Influence of water vapor on ELT/METIS high contrast imaging performance

Olivier Absil – University of Liège

with strong contributions of C. Delacroix, G. Orban de Xivry, M. Willson⁺, P. Berio

IR2022 workshop

Water vapor seeing

- WV column density is variable
- Expected to follow
 Kolmogorov von
 Karman spectrum
- Highly chromatic, especially in mid-IR
 - AO correction at K band not valid at L/N bands

Additional path length: 'water displacing air'

- Holding P (and T)
 constant, added
 humidity reduces
 dry air
- $\hat{n}_{WDA} = \hat{n}_{WV} \hat{n}_{air}$
 - $\hat{n}_{WDA}(L K) = 0.5 \text{ fs / (mol/m²)}$
 - $\hat{n}_{WDA}(N K) = 6 \text{ fs / (mol/m²)}$

Measuring path length variability @ Paranal

• Use GRAVITY K-band fringe tracker to predict WV contribution

- relies on chromaticity phase across a few spectral channels in K band
- Use MATISSE to check prediction @ L & N bands
 - assumes that differential phase is fully explained by WV

First results from GRAVITY/MATISSE

PWV (mm)	1.4 mm	2.0 mm	6.6 mm	7.0 mm
1-min rms WV column density (cm ⁻²)	1.3×10 ¹⁹	1.8×10 ¹⁹	2.2×10 ¹⁹	2.4×10 ¹⁹

... compared to literature measurements

	Masson1994 (Mauna Kea)	Lay1997 (OVRO)	Meisner+2002 (Paranal)
Wavelength	sub-mm	sub-mm	near-IR
Baseline	100 m	100 m	16 m / 66 m
Timescale	15 min	1 h	100 sec
rms WV column density	4×10 ¹⁹ cm ⁻²	10 ²⁰ cm ⁻²	~ 3×10¹⁹ / 10 ²⁰ cm ⁻²

Does it really follow Kolmogorov?

we will assume Kolmogorov - von Karman from now on (more power at low frequencies)

How much additional nuisance?

Convert rms column density in other units

- RMS additional **local** delay (in 1 min)
 - L band: $\hat{n}_{WDA}(L K) = 0.5 \text{ fs/(mol/m^2)} \longrightarrow 0.17 \text{ fs} \longrightarrow 50 \text{ nm}$
 - N band: $\hat{n}_{WDA}(N K) = 6 \text{ fs/(mol/m^2)} -> 2 \text{ fs} -> 600 \text{ nm}$

Translating to ELT wavefront quality

- Generate open-loop
 sequence of atmospheric
 turbulence phase screens
- Measure rms piston between
 VLTI-like sub-apertures
- Scale cube of phase screens to match rms piston measured at VLTI
- Add scaled cube of water
 vapor turbulence to AO
 residuals

Adding WV to adaptive optics residuals

~140 nm RMS WFE ~25 nm RMS additional WFE ~300 nm RMS additional WFE

Strongly dominated by low spatial frequencies (Kolmogorov - von Karman)

Effect on Strehl — METIS standard imaging mode

Effect on high-contrast imaging performance

Mitigation: focal-plane wavefront sensing

Mitigation plan for METIS

- Science images fed back to AO system for focal-plane wavefront sensing @ 1 Hz
- Pointing errors: QACITS
 - uses asymmetry in coronagraphic PSF
- Next ~100 Zernike modes: Phase Sorting Interferometry
 - uses phase diversity introduced by AO residuals
 - PSI output introduced as slope offsets in Pyramid WFS

Expected performance improvement

Conclusions

- Investigated wavefront variability in the mid-infrared due to water vapor at Paranal
- N-band image quality at ELT scale is dominated by water vapor turbulence
 - Strehl ratio remains high (~95%)
 - ... but high-contrast imaging strongly affected!
- Taking advantage of low-PWV events will be more important than ever
 - more statistics would be useful to pinpoint WV seeing vs PWV trend