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Abstract

In this paper, we introduce two complementary approaches for the prediction of AC losses in large-

scale low-temperature superconducting (LTS) magnets subjected to slow ramp rates. These methods

account for the temperature rise within the LTS coil and its impact on AC losses. The first approach is

multi-scale and relies on the coupling between a macroscopic homogenized model of the LTS coil and

a mesoscopic model of a single filament for loss prediction. The second approach is semi-analytical

and is based on analytical approximations for the hysteresis losses, which are validated against the

single filament model. The second approach offers a faster computation suitable for initial design

considerations, while the multi-scale method is shown to take into account more complex phenomena

for the AC loss evaluation at the filament scale. We apply both methods to the prediction of AC

losses generated in the LTS coil inside the IBA S2C2 synchrocyclotron during its ramp-up procedure.

Additionally, we discuss the convergence properties of the multi-scale approach and demonstrate the

good agreement between the numerical results and experimental data.
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I. INTRODUCTION

In transient situations such as a magnet ramp-up, superconducting (SC) wires experience heat

generation due to the time variation of the local magnetic field. Predicting AC losses and the

corresponding temperature rise is crucial for the design of SC magnets and their cryogenic

systems.

The Low-Temperature Superconducting (LTS) technology based on NbTi and Nb3Sn is widely

used as it is currently less expensive and more mature than the High-Temperature Supercon-

ducting (HTS) technology. LTS represent the biggest share of the market for superconducting

magnets, as they are used in medical applications such as MRI and NMR systems [1]. With the

supply of liquid helium becoming a concern [2], the interest in AC loss reduction in LTS magnets

is growing. Innovations in medical applications are leaning towards dry magnets, which are based

on conduction cooling and are therefore more sensitive to AC losses than magnets operating

directly in liquid helium [3]. LTS magnets also find applications beyond medical settings,

including the use of Nb3Sn in next-generation particle accelerators [4], [5], their deployment

in the ITER project [6], and their role in the development of hybrid superconducting magnets

[7].

In the past decade, the finite-element (FE) method has become the reference to compute

AC losses in superconducting devices [8], [9]. It constitutes a versatile tool for the magneto-

thermal modelling of superconductors, as it allows convenient coupling between electromagnetic

and thermal physics [10]. Nevertheless, the large-scale nature of superconducting magnets,

combined to the non-linear behaviour of superconductors, makes the computation of AC losses

demanding [11]. While domain decomposition methods [12] or parallel-in-time methods [13] can

help reduce the computational effort associated with 3D simulations, the brute-force simulation

of large-scale systems remains challenging as the corresponding computational resources are still

prohibitive on common desktops and workstations.

Currently, the prediction of AC losses in large-scale LTS magnets is thus mainly limited to

analytical approximations as found in [14], [15], [16]. Recent contributions, such as the helicoidal

transformation method [17] or the coupled axial and transverse currents (CATI) method [18],

aim to reduce the computational resources required to simulate LTS conductors. However, these

methods are not yet adapted to the description of large-scale LTS magnets.

By contrast, many modelling strategies have been introduced to further reduce the computa-
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tional load associated with the simulation of large-scale HTS systems. Homogenized models have

been proposed for both 2D [19] and 3D [20] simulations. Moreover, a multi-scale method has

been introduced in [21], [22] to simulate stacks of HTS tapes, which relies on two separate

models: the coil submodel and the single-tape submodel. The first submodel provides the

approximate background field to which the single tapes are subjected, while the second submodel

computes the local AC losses as well as the tape magnetic response to be taken into account at

the coil scale. An extensive description and comparison of these methods can be found in [23],

as they allow accurate predictions while significantly reducing computational resources.

Building upon some concepts initially introduced by the HTS modelling community, the

present study aims at providing a robust and flexible framework for the AC loss computation in

LTS magnets, while accounting for the corresponding temperature rise in the LTS coil. To this

end, this work presents both multi-scale and semi-analytical magneto-thermal FE methods that

allow the simulation of large-scale LTS magnets. While the described framework is general, the

methods are illustrated with magnets in medical cyclotrons for hadrontherapy, in which operating

conditions change over several hours. The multi-scale approach (MSA) relies on the coupling

between a macroscopic model of the LTS coil and a mesoscopic model of a single filament for

loss prediction. Conversely, the semi-analytical approach (SAA) relies exclusively on analytical

AC loss approximations. The two methods therefore provide complementary tools, with the SAA

being faster yet less refined than the MSA.

The paper is structured as follows: the numerical problem to be solved is described in

Section II. In Section III, analytical approximations for the losses in LTS magnets are reviewed

and adapted, which provide a first reference for the numerical results. The mesoscopic model of

a single filament is described in Section IV, in which its underlying assumptions are discussed as

well as its validity range. The analytical approximations introduced previously are compared to

the results obtained with the mesoscopic model. The principle of the proposed MSA is described

in Section V, followed by implementation details using the open-source software GetDP [24],

[25]. The SAA is next introduced in Section VI. Finally, both methods are applied to the ramp-up

of the S2C2 synchrocyclotron [26] in Section VII. The convergence of the MSA is discussed,

while its results are compared to predictions from the SAA as well as to experimental data.

Conclusions are given in Section VIII.
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Fig. 1. The C400 cyclotron and the inner structure of its superconducting coil, along with the median plane normal magnetic

flux density b [T] in nominal current conditions. The coil is cooled down by liquid helium (LHe) at 4.2 K. The inner structure

of the coil is not to scale: it contains more than 1300 composite wire-in-channel conductor turns with much smaller and more

closely arranged filaments. Yoke diameter: dy ≈ 7 m, filament diameter: df ≈ 50 µm.

II. DESCRIPTION OF THE MACROSCOPIC PROBLEM

As mentioned, the goal is to predict the AC losses occurring in large-scale LTS magnets. For the

sake of illustration, LTS coils placed within medical cyclotrons are considered in this paper, such

as the C400 [27] and the S2C2 developed by Ion Beam Applications (IBA). The C400, which

has been studied in [28] using a simplified version of the multi-scale approach, is depicted

in Fig. 1. Such coils are made of multifilamentary LTS conductors, with the SC filaments

having a transversal dimension much smaller than the size of the magnet. This is referred to

as the separation of scales illustrated in Fig. 1. The ferromagnetic yoke has a simplified three-

dimensional geometry with a planar symmetry in the median plane. The macroscopic structure

of the coil itself is assumed axisymmetric. The focus is set on the ramp-up of the magnet,

which is the increase from zero current to the nominal current required to accelerate ionized

particles. Typically, the ramp-up of medical cyclotrons lasts several hours (e.g. 2 h for the C400

magnet and 4 h for the S2C2 magnet). To account for the impact of temperature, a coupled

magneto-thermal FE problem is solved at the macroscopic scale of the magnet. The magnetic

and thermal domains of interest are denoted by ΩM,mag and ΩM,the, representing respectively the
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space occupied by the magnet (with its surrounding air) and the cold mass of the cyclotron, such

that ΩM,the ⊂ ΩM,mag. By symmetry, only the volume above the median plane of the magnet is

considered.

A. Magnetic Macroscopic Formulation

Maxwell’s equations are solved in the magnetoquasistatic approximation [29]:

curl eM = −∂tbM, curl hM = jM, and div bM = 0, (1)

with eM, bM, hM, jM the electric field (V/m), the magnetic flux density (T), the magnetic field

(A/m), and the current density (A/m2), respectively. The ·M subscript refers to the fields at the

macroscopic scale. The set of equations is closed with material laws: bM = µhM and jM = σeM,

with µ, σ the magnetic permeability (H/m) and the electrical conductivity (S/m), respectively.

The magnetic domain is composed of the conducting domain ΩM,c, in which σ ̸= 0, and its

complementary non-conducting domain ΩC
M,c = ΩM,mag \ ΩM,c.

In the present study, the magnetic response due to eddy currents in SC filaments is neglected

at the macroscopic scale. In the LTS coil, denoted by ΩM,s ⊂ ΩC
M,c, the current density is thus

assumed to be equal to the engineering current density jM = jeng. In this context, the macroscopic

problem only involves ferromagnetic materials and a modified vector potential a-formulation is

preferred for convergence issues [30]. The modified vector potential aM is the main unknown.

It is defined such that:

bM = curl aM in ΩM,mag, and eM = −∂taM in ΩM,c. (2)

In ΩC
M,c, the uniqueness of aM is ensured using the co-tree gauge [31].

The boundary of the magnetic domain is denoted by ΓM,mag = ∂ΩM,mag = ΓM,mag,e ∪ ΓM,mag,h.

A homogeneous essential boundary condition is applied at infinity: aM×n = 0 on ΓM,mag,e, with

n the outward pointing normal unit vector. An infinite shell transformation [32] is used to map

the unbounded domain to a numerical region of finite size. A homogeneous natural boundary

condition is applied on the median plane of the magnet: hM × n = 0 on ΓM,mag,h.

The magnetic vector potential is approximated using edge basis functions and belongs to the

space of square integrable functions with a square integrable curl in ΩM,mag, such that aM ∈
H(curl,ΩM,mag)×]0, Tsim], with Tsim the final simulation time. At the macroscopic scale, the
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magnetodynamic weak formulation reads:

From the initial solution aM(xM, t = 0) = 0, find aM ∈ H(curl,ΩM,mag)×]0, Tsim] s.t.,

(ν curl aM, curl a′
M)ΩM,mag + (σ ∂taM,a

′
M)ΩM,c

= (jeng, curl a′
M)ΩM,s , (3)

∀a′
M ∈ H(curl,ΩM,mag) with a′

M ×n = 0 on ΓM,mag,e, where (·, ·)Ω denotes the L2 inner product

over the domain Ω.

The time discretization of (3) is performed with the implicit Euler (IE) (or backward Euler)

method. As the reluctivity ν = µ−1 = ν(curl aM) is non-linear in the ferromagnetic yoke

ΩNL
M,mag ⊂ ΩM,mag, an iterative Newton-Raphson (NR) scheme is performed at each time step of

the macroscopic magnetic simulation. Outside of the yoke, the reluctivity is considered constant:

ν(xM) = 1/µ0 ∀xM ∈ ΩM,mag \ ΩNL
M,mag.

B. Thermal Macroscopic Formulation

In the thermal domain ΩM,the, the heat equation [33] is solved:

ρcp∂tTM + div q′′
M = q̄s, (4)

with TM, q′′
M and q̄s the temperature (K), the heat flux (W/m2) and the heat source (W/m3),

respectively. The heat flux is modelled using Fourier’s law:

q′′
M = −κ · grad TM. (5)

Material properties are the mass density ρ (kg/m3), the specific heat capacity cp (J/kg/K) and

the thermal conductivity κ (W/m/K). At the macroscopic scale, the thermal properties of the

composite LTS coil are homogenized using thermal resistances [33] as done in Appendix A. In

this context, the (anisotropic) equivalent thermal conductivity κ is a tensor.

The boundary of the thermal domain is denoted by ΓM,the and no essential (Dirichlet) boundary

conditions are assumed. Only natural (Neumann) boundary conditions are imposed: q′′
M · n = f̄(TM)

on ΓM,the, with f̄ representing one of the following boundary conditions:

f̄(TM) =



0 adiabatic surface,

q′′s imposed heat flux,

h(TM − T∞) convective heat transfer,

εRσR(T
4
M − T 4

R) radiative heat transfer,

(6)
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with h the convective heat transfer coefficient (W/m2/K), εR the emissivity of the surface, σR =

5.67× 10−8 W/m2/K4 the Stefan-Boltzmann constant, T∞ the cooling fluid temperature (K) and

TR the radiative environment temperature (K).

The temperature field is discretized using nodal Lagrange elements and belongs to the space

of square integrable functions in ΩM,the, such that TM ∈ H1(ΩM,the)×]0, Tsim]. At the macroscopic

scale, the thermal weak formulation reads:

From the initial solution TM(xM, t = 0), find TM ∈ H1(ΩM,the)×]0, Tsim] s.t.,

(ρcp∂tTM, T
′
M)ΩM,the + (κ · grad TM, grad T ′

M)ΩM,the

+ ⟨f̄(TM), T
′
M⟩ΓM,the = (q̄s, T

′
M)ΩM,the , (7)

∀T ′
M ∈ H1(ΩM,the), where ⟨·, ·⟩Γ denotes the L2 inner product over the domain boundary Γ.

The initial temperature distribution TM(xM, t = 0) is computed by solving (7) with ∂tTM = 0

and q̄s = 0. The time discretization of (7) is also performed with the IE method. As thermal

properties depend on temperature, an iterative fixed point scheme is performed at each time step

of the macroscopic thermal simulation.

C. Macroscopic Magneto-thermal Coupling

The coupling between magnetic and thermal subproblems is achieved through the heat source

term q̄s in (7) accounting for the losses. For the normal conducting parts of the cold mass, e.g.

aluminum, the heat source term is given by Joule losses:

q̄s = σ∥eM∥2 = σ∥∂taM∥2. (8)

The computation of the loss density q̄s in the LTS coil is described in Section V and Section VI.

The σ dependence on temperature is neglected in the normal conductors and the macroscopic

magnetodynamic subproblem (3) does not depend on the thermal one (7). Thus, a one-way cou-

pling scheme is considered, with the thermal subproblem being solved after the magnetodynamic

one.

III. ANALYTICAL APPROXIMATIONS FOR LOSSES IN MULTIFILAMENTARY LTS

CONDUCTORS

Multifilamentary LTS conductors, as the wire-in-channel cable depicted in Fig. 1, are composed

of a large number of SC filaments embedded inside a copper stabilizing matrix. In such wires, two
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Fig. 2. Expected distribution of the current density jm in a superconducting cylinder of radius Rf subjected to an uniform external

increasing transverse flux density be of fixed direction, both in the weak (left) and in the full (right) penetration regimes, based

on the CSM and adapted from [14]. The inner radius of the current shell is denoted by Ri(t, θ). The norm of the external flux

density be is denoted by ∥be∥ = be, while bp represents the penetration flux density.

types of losses are considered: filament hysteresis losses (AC losses) due to persistent currents

in the SC filaments and inter-filament coupling losses [15], due to current loops crossing the

copper matrix between twisted filaments. Joule losses arising from longitudinal eddy currents

in the matrix, to be considered in the high-frequency regime [18, Fig. 20], are neglected in the

present study.

A. Filamentary Hysteresis Losses

Hysteresis losses are due to persistent currents in the SC filaments, accounting for induced

currents as well as for transport currents. Analytical approximations focus on the transverse

field loss in a single SC filament of diameter df, denoted as qhys,1 (W/m3). These approximations

ignore the local twisting of the SC filaments and treat them as infinite cylinders at a local scale,

which are reasonable assumptions for the considered magnets. Carr [14] and Wilson [15] have

described the hysteresis losses in a filament subjected to a cyclic transverse field based on Bean’s

Critical State Model (CSM) [34]. Considering the magnet ramp-up, the analytical approximations

are now extended to instantaneous losses in a ramping external field.

Under the assumptions of no transport current, an uniform external flux density be and a

constant critical current density jc, the transverse field loss in a fully penetrated filament of

diameter df = 2Rf is given by [14]:

qhys,1 =
2

3π
dfjcḃe, (9)
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with ḃe ≜ ∥∂tbe∥. Equation (9) is only valid above the penetration flux density (be > bp), which

can be approximated by bp = µ0 df jc /π under the same assumptions. The corresponding

current density configuration is shown on the right of Fig. 2, with the ·m subscript referring to

the fields at the mesoscopic scale. Based on the CSM, the electric field is given by em,z = −ḃeym

in full penetration considering an external field applied along x̂m.

The opposite asymptotic regime is the weak penetration regime (be ≪ bp). During the first

magnetization, shielding currents are established on the outer shell of the filament to prevent the

magnetic flux from entering the filament. The expected current density distribution [14] is shown

on the left of Fig. 2. Assuming no transport current, a constant jc and a monotonic uniform field

variation, the instantaneous hysteresis power loss in the weak penetration regime is given by:

qhys,1 =
64

3πdfjcµ2
0

b2e ḃe, (10)

for which the full development is based on the CSM and can be found in Appendix B.

The transition between the two regimes cannot be modelled analytically. As proposed in [14]

for cyclic fields, one can interpolate between the two regimes:

qhys,1 =
1

3π

2dfjcb
2
e

d2f j
2
cµ

2
0/32 + b2e

ḃe, (11)

which approximates the instantenous transverse hysteresis loss in the whole range of applied

flux density be. Equation (11) reduces to (9) for large be and to (10) for low be.

The macroscopic loss density qhys (W/m3) in the LTS coil is extrapolated from the filamentary

hysteresis loss density [35]:

qhys = λSC qhys,1, (12)

with λSC = ASC/Acond the SC filling factor in the composite conductor, defined as the ratio of

the total cross-sectional area of the SC filaments ASC to the cross-sectional area Acond of the

composite conductor.

B. Inter-filament Coupling Losses

Coupling losses are due to the magnetic flux variation over several filaments, which induces eddy

currents in the copper matrix between filaments, referred to as coupling currents [36]. Assuming

that screening currents do not prevent field penetration into the composite material, Carr [14]

derived an analytical expression for coupling losses qc (W/m3):

qc =
λSC

λst

1

ρet

( p

2π

)2 ∥∥∥∥dbe

dt

∥∥∥∥2 , (13)
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with

ρet = ρCu
1 + λst

1− λst
, (14)

λst = ASC/Ast the local SC filling factor in the central strand of cross-sectional area Ast, ρet

the effective transverse resistivity of the copper matrix (Ω m), ρCu the resistivity of copper

(Ω m), and p the filament twist pitch length (m). The effective transverse resistivity (14) is

determined assuming a large contact resistance at the matrix-filament interface [14], expected

due to intermetallic layers formed during the fabrication process [35]. The magnetoresistive effect

of copper is taken into account by using empirical relationships proposed in [37, pp. 8–23].

IV. DESCRIPTION OF THE MESOSCOPIC MODEL AND CROSS-VALIDATION OF ANALYTICAL

APPROXIMATIONS

In practical applications characterized by slow ramp rates, inter-filament coupling losses are

usually significantly lower than hysteresis losses [18, Fig. 16], as the former are proportional to

the squared norm of the applied field variation. Given the extended ramp-up times of medical

magnets over several hours, the focus is set on the evaluation of hysteresis losses. To this end,

a FE model of a single filament is proposed to compute the AC losses at the mesoscopic scale

inside the LTS coil, in order to to take into account the detailed distribution of the currents

induced inside the superconducting filaments. While a three-dimensional (3D) model of twisted

filaments would offer greater accuracy of the AC losses at the mesoscopic scale, especially for

faster ramp rates involving coupling losses, the proposed model is simpler and allows a fast

computation of hysteresis losses at the filament scale. Introduced to enable the cross-validation

of the approximations presented in Section III for estimating the filamentary hysteresis losses,

this model will also be used in Section V to implement efficiently the multi-scale approach.

A. Description of the Single Filament Model

The single filament FE model, its mesh and the corresponding boundary conditions are repre-

sented in Fig. 3. Neglecting the radius of curvature along the ẑm-axis, the single filament is

approximated as an infinite cylinder and its losses are evaluated with a 2D model. To ensure a

fair comparison with analytical approximations, the outer domain is chosen as non-conducting.

The power-law (PL) [38], [39] is assumed to hold in the SC filament:

em = ρSC(jm) jm =
ec

jc

(∥jm∥
jc

)n−1

jm, (15)
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ŷm

x̂mẑm
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df
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Fig. 3. Mesoscopic submodel. Mesh discretization of the two-dimensional (2D) single filament (SF) model with a focus on the

central superconducting filament (left) and the corresponding boundary conditions (right): uniform external flux density b̄e(t)

applied to outer domain boundary Γm, applied transport current Īt(t) and uniform filament temperature T̄m(t). The SC filament

Ωm,c of diameter df is placed within a non-conducting domain ΩC
m,c of fixed diameter dout = 10 df. The mesh, corresponding to

5235 degrees of freedom (DOFs), has been refined and the convergence of AC loss predictions has been verified.

with ec = 10−4 V/m by convention. Even though the n exponent is expected to decrease with b

and T [40], it is fixed to n = 50 in this study, which is a reasonable value for NbTi filaments

in copper composites at b < 5 T [41]. Experimental observations in [41] suggest the power-

law model offers a better representation of the electrical constitutive relationship in practical

superconductors than the CSM.

The magnetic field h-ϕ formulation is used to solve the discretized electromagnetic problem

at the scale of the filament, as it deals efficiently with the SC non-linearity [30]. The mesoscopic

domain of interest is denoted by Ωm. The magnetic field hm is approximated with edge basis

functions in the filament Ωm,c. In the non-conducting domain ΩC
m,c = Ωm \ Ωm,c, curl hm = 0

and hm = −grad ϕm, such that hm is approximated with gradients of nodal basis functions. The

mesoscopic magnetic weak formulation reads:

From the initial solution hm(xm, t = 0) = 0, find hm ∈ H(curl,Ωm)×]0, Tsim] s.t.,

(µ0∂thm,h
′
m)Ωm + (ρSC curl hm, curl h′

m)Ωm,c

− ⟨ēm × n,h′
m⟩Γm = 0, (16)

∀h′
m ∈ H(curl,Ωm), with curl h′

m = 0 in ΩC
m,c.
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The net transport current Īt(t) condition across the filament is applied strongly with cohomol-

ogy basis functions as described in [42]. The uniform external flux density b̄e(t) condition can

be applied weakly by using the fact that the test function can be set to h′
m = −grad ϕ′

m on Γm.

In this case, it has been shown in [43, pp. 106–107] that the last term in (16) can be replaced

by:

⟨ēm × n,h′
m⟩Γm = ⟨n · (curl ēm), ϕ

′
m⟩Γm

= −⟨n · ∂tb̄e, ϕ
′
m⟩Γm , (17)

which amounts to enforce n · b̄e(t) as b̄e(t = 0) = 0. This does not interfere with the application

of Īt(t) as transport current-induced field is azimuthal far from the SC filament.

The thermal problem is not solved at the mesoscopic scale and the temperature of the filament

is assumed uniform and given by T̄m(t). The filament temperature can be taken into account by

considering the temperature dependence of the local critical current density jc(bm, T̄m).

The time integration of (16) is performed with the IE method using an adaptive time stepping

strategy as described in [31]. At each mesoscopic time-step, the resulting non-linear system is

solved with an iterative NR scheme. In cylindrical coordinates, the filamentary hysteresis power

loss per unit volume qhys,1 is then evaluated as

qhys,1 =
4

πd2f

∫ df/2

0

∫ 2π

0

jm · em r drdθ. (18)

B. Cross-validation of the Hysteresis Loss Approximation

The CSM-based approximation (11) is compared with the hysteresis loss density obtained

numerically using the SF model. No temperature dependence is taken into account in this section.

As a boundary condition, the uniform external flux density b̄e is increased from 0 to b̄e,max = 3 T

with a constant ramp rate ḃe, which is varied in the following discussion. The direction of b̄e

is considered constant. The diameter of the filament is set to df = 156 µm. Different magnetic

field dependences are considered for the critical current densities jc(b), and different transport

current waveforms are considered for Īt(t).

1) Constant Critical Current Density without Transport Current: A constant critical current

density jc = 5 × 109 A/m2 is considered without any transport current, corresponding to the

assumptions underlying the analytical approximation (11).

Numerical results for the filamentary hysteresis loss density are represented in Fig. 4 for

various ramp rates ḃe and are compared to the analytical approximations. It can be observed that
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Fig. 4. Single filament hysteresis loss density qhys,1 computed numerically with the SF model, for a monotonic applied field ramp-

up at various ramp rates ḃe. The losses are normalized by the ramp rate and are compared to CSM-based analytical approximations:

full penetration (9), weak penetration (10) and full-range interpolation (11). Numerical parameters: df = 156 µm, n = 50, cst.

jc = 5× 109 A/m2.

the weak penetration approximation (10) is consistent with the results at low fields. The numerical

oscillations observed can be attributed to the finite spatial discretization and the persisting currents

penetrating the filament element by element. In the weak penetration regime, the losses seem to

decrease when the ramp rate is increased, which is at odds with (10).

While the full-range interpolation (11) is reliable at large fields, it underestimates the losses

in the intermediate field range, when compared to the more detailed SF model. In particular,

the numerical ratio between the hysteresis loss and the ramp rate becomes constant as soon as

full penetration is reached (based on the CSM, bp = 0.312 T). Also, the fully penetrated regime

seems to be achieved at lower fields as the ramp rate is decreased. The normalized loss ratio

qhys,1/ḃe in full penetration does not correspond to the CSM-based approximation (9) at high

fields, as it increases with the ramp rate, while it is expected by (9) to be rate independent.

The fully penetrated filamentary hysteresis loss can also be estimated analytically assuming

em,z = −ḃeym holds in the PL model (for b̄e along x̂m), which is equivalent to the constant

filament magnetization assumption. A constant current density distribution would induce a con-

stant self-field distribution within the filament, such that the local flux density variation would

be given by ∂tbm = ∂tbe = ḃex̂m. In this context, (18) can be evaluated (ym = r sin θ) by taking
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Fig. 5. Single filament hysteresis loss density qhys,1 computed numerically with the SF model, for a monotonic applied field

ramp-up at various ramp rates ḃe. The losses are normalized by the ramp rate and are compared to the analytical full-range

approximation (20). Numerical parameters: df = 156 µm, n = 50, cst. jc = 5× 109 A/m2.

advantage of the problem symmetry with respect to the x̂m-axis:

qhys,1 =
8

πd2f

∫ π

0

∫ df/2

0

jc

(
ḃer sin θ

ec

) 1
n

ḃe r sin θ r drdθ

=
8jcḃe(ḃe/ec)

1
n

πd2f

∫ df/2

0

r
2n+1

n dr

∫ π

0

(sin θ)
n+1
n dθ

=
8jcḃe(ḃe/ec)

1
n

πd2f
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∫ π
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n dθ

=

∫ π

0
(sin θ)
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n dθ
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(
dfḃe

2ec

) 1
n

. (19)

As expected, (19) tends towards the CSM approximation (9) for n → ∞. The
∫ π

0
(sin θ)(n+1)/ndθ/(3+

1/n) factor in (19) is close to 2/3 for high n values. For n = 50, it is equal to 0.6582 which

yields a 1.4% relative difference with respect to the CSM asymptotic regime (2/3).

To take into account this rate dependence, the full-range filamentary hysteresis loss approxi-

mation (11) must be replaced by

qhys,1 =
2A

3π

dfjcb
2
e

d2f j
2
cµ

2
0A/32 + b2e

ḃe, (20)

with A =
1

2/3

∫ π

0
(sin θ)

n+1
n dθ

3 + 1/n

(
dfḃe

2ec

) 1
n

.
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This final full-range approximation tends towards (19) at large fields, while still tending to-

wards (10) at low fields. Predictions based on (20) are compared to numerical results in Fig. 5.

In full penetration, theoretical predictions based on (19) are aligned with the numerical results

as the maximal relative difference in fully penetrated losses is 0.085%.

2) Critical Surface and Transport Current: In practice, the critical current density varies

with both the applied field and the temperature. Bottura’s [44] scaling law jc(b, T ), described in

Appendix C, is now considered as it has been found to match experimental measurements.

Numerical results obtained considering the local jc(bm, T̄m) dependence are represented in

Fig. 6. They are compared to the analytical approximations (19) and (20), in which the jc factor

is interpreted as jc(b̄e, T̄m). The temperature is kept constant at T̄m = 4.2 K. Results are also

represented for a linear increase in transport current Īt(t) over the ramp time fixed to Tramp =

b̄e,max/ḃe = 300 s. In this case, the transport current is imposed simultaneously with the applied

field ramp and its slope is controlled through the parameter imax ≜ Īt(Tramp)/Ic(3 T, 4.2 K).

In the absence of transport current, the filamentary hysteresis loss density is effectively

captured by the CSM-based weak penetration approximation (10) at low fields and by the PL-

based full penetration approximation (19) at high fields. It highlights the validity of interpreting

these equations with jc = jc(b̄e, T̄m). In the fully-penetrated regime, the losses decrease as b̄e

is increased since ∂jc/∂bm < 0 locally and the magnetization of the filament decreases. As a

consequence, the loss density is maximal when full penetration is first reached.

The full-range interpolation again underestimates the loss density in the intermediate applied

field regime. In this regime, values of the normalized loss density obtained numerically are

also larger than predictions with the fully penetrated approximation. This was not observed

in the constant jc case and it may be explained by the local jc being larger in the center

of the filament due to screening currents opposing the penetration of the flux density. As a

result, the underestimation of the filamentary loss with the full-range approximation (20) is

more pronounced than in the simplified constant jc case.

With transport current, the situation is more complex to analyze. As highlighted in Fig. 6,

transport current leads to an increase in hysteresis losses. The full-range interpolation (20) is

not able to capture this effect as the transport current has been neglected during its derivation.

The weak penetration approximation (10) is still consistent with the numerical results at low

fields as the instantaneous transport current is negligible with respect to the critical current. In

the fully penetrated regime, Wilson [35] predicts a factor (1 + i2) increase of the AC transverse
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Fig. 6. Single filament hysteresis loss density qhys,1 computed numerically with the SF model, for a monotonic applied field

ramp-up at ramp rate ḃe = 0.01 T/s and various linear applied transport current ratios imax. The losses are normalized by the

ramp rate and are compared to analytical approximations: PL-based full penetration (19), CSM-based weak penetration (10)

and full-range interpolation (20). Numerical parameters: df = 156 µm, n = 50, jc(b, T̄m): Bottura’s scaling law, with fixed

T̄m = 4.2 K.

field hysteresis loss when a DC transport current is applied, with the current ratio i = Īt/Ic. This

prediction is based on the CSM in the constant jc case. Carr [14] provides a similar, but more

elaborated approximation. The (1 + i2) factor is not retrieved numerically. It may be explained

by the fact that neither the local flux density nor the local current density is uniform in the SC

filament. Consequently, the impact of transport current cannot be predicted with a closed-form

approximation.

In conclusion, the complexity of the multiple phenomena involved in the electromagnetic

behaviour of the SC filament makes it difficult to provide a simple analytical approximation for

the filamentary hysteresis loss density, particularly in the intermediate applied field regime.

V. MULTI-SCALE APPROACH

As underlined above, the analytical approximations are not able to reproduce the losses obtained

with the more detailed SF model. The multi-scale approach presented in this section aims at

providing a reliable prediction of hysteresis losses while avoiding an excessive computational

cost.
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Fig. 7. Separation of scales in the context of the multi-scale approach: the cross-section of the macroscopic LTS coil ΩM,s is

subdivided into Nz different zones ΩM,1, ..., ΩM,Nz . One mesoscopic model Ωm,i (here, the SF model introduced previously)

is associated with each macroscopic zone ΩM,i.

A. Principle of the Method

The multi-scale approach relies on the separation between the macroscopic scale of the LTS

coil and the mesoscopic scale of the SC filaments as depicted in Fig. 7. The main idea is to

compute the hysteresis losses directly at the mesoscopic scale. To this end, the cross-section of

the macroscopic LTS coil is subdivided into Nz different zones ΩM,1, ..., ΩM,Nz . One generic

mesoscopic model Ωm,i is associated with each zone for loss prediction.

While this approach is rather general, the SF model is chosen as the mesoscopic model in

this study. This choice is motivated by the fact that inter-filament coupling losses are negligible

with respect to hysteresis losses in the context of medical applications designed with magnets

characterized by relatively slow ramp rates. This result is highlighted in Campbell’s loss map [45,

Fig. 10], reproduced numerically with the CATI method [18, Fig. 15], showing that the filamen-

tary hysteresis losses are dominant in the ultra-low frequency regime. Following Campbell’s

loss map, this frequency regime is characterized by 2πfτc < 0.1. It corresponds to a frequency

f ≲ 0.05 Hz, considering the inter-filament coupling time constant τc = µ0/ρet×(p/2π)2 ≈ 0.32 s

[35] with an approximate effective matrix resistivity ρet ≈ 1 × 10−9 Ωm and a twist pitch

length p = 0.1 m. A similar frequency regime for dominant hysteresis has been identified

numerically in [18]. In this regime, the SC filaments are uncoupled and the local current density

distribution is similar in neighbouring filaments [18, Fig. 17(a)], as the screening of the applied

magnetic field is weak. Consequently, working with one single filament model per zone allows

the filamentary hysteresis losses to be computed with reasonable accuracy and to be extrapolated

to the whole zone. By considering a zone subdivision that is coarser than the macroscopic mesh,

the resolution is faster than with conventional multi-scale methods as the FE2 method [46] or
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Macroscopic magnetodynamic simulation:
bM,i(t), IM,i(t) in ΩM,1, ..., ΩM,Nz

(jM = jeng - no T dependence)

Macroscopic thermal simulation:
TM,i(t) in ΩM,1, ..., ΩM,Nz

(homogenized thermal properties)

Nz mesoscopic magnetodynamic simulations:
qm,i(t) in Ωm,1, ..., Ωm,Nz

Downscaling Upscaling

Fig. 8. Conceptual flowchart of the multi-scale approach, coupling the thermal simulation at the macroscopic scale of the LTS

coil with magnetodynamic simulations to compute losses at the mesoscopic scale of the SC filaments.

the Homogeneous Multiscale Method [47], which associate one mesoscopic model with each

macroscopic integration point.

The conceptual flowchart of the multi-scale approach is summarized in Fig. 8. First, the

macroscopic flux density distribution is obtained from a magnetodynamic simulation at the

macroscopic scale (Section II-A) with a fixed time step ∆tM. During post-processing, the average

flux density bM,i(tn) and the average transport current per filament IM,i(tn) are retrieved in each

zone ΩM,i at each time step tn = n∆tM, with n ∈ {1, ..., Tsim/∆tM}. The volume average xM,i

of the generic macroscopic quantity xM in the zone ΩM,i is

xM,i ≜
1

|ΩM,i|

∫
ΩM,i

xM dΩM,i. (21)

As the thermal dependence of the macroscopic magnetic properties is neglected, the magnetic

simulation can be performed offline, prior to the multi-scale approach itself.

Next, the macroscopic thermal simulation (Section II-B) is performed with Joule losses (8)

as the heat source in normal conducting parts ΩM,c. In the LTS coil ΩM,s, the volumetric heat

source is defined as a piecewise constant function:

q̄s = qc + q̄M,i with q̄M,i = λSCqm,i, (22)

in which the coupling losses qc are computed with (13) – neglecting the magnetic response of

the filaments, (13) is evaluated with be = bM – and the mesoscopic hysteresis loss density qm,i

is the filamentary hysteresis loss density qhys,1 (18) obtained from one representative mesoscopic
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... FEm
in Ωm,Nz

Upscaling: q̄M,i(tn+1) = λSCqm,i(tn+1)

Macroscopic simulation at
time step tn
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until (24) is satisfied t
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Fig. 9. Implementation of the iterative fixed point scheme in the multi-scale procedure. One macroscopic thermal resolution is

performed before downscaling the temperature. In each mesoscopic zone Ωm,i, the SF model simulation is restarted from the

converged solution hm,i(tn) of the previous time step. The Nz mesoscopic simulations (denoted FEm) are performed in parallel,

until the next macroscopic time step tn+1 is reached. The hysteresis loss is then upscaled. These fixed point iterations between

scales are performed until the integrated hysteresis loss has converged. The time axis on the right of the figure is representative

of the adaptive time stepping procedure at the mesoscopic scale. The time axis is not to scale as there can be several orders of

magnitude between macroscopic and mesoscopic time steps.

simulation in the zone Ωm,i. This way, the hysteresis loss per volume superconductor qm,i (in

W/m3) is extrapolated from one representative filament simulation per zone.

While the mesoscopic simulation depends on the average bM,i(t) and IM,i(t) sequences com-

puted previously, it also depends on the TM,i(t) sequence through the local critical current density

jc(bm, T̄m,i = TM,i). Hence, both mesoscopic and macroscopic thermal simulations depend on each

other. The thermal simulation is thus solved in parallel with the Nz mesoscopic simulations.

A fixed point iteration between the scales is performed at each macroscopic time step tn

until convergence of the integrated hysteresis loss is achieved. At tn, the goal is to predict the

temperature distribution TM(tn+1), based on the heat source q̄s(tn+1) (IE time-integration scheme)

and on q̄M,i(tn+1) through (22). At the beginning of each fixed point iterative procedure, the

first iterate is set to q̄M,i(tn+1) = q̄M,i(tn). The implementation of one multi-scale fixed point

iteration within GetDP is represented in Fig. 9. First, the updated macroscopic temperature

distribution TM(tn+1) is computed, as well as its average TM,i(tn+1) in each zone ΩM,i. During

downscaling, the average quantities bM,i(tn+1), IM,i(tn+1) and TM,i(tn+1) are passed to the

mesoscopic simulations. At the mesoscopic scale, they correspond respectively (cf. Fig. 3) to

the applied field b̄e, the transport current Īt and the average filament temperature T̄m,i at time

tn+1 in each zone Ωm,i. The mesoscopic simulations are then restarted from the last converged



NOVEMBER 2024 20

mesoscopic magnetic field distribution hm,i(xm, tn) at the previous time step. The evolution with

time of the average quantities bM,i, IM,i and TM,i is assumed linear between tn and tn+1. The flux

density variation required in (17) is approximated by ḃM,i ≈ (bM,i(tn+1)−bM,i(tn))/∆tM. The Nz

mesoscopic simulations are executed in parallel as they are independent. After the mesoscopic

simulations computed the required filamentary hysteresis loss qm,i(tn+1) in each zone Ωm,i, it is

then passed back to the macroscopic thermal simulation during upscaling.

At each macroscopic time step tn, the iterative communication between the scales (down- and

upscaling) takes place until convergence of the integrated hysteresis loss at macroscopic time

step tn+1:

Qhys(tn+1) =
Nz∑
i=1

q̄M,i(tn+1) · |ΩM,i|. (23)

In practice, convergence is assumed when the relative difference between two successive fixed

point iterations is lower than a fixed tolerance εQ:∣∣∣∣δQhys(tn+1)

Qhys(tn+1)

∣∣∣∣ < εQ, (24)

with the practical value set to εQ = 10−3 in this study. Once convergence is reached, one last

macroscopic thermal simulation is performed to obtain the converged temperature distribution

TM(tn+1).

With the proposed approach, the macroscopic thermal model can differ from the macroscopic

magnetic model, with different meshes and different domains of interest (as long as ΩM,the ⊂
ΩM,mag), depending on corresponding boundary conditions. The multi-scale approach is thus

flexible and can be adapted to various configurations.

Fig. 9 highlights the finer time-stepping procedure required at the mesoscopic scale to describe

the flux penetration inside the SC filaments. Down- and upscaling, executing the mesoscopic

(child) simulations in parallel, as well as storing the intermediate mesoscopic field distributions,

are managed by Python scripts embedded within the macroscopic (parent) thermal GetDP solver.

B. Range of Validity and Limitations

The methodology presented above can be extended to other multifilamentary conductors, pro-

vided that the homogenized thermal properties (Appendix A) are derived based on the actual

conductor geometry. However, the accuracy of the multi-scale approach remains limited by the

assumptions made at the mesoscopic scale. In particular, the SF model is expected to provide
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accurate results for applications involving slow ramp rates, as inter-filament coupling losses are

negligible with respect to hysteresis losses in the ultra-low frequency regime (i.e. f ≲ 0.05 Hz,

as discussed above). Moreover, the SF model assumes uncoupled SC filaments, which makes it

unsuitable for representing phenomena where the filaments transition to the normal conducting

state (e.g. in the case of quench), as these would induce significant inter-filament coupling

currents. The extension of the proposed approach to faster phenomena should consider a 3D

model of twisted filaments at the mesoscopic scale as inter-filament coupling should be taken

into account. The most rigorous option would be to implement a 3D model of a single wire-

in-channel conductor at the mesoscopic scale, while considering the upscaling of the magnetic

response of single conductors back to the macroscopic scale.

Apart from the choice of the mesoscopic model and from the macroscopic modelling assump-

tions themselves, several factors can lead to numerical errors:

• Classical numerical errors due to the finite element discretization and the time-stepping

scheme, along with the non-linear nature of the different problems at both scales. In

particular, dealing with the SC non-linearity at the mesoscopic scale requires a significant

computational effort, which makes the use of parallel computing essential.

• The coil cross-section subdivision into zones (cf. Fig. 7) may lead to errors in the hysteresis

loss prediction. The choice of the number of zones Nz is crucial and should be adapted to

the coil geometry and the specific application.

• Due to smaller time steps at the mesoscopic scale, downscaled quantities must be interpo-

lated in time. The choice of the interpolation method may have an impact on the convergence

of the multi-scale procedure and sufficiently small macroscopic time steps should be used

to mitigate this effect.

VI. SEMI-ANALYTICAL APPROACH

A semi-analytical approach is also proposed for computing the hysteresis losses in the LTS

coil. It relies exclusively on the macroscopic magnetic and thermal formulations described in

Section II and the analytical approximations respectively introduced and adapted in Section III

and Section IV. The semi-analytical approach involves two simulations:

1) Preliminary simulation of the macroscopic magnetic problem (Section II-A) to compute

the macroscopic magnetic field distribution bM in ΩM,mag and the Joule loss density in the
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normal conducting parts ΩM,c. This also corresponds to the macroscopic magnetodynamic

simulation of the multi-scale approach in Fig. 8.

2) Simulation of the macroscopic thermal problem (Section II-B) to compute the temperature

distribution TM in ΩM,the. In the LTS coil ΩM,s, the volumetric heat source is evaluated at

each integration point of the mesh as:

q̄s = qc + λSCqhys,1, (25)

with qhys,1 the filamentary hysteresis loss density computed with the full-range analytical

approximation (20), in which the critical current density is evaluated as jc(bM, TM). The

coupling losses qc are still computed with (13). Focusing on the low frequency range,

the magnetic response of the filaments is again neglected, such that the external field

is assumed equal to the macroscopic field be = bM in the evaluation of the analytical

approximations (13) and (20). This simulation replaces the communication between scales

considered in the multi-scale approach (bottom part of Fig. 8).

In this context, the semi-analytical approach also assumes the SC filaments to be uncoupled.

The other limitations of the semi-analytical approach arise from the assumptions inherent in

the analytical approximation (20), as it neglects both the transport current and the jc(b, T )

dependence. Moreover, the full-range interpolation does not provide satisfactory results in the

intermediate applied field regime as highlighted in Section IV. As a consequence, the semi-

analytical approach is expected to be less reliable than the multi-scale approach. Nevertheless,

it is easier to implement and it should be less computationally expensive.

VII. APPLICATION AND RESULTS

The proposed modelling approaches are applied to the magneto-thermal simulation of the LTS

magnet of the S2C2 synchrocyclotron [26] developed by IBA. The S2C2 superconducting syn-

chrocyclotron is used to accelerate ions as part of a compact proton therapy treatment system. It

relies on the conduction cooling mechanism and the dry magnet technology. The focus of this

section is set on the AC losses generated inside the coil during its ramp-up from zero to nominal

current. Numerical predictions, obtained both with the multi-scale approach (MSA) and with the

semi-analytical approach (SAA), are compared to experimental data.
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Fig. 10. Top: Macroscopic magnetic (axisymmetric) model of the S2C2 cyclotron, along with its mesh (6003 DOFs). The

cylindrical coordinate system is denoted (r̂M,ŷM,θ̂M). The cold mass is constituted of the LTS coil (navy blue), the aluminum

coil former (dark grey), the stainless steel coil former flanges (light grey) and the epoxy resin insulating junction (orange). It is

placed within an iron ferromagnetic yoke (green) supported by the cryostat wall (magenta). Remaining regions are filled with

air/vacuum (light blue). For scale, the yoke diameter is dy = 2.5 m.

Bottom: Macroscopic thermal 3D model of the cold mass ΩM,the (top view on the left and bottom view on the right), along with

its mesh (16720 DOFs). The cartesian coordinate system is denoted (x̂M,ŷM,ẑM). The dark blue circular surfaces represent the

two cryocooler (CC) surfaces. The red surfaces represent the imposed incoming heat flux surfaces: electrical current leads (CL),

vertical tie rods (VTR) and axial tie rods (ATR). The positions of the two thermal sensors are denoted xs,1 and xs,2.

A. Geometry and Material Properties

The complete 3D geometry of the S2C2 cyclotron can be found in [26, Fig. 3]. As the present

study focuses on the cold mass of the cyclotron, the external components, the extraction systems

and the cryocoolers are left out of the macroscopic magnetic model depicted in Fig. 10. The

median plane symmetry is used to model the top half of the cyclotron. The LTS coil is made of

3128 wire-in-channel conductor turns arranged in series. The nominal current reaches 650 A in 4

hours (Tup=14400 s). The two different current ramp-up procedures considered in this study are

represented in Fig. 11, together with their time derivatives. From Section VII-B to Section VII-D,
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Fig. 11. Current I(t) passing through the LTS coil during the ramp-up procedure, along with its derivative with respect to

time. Both the preliminary study (Prelim.) current ramp-up and the experimentally (Exp.) measured current are represented. The

experimental current has been smoothed out with a Savitzky-Golay filter [48] of window length 15 and polynomial order 2 to

avoid excessive numerical variations linked to the current sensor resolution.

TABLE I

Parameters of the composite conductor in the S2C2 coil.

λSC λst p df

(-) (-) (m) (µm)

0.148 0.61 0.1 156

the preliminary ramp-up procedure I(t) is used as input to discuss numerical properties of the

multi-scale approach. In Section VII-E, the experimental current ramp-up (measured through

a shunt resistor placed in series with the coil) is imposed in the numerical model to ensure a

consistent comparison to experimental data. As observed, the current ramp-up is not linear as the

current variation is smaller in the first phase due to the large initial inductance of the magnet.

The axisymmetric macroscopic magnetic model considers the experimental h(b) curve of the

ferromagnetic (iron) yoke. Apart from the yoke, µ = µ0 is assumed everywhere. Eddy currents

are considered in the coil former (σ=78×106 S/m), in the flanges (σ=2.06×106 S/m) as well

as in the yoke (σ=8×106 S/m). The composite conductor parameters are gathered in Table I,

with the critical current density jc of SC filaments following Bottura’s scaling law (Appendix

C).

As the coil relies on conduction cooling (via four cryocoolers), a 3D thermal model of the cold

mass is built as represented in Fig. 10. Experimentally, two Cernox™ temperature sensors [49]

are placed on each sub-coil (one sub-coil is above the median plane, the other one below). The
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first sensor is located at the hottest point of the LTS coil and along the vertical midplane between

the two cooling surfaces. The second sensor is located on the same plane, on the external edge

of the coil former. Their respective locations are denoted by xs,1 and xs,2.

Each sub-coil is cooled down by two Sumitomo RDK 415D cryocoolers at 50 Hz (cooling

power map provided by the manufacturer [50]). The behaviour of the cryocoolers is complex

as their cooling power depends on both first stage (radiation shield and other components at

intermediate temperature) and second stage (cold mass) conditions. In particular, the second

stage cooling power simultaneously depends on the second stage temperature and on the heat

load at the first stage. The simplifying assumption is made to model each cryocooler second

stage contribution as a convective-like boundary condition (BC). That is, each cryocooler cooling

power F̄ (W) is independent of the first stage conditions and is modelled as a linear function

of the cold end temperature TM:

F̄ = h̃ · (TM − Tcryo) = hScryo(TM − Tcryo), (26)

with Scryo the cold end surface (m2), h the convection coefficient to be used in the BC (6) and

the parameters given by h̃ = 1.45 W/K and Tcryo = 3.15 K.

Different heat sources, corresponding to the conduction through the tie rods and through the

current leads (CL), together with the heat dissipation within the CL, are also modelled as fixed

imposed heat fluxes on localized contact surfaces. On the remaining surface of the cold mass,

an incoming radiative BC is imposed from the radiation shield. The median plane corresponds

to an adiabatic surface.

The thermal material properties of the homogenized LTS coil are detailed in Appendix A.

The thermal conductivity and specific heat (along with their thermal dependences) of the coil

former (ρ = 2700 kg/m3), the flanges (ρ = 8000 kg/m3), and the insulating junction (ρ = 1800

kg/m3) are taken from the NIST database [51] under the entries Aluminum 6061-T6, Stainless

Steel 304, and Fiberglass Epoxy G-10 (normal direction) respectively.

B. Numerical Results

The macroscopic flux density distribution is obtained from the preliminary magnetodynamic

simulation. Its evolution during the ramp-up procedure is represented in Fig. 12, with the focus

set on the LTS coil. As may be observed, the part that is closest to the center of the cyclotron

exhibits the largest field variations as the final flux density is larger along the inner diameter of
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Fig. 12. Evolution of the macroscopic flux density distribution bM within the LTS coil cross-section during the ramp-up

procedure. Results obtained with the axisymmetric model. The left figure also shows the zone subdivision in the case of the

MSA with Nz = 36 zones.

the coil than along its outer diameter. Notably, the zero field region is crossing zone ΩM,27 as it is

moving towards the median plane during the ramp-up procedure. This is a direct consequence of

the non-linearity of the macroscopic magnetic problem. The computed flux density distribution

is then used as an input for the MSA.

The evolution of the different loss contributions during the ramp-up procedure, computed with

the MSA, is shown in Fig. 13. As highlighted, the coupling losses are negligible with respect

to the hysteresis losses, a result which satisfies the fundamental assumption of the MSA. Joule

losses in the coil former are predominant in the very first part of the ramp-up (t ≤ 600 s),

before decreasing rapidly as the yoke saturates. Then, hysteresis losses in the LTS coil represent

the main heat source during most of the ramp-up procedure, as Fig. 13 highlights the strong

correspondance between the hysteresis losses and the maximal temperature rise within the coil.

Again, this shows the necessity of predicting these losses with great accuracy.

The two peaks in the hysteresis losses, around t = 1000 s and t = 2500 s, may be explained by

the contribution of different zones in the coil. As can be deduced from Fig. 6 discussed previously,

the filamentary loss is maximal when the applied flux density reaches be = 0.67 T ≜ b̃p. Even

though the approximate penetration flux density b̃p has been obtained assuming T = 4.2 K,

without transport current for an external field of constant direction and constant variation rate,

similar conclusions can be drawn when considering the realistic conditions as shown in Fig. 14.

When the average flux density amplitude reaches the value of b̃p within a given zone, the

corresponding filamentary hysteresis loss density is almost maximal. As a consequence, the two
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Fig. 14. Filamentary hysteresis loss density qm,i (top) and corresponding average macroscopic flux density amplitude bM,i

(bottom) during the ramp-up procedure, for different zone indices i ∈ {1, 6, 31, 36}. Results are obtained with the MSA

(Nz = 36).

peaks in the integrated hysteresis losses Qhys correspond to the crossing of the penetration flux

density in different zones, namely in the bottom and top zones along the inner diameter of the

coil, respectively. These zones exhibit the largest field variations, thus contributing the most

to Qhys as the filamentary hysteresis losses are in first approximation proportional to the field

variation, see (20).
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TABLE II

Integrated hysteresis loss dissipation in the LTS coil predicted during the ramp-up procedure with the MSA for various

number of zones Nz .

Nz (-) 1 4 9 16

Ehys (J) 19737 21380 21549 22015

Nz (-) 25 36 64 81

Ehys (J) 22266 22253 22252 22298

C. Convergence of the Multi-scale Approach as a Function of the Number of Zones

As mentioned, the convergence of the results with the number of zones Nz must be checked

when using the MSA. In the present study, the zone subdivision is performed with a regular grid

as shown in the left part of Fig. 12 for Nz = 36. The variation of the integrated hysteresis loss

prediction with respect to Nz is represented in Fig. 15. As expected, the integrated hysteresis

loss Qhys converges as the number of zones is increased. For Nz = 1, the MSA provides a

poor hysteresis loss estimation, as the Qhys(t) evolution is significantly different from what is

observed for larger Nz. This single-zone model smoothes out local bM variations and therefore

it does not capture the physics of the problem. In this configuration, the drop in losses around

t = 1000 s corresponds to a decrease in ḃM,1 due to the saturation of the yoke. Results obtained

with Nz = 4 and Nz = 9 also present spurious oscillations which highlight the necessity of

further refining the zone subdivision.

Starting from Nz = 16, the relative difference between successive zone refinements is becom-

ing negligible as the different curves are nearly superimposed. Still, one can observe a slight

increase in instantaneous hysteresis losses as Nz is increased. Again, considering more zones

allows for a better resolution of the local fields.

Note that the local oscillation in Qhys(t) observed in Fig. 15 may be explained by different

factors, such as the finite spatial discretization of the SF model at the mesoscopic scale and

the discontinuous applied field variation induced by the linear interpolation of the macroscopic

quantities over time.

The convergence of the results is confirmed by the numerical values of the integrated hysteresis

loss Ehys =
∫ Tup

0
Qhys dt presented in Table II, as the relative variation of Ehys does not exceed

0.2% for Nz ∈ [25, 81]. It shows that one can consider a number of zones that is smaller than the
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Fig. 15. Integrated hysteresis loss Qhys in the LTS coil during the ramp-up procedure with the MSA for various number of

zones Nz .

number of integration points in the macroscopic mesh, thus accelerating the computation with

respect to conventional multi-scale methods. The following results are presented with Nz = 36

zones, as this choice ensures satisfactory accuracy with respect to more refined zone subdivisions,

while keeping a reasonable number of processing units required for the parallel computation.

D. Number of Required Fixed Point Iterations

As explained in Section V, the MSA relies on fixed point iterations between scales to deal with

the intrinsic non-linear behaviour of hysteresis losses. The relative variation of hysteresis losses

between successive iterations is represented in Fig. 16. As may be observed, the convergence

is monotonic as the relative variation decreases with the number of iterations. The number of

required iterations to reach the εQ tolerance is larger in the first part of the ramp-up, in which

the temperature variation is more important as inferred from Fig. 13. In the present study, the

convergence is reached after 2 to 4 iterations. The strong convergence properties of the MSA

can be attributed to the stabilizing behaviour of hysteresis losses. Indeed, they can be considered

as proportional to jc in first approximation, cf. (20), while jc is a decreasing function of the

temperature. Hence, the hysteresis losses are expected to decrease with the temperature, all other

parameters being kept constant. This result is specific to the normal operation of the LTS coil

and can not be generalized to other configurations such as the thermal runaway in case of a

quench event.
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Fig. 17. Temperature evaluated at the first sensor location TM(xs,1) (left) and at the second sensor location TM(xs,2) (right)

during the ramp-up procedure. The experimental (Exp.) data is represented for both top and bottom sub-coils (respectively above

and below the median plane, sensor resolution: δTs = 0.094 K, δts = 15 s), together with numerical results: MSA with Nz = 36

zones, PL based SAA (based on (20)), and CSM based SAA (based on (11)). The cryocooler convective coefficient is varied

between h̃ = 0.97 W/K and h̃ = 1.45 W/K.

Moreover, Fig. 16 shows that one iteration is sufficient to reach a relative error of less than

2% on the hysteresis losses. In the final part of the ramp-up procedure, the single iteration

relative error is even lower than 0.2%. This result is of particular interest if one aims for a faster

computation of the hysteresis losses with the MSA.
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E. Comparison to Experimental Data

Fig. 17 presents the comparison between the experimental data and the numerical results obtained

both with the MSA and the SAA. As mentioned, the current imposed through the LTS coil is

measured experimentally (cf. Fig. 11) and used as an input in the numerical simulations. As the

cryocooler convective coefficient h̃ represents a significant source of uncertainty, the numerical

results are showed for its expected value h̃ = 1.45 W/K (in optimal conditions) as well as for

a 33% reduction of this value, i.e. h̃ = 0.97 W/K. The latter value is chosen as a realistic

value (from the cryocooler cooling power map) for the lower bound of the expected range of

h̃. Indeed, the first stage conditions may vary significantly during the ramp-up procedure and

may influence the second stage cooling power at 4.2 K. In particular, the Joule dissipation in

the current leads is expected to significantly increase the first stage heat load, in which case the

second stage cooling power is expected to be reduced. Moreover, the value of h̃ = 0.97 W/K

leads to an initial temperature error lower than 0.1 K between the numerical steady-state and

the experimental temperature distribution, corresponding to the sensor resolution.

As may be observed, there is a slight asymmetry between the top and bottom experimental

values. It highlights the uncertainty linked to the experimental measurements. The numerical

results obtained with the MSA are in good agreement with the experimental data as the maximal

temperature error is lower than 0.2 K. Notably, the temperature rise predicted with the MSA

is larger than the predictions obtained with the power-law based SAA. This result is expected

as the mesoscopic SF model takes into account more physical phenomena than the analytical

approximation (20).

Moreover, both the MSA and the PL based SAA allow to numerically reproduce the shape

of the experimental curves. The first temperature rise and the corresponding temperature peak

observed at xs,2 around t = 1500 s has been predicted by the numerical models. The second

temperature peak around t = 3500 s is also reproduced numerically. However, the temperature

rise is underestimated in the second-part of the ramp-up procedure as the numerical simulations

predict a larger cooling rate than observed in the experiments. This discrepancy may be attributed,

among other factors, to the non-linear behaviour of the cryocoolers as their cooling capacity may

decrease during ramp-up.

Some tests have been performed with a CSM based SAA, which relies on (11) instead of (20)

for the filamentary hysteresis loss within the LTS coil. The results obtained with the CSM based
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SAA are in better agreement with the experimental data than the PL based SAA, as the predicted

temperature rise is around 0.1 K larger. Also, the thermal behaviour in the second part of the

ramp-up is reproduced more accurately. This result highlights the impact of the underlying

SC constitutive model, even though the power-law is expected to better match experimental

observations on single SC samples [41] compared to the CSM. Results shown in Fig. 17 raise the

question of the validity of the power-law model at the SC filament scale. The electric field within

the SC filaments is very low during the second part of the ramp-up procedure involving large

time scales. Different constitutive laws, e.g. the percolation model (mainly used for describing

HTS), could be better suited to handle these slower phenomena involving relaxation [10], [52].

Overall, the results presented in Fig. 17 allow to validate the implementation of both the MSA

and the SAA proposed in this study.

F. Discussion

The hysteresis losses predicted with both the MSA and the power-law based SAA, corresponding

to the temperature rise shown in Fig. 17, are compared in Fig. 18. The fast loss oscillations

may be induced by the corresponding dI/dt oscillations in Fig. 11. Again, the correspondance

between the losses in Fig. 18 and the temperature rise in Fig. 17 is striking. The loss peaks

around t = 1000 s and t = 2500 s can be explained by the crossing of the penetration flux

density as discussed in Section VII-B. The peak around t = 1400 s is a consequence of the

dI/dt peak in the current ramp-up procedure observed in Fig. 11. Also, each significant dI/dt

variation in Fig. 11 yields a corresponding hysteresis loss variation in Fig. 18, as these are in

first approximation proportional to the field variation.

As observed in Fig. 18, the SAA underestimates the hysteresis losses with respect to the MSA,

particularly in the first part of the ramp-up procedure in which losses are maximal. This obser-

vation can be inferred from the discussion in Section IV-B as the analytical approximation (20)

was found to underestimate the losses in the intermediate field range with respect to the SF

model. This behaviour is retrieved locally in most zones of the LTS coil as shown in Fig. 19, in

which the analytical approximation again underestimates the losses. The largest losses are again

occurring along the coil inner diameter. The interpretation of the results in zone Ωm,27 is more

complex as the local SC filament never reaches full penetration.

Apart from the correct evaluation of the losses in the intermediate field range, the MSA can

handle more complex phenomena and history as it goes beyond the assumptions of the analytical
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Fig. 18. Integrated hysteresis loss Qhys in the LTS coil during the ramp-up procedure. Results are obtained with the MSA

(Nz = 36) and the PL based SAA, both with h̃ = 1.45 W/K.
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Fig. 19. Filamentary hysteresis loss density qm,i computed with the mesoscopic SF model during the ramp-up procedure, for

different zone indices i ∈ {1, 6, 31, 36, 27}. The prediction based on the analytical approximation (20) is shown for comparison.

Results are obtained with the MSA (Nz = 36) and h̃ = 1.45 W/K.

approximation. This is highlighted in Fig. 20 as the SF model can handle a rotating macroscopic

magnetic field. Indeed, the remarkable current density distribution in the SC filament associated

with zone ΩM,27 is due to the macroscopic zero field region crossing the zone during ramp-up

(cf. Fig. 12), such that the field is locally rotating. A similar distribution of field lines has been

obtained numerically [53] in a cylinder of square cross-section, subjected to a rotating magnetic

field in the weak penetration regime. This particular behaviour is not captured by (20) and it

explains the discrepancy in the results shown in Fig. 19 for Ωm,27.

Still, the SAA yields satisfactory results when looking at the integrated hysteresis loss in
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Fig. 20. Mesoscopic flux density bm,27 and current density out-of-plane component jm,z,27 = jm,27 · ẑm distributions in Ωm,27

associated with the macroscopic zone ΩM,27 shown in Fig. 12. Results correspond to the filament state after the current ramp-up

procedure at t = Tup.
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Fig. 21. Minimal current-sharing temperature Tcs and maximal temperature TM,max,LTS in the LTS coil during the ramp-up

procedure. Results are obtained with the MSA (Nz = 36) and h̃ = 1.45 W/K.

Fig. 18. This may be attributed to the negligible impact of transport current for this particular ap-

plication, as the maximal transport current ratio i = Īt/maxx∈ΩM,s Ic(bM, TM) = 0.149, occurring

at the end of the ramp-up, is small. This highlights the large magnet operation margin with respect

to the critical surface. Indeed, the corresponding temperature margin represented in Fig. 21 is

important as well. The current-sharing temperature Tcs is here defined as Ic(bM, Tcs) ≜ Īt.

While the uncertainty associated with the cryocooler convective coefficient and its influence on

numerical results have been addressed in Section VII-E, there remain other uncertain parameters

that could affect the results due to the highly non-linear nature of the problem. As an illustrative

example, the critical current density jc(b, T ) scaling law, along with the corresponding values
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Fig. 22. Temperature evaluated at the first sensor location TM(xs,1) (top) and corresponding integrated hysteresis loss Qhys in the

LTS coil (bottom) during the ramp-up procedure. The critical current density scaling is varied between j∗c ≜ jc(5 T, 4.2 K) =

0.9×j∗c,ref and j∗c = 1.1×j∗c,ref, with j∗c,ref = 2783 A/mm2. Results are obtained with the MSA (Nz = 36) and h̃ = 1.45 W/K.

provided by the manufacturer, may have a significant impact as shown in Fig. 22. A 10% variation

of the critical current density leads to a maximal temperature variation of 0.1 K at the first sensor

location. This is a direct consequence of the strong dependence of the hysteresis losses on jc. As

represented in Fig. 22, hysteresis losses also experience a 10% variation in the second part of

the ramp-up, once most zones of the LTS coil are associated with fully penetrated filaments. In

such cases, the filamentary loss is approximately proportional to jc (cf. (19)). In contrast, in the

weak field regime, losses are less sensitive to jc. The results in Fig. 22 highlight the crucial role

played by the accurate determination of SC material properties in the hysteresis loss prediction.

Even though the MSA yields a more detailed prediction of hysteresis losses, the SAA offers a

significant advantage in terms of computing performance as highlighted in Table III. Considering

the stopping criterion (24) for the MSA, the computing time is significantly increased with

respect to the SAA. However, using a single fixed point iteration between scales already ensures

a relative error of less than 2%, as pointed out in Section VII-D. In this configuration, the MSA

computing time can be greatly reduced while ensuring satisfactory accuracy relative to a more

restrictive stopping criterion. The computational effort required for the MSA is large, yet it

remains much more advantageous than performing a full 3D simulation of the LTS coil down

to the SC filament scale. The latter would require a meshing of the LTS coil with a resolution

of the order of a tenth of the SC filament diameter, which is not feasible. In terms of memory

usage, the MSA is again more demanding than the SAA, the parallel computation of several
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TABLE III

Computing (Wall) time required for a ramp-up simulation, together with the associated number of cores for the parallel

computation and the corresponding memory usage (maximum resident set size). The MSA (Nz = 36) is performed both with

εQ = 10−3 and with a single fixed point (FP) iteration between scales. Time is reported for the different simulations:

macroscopic magnetodynamic (M,mag), macroscopic thermal, both within SAA (M,the) and within MSA including

mesoscopic (M,the + m). Simulations were run on 32 core AMD Epyc Rome 7542 CPUs at 2.9 GHz.

SAA
MSA (Nz = 36)

εQ = 10−3 single FP it.

M,mag 21 min 26 min

M,the 3 h 51 min / /

M,the + m / 27 h 57 min 14 h 48 min

Wall Time 4 h 12 min 28 h 23 min 15 h 14 min

Number of cores 1 40 40

Memory usage 392 Mb 12.15 Gb 12.07 Gb

mesoscopic simulations requiring a significant amount of storage resources.

VIII. CONCLUSION

In this work, a multi-scale approach (MSA) and a semi-analytical approach (SAA) were proposed

to predict AC losses in LTS coils. They were implemented within magneto-thermal FE simula-

tions using the GetDP open-source software. The application of these methods to the ramp-up

procedure of the S2C2 LTS coil validated their implementation, as the numerical results were

found to be in good agreement with experimental data.

Analytical approximations for the filamentary hysteresis losses were adapted to deal with

ramping field boundary conditions. The cross-validation with a numerical single filament (SF)

model showed that analytical approximations are able to reproduce numerical results in asymp-

totic regimes, yet they underestimate the losses in the intermediate field range. Moreover, the

critical current density dependence on the flux density and the effect of the transport current

were highlighted as crucial factors than cannot be modelled with analytical approximations.

The MSA, relying on the SF model for loss prediction rather than analytical approximations,

is expected to yield more refined predictions compared to the SAA. Indeed, the SAA was found

to underestimate losses when compared to the MSA, particularly in the intermediate field range.

Consequently, numerical results obtained using the MSA exhibited better agreement with the
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experimental data than those obtained with the SAA. However, the SAA remains a valuable

tool for fast computations, offering satisfactory accuracy in capturing the experimental curve

shapes. While the computational cost associated with the MSA is higher, it still represents a more

efficient alternative compared to conducting full 3D simulations of the LTS coil down to the scale

of superconducting (SC) filaments. The MSA effectively accounts for mesoscopic phenomena

within the SC filaments inside the LTS coil while maintaining a reasonable computational load.

Finally, it should be noted that the observed good agreement with the experimental data is a

direct consequence of the negligible contribution of coupling losses with respect to hysteresis

losses. This satisfies the fundamental assumption of the proposed methods: the SC filaments must

be uncoupled. An extension of the proposed MSA should consider replacing the mesoscopic SF

model with a more detailed conductor model, which would enable the description of faster

phenomena involving inter-filament coupling losses.



NOVEMBER 2024 38

wCu

hCu

tfg

tfgη̂1

η̂2

η̂3

Fig. 23. Simplified cross-section of the wire-in-channel conductor (cf. Fig. 1), neglecting NbTi. The height and the width of

the copper channel are respectively denoted by hCu and wCu, and the thickness of the fiberglass epoxy insulation by tfg. The

local coordinate system η̂1-η̂2-η̂3 is also represented.

APPENDIX A: HOMOGENIZED THERMAL PROPERTIES AT MACROSCOPIC SCALE

Considering the low filling factor λSC of NbTi filaments (cf. Table I) and their thermal con-

ductivity being significantly lower than that of the copper matrix, the homogenized thermal

properties of the LTS coil are derived from the simplified geometry of a single wire-in-channel

conductor as depicted in Fig. 23, neglecting the contribution of NbTi. The (normalized, as NbTi

is neglected) filling factors of copper and fiberglass epoxy are respectively denoted by λCu and

λfg. The homogenized density and the (mass-based averaged) homogenized specific heat capacity

are respectively given by:

ρhom = λCuρCu + λfgρfg, (27)

cp,hom =
λCuρCucp,Cu + λfgρfgcp,fg

ρhom
. (28)

The derivation of the homogenized thermal conductivity relies on the concept of thermal resis-

tance [33]. The distinction is made between the normal (radial and vertical) and warp (azimutal)

fiberglass epoxy thermal conductivity (κfg,n and κfg,w). Neglecting the radius of curvature of the

conductor, the homogenized thermal conductivity along η̂1 and η̂2 results from the composite

association of thermal resistances:

κ1,hom =
wCu + 2tfg

hCu + 2tfg

[
2

tfg

κfg,n(hCu + 2tfg)
+

(
κCuhCu

wCu
+ 2

κfg,ntfg

wCu

)−1
]−1

, (29)



NOVEMBER 2024 39

κ2,hom =
hCu + 2tfg

wCu + 2tfg

[
2

tfg

κfg,n(wCu + 2tfg)
+

(
κCuwCu

hCu
+ 2

κfg,ntfg

hCu

)−1
]−1

. (30)

Along η̂3, it results from the parallel association of thermal resistances:

κ3,hom =
κCuhCuwCu + 2κfg,wtfg(hCu + wCu + 2tfg)

(hCu + 2tfg)(wCu + 2tfg)
. (31)

In the cylindrical coordinate system (r̂M,ŷM,θ̂M), the anisotropic homogenized thermal conduc-

tivity tensor of the LTS coil is then given by:

κhom =


κr 0 0

0 κy 0

0 0 κθ

 =


κ1,hom 0 0

0 κ2,hom 0

0 0 κ3,hom

 . (32)

The thermal conductivity and specific heat (along with their thermal dependences above 4 K) of

copper (ρ = 8960 kg/m3) and fiberglass epoxy (ρ = 1800 kg/m3) are retrieved from the NIST

database [51] under the entries Copper OFHC (RRR100) and Fiberglass Epoxy G-10 respectively.

APPENDIX B: RAMPING TRANSVERSE FIELD HYSTERESIS LOSS IN WEAK PENETRATION

The derivation of the weak penetration hysteresis loss in a transverse ramping field is adapted

from the work of Carr [14]. Assuming a virgin initial state and a monotonic field ramp-up, the

current density distribution is shown in Fig. 2, with Ri(t, θ) the moving boundary between j = 0

and j = jc regions. For conciseness, the implicit ·m subscript is omitted in the following. In

cylindrical coordinates (r, θ, z) ∈ R+× [0; 2π[×R, we have hz = eθ = er = 0 by symmetry. The

filamentary loss density (18) reduces to:

qhys,1 = 2 · 4

πd2f

∫ π

0

∫ df/2

0

ez · jz r drdθ, (33)

such that only the θ ∈ [0; π[ interval is considered next. Ampère’s law and the radial component

of Faraday’s law respectively simplify to:

1

r
∂r(rhθ)−

1

r
∂θhr = jz, (34)

∂rez = µ0ḣθ. (35)
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Near the moving boundary Ri, still inside the filament, the current density is known from the

CSM as:

jz = −jc H(r −Ri) =

−jc if r > Ri

0 if r < Ri,
(36)

with H(·) the Heaviside step function, whose derivative is the Dirac Delta δ(·). Deriving (34)

with respect to time and introducing Ri < r∗ < df/2:

1

r
∂r(rḣθ)−

1

r
∂θḣr = j̇z = jc Ṙi δ(r −Ri) (37)

⇒
∫ r∗

R−
i

j̇z r dr = jc Ṙi Ri

= r∗ ḣθ −
(
Ri ḣθ

)−
−
∫ r∗

R−
i

∂θḣr dr

= r∗ ḣθ (38)

⇒ ḣθ = jc Ṙi
Ri

r∗
≈ jc Ṙi (39)

with the two last terms of (38) vanishing as hθ(r < Ri) = 0 and r∗ → Ri in the weak penetration

asymptotic regime (with the integrand ∂θḣr being bounded). The integral of (35) is

ez(r
∗, θ) =

∫ r∗

R−
i

µ0jc Ṙi dr = µ0jc Ṙi (r
∗ −Ri). (40)

Inserting (36) and (40) into (33) yields:

qhys,1 = − 8

πd2f
µ0j

2
c

∫ π

0

Ṙi

∫ df/2

Ri

(r −Ri)

≈df/2︷︸︸︷
r drdθ

= −2µ0j
2
c

πdf

∫ π

0

Ṙi (df/2−Ri)
2 dθ. (41)

In the CSM, a surface current K (A/m) distribution of |Kz| = 2be/µ0| sin θ| on the boundary of

the filament shields from an applied flux density be [14]. In the weak penetration approximation,

the surface current can be approximated by |Kz| = jc · (df/2−Ri), leading to:

df/2−Ri =
2be

jcµ0

| sin θ| ⇒ Ṙi = − 2

jcµ0

ḃe | sin θ| (42)

⇒ qhys,1 =
16

πdfjcµ2
0

b2e ḃe

∫ π

0

(sin θ)3 dθ

=
64

3πdfjcµ2
0

b2e ḃe. (43)
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APPENDIX C: BOTTURA’S SCALING LAW AND CORRESPONDING FITTING PARAMETERS

In this work, the critical current density follows the scaling law proposed by Bottura [44] with

the corresponding fitting parameters obtained in [44] using Spencer’s data set [54]:

jc(b, T ) =
C0

b

(
b̃
)0.57 (

1− b̃
)0.9(

1−
(

T

Tc0

)1.7
)1.9

, (44)

with

b̃ =
b

bc2(T )
. (45)

Lubell’s description of the critical flux density dependence on temperature is given by [55]:

bc2(T ) = bc2,0

(
1−

(
T

Tc0

)1.7
)
, (46)

with bc2,0 = 14.5 T and Tc0 = 9.2 K. The scaling parameter C0 in (44) is set such that

jc(5 T, 4.2 K) = 2783 A/mm2.
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[44] L. Bottura, “A practical fit for the critical surface of NbTi,” IEEE Trans. Appl. Supercond., vol. 10, no. 1, pp. 1054–1057,

2000.

[45] A. Campbell, “A general treatment of losses in multifilamentary superconductors,” Cryogenics, vol. 22, no. 1, pp. 3–16,

1982.

[46] F. Feyel, “A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized

continua”, Comput. Methods Appl. Mech. Eng., vol. 192, no. 28-30, pp. 3233–3244, 2003.

[47] A. Abdulle, “The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs,” GAKUTO

Int. Ser. Math. Sci. Appl., vol. 31, p. 135–184, 2009.

[48] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal.

Chem., vol. 36, no 8, pp. 1627–1639, 1964.

[49] S. S. Courts and P. R. Swinehart, “Review of Cernox™ (Zirconium Oxy-Nitride) thin-film resistance temperature sensors,”

in AIP Conf. Proc., vol. 684, pp. 393–398, American Institute of Physics, 2003.

[50] SHI Cryogenics Group, 2020, “RDK-415D Capacity Map,” SHI Cryogenics Group. [Online]. Accessed: Apr. 11, 2024.

[Online.] Available: https://www.shicryogenics.com/product/rdk-415d2-4k-cryocooler-series/.

[51] National Institute of Standard and Technology. Cryogenics Material Properties. Accessed: Apr. 11, 2024. [Online.]

Available: https://trc.nist.gov/cryogenics/materials/materialproperties.htm.



NOVEMBER 2024 44

[52] F. Sirois, F. Grilli, and A. Morandi, “Comparison of constitutive laws for modeling high-temperature superconductors,”

IEEE Trans. Appl. Supercond., vol. 29, no. 1, pp. 1–10, 2019.

[53] L. Prigozhin, “Analysis of critical-state problems in type-II superconductivity,” IEEE Trans. Appl. Supercond., vol. 7, no.

4, pp. 3866–3873, 1997.

[54] C. Spencer, P. Sanger, and M. Young, “The temperature and magnetic field dependence of superconducting critical current

densities of multifilamentary Nb3Sn and NbTi composite wires”, IEEE Trans. Magn., vol. 15, no. 1, pp. 76–79, 1979.

[55] M. S. Lubell, “Empirical scaling formulas for critical current and critical field for commercial NbTi”, IEEE Trans. Magn.,

vol. 19, no. 3, pp. 754–757, 1983.


