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ABSTRACT

In this communication, we report on the results of the second phase of the Exoplanet Imaging Data Chal-
lenge started in 2019. This second phase focuses on the characterization of point sources (exoplanet signals)
within multispectral high-contrast images from ground-based telescopes. We collected eight data sets from two
high-contrast integral field spectrographs (namely Gemini-S/GPI and VLT/SPHERE-IFS) that we calibrated
homogeneously and in which we injected a handle of synthetic planetary signals to be characterized by the
data challenge participants (ground truth). The tasks of the participants consist of (1) extracting the precise
astrometry of each injected planetary signals, and (2) extracting the precise spectro-photometry of each injected
planetary signal. Additionally, the participants may also provide with the 1-sigma uncertainties on their esti-
mation for further analyses. When available, the participants can also provide the posterior distribution used to
estimate the position/spectrum and uncertainties. The data are permanently available on a Zenodo repository
and the participant can submit their results through the EvalAI platform. The EvalAI submission platform
opened on April 2022 and closed on the 31st of May 2024. In total, we received 4 valid submissions for the
astrometry estimation and 4 valid submissions for the spectrophotometry (each submission, corresponding to
one pipeline, has been submitted by a unique participant). In this communication, we present an analysis and
interpretation of the results comparison.
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1. INTRODUCTION

The Exoplanet Imaging Data Challenge is an initiative led by several members of the exoplanet high-contrast
imaging community. The goal of this initiative is to benchmark and compare the various existing post-processing
techniques that are dedicated to exoplanet direct detection via high-contrast imaging. Indeed, the last ten years
have seen the implementation of a number of advanced image processing techniques whose goals is to further
carve out the starlight residuals in the images so as to reach the highest contrast possible, especially at close
angular separation from the star (where most planets are expected), towards detecting faint planetary signals.

Current high-contrast images delivered by state-of-the-art instruments are affected by bright starlight resid-
uals hindering the presence of exoplanets. These residuals come either from adaptive optics residuals1 (usually
short-lived so showing as smooth structures), low order residuals such as jitter and low wind effect2 (usually vary-
ing fast and affecting the inner region), non-common path aberrations3 (fixed aberrations to calibrate, internal
turbulence showing smooth structures and quasi-static aberrations), and any other error related to the detection
procedure (e. g. bad pixels, miscalibration). The ultimate limit is given by the photon noise of the target star
residuals. Usually, before applying dedicated post-processing technique to gain one or two orders of magnitude
in contrast, we apply some pre-processing (also called cosmetic, or calibration) including the dark subtraction,
flat fielding, distortion correction, wavelength calibration, centering∗ etc. The task of post-processing techniques
is to deal with the effect of all the residual optical aberrations, which distribute starlight across the field of view
on different spatial and temporal scales,4 in order to identify and characterize circumstellar signals.

The Exoplanet Imaging Data Challenge (EIDC) is organized in several phases, and is evolving to include more
features and adapt to the latest findings. The first phase5 (2020), was focused on the detection of planetary
signals in the field of view. This second phase is focused on the characterization of planetary signals. Upcoming
phases will include extended features, the use of high resolving power spectroscopy, the exploitation of large data
base and/or multi-epoch, telemetry and/or environmental data, and simulated images for the Extremely Large
Telescope suites of instrument. The EIDC working group plans to publish its work and various results regularly,
in particular every two years in the form of an SPIE Astronomical Telescope + Instrumentation proceeding.

Data from the various phases of the Exoplanet Imaging Data Challenge are permanently available on a Zenodo
repository, so that anyone can use the ensemble of curated data to test and compare the capabilities of different
algorithms. We are also providing analysis tools, including the metrics and comparison set of the corresponding
phase. The Exoplanet Imaging Data Challenge intends to make the process of testing new algorithms more
straightforward and robust, via the use of standard metrics and benchmark data set offered to the community.
People are more than welcome to use the various resources from the Exoplanet Imaging Data Challenge platform
for test and scientific publication (with due acknowledgement).

The data offered for this phase of the data challenge as well as the metrics used for the leaderboard are
previously described6 in a 2022 SPIE proceeding. More information about this community-led initiative can be
found on the dedicated website† (context, data, submission procedure, results and extended bibliography).

2. EXOPLANET CHARACTERIZATION WITH HIGH-CONTRAST IMAGING

Direct imaging of exoplanets, among other techniques, offers a unique window on planetary systems: (1) first,
it provides a full picture of the system to study its architecture (interaction with circumstellar disks, multiplic-
ity etc.); (2) second, the brightness estimation of the substellar companions provide with estimates of planet
properties, such as its mass (from the mass luminosity relationships, linked to evolutionary track models), and
if multi-wavelength images are additionally offered, spectral forward models and spectra retrievals unveil infor-
mation on the atmospheric structure and composition; (3) precise astrometric follow-up may provide orbital
constraints that can help us understanding the formation and evolution processes at stake such as migration,
scattering and resonances, as well as dynamical mass estimate. The target dataset detection limit is computed
and used to set statistical constraints on the occurrence rate of exoplanets of a given mass, at a given separa-
tion, around this type of target star. With current instruments, direct imaging of exoplanets is sensitive to the
population of young giant gaseous planets at relatively large orbit that appear to be quite rare.7,8

∗See e.g. the review talk summarizing the importance of these steps https://www.youtube.com/watch?v=0v4q6VN4b9M.
†https://exoplanet-imaging-challenge.github.io/
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https://exoplanet-imaging-challenge.github.io/


In terms of image processing, the characterization of a planetary signal detection consists in extracting two
observables: (I) the astrometry, which is the estimated position of the planetary companion(s) in the image, and
(II) the spectro-photometry, which is the estimated luminosity in terms of contrast of the planetary companion(s)
in the images. From these two estimates, observers can analyze and interpret the physical nature of the planet
and, on larger scales, infer the formation and evolution processes of planetary systems. Obtaining accurate and
precise observable is therefore of acute importance in the science of exoplanets.

2.1 Reminder on ADI post-processing techniques

As a reminder the most common method used for processing high-contrast images is based on differential imaging
(DI), in particular making use of the angular diversity9 offered by pupil-tracking observations from telescopes
having an alt-az mount. Indeed, in such a configuration, the orientation of the telescope pupil (where most
optical aberrations arise) is kept along a given direction in the image cube, whereas the orientation of the field of
view in the focal plane rotates with the parallactic angles as the Earth rotates during the observation sequence.
In the resulting temporal cubes of images, the starlight residuals (nuisance term, also called stellar glare) is kept
more or less stable in the field of view, while the off-axis astrophysical objects rotate around the image center
(where the target star is located) with the parallactic angle during the observation.

Differential Imaging can be summarized in four steps: (1) estimating the starlight distribution in the field
of view, also called reference PSF or model PSF ; (2) Subtracting it to the science image(s), also called PSF
subtraction; (3) repeat the subtraction procedure for each frame of the image cube then rotate the frames in order
to align the circumstellar signals and combine them to obtain a residual map; (4) build a detection map (e.g.
an SNR map) giving the probability of detecting a signal in the image field of view‡. The essential differences
between current DI-based techniques are focused on the step (1), critical to obtaining an effective stellar glare
subtraction. For instance, classical ADI9 consists in using the temporal median of the cube as the reference
PSF. Another widely used method is LOCI,10 which consists in finding the linear combination of images that
minimizes the variance of the residuals between the reference PSF and the science image. At last, another
mainstream method is to make a principal component analysis (PCA) of the data cube to build the reference
PSF as the sum of the first few principal components.

2.2 Characterization methods with ADI post-processing techniques

As of today, there are mainly two ways of characterizing exoplanets detected within high-contrast images pro-
cessed with ADI-based techniques: (i) the injection of NEGative Fake Companion11,12 (NEGFC) in the data
set, and (ii) the Forward Modeling (FM) approaches.13,14

The NEGFC technique consists in injecting a synthetic planetary signal (i.e. the non-coronagraphic / non-
saturated PSF of the instrument, usually acquired during calibration before or after the coronagraphic / saturated
image cube) with negative intensity in the raw image cube, at the rough position of the detection and with a
rough flux estimate of the detection. The image cube with the negative injection is then processed with exactly
the same user-parameters as for the planetary detection (e.g. with PCA, using exactly the same number of
principal components to build the PSF model to be subtracted to the images). Using various methods (such as
Nelder-Mead simplex algorithm, MCMC sampler or nested-sampling), this procedure is repeated with various
positions and fluxes (around the first guess) for the negative injection, until the residuals are minimized at the
location of the planet, providing with the astrometry (position of the negative injection that minimizes the
residuals) and the photometry (intensity of the negative injection that minimizes the residuals).

The FM technique usually models the planetary signature (again as the non-coronagraphic / non-saturated
PSF of the instrument) and tracks it in the data within an inverse problem framework. At the exception of the
PACO algorithm,15 which does not perform any subtraction, the FM technique is done after step (2). It means
that under a certain assumption of the residual noise distribution in the residual frames (2) - and in the case of
PACO, the raw frames at (1) - the model of the planetary signature is fitted to the actual data. By construction,
as the flux of the model planetary signature is the optimized parameter, the SNR map, used as a detection map,
is a by-product (defined as ϕ̂/σ(ϕ̂), with ϕ̂ the estimated flux and σ(ϕ̂) the uncertainties of the estimated flux).

‡For a review of post-processing technique and concepts of ADI, please visite our website https://

exoplanet-imaging-challenge.github.io/biblio/.
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In the previous EIDC publication,6 we compared these two basic approaches on the so-called training dataset
(dubbed sphere0 ): one using a PCA-SADI procedure, as implemented in the VIP package,16 followed by the
NEGFC approach, and the other using ANDROMEDA17 in its classical flavor (using a L2-norm minimization
because the noise distribution is assumed to be white and Gaussian). In the following, we consider the PCA-
SADI+NEGFC procedure as the baseline to analyze and compare the results, which includes the uncertainties
(under the assumption of a Gaussian distribution of the residuals). For this baseline, the uncertainties are
estimated by injecting hundreds of synthetic planetary signals in the raw images at the same angular separation
as the considered one, estimate their parameters, and then fitting a Gaussian to the deviation between the
estimated parameters and the injected ones (ground-truth).

We received a total of 4 valid submissions on the EvalAI platform, from four different participants. None
of the participants included neither the uncertainties nor the posterior in their results. The four submissions
were obtained using: RSM, the Regime Switching Model,18 implemented with a forward modeling approach,
following the description in Dahlqvist et al.19 (2021); pyKLIP-FM, the Karhunen-Loève Image Processing,20

as implemented in the pyKLIP21 pipeline, using Forward Modeling for the characterization described in Pueyo
et al.22 (2016); AMAT, the Alternating Minimization Algorithm with Trajectory,23 which uses a L1-norm
low rank approximation to enhance the PCA-based PSF subtraction, associated to a forward model approach
similar to ANDROMEDA but under the assumption of a Laplacian residual noise distribution (so using a L1-norm
minimization to estimate the flux of the planet signature) that corresponds better to the actual distribution of the
residuals after the subtraction; ANDROMEDA, in its classical17 ADI flavour, that is to say using a Gaussian
residual assumption for the flux estimation and running every wavelength cube separately to combine them at
the end (note that we only received the astrometry estimations from the latter but no spectrophotometry).

3. RESULTS: ASTROMETRY

As a reminder, for the astrometry estimation of the Exoplanet Imaging Data Challenge second phase, we asked
the participants to provide with (1) the estimated position of each injected planetary signals in the provided data
set, (2) optionally the corresponding 1σ uncertainties of the estimations, and (3) optionally the corresponding
posterior distribution used to estimate the position and its uncertainties. As for the metric used for the ranking
of the submitted results, the EIDC phase 2 working group decided to compute the distance (in the sense of the
L2-norm, euclidian distance) between the estimated value and the ground truth value. All the details about
the provided data sets, submission process and chosen metrics for comparison and ranking can be found in our
previous SPIE publication Cantalloube et al.,24 (2022).

3.1 Astrometry: baseline results as a function of the dataset

The provided data sets come from two different instruments (namely GPI25 and SPHERE-IFS26). For each
instrument, we provided 4 data sets under very different observing conditions (see previous publication and
website for more details about it). As a first qualitative interpretation, we compare the astrometry estimated by
the baseline algorithm for each data set. The astrometry is inferred with PCA-ADI in individual channels (in
the top 5 channels in terms of SNR ) at the first guess location found with PCA-SADI. The results on the GPI
images are shown in Fig. 1 and on the SPHERE-IFS images in Fig. 2 (actual position of the injections in the
images, residuals map, SNR map and astrometry error to the ground-truth). Quantitative results, including the
comparison metric used, are presented in Tab. 1 and Tab. 2 for the GPI and SPHERE-IFS data respectively.

For both GPI and SPHERE-IFS, the observing conditions have an important impact on the quality and
accuracy of the estimated astrometry. As expected, the baseline SNR of the injection also has an impact on both
the estimation and their uncertainties (being larger with lower SNR). The detections close to the coronagraphic
inner working angle (IWA) usually introduce a small bias in the estimation, except in the case of excellent
observing conditions. When the low wind effect (LWE) is strong, as in the sphere2 data set, we observe a small
bias in the estimated astrometry for the injection located on the diffraction patterns due to the LWE; with the
exception of the one injection ’c’ located in the middle of a diffraction pattern. Overall, the PCA-ASDI+NEGFC
technique provides excellent results: the ground-truth falls within the 1-σ uncertainties for about 50% of the
injections, and always within the 3-σ uncertainties except for 2 injections (sphere2 data set affected by LWE). The
astrometry estimated for the 21 injected planetary signals includes the ground truth within the 5-σ uncertainties.
In addition, the estimated astrometry is always within one resolution element from the ground-truth.



Table 1. Results of the baseline method (PCA-ASDI+NEGFC) on the four GPI data sets, for each injection. The color of
the data set ID (first column) indicates the observing conditions as good (green), medium (orange) and bad (red). See the
website for more details on the data. The Injection column corresponds to the injections as labeled in the figures all along
this paper. For each injected planetary signal, SNRbsl, δbsl, and θbsl, are respectively the signal-to-noise ratio, the angular
separation, and the position angle estimated with the baseline method. The Location column indicates qualitatively where
the injection is placed in the field of view. DGT

astro is the metric chosen for the astrometry (L2-norm distance between the
estimation and the ground-truth). DGT

photo is the metric chosen for the spectrophotometry (normalized L1-norm distance
between the estimation and the ground-truth.)

ID Injection SNRbsl δbsl [mas] θbsl [deg] Location DGT
astro DGT

photo

b 8.3 265.58± 0.11 94.28± 0.033 Coronagraph IWA 0.004 0.559
gpi1 c 5.5 486.75± 3.80 −154.17± 0.17 sitting in bright speckle 0.354 0.423

d 32.3 978.50± 0.52 132.22± 0.06 Satellite spot 0.053 0.023
b 17.0 436.66± 1.11 26.20± 0.06 AO dark-hole 0.099 0.067

gpi2
c 5.2 166.69± 4.18 −179.07± 1.65 Coronagraph IWA 0.609 0.209
b 10.0 284.32± 0.60 −63.24± 0.21 AO dark-hole, close 0.043 0.073

gpi3 c 4.9 144.89± 1.53 160.24± 0.92 Coronagraph IWA 0.138 0.18
d 47.7 793.40± 0.23 −168.57± 0.02 AO dark-hole, far 0.004 0.013
b 16.1 645.06± 0.23 12.95± 0.02 AO dark-hole 0.024 0.212

gpi4
c 4.2 151.22± 1.40 −153.84± 0.25 Coronagraphic IWA 0.134 3.003

Table 2. Results of the baseline method (PCA-ASDI+NEGFC) on the four SPHERE-IFS data sets, for each injection.
The sphere3 data set is taken under good observing conditions but the target star is faint. See description of Tab. 1.

ID Injection SNRbsl δbsl [mas] θbsl [deg] Location DGT
astro DGT

photo

b 4.8 428.47± 2.22 56.63± 0.09 AO dark-hole, far 0.0351 1.618
sphere1 c 7.7 144.34± 0.51 −18.59± 0.34 Coronagraph IWA 0.0504 0.028

d 11.7 185.91± 0.94 −149.43± 0.02 AO dark-hole, close 0.0503 0.023
b 4.6 137.17± 0.97 46.37± 0.01 Low Wind Effet, close 0.4398 1.01

sphere2 c 11.0 218.54± 0.80 −41.84± 0.42 Low Wind Effet, middle 0.0487 0.542
d 6.8 291.85± 0.79 −116.63± 0.09 Low Wind Effet, further 0.4801 0.411
b 3.2 161.59± 2.08 130.86± 1.47 Coronagraph IWA 0.0741 0.812

sphere3
c 7.0 456.35± 1.01 −79.78± 0.18 AO ring of fire 0.1083 4.282
b 6.5 235.62± 0.81 −21.08± 0.34 AO dark-hole close 0.1413 0.226

sphere4 c 2.0 430.10± 0.32 119.28± 0.08 AO dark-hole far 0.0130 > 1000
d 5.9 162.39± 2.03 −129.55± 0.10 Coronagraph IWA 0.2661 8.549

3.2 Astrometry: results as a function of the submitted algorithms

The results for the baseline method and the four submitted methods are presented in Tab. 3 (GPI datasets) and
Tab. 4 (SPHERE-IFS datasets). For each dataset and injection, we show the chosen metric6 as the euclidean
distance between the estimation and the ground-truth. The last column averages the results over all injections
to show an overall quantity for each method. A graphical view of the results is presented in Fig. 5 and Fig. 6
for the GPI and SPHERE-IFS data respectively.

The presented numbers and appendix figures lead to the following conclusions:
-Overall, higher SNR lead to a better estimation of the position, as expected;
-Apart of ANDROMEDA, the estimations are rarely off by more than one resolution element;
-Observing conditions do not seem to be the major factor in the accuracy of the position estimation. Instead the
localisation seem to be the leading factor. Indeed, the proximity to any bright feature due to a diffraction effect
(such as the AO-correction ring, satellite spots, apodized-Lyot coronagraph inner-working angle, low wind effect
or so) varying with the wavelength might affect the overall estimated position of the injection by distorting its
flux distribution depending on the spectral channel.



Table 3. Astrometry results on the four GPI data: euclidean distance between the estimated position and the ground-
truth (both in Cartesian coordinates) for each injection within each data set. For the baseline method and the four
submitted methods, the metric is shown for (i) each injection, (ii) averaged for each data set (bold values), and (iii)
averaged on the four GPI data sets (green bold values).

Method
gpi1 gpi2 gpi3 gpi4

Average
b c d b c b c d b c

Baseline
0.004 0.354 0.053 0.099 0.609 0.043 0.138 0.004 0.024 0.134

0.137 0.354 0.062 0.079
0.146

RSM
0.453 0.779 0.053 0.127 0.534 0.049 0.727 0.119 0.126 0.324

0.428 0.33 0.298 0.225
0.329

pyKLIP
0.088 0.1 0.035 0.018 0.302 0.137 0.325 0.169 0.176 1.05

0.074 0.16 0.21 0.613
0.24

AMAT
0.16 0.268 0.079 0.102 0.69 0.275 0.175 0.03 0.075 0.131

0.169 0.396 0.16 0.103
0.198

ANDRO
3.928 2.563 4.387 5.28 4.393 8.827 6.569 4.617 1.389 5.819

3.626 4.837 6.671 3.604
4.777

Table 4. Astrometry results on the four SPHERE-IFS data: euclidean distance between the estimated position and the
ground-truth (both in Cartesian coordinates) for each injection within each data set. For the baseline method and the
four submitted methods, the metric is shown for (i) each injection, (ii) averaged for each data set (bold values), and (iii)
averaged on the four SPHERE-IFS data sets (green bold values).

Method
sphere1 sphere2 sphere3 sphere4

Average
b c d b c d b c b c d

Baseline
0.035 0.05 0.05 0.44 0.049 0.48 0.074 0.108 0.141 0.013 0.266

0.045 0.323 0.091 0.14
0.155

RSM
0.343 0.191 0.128 0.828 0.297 0.297 0.254 1.835 0.185 0.036 0.638

0.221 0.474 1.045 0.286
0.457

pyKLIP
0.184 0.071 0.293 0.38 0.23 0.554 0.231 0.054 0.092 0.068 0.052

0.183 0.388 0.142 0.071
0.201

AMAT
0.223 0.58 0.037 0.506 0.226 0.325 0.362 0.01 0.085 0.109 0.238

0.28 0.353 0.186 0.144
0.246

ANDRO
2.292 3.236 2.746 1.102 0.871 3.394 5.103 2.07 2.702 5.389 6.166

2.758 1.789 3.587 4.752
3.188

-On the contrary, even at low SNR, but at a favorable location (in the AO-corrected area, at large separation
from the star), the estimations are very accurate (e.g. sphere4, injection ’c’).
-We note here the specific case of strong low wind effect in the sphere2 data set. The inner (’b’) and outer (’d’)
injections, both sitting on an intense spider diffraction pattern, are not as well estimated as the other injection
(’c’) although located right on a spider diffraction pattern. The better estimation for the latter may also be
accounted for a higher SNR.

In terms of methods, most trends are similar from one injection to another and from one data set to another
(at a few exceptions). Overall, PCA-SADI+NEGFC, AMAT, RSM and pyKLIP-FM all succeed in retrieving the
injection position with a very good accuracy, usually within one resolution element. Only the classical version
of ANDROMEDA, fitting a 2-D Gaussian at the location of a detection in the SNR map, shows inaccurate
astrometry estimation often exceeding a few pixels.



4. RESULTS: SPECTROPHOTOMETRY

As a reminder, for the spectro-photometry estimation of the Exoplanet Imaging Data Challenge second phase, we
asked the participants to provide with (1) the estimated contrast of each injected signal at each wavelength, (2)
optionally the corresponding 1σ uncertainties of the estimations, and (3) optionally the corresponding posterior
distribution used to estimate the contrast and its uncertainties. As for the metric used for the ranking of the
submitted results, the EIDC phase 2 working group decided to compute the normalized absolute distance (in
the sense of the L1-norm) between the estimated value and the ground truth value for each spectral channel
separately. Normalizing the absolute distance by the ground-truth contrast ensures that low-contrast signals do
not penalize smaller true contrasts in the averaged score. More details about the data, submission process and
metrics for comparison and ranking can be found in our previous SPIE publication Cantalloube et al., 2022.24

4.1 Spectro-photometry: baseline results as a function of the dataset

As a first qualitative interpretation, we compare the spectro-photometry estimated by the baseline PCA-
SADI+NEGFC algorithm in each data set. The results on the GPI images are shown in Fig. 3 and those
on the SPHERE-IFS images are shown in Fig. 4. On the figure we show on the left the actual position of the
injections overlaid in the first coronagraphic image of the cube and on the right the extracted spectra for each
injection (2 to 3 injection per dataset) including the 3σ errorbars compared to the ground truth (dark solid
line), as well as the residuals between the extracted spectra and the corresponding ground-truth (shaded areas
represent the corresponding 3σ uncertainties). Quantitative results, including the comparison metric used, are
presented in Tab. 1 and Tab. 2 for the GPI and SPHERE-IFS data respectively.

Overall, there are a few singular outliers at some random wavelength of the estimated spectrum (probably due
to some convergence problems in the NEGFC method). Seemingly, there is no systematic wavelength affected by
this problem. Regardless of these outliers, the spectro-photometric estimations always include the ground-truth
within 5σ. Uncertainties are matching the spectrum depth: lower contrast yield larger uncertainties, as expected
(clearly visible in e.g. companion ’c’ of data gpi1, gpi3 and sphere1 ).

Globally, the further the injected companion, the better its spectro-photometric estimation. Higher SNR
yield better estimations. Equivalently, injections at lower contrast are better estimated (see e.g. sphere1 ’b’
and gpi1 ’c’, both having a very high contrast, under exquisite observing conditions and located right in the
AO-corrected zone). In general, the structure of the spectrum is correctly retrieved.

There are two notable exceptions to these conclusions, due to poor observation conditions. Low-wind effect
(LWE) is present in the sphere2 data set, in which we placed three injections on top of the characteristics spider
diffraction peaks. As a result, the three corresponding spectra are underestimated (lower than the ground-truth):
the presence of low-wind effect biases the spectrum estimation. Wind-driven halo (WDH) is present in the gpi2
and the sphere4 data set and we placed injections gpi2 ’b’ and sphere4 ’d’ within the characteristic butterfly
shape. The estimated spectrum of gpi2 ’b’ (located beyond 600mas), does not seem to be much affected, but
sphere4 ’d’ estimated spectrum is overestimated despite a relatively good SNR: the presence of wind-driven halo
seems to affect close-in companions, but this needs to be verified in a more systematic fashion to be confirmed.

4.2 Spectro-photometry: results as a function of the submitted algorithms

The results for the baseline method and the three submitted methods are presented in Tab. 5 (GPI datasets) and
Tab. 6 (SPHERE-IFS datasets). For each dataset and injection, we show the chosen metric6 as the normalized
L1-norm distance between the estimation to the ground-truth. The last column averages the results for each
injection to present an overall quantity for each algorithm. A graphical view of the results is presented in Fig. 7
and Fig. 8 for the GPI and SPHERE-IFS data respectively.

On average over all the injections, at all wavelength and for all the data set, it appears that PCA-NEGFC
and pyKLIP-FM are better at retrieving the spectro-photometry, followed closely by AMAT, then RSM. These
trends remain the same with various observing conditions. For the GPI data set, all methods give metrics below
one but RSM and PCA-NEGFC for the closest companion of the gpi4 data set (under bad observing conditions)
showing a SNR below 5. For the SPHERE-IFS data set, the very high values obtained for sphere4 ’c’ are due to
a very low SNR of the injection (less than 2 for the baseline).



However, when we look at the detailed extractions shown on Fig. 7 and Fig. 8 (for GPI and SPHERE-
IFS respectively), we may notice a few additional effects hidden in the averaged metric. Some algorithms are
good for faint planets (e.g. pyKLIP and AMAT), but suffer from significant biases when it comes to relatively
bright planets, and reversely the baseline can yield significant outliers for faint planets but is very reliable for
bright planets. The adopted procedure for the PCA-NEGFC (baseline), which selects the number of principal
components that optimize the SNR may be prone to overestimating the flux in some channels, by including a
residual speckle signal. pyKLIP-FM seems to overestimate the flux at lower contrast values (bright planets):
the oversubtraction may not be well estimated for channels where the companion is bright. In general the
structure of the extracted spectra appear much smoother compared to e. g. the baseline. AMAT is relatively
good in general, but slightly underestimates the flux, in particular under good observation conditions and/or
for bright planets. RSM is still good on average but suffers from many outliers and the spectrum structure
is jagged. Note that the results concerning pyKLIP-FM and VIP/PCA-NEGFC are similar to the conclusions
presented in Nasedkin et al.27 (2023) for pyKLIP-FM vs Pynpoint/PCA-NEGFC.

In the specific case of low-wind effect (sphere2 data set), all algorithm are underestimating the spectra
mainly at larger wavelengths. Only RSM (green lines) and AMAT (blue lines) are estimating correctly at short
wavelengths for only one or two in three injections.

Table 5. Spectro-photometry results on the four GPI data set: absolute distance between the estimated photometry
at each spectral channel and the corresponding ground-truth for each injection within each data set, normalized by the
ground-truth. For the baseline method and the four submitted methods, the metric is shown for (i) each injection, (ii)
averaged over each injection (bold values), and (iii) averaged on the four GPI data sets (green bold values).

Method
gpi1 gpi2 gpi3 gpi4

Median
b c d b c b c d b c

Baseline
0.559 0.423 0.023 0.067 0.209 0.073 0.18 0.013 0.212 3.003

0.335 0.138 0.089 1.607
0.237

RSM
0.822 0.307 0.077 0.116 0.474 0.091 0.213 0.068 0.094 3.456

0.402 0.295 0.124 1.775
0.349

pyKLIP
0.251 0.033 0.226 0.449 0.204 0.34 0.183 0.308 0.25 0.204

0.17 0.327 0.277 0.227
0.252

AMAT
0.663 0.11 0.213 0.165 0.46 0.085 0.276 0.026 0.122 0.105

0.329 0.312 0.129 0.114
0.221

Table 6. Spectro-photometry results on the four SPHERE-IFS data: absolute distance between the estimated photometry
at each spectral channel and the corresponding ground-truth for each injection within each data set, normalized by the
ground-truth. For the baseline method and the four submitted methods, the metric is shown for (i) each injection, (ii)
averaged over each injection (bold values), and (iii) averaged on the four GPI data sets (green bold values).

Method
sphere1 sphere2 sphere3 sphere4

Median
b c d b c d b c b c d

Baseline
1.618 0.028 0.023 1.01 0.542 0.411 0.812 4.282 0.226 29981.619 8.549

0.556 0.654 2.547 > 1000
1.601

RSM
1.779 0.079 0.053 6.323 0.104 0.3 0.361 14.49 0.272 1065.896 0.408

0.637 2.242 7.426 355.525
4.834

pyKLIP
0.199 0.239 0.099 0.572 0.599 0.524 0.356 6.08 0.044 622.754 0.114

0.179 0.565 3.218 207.637
1.891

AMAT
1.476 0.029 0.118 0.175 0.242 0.294 0.273 8.568 0.139 707.266 0.123

0.541 0.237 4.42 235.843
2.481



5. CONCLUSION & LEGACY

The Exoplanet Imaging Data Challenge is a community-led project that aims at offering tools for a better
understanding of the current capacities of the various high-contrast imaging post-processing techniques, and
to foster developments of new methods. To that end, we offer several resources and an extensive bibliography
gathered on our website. As part of the data challenge, we provide with a curated set of data that are accessible
on a Zenodo repository, as well as a set of assorted metrics to gauge the results of a given algorithm that are
available on a Github repository. In addition, to ease the comparison to other methods, we wrote a jupyter
notebook that processes any given input and provides the comparison graphics and ranking with respect to the
results already published in the 1st phase of the data challenge (Cantalloube et al.,5 2020). This tool can be
found at: https://github.com/exoplanet-imaging-challenge/phase2/tree/main/eidc2.

Since its creation in 2019, several publications have used the data set and metric set to support the results of
new post-processing methods. After several years of running this data challenge, we have gathered some lessons
learned to improve the engagement of participants. This lack of engagement turns out to be the major breakpoint
preventing us from collecting a sufficient number of inputs in order to compile a consistent comparative conclusion
to communicate the community. One important piece of advice is to organize a special hands-on session to help
with the basics of the data format. Another idea we tried is to involve students during lab sessions. We also
reached out to networks that run data challenges in other scientific fields to get feedback and ensure a smooth
management of the EIDC.

To enhance this legacy prospect, in the future we would like to gather more data from the state-of-the-art high-
contrast imaging instruments, such as Subaru/CHARIS, Magellan-Clay/MagAO-X, VLT/NEAR, LBT/SHARK-
NIR and LBT/SHARK-VIS, under various observing conditions. These data would come with a set of tools to
inject planetary signals and circumstellar disks, as well as metrics for comparison. As a community project
based on volunteer work, we are doing our best to facilitate the use of the EIDC resources. For any suggestion
or specific request, please contact us at exoimg.datachallenge@gmail.com.

APPENDIX A. GALLERY: BASELINE RESULTS

In this appendix, we first show the results of the astrometric estimations using the baseline method (PCA-
SADI+NEGFC) on the four GPI datasets (Fig. 1) and on the four SPHERE-IFS datasets (Fig. 2). We then
show the results of the spectro-photometric estimations using the baseline method (PCA-SADI+NEGFC) on
the four GPI datasets (Fig. 3) and on the four SPHERE-IFS datasets (Fig. 4).

APPENDIX B. GALLERY: RESULTS ASTROMETRY

In this appendix, we show the results of the astrometric estimations using the baseline method (red), as well as
the four received results using pyKLIP-FM (gold), RSM (green), AMAT (blue), and ANDROMEDA (purple).
For each injection, the ground-truth is represented in the middle (black diamond), where the horizontal and
vertical black dashed lines intersect. The two centered grey shaded areas represent the size of a half resolution
element (0.5λ/D) at the shortest and largest wavelengths λ of the spectro-imager, whose effective diameter is
D. For the baseline method (in red), the size of the symbol corresponds to the 1-sigma uncertainties (averaged
in x- and y- directions) and the shaded area to the 3-sigma uncertainties. To ease the reading, we added on top
of each plots the SNR of the injected planetary signal obtained with the baseline as well as the separation of the
considered injection. The four GPI datasets are shown in Fig. 5 and the four SPHERE-IFS datasets in Fig. 6.

APPENDIX C. GALLERY: RESULTS SPECTRO-PHOTOMETRY

In this appendix, we show the results of the spectro-photometric estimations using the baseline method (red), as
well as for the three submitted results with pyKLIP-FM (gold), RSM (green), and AMAT (blue). The top panel
show the retrieved spectra by each method, with the ground-truth shown as a black solid line. The bottom panel
shows the residuals (difference) between the ground-truth and the estimated spectra. The spectra corresponding
to the four GPI datasets are shown in Fig. 7 and those of the four SPHERE-IFS datasets are shown in Fig. 8.

https://github.com/exoplanet-imaging-challenge/phase2/tree/main/eidc2
exoimg.datachallenge@gmail.com
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Figure 1. Astrometry: GPI data baseline results for each injection. On each image, the location of the injected synthetic
planetary signals are shown with the orange, red and purple circles. From left to right: Temporal median image at the
shortest wavelength (left); residual map after applying a PCA-SADI post-processing, as implemented in the VIP package
and using the first 10 principal components to build the reference image for subtraction (middle-left); corresponding SNR
map, as implemented in the VIP package (middle-right); and astrometry estimations for each injections, using the baseline
NEGFC technique (right). The latter highlights the relative astrometry errors (in pixels) for each injection (color coded)
compared to the ground-truth shown as a black diamond in the center of the image. The shaded area correspond to the
1-sigma uncertainty on the astrometry estimation. From top to bottom: data set gpi1, gpi2, gpi3, and gpi4.
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Figure 2. Astrometry: SPHERE-IFS data baseline results for each injection. On each image, the location of the injected
synthetic planetary signals are shown with the orange, red and purple circles. From left to right: Temporal median
image at the shortest wavelength (left); residual map after applying a PCA-SADI post-processing, as implemented in
the VIP package and using the first 10 principal components to build the reference image for subtraction (middle-
left); corresponding SNR map, as implemented in the VIP package (middle-right); and astrometry estimations for each
injections, using the baseline NEGFC technique (right). The latter highlights the relative astrometry errors (in pixels)
for each injection (color coded) compared to the ground-truth shown as a black diamond in the center of the image. The
shaded area correspond to the 1-sigma uncertainty on the astrometry estimation. From top to bottom: data set sphere1,
sphere2, sphere3, and sphere4.
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Figure 3. Spectro-photometry: baseline results for each injection in the GPI data sets. From left to right: Temporal
median image at the shortest wavelength with the position of the injected planetary signals (colored circles); Corresponding
estimated spectrum with 3σ uncertainties (colored lines), compared to the injected spectrum (dark line). The bottom
panel shows the residuals between the estimated spectra and the ground-truth (the shaded area corresponds to the 3σ
uncertainties on the estimations). From top to bottom: data set gpi1, gpi2, gpi3, and gpi4.
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Figure 4. Spectro-photometry: baseline results for each injection in the SPHERE-IFS data sets. From left to right:
Temporal median image at the shortest wavelength with the position of the injected planetary signals (colored circles);
Corresponding estimated spectrum with 3σ uncertainties (colored lines), compared to the injected spectrum (dark line).
The bottom panel shows the residuals between the estimated spectra and the ground-truth (the shaded area corresponds
to the 3σ uncertainties on the estimations). From top to bottom: data set sphere1, sphere2, sphere3, and sphere4.
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Figure 5. GPI relative astrometry errors for each injection (in pixels). The ground-truth is shown as a black diamond in
the center of the grid. From top to bottom: data set gpi1, gpi2, gpi3, and gpi4. The platescale of GPI is 14.16 mas/px.
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Figure 6. SPHERE-IFS relative astrometry errors for each injection (in pixels). The ground-truth is shown at the center.
From top to bottom: data set sphere1, sphere2, sphere3, and sphere4. The platescale of SPHERE-IFS is 7.46 mas/px.



Figure 7. GPI estimated spectra for each injected planetary signal (in contrast to the star). The ground-truth is shown
as a black solid line. The top panel shows the estimated spectra by each method, while the bottom panel highlights
the difference between the ground-truth spectrum and the estimated spectra. For reference, the spectra extracted with
the baseline method are shown with red solid lines (PCA-SADI with NEGFC). The spectra extracted with the three
submissions are shown in gold (pyKLIP-FM), green (RSM), and blue (AMAT). From top to bottom: data set gpi1, gpi2,
gpi3, and gpi4. The wavelength range of GPI is [1.495− 1.797]µm (around the H-band), shared in 37 spectral channels.



Figure 8. SPHERE-IFS estimated spectra for each injected planetary signal (in contrast to the star). The ground-truth is
shown as a black solid line. The top panel shows the estimated spectra by each method, while the bottom panel highlights
the difference between the ground-truth spectrum and the estimated spectra. For reference, the spectra extracted with
the baseline method are shown with red solid lines (PCA-SADI with NEGFC). The spectra extracted with the three
submissions are shown in gold (pyKLIP-FM), green (RSM), and blue (AMAT). From top to bottom: data set sphere1,
sphere2, sphere3, and sphere4. The wavelength range of SPHERE-IFS is [0.957 − 1.329]µm (YJ-bands), shared in 39
spectral channels.
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Möller-Nilsson, O., Moulin, T., Moutou, C., Origné, A., Parisot, J., Pavlov, A., Perret, D., Pragt, J., Puget,
P., Rabou, P., Ramos, J., Reess, J. M., Rigal, F., Rochat, S., Roelfsema, R., Rousset, G., Roux, A., Saisse,
M., Salasnich, B., Santambrogio, E., Scuderi, S., Segransan, D., Sevin, A., Siebenmorgen, R., Soenke, C.,
Stadler, E., Suarez, M., Tiphène, D., Turatto, M., Udry, S., Vakili, F., Waters, L. B. F. M., Weber, L.,
Wildi, F., Zins, G., and Zurlo, A., “SPHERE: the exoplanet imager for the Very Large Telescope,” 631,
A155 (Nov 2019).

[27] Nasedkin, E., Mollière, P., Wang, J., Cantalloube, F., Kreidberg, L., Pueyo, L., Stolker, T., and Vigan,
A., “Impacts of high-contrast image processing on atmospheric retrievals,” Astronomy & Astrophysics 678,
A41 (2023).


	INTRODUCTION
	Exoplanet characterization with high-contrast imaging
	Reminder on ADI post-processing techniques
	Characterization methods with ADI post-processing techniques

	Results: Astrometry
	Astrometry: baseline results as a function of the dataset
	Astrometry: results as a function of the submitted algorithms

	Results: Spectrophotometry
	Spectro-photometry: baseline results as a function of the dataset
	Spectro-photometry: results as a function of the submitted algorithms

	CONCLUSION & LEGACY
	Gallery: Baseline results
	Gallery: Results astrometry
	Gallery: Results spectro-photometry

