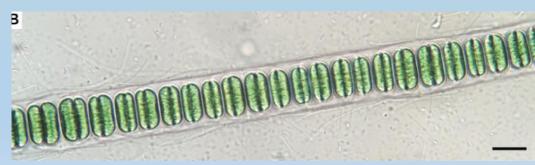

ULC 764

ULC 772

UNIVERSITY of FLORIDA

IF PAS

Prof. Dail Haywood Laughinghouse,



Dr David E.
Berthold,
University of
Florida, USA

B) Ex-situ preservation of marine biodiversity

TYPE STRAINS OF NEW MARINE TAXA

Ophiophycus aerugineus
Leptochromothrix engenei
Leptochromothrix valpauliae
Capilliphycus guerandensis
Johannesbaptistia floridana
Tigrinifilum gueradense
Tigrinifilum floridanum
Vermifilum ionodolium
Affixifilum floridanum

Johannesbaptistia floridana sp. nov. Scale bar: 20 μm (Berthold et al. 2020)

Tigrinifilum floridanum gen. et sp. nov. Scale bar: 50 μm (Berthold *et al.* 2022)

Affixifilum floridanum gen. et sp. nov. Scale bar: 10 μm (Lefler et al. 2021)

