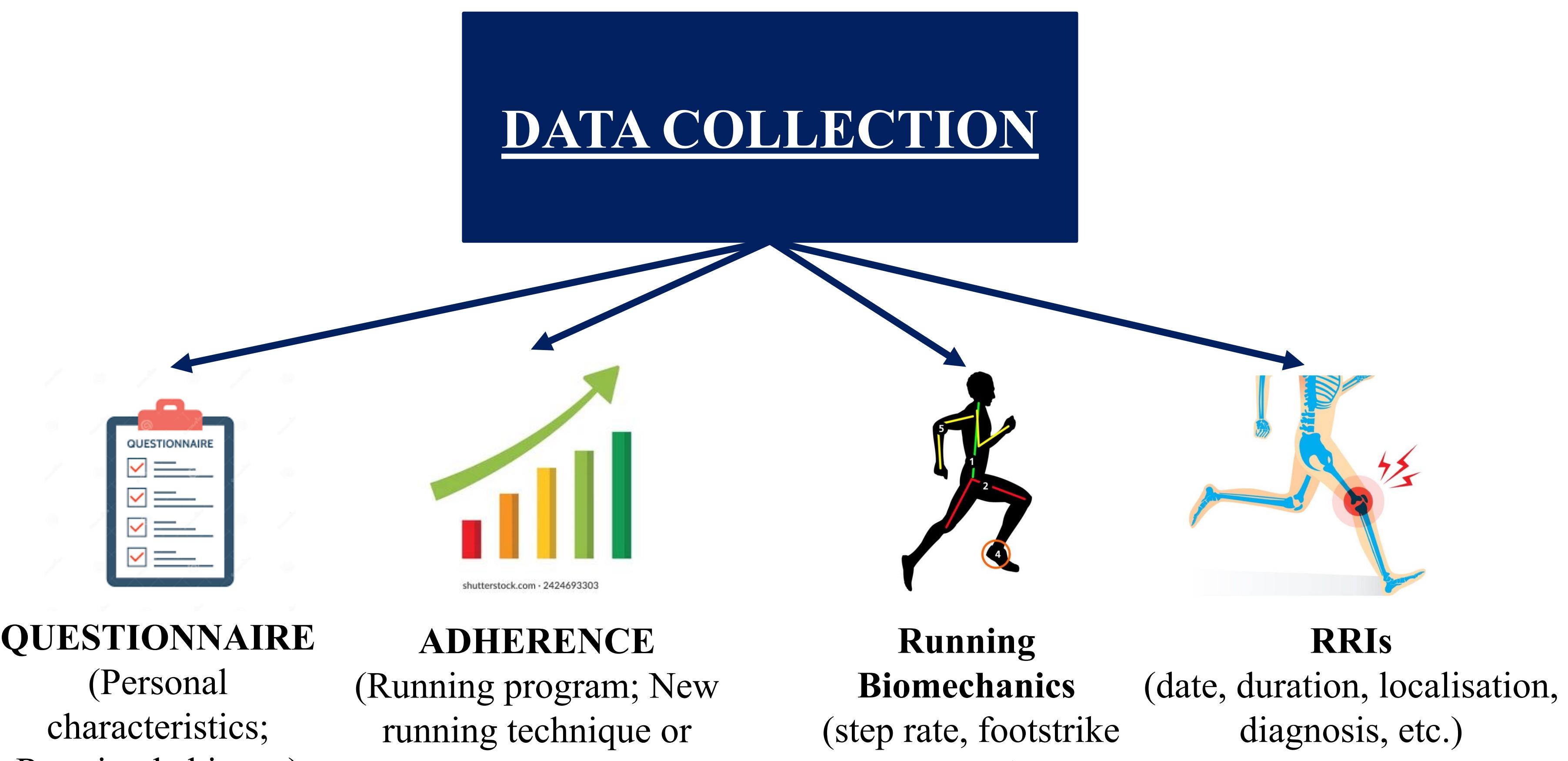
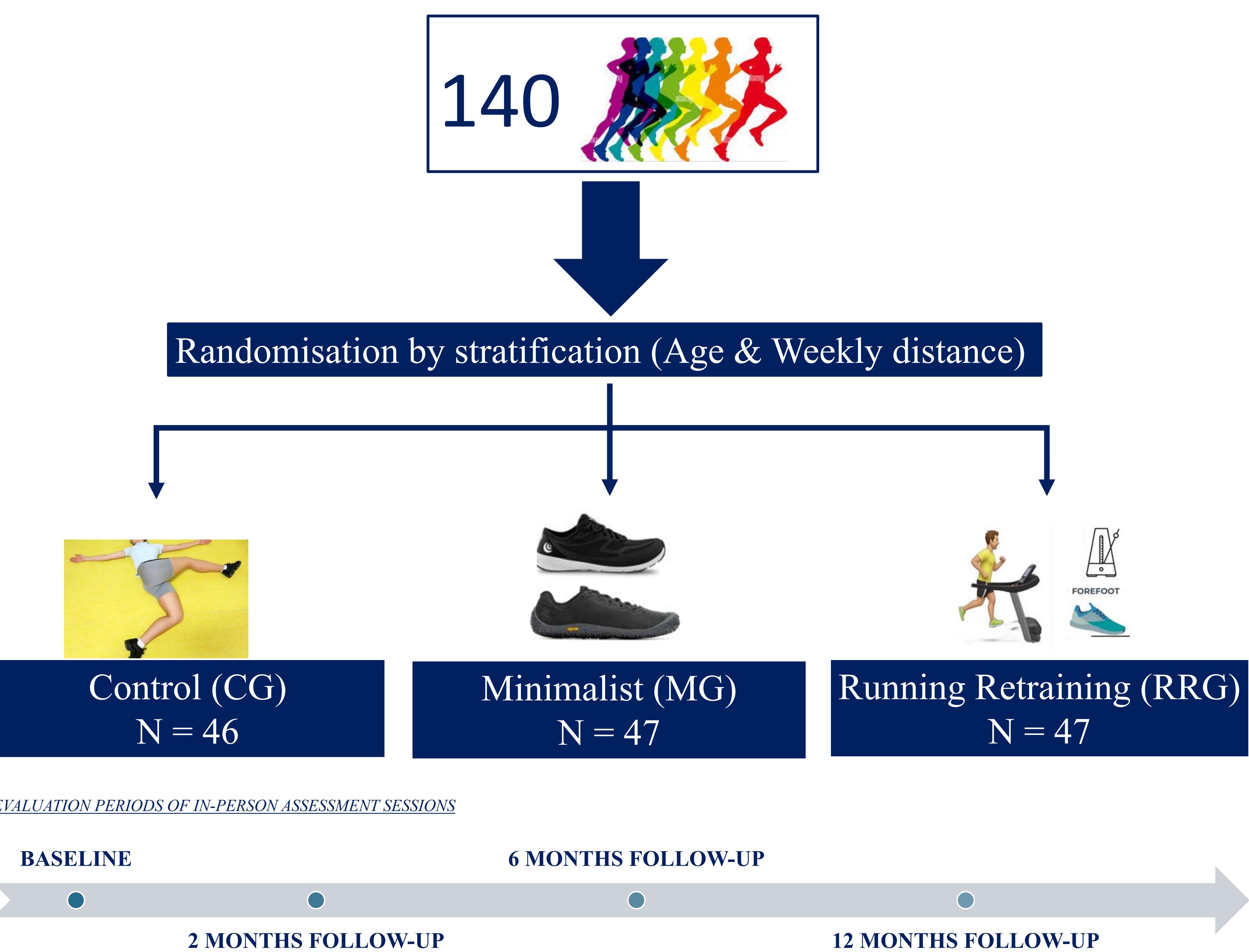


# EFFECT OF TWO DISTINCT RUNNING RETRAINING INTERVENTIONS ON RUNNING-RELATED INJURIES IN RECREATIONAL ENDURANCE RUNNERS: A THREE-ARM RANDOMISED CONTROLLED TRIAL WITH A ONE-YEAR FOLLOW-UP

ABRAN Guillaume<sup>1,2</sup>, DELVAUX François<sup>1,2</sup>, CROISIER Jean-Louis<sup>1,2</sup>, SCHWARTZ Cédric<sup>1</sup>.

<sup>1</sup>LAM – Motion Lab, Liège, Belgium. E-mail: guillaume.abran@uliege.be.



<sup>2</sup>Department of Physical Activity and Rehabilitation Sciences, University of Liege, Liege, Belgium.



## INTRODUCTION

Many experts and athletics coaches support running with a forefoot striking pattern, greater cadence, and minimalist footwear to reduce the risk of running-related injuries (RRIs) [1][2]. The objective of this study was to explore the effect of a running retraining intervention or transition to minimalist footwear on RRIs incidence.

## METHODS



**RRIs definition:** Running-related (training or competition) musculoskeletal pain in the lower limbs or in the back that causes a restriction on or stoppage of running (distance, speed, duration or training) for at least seven days or three consecutive scheduled training sessions, or that requires the runner to consult a physician or other health professional [3].

**Two types of statistical analyses: Intention-to-treat analysis** (respect the

randomisation process but does not consider adherence to the intervention) & **As-treated analysis**

(does not respect the randomisation process but consider the adherence to the intervention)

## RESULTS

At baseline, no difference was found between groups for age ( $P = .72$ ,  $\eta^2 = 0.005$ ), sex distribution ( $P = .33$ ,  $X^2 = 2.18$ ), running experience ( $P = .94$ ,  $\eta^2 = 8.13 \times 10^{-4}$ ) and comfort speed ( $P = .28$ ,  $\eta^2 = 0.018$ ).

No difference was found between group across the four evaluation periods for BMI ( $P = .15$ ,  $\eta^2 = 7.12 \times 10^{-4}$ ), weekly distance ( $P = .14$ ,  $\eta^2 = 0.003$ ) and running volume ( $P = .28$ ,  $\eta^2 = 0.004$ ).

Table 1: Cox Regression Results for the Primary Outcome According to the As-Treated and Intention-to-treat analysis<sup>a</sup>.

| Covariates                        | Model 1 (Unadjusted) |                  |                  | Model 2 (Adjusted)          |             |     |
|-----------------------------------|----------------------|------------------|------------------|-----------------------------|-------------|-----|
|                                   | HR (95% CI)          | P                | AIC <sup>f</sup> | HR (95% CI)                 | P           | AIC |
| All injuries <sup>b</sup>         | MG                   | 0.70 (0.35-1.38) | 0.31             | 0.69 (0.34-1.37)            | 0.29        |     |
| Interventional group <sup>c</sup> | RRG                  | 0.57 (0.30-1.06) | 0.07             | 0.44 (0.21-0.91)            | <b>0.02</b> |     |
| Age                               | Not included         | -                | -                | 0.97 (0.94-1.00)            | 0.11        |     |
| BMI                               | Not included         | -                | -                | 1.08 (0.96-1.20)            | 0.16        |     |
| Distance <sup>d</sup>             | Not included         | -                | -                | 0.99 (0.98-1.01)            | 0.91        |     |
| Likelihood ratio test             |                      |                  | 0.2              |                             |             | 0.2 |
| AS-TREATED ANALYSIS               |                      |                  | 353.5            | INTENTION-TO-TREAT ANALYSIS |             |     |
| All injuries <sup>e</sup>         | MG                   | 0.74 (0.37-1.45) | 0.38             | 0.69 (0.34-1.38)            | 0.30        |     |
| Interventional group              | RRG                  | 0.56 (0.29-1.08) | 0.08             | 0.44 (0.21-0.91)            | <b>0.02</b> |     |
| Age                               | Not included         | -                | -                | 0.97 (0.94-1.00)            | 0.11        |     |
| BMI                               | Not included         | -                | -                | 1.08 (0.96-1.21)            | 0.16        |     |
| Distance                          | Not included         | -                | -                | 0.99 (0.98-1.01)            | 0.91        |     |
| Likelihood ratio test             |                      |                  | 0.2              |                             |             | 0.3 |
| 353.8                             |                      |                  | 356.5            |                             |             |     |

<sup>a</sup> = Model 1 included only the group as a predictor, model 2 included all predictors. HR values < 1 indicate a lower injury (hazard) ratio. 95% CIs (lower-upper bound). MG = minimalist group; RRG = Running retraining group; HR = hazard ratio; P = p-value;  
<sup>b</sup> = No. of injuries = 57; No. of participants in the analysis = 129.  
<sup>c</sup> = Control group is reference.  
<sup>d</sup> = Mean of weekly distance reported by runners at each evaluation session attended.  
<sup>e</sup> = No. of injuries = 57; No. of participants in the analysis = 140  
<sup>f</sup> = Akaike Information Criterion.

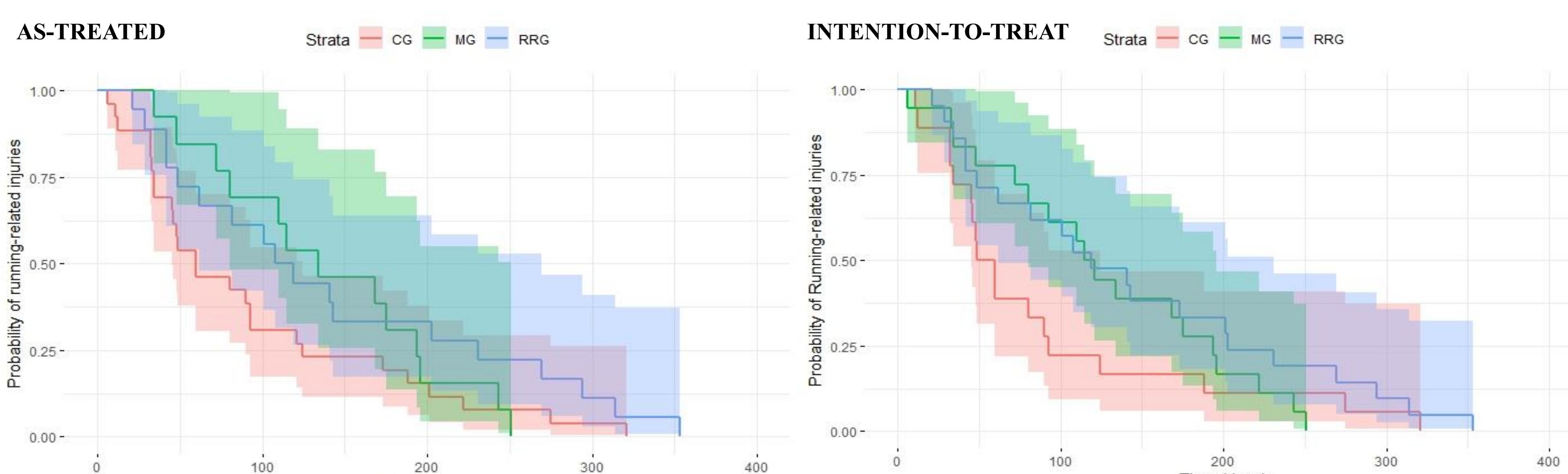



Figure 1: Kaplan-Meier curves show the probability of running-related injuries in the CG, MG and RRG as a function of time in days with the as-treated (left) and intention-to-treat (right) analysis.

The Fisher's exact test also showed that the number of overuse foot RRI was different between groups (CG (N = 5) vs MG (N = 8) vs RRG (N = 12);  $P = .017$ ) in as-treated analysis. Post-hoc analysis showed that a significant difference exists between CG and RRG ( $P = .018$ ).

## KEY FINDINGS

- Transition to minimalist footwear or adoption of a softer running technique do not decrease the incidence of RRIs.
- Transition to a softer running technique increases the risk of overuse foot RRIs.
- Next step: Determine whether foot-ankle characteristics are risk factors for transitioning to minimalist footwear or running retraining.

### REFERENCES

- [1] Abran G, Delvaux F, Schwartz C, et al. Current perception and practice of athletics coaches about the modification of footstrike pattern in endurance runners: a survey. *Int J Sports Sci Coach*. 2022;17(6):1345-1353. doi:10.1177/17479541221108089
- [2] Davis, I. S., Chen, T. L., & Wearing, S. C. (2022). Reversing the Mismatch With Footstrike to Reduce Running Injuries. *Frontiers in sports and active living*, 4, 794005. <https://doi.org/10.3389/fspor.2022.794005>
- [3] Yamato, T. P., Saragiotto, B. T., & Lopes, A. D. (2015). A consensus definition of running-related injury in recreational runners: a modified Delphi approach. *The Journal of orthopaedic and sports physical therapy*, 45(5), 375-380. <https://doi.org/10.2519/jospt.2015.5741>

### Contact:

Guillaume.abran@uliege.be

@abran\_guillaume

This study is a part of my PhD thesis titled: "Running retraining intervention: when how & for whom ?"