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A NEEDLE IN A HAYSTACK

Is THIS my planet?

adaptive optics

coronagraphy

observing strategies

image processing
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ANGULAR DIFFERENTIAL IMAGING (USING PCA)

Ai

PCA

Bi = pca_approx(Ai) Ci = Ai - Bi
Di = de-rotation(Ci) 

E = median(Di) 
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low-rank 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PSF  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mean/median 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Soummer et al 2012; Amara & Quanz 2012
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ANGULAR DIFFERENTIAL IMAGING AT WORK

Raw data PSF subtraction Derotation + combination

Marois et al. 2006
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CLAIMING DETECTIONS IN THE FINAL IMAGE

▸ S/N computed in concentric annuli, 
for each resolution element (resel)


▸ Standard threshold = 5σ


▸ Major caveats


- noise generally not Gaussian


- small sample statistics


▸ Behavior of S/N vs PCA rank can 
help identifying true signal

7.8

7.0

planet

speckle

(two-sample  
t-test)
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Figure 2.4: Top: grid optimization of the number of PCs for full-frame ADI-
PCA at the location of a known planet. In this example, the
mean S/N in a FWHM aperture was maximized with 16 PCs.
Bottom: flux of the planet in a FWHM aperture in the final, post-
processed residual image.

R, Julia and Matlab, relies on LAPACK (Linear Algebra PACKage)4,
which contains the state-of-the-art implementations of numerical dense
linear algebra algorithms. We use the Intel MKL libraries, which pro-
vide multi-core optimized high performance LAPACK functionality con-
sistent with the standard. For the SVD, LAPACK implements a “divide-
and-conquer" algorithm that splits the task of a big matrix SVD de-
composition into some smaller tasks, achieving good performance
and high accuracy when working with big matrices (at the expense
of a large memory workspace).

�.�.�.� Optimizing k for ADI-PCA

The most critical parameter in every PCA-based algorithms is the
number of principal components (PCs) k. VIP implements an algo-
rithm to find the k that maximizes the S/N metric, described in sec-
tion 2.3, for a given location in the image, by running a grid search
varying the value of k and measuring the S/N for the given coordi-
nates. This algorithm can also define an adaptative grid refinement to
avoid computing the S/N in regions of the parameter space far from
the maximum. This algorithm does not deal with the reliability of the
candidate point-source located at the coordinates of interest. The com-
putational cost remains close to that of a single full-frame ADI-PCA

4 http://www.netlib.org/lapack/

Mawet et al. 2014; Gomez Gonzalez et al. 2017
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TOWARDS A SUPERVISED CLASSIFIER

▸ No labeled HCI data sets —> need to rely on fake planet 
injections (following ADI trajectories)

Gomez Gonzalez et al. 2018
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TOWARDS A SUPERVISED CLASSIFIER

▸ Raw data too noisy, but final 
image not enough for training


- divide final image into small 
patches


- data augmentation mandatory


▸ Planets and speckles look alike


- use behavior vs PCA rank as 
discriminative feature  
—> Multi-level Low-rank 
Approximation Residual (MLAR)
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LABELED DATA SET
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The role of the discriminative model is to disentangle two kinds of sig-
nal signatures. The positive class c+ corresponds to the signal from the
exoplanets and the negative class c

- to the speckles and background.
The goal of the classifier is to learn a mapping from the input MLAR
samples to their corresponding labels and to generate predictions on
new samples ŷ 2 {c-, c+}. This is possible thanks to the fact that the
footprint of a true companion in the MLAR patches is different from
the one of a speckle or a background area. In the following Sections,
we propose two ways of exploiting the structure of our MLAR sam-
ples, one using random forests (SODIRF) and a more sophisticated
one using deep neural networks (SODINN).

�.�.� Random forest based approach

In the case of SODIRF, we need a 2D matrix of samples versus features
suitable for training the random forest classifier. The feature matrix
is constructed by vectorizing the MLAR samples and stacking them
in a matrix. A random forest (Breiman, 2001) is an ensemble learn-
ing method that fits a multitude of decision tree classifiers on various
sub-samples of the dataset (with bootstrapping), and uses averaging
to improve the predictive accuracy. A random forest also controls
over-fitting to the training dataset, reducing the generalization error,
if compared to single decision trees (with higher variance). We im-
plemented SODIRF with the machine leaning library scikit-learn.
This implementation of a random forest combines the decision tree
classifiers by averaging their probabilistic prediction. We trained the
random forest by using 100 fully developed trees to form the ensem-
ble model. The model was trained using a simple train-test splitting
procedure and reached over 99.5% test accuracy.

Random forests can be efficiently trained on CPUs, in just a few
minutes, exploiting modern multi-processor architectures. This is dif-
ferent from deep neural networks which require last generation GPUs
and more computing time to be trained. They differ not only in terms
of the computational cost but also in terms of performance, as we
show in Section 6.7.

�.�.� Deep neural network based approach

As we discussed in Chapter 4, a recurrent neural network (Rumel-
hart et al., 1986) is a class of neural network suited for sequence
modeling. Long-short term memory (Hochreiter and Schmidhuber,
1997) networks are a special kind of RNN, capable of learning long
term dependencies. They are widely used in machine translation,
large-vocabulary speech recognition and text-to-speech synthesis. On

Gomez Gonzalez et al. 2018
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BUILDING A DISCRIMINATIVE MODEL: SODINN

▸ Training a classifier


▸ Goal: make predictions on unseen 
samples


▸ SODINN network architecture 
based on:


- convolutional neural network (CNN), 
leveraging image structure


- long-short term memory (LSTM), 
leveraging behavior vs PCA rank
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the other hand, convolutional neural networks (LeCun et al., 1989;
Krizhevsky et al., 2012) are the preferred solution for processing data
that has a grid-like topology, e.g. images, and are almost universally
used in computer vision.

Convolutional LSTM networks (Shi et al., 2015) combine convolu-
tional and LSTM architectures, which makes them very efficient for
modeling spatio-temporal dependencies and correlations. A convolu-
tional LSTM layer is similar to an LSTM layer, with the difference that
the input and recurrent transformations are both convolutional. As
we mentioned before, in our framework we replace the time axis with
the MLAR dimension. SODINN makes use of a deep neural network
model that exploits these 3D samples using convolutional LSTM cells.
The MLAR samples are directly fed to the neural network, without
sacrificing their spatio-temporal structure as in the case of SODIRF.

We have implemented SODINN’s neural network classifier with
the highly modular and minimalist Keras library (Chollet et al., 2015)
using its Tensorflow (Abadi et al., 2015) backend. The networks were
trained on a dedicated NVIDIA DGX-1 deep learning system with
eight P100 GPUs. As shown in Fig. 6.1, the architecture consists of two
convolutional LSTM layers, each one followed by a 3D max pooling
layer with sizes 2⇥2⇥2. The first convolutional LSTM layer uses a 3⇥3
kernel with 40 filters, while the second features a 2⇥2 kernel with 80
filters. These are followed by two fully connected dense layers, the
first with 128 hidden units (on which we apply dropout (Srivastava
et al., 2014)) and the last consisting of a sigmoid unit. The network
weights are initialized randomly using a Xavier uniform initializer
and are learned by back-propagation with a binary cross-entropy loss
function:

L = -
X

n

(yn ln(ŷn) + (1- yn) ln(1- ŷn)), (6.5)

where yn is the true label of the n
th MLAR sample and ŷn = p(c+ |

MLAR sample) is the probability that the n
th MLAR sample belongs

to the positive class.
The network is trained after splitting the labeled data in train, test

(ten percent of the initial samples), and validation sets. An Adam op-
timization strategy (Kingma and Ba, 2014) is used with a learning
rate of 0.003 and mini-batches of 64 training samples. We include an
early stopping condition monitoring the validation loss. Usually, our
model is trained with 15 epochs (passes of the stochastic gradient
descent optimizer through the whole train set) reaching 99.9% valida-
tion accuracy.
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SODINN AT WORK
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the other hand, convolutional neural networks (LeCun et al., 1989;
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used in computer vision.
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tional and LSTM architectures, which makes them very efficient for
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tional LSTM layer is similar to an LSTM layer, with the difference that
the input and recurrent transformations are both convolutional. As
we mentioned before, in our framework we replace the time axis with
the MLAR dimension. SODINN makes use of a deep neural network
model that exploits these 3D samples using convolutional LSTM cells.
The MLAR samples are directly fed to the neural network, without
sacrificing their spatio-temporal structure as in the case of SODIRF.

We have implemented SODINN’s neural network classifier with
the highly modular and minimalist Keras library (Chollet et al., 2015)
using its Tensorflow (Abadi et al., 2015) backend. The networks were
trained on a dedicated NVIDIA DGX-1 deep learning system with
eight P100 GPUs. As shown in Fig. 6.1, the architecture consists of two
convolutional LSTM layers, each one followed by a 3D max pooling
layer with sizes 2⇥2⇥2. The first convolutional LSTM layer uses a 3⇥3
kernel with 40 filters, while the second features a 2⇥2 kernel with 80
filters. These are followed by two fully connected dense layers, the
first with 128 hidden units (on which we apply dropout (Srivastava
et al., 2014)) and the last consisting of a sigmoid unit. The network
weights are initialized randomly using a Xavier uniform initializer
and are learned by back-propagation with a binary cross-entropy loss
function:

L = -
X

n

(yn ln(ŷn) + (1- yn) ln(1- ŷn)), (6.5)

where yn is the true label of the n
th MLAR sample and ŷn = p(c+ |

MLAR sample) is the probability that the n
th MLAR sample belongs

to the positive class.
The network is trained after splitting the labeled data in train, test

(ten percent of the initial samples), and validation sets. An Adam op-
timization strategy (Kingma and Ba, 2014) is used with a learning
rate of 0.003 and mini-batches of 64 training samples. We include an
early stopping condition monitoring the validation loss. Usually, our
model is trained with 15 epochs (passes of the stochastic gradient
descent optimizer through the whole train set) reaching 99.9% valida-
tion accuracy.
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Figure 3.2: Post-processing final frames (top row) and their corresponding
S/N maps (bottom row) for classical ADI, annular ADI, full-
frame ADI-PCA, and full-frame ADI-PCA with a parallactic an-
gle threshold. The final frames have been normalized to their
own maximum value. No normalization or scaling was applied
to the S/N maps, which feature their full range of values.

Figure 3.3: Same as Fig.3.2 for annular ADI-PCA, full-frame ADI-NMF,
LLSG and high-pass filtering coupled with LLSG. We note that
a high S/N does not translate in increased sensitivity to fainter
companions.
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frame ADI-PCA, and full-frame ADI-PCA with a parallactic an-
gle threshold. The final frames have been normalized to their
own maximum value. No normalization or scaling was applied
to the S/N maps, which feature their full range of values.

Figure 3.3: Same as Fig.3.2 for annular ADI-PCA, full-frame ADI-NMF,
LLSG and high-pass filtering coupled with LLSG. We note that
a high S/N does not translate in increased sensitivity to fainter
companions.
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EVALUATION IN RECEIVER-OPERATING CHARACTERISTIC SPACE

▸ Not your standard ROC 
space


- need to work at low FPR, 
don’t want to see whole 
ROC space!


- interested in total number 
of FPs inside whole field 
of view


▸ SODINN seems to be 
playing in a different 
league

Gomez Gonzalez et al. 2018
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THE EXOPLANET IMAGING DATA CHALLENGE

▸ Community effort to evaluate / compare HCI algorithms 


- challenge: exoplanet detection in various HCI data sets


▸ SODINN ranks poorly due to high FPR in some data sets

Cantalloube et al. 2020

One example where SODINN « failed »

low FPR

high FPR

Figure 11. Results of the ADI subchallenge for the third VLT/SPHERE-IRDIS dataset (sph3).

Proc. of SPIE Vol. 11448  114485A-21
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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USING LESSONS LEARNED FROM DATA CHALLENGE

▸ Working locally seems 
useful


▸ New concept: noise-
adapted SODINN


- split the field of view to 
produce more uniform 
noise regimes


- train SODINN separately 
on each noise regime

Cantero et al (subm.)
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speeds move the upper level atmos-
pheric turbulence across the pupil con-
siderably faster than the AO loop can 
correct for. The AO residual phase shows 
strong atmospheric residuals with a  
clear directional pattern along the wind 
direction (Figure 9a). When propagat- 
ing this phase, it produces a typical but-
terfly-shaped structure in the focal  
plane image, along the wind direction  
(Figures 9b–d). This temporal error signifi-
cantly affects the contrast reached by  
the instrument (Mouillet et al., 2018). 
Recent studies have shown that the fast, 
high-altitude jet stream atmospheric  
layer (typically located at about 12 km 
above Cerro Paranal), whose wind speed 
can reach 50 m s–1, is the main cause  
of the wind-driven halo (for example, 
Madurowicz et al., 2018). Moreover, this 
halo shows an unexpected asymmetry 
caused by interference between this tem-
poral lag error and scintillation errors 

for in the AO arm, but that are not pres-
ent in the light path of the scientific sub-
systems and vice-versa. Like the AO 
residuals, they distort the wavefront so 
that each incoming light ray interferes 
with the others in the focal plane to form 
the “speckle field” (Figure 8b). The size  
of each speckle is typically that of one 
resolution element (1 l/D), as for plane-
tary signals, and their typical contrast 
can go up to 10–4, whereas that of the 
sought planetary signals is less than 10–6. 

Advanced post-processing techniques 
are then necessary to detect exoplanet 
signals. NCPA that are located upstream 
of the coronagraph focal plane mask 
have been recently measured thanks to 
the ZELDA mask on the SPHERE internal 
source (Figure 8a, Vigan et al., 2018). 
When comparing the image simulated 
using this NCPA measurement (Figure 8b) 
to the internal source image (Figure 8c),  
a similar speckle field is observed. Under 
good observing conditions, such a 
speckle field is indeed limiting the con-
trast reached in the AO-corrected zone 
(Figure 8d). 

The wind-driven halo (Figure 9)
This halo appears when high wind 

The contrast killers

In the context of high-contrast imaging 
with instruments such as SPHERE,  
two major aspects greatly affect the final 
 contrast performance: (i) the errors that 
provoke starlight leakage out of the 
 coronagraph; and (ii) the errors that are 
not temporally stable, or more generally 
not deterministic, and hence cannot be 
removed by any current post-processing 
techniques. In the following we focus on 
the errors affecting the corrected area in 
the images, that is to say low-order resid-
ual aberrations. 

The non-common path aberrations  
(Figure 8)
Under very good conditions, current 
high-contrast images are limited by 
speckles originating from non-common 
path aberrations (NCPA). These are aber-
rations that are sensed and corrected  

10 λ/D(b)
(a)

10 λ/D(d)10 λ/D(c)

10 λ/D(b) 10 λ/D(d)10 λ/D(c)
(a)

Figure 8. Illustration of the non-common path  
aberrations (H2-band): (a) non-common path aberra-
tions phase map upstream of the coronagraph focal 
plane mask estimated using the ZELDA mask, (b) 
simulated APLC coronagraphic image using this  
estimated ZELDA phase map, (c) internal source 
image and (d) on-sky image where the non-common 
path aberrations are dominant.

Figure 9. Illustration of the wind-driven halo due to 
the Jetstream layer (IFS, Y-band): (a) AO residual 
phase map showing large atmospheric residuals as 
ripples perpendicular to the wind direction,  
(b) simulated ideal coronagraphic image using only 
this phase map, (c) simulated APLC coronagraphic 
image and (d) on-sky image where the wind-driven 
halo dominates.
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HOW TO DEFINE NOISE REGIMES?

▸ Statistical moments give a first hint


- define rolling annuli to have enough samples 


- exploration of moments vs PCA rank gives 
more robust results

Cantero et al (subm.)
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HOW TO DEFINE NOISE REGIMES?

▸ Normality tests


- various tests can be 
combined to provide more 
robust p-value


- high p-value does not mean 
that the distribution is normal


▸ Also highlights how the 
optimal PCA rank changes 
as a function of distance
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speeds move the upper level atmos-
pheric turbulence across the pupil con-
siderably faster than the AO loop can 
correct for. The AO residual phase shows 
strong atmospheric residuals with a  
clear directional pattern along the wind 
direction (Figure 9a). When propagat- 
ing this phase, it produces a typical but-
terfly-shaped structure in the focal  
plane image, along the wind direction  
(Figures 9b–d). This temporal error signifi-
cantly affects the contrast reached by  
the instrument (Mouillet et al., 2018). 
Recent studies have shown that the fast, 
high-altitude jet stream atmospheric  
layer (typically located at about 12 km 
above Cerro Paranal), whose wind speed 
can reach 50 m s–1, is the main cause  
of the wind-driven halo (for example, 
Madurowicz et al., 2018). Moreover, this 
halo shows an unexpected asymmetry 
caused by interference between this tem-
poral lag error and scintillation errors 

for in the AO arm, but that are not pres-
ent in the light path of the scientific sub-
systems and vice-versa. Like the AO 
residuals, they distort the wavefront so 
that each incoming light ray interferes 
with the others in the focal plane to form 
the “speckle field” (Figure 8b). The size  
of each speckle is typically that of one 
resolution element (1 l/D), as for plane-
tary signals, and their typical contrast 
can go up to 10–4, whereas that of the 
sought planetary signals is less than 10–6. 

Advanced post-processing techniques 
are then necessary to detect exoplanet 
signals. NCPA that are located upstream 
of the coronagraph focal plane mask 
have been recently measured thanks to 
the ZELDA mask on the SPHERE internal 
source (Figure 8a, Vigan et al., 2018). 
When comparing the image simulated 
using this NCPA measurement (Figure 8b) 
to the internal source image (Figure 8c),  
a similar speckle field is observed. Under 
good observing conditions, such a 
speckle field is indeed limiting the con-
trast reached in the AO-corrected zone 
(Figure 8d). 

The wind-driven halo (Figure 9)
This halo appears when high wind 

The contrast killers

In the context of high-contrast imaging 
with instruments such as SPHERE,  
two major aspects greatly affect the final 
 contrast performance: (i) the errors that 
provoke starlight leakage out of the 
 coronagraph; and (ii) the errors that are 
not temporally stable, or more generally 
not deterministic, and hence cannot be 
removed by any current post-processing 
techniques. In the following we focus on 
the errors affecting the corrected area in 
the images, that is to say low-order resid-
ual aberrations. 

The non-common path aberrations  
(Figure 8)
Under very good conditions, current 
high-contrast images are limited by 
speckles originating from non-common 
path aberrations (NCPA). These are aber-
rations that are sensed and corrected  

10 λ/D(b)
(a)

10 λ/D(d)10 λ/D(c)

10 λ/D(b) 10 λ/D(d)10 λ/D(c)
(a)

Figure 8. Illustration of the non-common path  
aberrations (H2-band): (a) non-common path aberra-
tions phase map upstream of the coronagraph focal 
plane mask estimated using the ZELDA mask, (b) 
simulated APLC coronagraphic image using this  
estimated ZELDA phase map, (c) internal source 
image and (d) on-sky image where the non-common 
path aberrations are dominant.

Figure 9. Illustration of the wind-driven halo due to 
the Jetstream layer (IFS, Y-band): (a) AO residual 
phase map showing large atmospheric residuals as 
ripples perpendicular to the wind direction,  
(b) simulated ideal coronagraphic image using only 
this phase map, (c) simulated APLC coronagraphic 
image and (d) on-sky image where the wind-driven 
halo dominates.
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ADDING MORE NOISE-RELATED HANDCRAFTED FEATURES

▸ MLAR patches catch 
signal evolution wrt 
PCA rank, but not  
S/N evolution


▸ S/N curve vs PCA 
rank can be used as 
additional feature in 
training

Cantero et al (subm.)
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NA-SODINN MODEL
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NEW ENTRY TO DATA CHALLENGE

Figure 11. Results of the ADI subchallenge for the third VLT/SPHERE-IRDIS dataset (sph3).
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CONCLUSION: THE HYPE CURVE
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Stay tuned for applications…
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