

Towards new breakthroughs in exoplanet science with ELT/METIS **Olivier Absil & the METIS consortium**

centra center for astrophysics and gravitation

Universität zu Köln

Science and Technology **Facilities Council**

UK Astronomy Technology Centre

METIS instrument baseline

wavelength [µm]

ALL MODES WORKING AT ELT'S DIFFRACTION LIMIT USING SCAO

Extremely large ... instrument!

- ~ 700 FTE
- ~ 25 M€ hardware budget
- 14 yrs development

1:1 scale model

METIS timeline

Cryostat @ Zürich

Derotator @ Dwingeloo

Integration hall getting ready @ Leiden

Wavefront control strategy

- water vapour seeing \rightarrow chromatic wavefront errors, acting like NCPA

WV seeing adding to AO residuals

AO only

~140 nm RMS WFE

~25 nm RMS additional WFE

Absil+2022 (SPIE)

AO + WV (L band)

AO + WV (N band)

~300 nm RMS additional WFE

End-to-end HCl simulations

(https://github.com/vortex-exoplanet/HEEPS)

Delacroix+2022 (SPIE)

METIS vs 10-m class telescopes @ L band

© Olivier Absil, University of Liège, 2022

Famous systems, revisited...

- Characterise planets with dynamical mass measurements (cf Lacour & Franson's talks)
 - follow-up of Gaia and RV planets
 - METIS will detect a handful of each kind (Quanz+2015, Wallace+2021)
 - tidally heated super-eccentric planets • also look promising (Dong+2013)
- Follow-up directly imaged planets at R=100,000

METIS L-band simulations...

... now imagine feeding that to R=100,000 IFS!

 \times

•

e

2D maps of exoplanet atmospheres

Doppler tomography with high-resolution IFS (R = 100,000)

From brown dwarf cloud maps...

Crossfield+2014

Your weather forecast on beta Pic b, starting 2029, and much more (cf Xuan's talk)

to clouds in giant planets atmospheres!

Snellen+2014

Targeted survey(s): ice-line giant planets

- Goal: constrain the longperiod end of RV planet distribution
- METIS can resolve the water ice line up to ~100 pc
 - better sensitivity than NIRCam within 10 au
- Two kinds of mini-surveys
 - nearby moving groups: targeted search, sensitive to beta Pic c and HD 206893 c analogs
 - Sco-Cen: star-hopping RDI strategy on a larger population

10²

10¹

 10°

 10^{-1}

Mass (M_{Jup})

A shot at Earth-like planets?

• Terrestrial regime accessible at N band around α Cen, if WV seeing corrected

Impact of WV seeing at N band

- - simulations below assume partial correction of WV seeing for various conditions

• Ability to correct for WV seeing in real time will be driving rocky planet yield

Angular separation [arcsec]

Is the detection of a temperate planet likely?

- Using Kepler occurrence rates (Bower
 - 50+% chance of finding a low-mass terr planet around α Cen in two 1h visits
 - 1-night blind survey of six most promising stars yields 1+ temperate mini-Neptune

าร+2021)	Table 4. Optiband.	mized observation plan fo	or the cand	idate stars in the
nperate	Star	Observation number	Month	Yield increas
	α Cen A	1	_	0.477
	Sirius	1	_	0.277
na nearhy	α Cen B	1	_	0.263
ing incarby	Sirius	2	3	0.083
on average	Procyon	1	_	0.061
0	α Cen A	2	3	0.050
	α Cen B	2	3	0.045
	Altair	1	_	0.043
L4	Sirius	3	6	0.038
	α Cen A	3	6	0.027
12	Procyon	2	2	0.022
LO	α Cen B	3	4	0.020
	Sirius	4	11	0.018
08	α Cen A	4	9	0.018
	α Cen B	4	6	0.015
06	Altair	2	2	0.014
	Procyon	3	4	0.010
04	au Ceti	1	—	0.008
	Altair	3	4	0.006
02	Procyon	4	6	0.005
	Altair	4	6	0.002

se

Rocky planet atmospheres with IFS+HCI (L band)

- ullet
- A couple more promising targets

• Proxima b potentially accessible using HCI+CCF at R=100,000 in 10 hours

HDO could even be detected if photon-noise limit can be reached (Mollière & Snellen 2019)

Zhang et al. 2024

Protoplanetary disks

- One of the prime science cases of METIS
- Probe details of disk structures
 - monitor their \bullet movement
 - connect with presence • of protoplanets

MWC758 with NIRC2 (simulation)

MWC758 with METIS (simulation)

Simulation credits: C. Baruteau + V. Christiaens

50 au

-0.2

-0.4

Forming planets & CPDs

- Simulations of CPD detection at **100 pc** (Chen & Szulágyi 2022)
 - 30 au protoplanet illustrated here
 - looks promising for super-Jupiters
- CO gas line from CPD also detectable at R=100,000 (Oberg+2023)
- Next frontier: magma oceans on forming rocky planets in nearby young associations (Bonati+2019)

Chen & Szulágyi 2024

Expect the unexpected!

exoplanets 8 CONFERENCE SERIES

