

JUICE Ultraviolet Spectrograph Measurements of Icy Satellite, Jupiter, and Io System Environments

K.D. Retherford^{1,2}, P.M. Molyneux¹, T.K. Greathouse¹, G.R. Gladstone^{1,2}, S. Persyn¹, F. Bagenal³, T.M. Becker^{1,2}, A. Beth⁴, B. Bonfond⁵, S.M. Brooks⁶, E. Bunce⁷, M.W. Davis¹, S. Ferrell¹, L. Fletcher⁷, M. Galand⁴, R.S. Giles¹, D. Grodent⁵, V. Hue⁸, E. Johnson¹, J.A. Kammer¹, L. Lamy⁸, M.A. McGrath⁹, E.G. Nerney³, E. Quémerais¹⁰, U. Raut^{1,2}, L. Roth¹¹, J.R. Spencer¹², S.A. Stern¹², B.J. Trantham¹, M.A. Velez^{2,1}, M.H. Versteeg¹

The Jupiter Icy Moons Explorer (JUICE) mission's Ultraviolet Spectrograph (JUICE-UVS) is operating nominally in cruise, following launch in April 2023. Planned JUICE-UVS investigations utilize a variety of observational techniques including nadir push-broom imaging, disk scans, limb stares, stellar and solar occultations, Jupiter transit observations, and neutral cloud/plasma torus stares to perform a comprehensive study of icy satellite atmospheres, plumes, surfaces, and local space environments; Jupiter's atmosphere and aurora; Io and its Io Plasma Torus; and other Jupiter system targets (rings, small moons, etc.) as available. We present recent commissioning and payload checkout calibration data to provide examples of our expected data products at Jupiter. Other calibration and JUICE-Clipper science opportunities during cruise are also planned. We will report our plans to 1) Explore the atmospheres, plasma interactions, and surfaces of the Galilean satellites; 2) Determine the dynamics, chemistry, and vertical structure of Jupiter's upper atmosphere, from equator to pole, as a template for giant planets everywhere; and 3) Investigate the Jupiter-Io connection by quantifying energy and mass flow in the Io atmosphere, neutral cloud, and torus.

¹Southwest Research Institute, San Antonio, TX USA

² University of Texas at San Antonio, San Antonio, TX USA

³LASP, University of Colorado at Boulder, Boulder, CO USA

⁴Imperial College London, London, UK

⁵ Université de Liège, Liège, Belgium

⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

⁷ University of Leicester, Leicester, UK

⁸Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille), Marseille, France

⁹SETI Institute, Mountain View, CA, USA

¹⁰LATMOS, Guyancourt, France

¹¹KTH Royal Institute of Technology, Stockholm, Sweden

¹²Southwest Research Institute, Boulder, CO, USA