
How to Automate Feedback on Diagrammatic
Reasoning With a Relevant Degree of Freedom?

Géraldine Brieven ,Lev Malcev , Benoit Donnet
Université de Liège, Institut Montefiore, Belgium

Abstract—This paper considers CAFÉ 2.0, an Automated
Feedback system designed to support students’ diagrammatic
reasoning in STEM disciplines. CAFÉ 2.0 relies on a predefined
error library, metamodels, and rules to correct students’ solutions
and deliver formative feedback. Implementing such a system
requires a balance between constraining the solution syntax to
enable AF and leaving freedom to students to reflect on their
solution. This paper aims to evaluate whether the level of freedom
provided by our AF system sufficiently prepares students for
exams. In the exam, they must reason and construct solutions
starting with a blank page.

This study is conducted in an introductory programming
course (CS1), based on two semesters (in 2022 and 2023),
where CAFÉ 2.0 supports online homework. Findings reveal a
discrepancy between students’ performance in online homework
and their success on exams. While many students feel comfortable
with fill-in-the-blank diagrams in their homework, they struggle
with the open-ended nature of exam tasks. Our results show that,
among the students who succeeded in their online homework
in 2023, 20% were still unable to produce any diagram in the
exam. Additionally, 70% of them could not correctly provide a
text description of their solution.

To overcome this limitation, this paper proposes an enhanced
system that integrates predefined rules with Large Language
Models (LLMs). In this framework, LLMs serve as translators.
Students can freely create their diagrams and annotate them
with their own textual descriptions using a drawing editor. The
LLM then maps these representations into a more structured
format that aligns with predefined rules. In this way, CAFÉ 2.0
can generate accurate feedback. This transformed representation
retains the same informational content as the original, differing
only in format. This feature will offer students greater flexibility
in constructing their solutions while ensuring that feedback
remains precise and consistent by limiting the role of LLMs
to translation rather than feedback generation.

Index Terms—automated feedback, diagrammatic reasoning,
metamodeling, error detection, large language model

I. INTRODUCTION

To keep students motivated in today’s education, regular
practice is crucial [1] and must be coupled with effective
feedback [2]. This is where Automated Feedback (AF) be-
comes essential [3]. Our tool, CAFÉ 2.0 [4], addresses this
need by supporting online homework where students can
progressively refine their solutions using AF. Currently, CAFÉ
2.0 is used in two introductory courses —- Computer Science
(CS1) and Physics —- with plans to expand to Chemistry and
Mathematics next year. In all these courses, students are asked
to model their solution using a diagram (i.e., diagrammatic
reasoning [5]) before developing it (see Sec. II). Development
typically consists of equations, predicates, or pieces of code.
Previous research has highlighted the benefits of developing
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Figure 1. AF on Diagrammatic Reasoning (including free text (TO-BE)).

spatial skills for mastering STEM disciplines [6], and more
specifically for CS1 courses [7].

Fig. 1 illustrates CAFÉ 2.0’s interface (“Frontend of CAFÉ
2.0”) and the building blocks to automate feedback (“Backend
of CAFÉ 2.0”). For each assignment, students work on a
prefilled diagram composed of boxes (referred to as fill-in-
the-blank diagram). Constraining the diagram’s shape restricts
the range of possible constructions at the syntactic level,
simplifying the process of modeling the expected solution
(referred to as metamodeling [8]). The metamodel, expressed
by the instructor in a configuration file, can support the ex-
pected content of the boxes, their domain, and the relationships
between them. It also contains the error codes each box is
exposed to (see Sec. III-C). Once students have filled the
diagram, they can submit it for evaluation based on rules
implemented by the instructor. They capture students’ typical
errors, which are stored in an error library (see Sec. III-B).
When students receive the feedback, they can use it to improve
and resubmit their solution. This is illustrated in Fig. 1 and
detailed in Sec. III. This figure also highlights in blue how
Large Language Models (LLM) could enhance CAFÉ 2.0 to
support a less constrained solution (see Sec. VII). It would
align more closely with the exam setting, where students are
expected to draw diagrams by hand from scratch. This upgrade
is motivated by the results (see Sec. V), which reveal a gap
between the online homework and the exam setting in a CS1
course. This gap is measured based on students performance.
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We further analyze it by identifying students’ mistakes and
assessing their ability to transfer their understanding between
different online homework and to the exam.

II. MOTIVATION OF DIAGRAMMATIC REASONING IN
STEM COURSES

The design approach of CAFÉ 2.0 is relevant for multiple
STEM topics. The general goal of this tool is to allow first-year
students to informally model their solutions while supporting
AF. From a course perspective, this requires instructors to
introduce students to Model-Driven Development [8], where
students are encouraged to formulate their solutions both
textually and graphically. This approach is intended to foster
abstract thinking by guiding students to use a limited set of
components and symbols to express their reasoning.

In our CS1 course, we apply this approach when students
must implement a loop (i.e., a sequence of instructions that
must be repeated a certain number of times). This task is chal-
lenging for beginners [9] and a fundamental building block for
effective program design. To guide students in implementing
a loop, they may use the Loop Invariant [10]. It relies on
predicates and describes the state of the variables involved in
the solution. The barrier to this approach is that predicates
are not accessible for first-year students [11]. To address this,
we teach students to design a LOOP DRAWING, an informal
version of the Loop Invariant [12]. It is a diagrammatic and
textual representation of a predicate, making formalization
more accessible by removing the mathematical overhead of
a predicate. Similarly, in Kinematics, students may be asked
to compute the friction coefficient for a scenario involving
forces acting on an object, using equations. To easily derive
these equations, it is helpful to first create a force diagram (also
called free body diagram) that clearly illustrates the direction
and application of each force [13]. In Trigonometry, reasoning
over a drawing can help students better grasp the concept of
the trigonometric functions [14]. These first three examples are
illustrated in Fig. 2. Finally, in Chemistry, first-year students
may be asked to write chemical reactions. Before directly
writing it, students can be taught to graphically represent each
chemical reactant and illustrate the atoms transitions between
reactants to form the chemical products [15].

III. AUTOMATED FEEDBACK VIA CAFÉ 2.0

A. Syntax Constraints on Students’ Model

From a technical perspective, automating assessment of
exercises requires finding a balance between pre-structuring
the solution (to anticipate and match student answers with
feedback messages) and allowing some degree of syntax
freedom (to train students to solve problems from scratch).

Fig. 2 illustrates the different levels of constraint a solution
format can be subjected to. The highest level of freedom
is achieved when students can express their solutions in
natural language. At the other end of the spectrum, the most
constrained format requires students to select from predefined
multiple-choice options. Between these extremes, diagrams
with predefined components offer a structured yet flexible way

for students to represent their ideas. Fig. 2 shows three diagram
formats tailored to different STEM disciplines (Maths, CS,
and Physics). In the three lowest diagrams, students must
only complete boxes. For example, in the CS1 exercise, each
box is filled either with a simple expression, or a predefined
symbol. Similarly, in the Kinematics exercise, students must
drag symbols (representing gravity, normal force, etc.) to the
appropriate arrows on the diagram. This level of freedom is
currently the highest one CAFÉ 2.0 can support (indicated by
blue frames in Fig. 2). Previous research [16] corroborates
this choice by encouraging instructors to privilege students’
problem-solving process within structured parameters rather
than allowing complete syntax freedom. While this may hold
true for learning purposes, in all of these courses, students are
ultimately expected to provide a solution from scratch in the
exam, along with a text description. That positions the exam
setting three levels upper the one adopted by CAFÉ 2.0. With
less syntactic constraints, the fill-in-the-blank diagram with
free fields allows students to freely write in the fill-in-the-
blank boxes, without the support of a symbol table. Finally,
getting closer to the exam setting, students should build their
diagram from scratch, using a drawing editor. They first select
the type of diagram they find relevant. The more abstract the
discipline, the less easy this choice. For example, when the
problem consists of assessing the friction coefficient so that
a car is standing on a steep road, it is straightforward that
the type of diagram is a car standing on a steep road and
not a ball thrown in the air. On the opposite, when a student
must express a cosine, the trigonometric circle is a fully
abstract representation they should know already. Between
these extremes, in a CS1 course, students should opt to traverse
an interval of integers to compute the factorial of a given
number. Still, some of them may select an array of characters
as type of diagram because they just blindly replicate the
solution to other problems they remember. Once students have
chosen the type of diagram, they must select, arrange, and
complete it with components (lines, arrows, etc.) and texts.

B. The Error Library Construction

To provide and manage AF, typical errors must be identified
in advance. For this purpose, we define an error library. It
classifies them [17] and maps them to feedback messages.

Fig.3 illustrates how our error library has been populated
with typical errors, based on prior experience [18]. Currently,
in the Physics course, typical errors have been gathered for
one topic – Kinematics – to support exercises with AF. In
the CS1 course, typical errors gathered in seven topics have
been treated (e.g., Problem Decomposition, Loop Modeling
etc.). We analyzed eight midterms, 40 homework submissions
(five homework per year), and 24 exams1 from 2016 to 2023.
A majority of typical errors cross-check errors presented in
other research [19].

Each student’s error was defined through an error code in
our error library and mapped to a specific misunderstanding.

1In our country, for our course, students have one official exam (in January)
with two potential resits (June and August).
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Figure 2. Trade-off when designing au AF system. Blue frames highlight the formats supported by CAFÉ 2.0 (with respect to the exam setting).
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Defining typical errors requires determining an appropriate
level of granularity. For instance, an array indexing error is
broader than an off-by-one error, which suggests the student
believes arrays are indexed starting from 1. The errors speci-

ficity should match the desired accuracy level for feedback.
Each typical error is characterized as syntactic or semantic.
They are also assigned a gravity factor to aid in grading
and prioritizing the feedback messages, with the most signif-
icant feedback appearing first. One feedback message reflects
one error code. Additionally, feedforward (i.e., guidance for
improving the solution) is offered through references in the
course that demonstrate the correct application of the concept.
A portion of our error library is provided in Appendix B. At
the time of writing, the error library includes 136 error codes.

Beyond supporting AF, this error library ensures consis-
tency in course evaluation. For both formative and summative
assessments, typical errors from the error library are listed in
checklists supporting grading. From a research perspective,
it also makes it possible to measure learning gains from
instructional experiences by formally assessing students before
and after the experience. This approach has supported the
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findings of various studies [20], [21].

C. Metamodeling, Correction, and Feedback

As briefly specified in Sec. III-A, when students model a
solution in CAFÉ 2.0, they are provided with a fill-in-the-
blank diagram with different types of boxes. Free boxes expect
expressions while constrained boxes expect a symbol dragged
from a predefined list [12], [4]. The expected content of free
boxes is characterized by a domain and some relationships
with other boxes’ content. That is specified in a metamodel.
For example, in a CS1 assignment involving iterative con-
structs, free boxes might contain an integer variable index
whose domain would be within [0, N [ and related to an array
size N . More simply, the expected content of constrained
boxes is a symbol ID, like illustrated in Fig. 4. The figure
shows an example of a fill-in-the-blank diagram in Physics
containing only constrained boxes. In the figure, the student
answered both correct and incorrect symbols. The metamodel
is represented through a matrix that specifies the expected
symbole ID and the typical error to return (if any) for each
incorrect symbol. For instance, in box C, the student places a
motorized force, while the problem statement indicates that the
car is parked. Consequently, the error code F_noEngine is
triggered during the mapping check. A more complex example
of a fill-in-the-blank diagram, metamodel, and associated
checks is given in Appendix A, in a CS1 context.

(a) Feedback main page in CAFÉ 2.0.

(b) Example of a piece of feedback in CAFÉ 2.0.

Figure 6. Screenshots of CAFÉ 2.0.

Once all the typical errors made by the student are iden-
tified via their error code (as shown in the last column of
the “Mapping Checks” section in Fig.4), CAFÉ 2.0 accesses
the error library to compute grades and provide feedback
and feedforward. This flow is illustrated in Fig.5. It allows
students to recognize their misunderstandings and improve
their subsequent submissions.

An example of the main feedback page and feedback
messages in CAFÉ 2.0 is illustrated in Figure 6. The “bomb”
icon highlights pieces of feedback corresponding to a typical
error student should fix in subsequent submissions. To draw
student’s attention, that feedback is also in bold. The “paper
clip” icon informs the student about how their submission is
processed and interpreted.

IV. METHOD

CAFÉ 2.0 is available in our CS1 course since academic year
2022–2023 and has been deployed in Physics this academic
year (2024–2025). Therefore, in this paper, we use data col-



Table I
ONLINE HOMEWORK DESCRIPTION IN THE CS1 COURSE, WITH THE PARTICIPATION RATE FOR EACH ONLINE HOMEWORK.

Online homework Participation
Subject Details 2022–2023 2023–2024

#1 Action on digits for all numbers in [a, b]
outer loop (spans [a, b])

78% 67%inner loop (counting digits)
inner loop (summing digits)

#2 Arrays Compressing an integer array into another 62% 72%Calculating a checksum

#3 Displaying all numbers in array T that follow a property G
Checking whether a number is prime

56% 50%Checking if a number meets the property G
Displaying the numbers meeting G

lected during academic years 2022–2023 and 2023–2024 in the
context of the CS1 course. In 2022–2023 (resp. 2023–2024),
97 (resp. 101) students registered to the course. 5% (resp. 18%)
of them had some prior knowledge in programming. Most
of them (68% in 2022–2023, 87% in 2023–2024) were new
comers, starting their first-year at the University. Throughout
the semester, students participated in ten 2-hour theoretical
lectures and ten 2-hour exercise sessions.

Every three weeks, students were also given online home-
work (five in total over the semester). Solving them usually
requires an additional four out-of-class hours of work. The
content of these assignments aligns with the chapters taught
and practiced in the preceding week(s). Among the five
assignments, three focus on training diagrammatic reasoning,
specifically within the context of loop programming (see
Sec. II). This paper concentrates exclusively on these three
online homework. Table I presents a high-level overview of
their tasks, including student participation rates. In both years,
the participation rate decreased. This trend is due to a drop-out
after the midterm 2 as well as the assignments that get more
complex.

Online homework is completed across two distinct periods.
The first, a formative period, runs from Wednesday to Friday
of the same week. During this time, students are allowed up
to three attempts, with their final submission determining their
grade. Aligned with Sambell et al.’s principles of Assessment
for Learning (AfL), this low-stakes activity contributes 10%
to the final grade (2% per assignment) [22]. The second
period, focused solely on practice, begins immediately after
the formative period and extends until the final exam (typically
in January in our region). During this phase, students can
make unlimited attempts to complete the homework, but their
performance does not affect their grade. Consistent with AfL
principles, this practice-only period provides opportunities for
reinforcement and feedback, helping students prepare effec-
tively for the exam [22].

Online homework is completed using CAFÉ 2.0, which
tracks and logs typical errors made by students during each
submission. At the start of the semester for each year under
study, students were informed about their participation in a

2Our students have a midterm for most of their courses. The midterm is
usually organized between Homework #1 and #2 in Table I.

(a) 2022–2023 (b) 2023–2024

Figure 7. Correlation between average grades to the online homework and
exam for both academic years. Students who did not participate in one or both
assessments are not accounted in this graph (N2022 = 74 and N2023 = 72).

research study and given the option to opt out. All students
provided their consent, and no one chose to opt out during the
semester. Additionally, all data collected by CAFÉ 2.0 was
anonymized before being analyzed.

V. RESULTS

In this section, we aim at assessing the relevance of the
trade-off we made to implement CAFÉ 2.0 (see Sec. III-A).

Fig. 7 illustrates the correlation between the average grade
for online homework (X-axis) and the corresponding question
on the final exam (Y-axis). Four regions are highlighted:

• Bottom-left: Students failing both the online home-
work and the exam question (29 in 2022–2023, 25 in
2023–2024).

• Top-left: Students failing the online homework but suc-
ceeding on the exam question (2 in 2022–2023, 0 in
2023–2024).

• Top-right: Students succeeding in both the online home-
work and the exam question (18 in 2022–2023, 14 in
2023–2024).

• Bottom-right: Students succeeding in the online home-
work but failing the exam question (25 in 2022–2023, 32
in 2023–2024).

Fig. 7 suggests that regular practice, which includes AF,
benefits some students (top regions). However, a significant
proportion of students (our group of interest) failed the exam
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question despite performing well in the online homework. This
discrepancy suggests three possible explanations:

• Expl. 1: Some students might rely on external assistance,
such as AI tools (e.g., ChatGPT [23]), plagiarism [24]3,
or contract cheating [26]4.

• Expl. 2: Students may struggle to process feedback
and transfer their knowledge to different contexts, a
phenomenon known as “compartmentalization of knowl-
edge” [27].

• Expl. 3: The final exam question may differ significantly
from the online homework tasks. For example, while
online homework provides structured prompts (e.g., fill-
in-the-blank diagram), the exam requires students to
construct solutions from scratch.

This study investigates the latter two hypotheses.
To evaluate Expl. 2, we focus on errors students could fix in

a given online homework assignment. Then, we inspect how
well students avoided repeating them in the context of another
online homework assignment. Fig. 8 shows that 30% (2022)
and 45% (2023) of students did not repeat previously corrected
errors. However, some students repeated up to 60% (2022) and
77% (2023) of their prior errors. Furthermore, 30% (2022) and
17% (2023) of students made between 10% and 25% of the
mistakes they had previously corrected. These findings indicate
that students generally transfer their understanding across
assignments when the tasks have similar syntactic constraints,
disproving Expl. 2 and shifting the focus to Expl. 3.

To address Expl. 3, we analyzed the groups of interest
for each year (N2022 = 26 and N2023 = 32) and assessed
the percentage of students who: (i) were unable to provide
any solution; (ii) failed to represent the appropriate type of
diagram aligned with the nature of the problem; and (iii) could
not provide a correct text description. Table II presents the
results. Results from both years show the same trend, with
the most pronouned ones being from 2023. They show that
approximately 20% (8% in 2022) of students were unable

3We addressed plagiarism by inspecting all student submissions using
a script [25] that calculates the percentage of similarity between pairs
of submissions from different students. We detected one plagiarism case
involving four students in 2022–2023 and two cases in 2023–2024 involving
five and three students. Those students were excluded from this study.

4Contract cheating means presenting a work written by another person as
if it were their own, therefore resorting to a third party to do the assignment.

Table II
ERROR SOURCES IN THE EXAM. PERCENTAGE CONSIDERS ONLY THE

STUDENTS WHO SUCCEEDED IN THEIR ONLINE HOMEWORK BUT FAILED
IN THE CORRESPONDING EXAM QUESTION.

Source of error in the exam question Academic Year
2022-2023 2023-2024

(i) No solution 7.7% 19.4%
(ii) Incorrect type of diagram 26.9% 62.5%
(iii) Incorrect text description 50.0% 68.8%

to provide any diagrammatic representation of their solu-
tion, despite successfully doing so in their online homework.
Additionally, about 62% (27% in 2022) of students could
not identify the correct type of diagram to support their
representation. Finally, 69% (50% in 2022) of students failed
to correctly textually describe the state of their variables. To
deep-dive this last result, we computed that over half (38% in
2022) of the students who struggled to describe variable states
on the exam had succeeded when using fill-in-the-blank text
with drag-and-drop components in the online homework.

These results suggest that the high level of constraints in the
online homework may have limited the effectiveness of AF in
preparing students for open-ended exam questions. Sec. VII
explores a solution to address this gap, using LLM.

VI. RELATED WORK

In STEM education, Diagrammatic Reasoning (DR) is
closely linked to Representational Competence [28] and Com-
putational Thinking [29]. DR specifically promotes problem-
solving through visualization, whereas Representational Com-
petence refers to the ability to translate one type of repre-
sentation into another (e.g., in Kinematics, students might be
required to convert a force diagram into equations).

Many tools promote DR (e.g., Scratch, Codex, KiRC inven-
tory [30]). Most of these tools provide passive visualization by
either directly depicting potential representations or simulating
students’ final answers (e.g., code snippets) to enhance their
understanding of solution behavior. Some tools take this a step
further by enabling interactive, dynamic diagrams that students
can manipulate, such as Brilliant [31], which assists in solution
discovery. However, these tools are student-driven and lack
system checks for consistency.

On the other hand, numerous tools provide AF in STEM
disciplines [32]. In CS, specifically, various automated systems
have been developed to deliver feedback on programming
exercises (e.g.,[33], [34], [35]). Most of these systems rely
on test-based feedback, where student code is evaluated using
unit tests.

While a comprehensive review of such tools is beyond
the scope of this paper, systematic reviews have previously
identified and categorized these tools extensively, both within
the CS domain [36] and across STEM more broadly [37].

This paper focuses on tools meeting the following criteria:
(i) updated after 2022, (ii) promote DR or Writing-to-Learn
(WTL), (iii) provide automated feedback (AF), (iv) target pre-
university or higher education levels, and, (v) span multiple
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Figure 9. Other AF tools supporting DR in STEM disciplines.

STEM disciplines. Fig. 9 highlights fifteen tools that fulfill
these requirements, positioning them upper or lower than
CAFÉ 2.0 with respect to their level of syntax constraint.

Kahoot, Quizizz, and RATsApp provide formative feedback
for multiple-choice questions, covering a wide range of STEM
disciplines. Specifically, RATsApp (Rapid Assessment Tasks
App)[28] includes kinematics tasks, with an example similar to
ours (see Fig. 4). While RATsApp offers useful features such
as scaffolding and a learning dashboard, it lacks flexibility in
accommodating diverse students responses. Its primary focus
in on expanding topic coverage, rather than increasing the
complexity of solution representation.

Khan Academy [38], Brilliant, and OATutor (Open Adaptive
Tutor) [39] go beyond supporting multiple-choice questions
by incorporating more advanced question types, such as those
with restricted input fields (e.g., allowing users to compose
expressions like 2x2 + x − 1). These tools also stand out
for their personalization features. They suggest problem state-
ments based on a student’s skill level as determined by their
past performance.

At more advanced levels, tools such as Moodle [40], Sow-
iso [41], and the Digital Learning Suite [42] offer “drag-
and-drop” question types. These allow educators to design
static diagrams with blank fields that students complete using
predefined elements. For example, prior work [40] demon-

strates the use of graphical force diagrams in Moodle for
this purpose. MAATSE [43] includes a comparable feature
but distinguishes itself by offering more advanced feedback
through the application of sophisticated rule-based systems.

Building on these tools, Aktiv [44], Labster [45], and
ALEKS [46] take feedback to the next level by supporting
interactive diagrams that students can freely complete or
equations with movable terms in Mathematics, Physics, and
Chemistry. These platforms offer feedback on question formats
that extend far beyond traditional multiple-choice approaches.
CAFÉ 2.0 follows a similar approach but differentiates itself by
prioritizing advancements in diagrammatic reasoning practice
in future updates, whereas these tools primarily focus on
knowledge modeling and content personalization.

Finally, AcaWriter [47] assists in describing a solution.
Beyond commenting on syntax (e.g., identifying misspellings),
it detects subjective statements or gaps in explanations, thereby
capturing the solution’s semantics. More specifically, in CS
and Engineering, we found a web-based system capable of
grading short text answers provided by students [48].

VII. LLM PERSPECTIVE

In Sec. V, the results investigate the gap between online
homework and exam conditions. They revealed that while
students can semantically construct solutions by selecting
correct symbols from a list, they often struggle to formulate
their own textual descriptions in the summative assessments.
To fill this gap, our goal is to align CAFÉ 2.0 more closely with
the exam format by introducing greater flexibility in students’
syntax. As shown in Fig. 2, all the solution’ representations
within the same column convey identical information, differing
only in format. To bridge these representations, we propose
designing a translator module, capable of converting a solution
with minimal syntactic constraints into a predefined format.
This would enable the current validation rules to process
students’s solutions, even if they are initially created with
fewer syntactic constraints, as illustrated in Fig. 10. By doing
so, to go further, CAFÉ 2.0 could even dynamically adjust the
level of syntactic constraints imposed on students based on
their abilities or preferences.

For example, a statement that currently requires students
to select the symbols “sum”, “integers”, “0”, and “i-1” in
order to complete a fill-in-the-blank diagram described by:
“The variable [sum] contains the sum of the [integers] from
[0] to [i-1].” could be modified to include an empty text field,
where the answer would be equivalently interpreted by the
LLM. This change would remove a crutch and bring students
closer to real exam setting.

The use of LLM offers not only a closer alignment with
exam settings, but also advances the adoption of Writing-To-
Learn (WTL) pedagogy. In STEM courses, WTL involves
crafting exercises that prompt students to articulate, in natural
language, the components of their solutions before imple-
menting them. This practice enhances conceptual understand-
ing [49], [50], [51]. Similarly, in diagrammatic reasoning,
an intermediate stage involves creating drawings rather than
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Figure 10. Integrating LLMs in the flow of CAFÉ 2.0.

writing text. This approach leverages the benefits of WTL
pedagogy while addressing its primary limitation: the re-
liance on manual corrections by instructors. From a technical
perspective, implementing this feature requires using LLM
exclusively to translate free-text fields, as illustrated through
Fig. 1.

Importantly, our goal is not to use LLMs to directly generate
feedback based on students answers. Other studies [51], [52]
highlighted the challenges of this approach. Primarily, feed-
back generated by LLMs may lack consistency and precision
due to the probabilistic nature of these models and poten-
tial gaps in domain-specific fine-tuning. LLMs can identify
general patterns in responses. However, ensuring consistent
and accurate feedback across diverse inputs requires extensive
training with a large, high-quality dataset. Additionally, LLMs
typically function as “black boxes”, making their internal
processes difficult to interpret, even when their configuration
and tuning are well understood. This lack of transparency can
pose issues if students or instructors question the validity of
feedback, as it becomes challenging to explain the reasoning
behind the generated responses.

The hybrid solution we propose, where an LLM is used to
translate free-text responses into structured data processed by
a rule checker, provides substantial control over the feedback’s
content while preserving the flexibility offered by an LLM.

As for the implementation strategy, previous research [52],
[53] has identified models such as SBERT [54] and the
Universal Sentence Encoder [55] as effective means for de-
riving semantically meaningful sentence embeddings from
student responses. These models leverage transformer-based
architectures that map input sentences into vector spaces,
maintaining semantic relationships where similar sentences are

represented closer together. By applying these embeddings, we
can accurately extract key concepts and semantic structures
from student answers, which can be systematically fed into
a rule-checking system. This ensures that feedback is not
only aligned with expected responses but also controlled with
consistent educational input.

VIII. CONCLUSION

To conclude, CAFÉ 2.0 is an interdisciplinary AF tool
designed to promote Diagrammatic Reasoning (DR) skills.
Its implementation strikes a balance between constraining the
syntax of students’ solutions (to enable AF) and allowing
sufficient freedom for them to develop their DR abilities. To
achieve this, when solving a problem, CAFÉ 2.0 presents stu-
dents with a fill-in-the-blank diagram that includes two types
of input fields: free boxes, where students enter expressions
from a specific domain that satisfy defined relationships, and
constrained boxes, where students drag and drop predefined
symbols. The objective is to prepare students for the exam,
where they must create graphical representations of their
solutions from scratch (i.e., by hand on paper). To evaluate
whether this balance effectively prepares students for the
exam, we compared student performance in online homework
and corresponding exam questions. Results indicate that while
some students perform well in online homework, they face
challenges under the exam setting. This highlights the need
to better align online homework with exam conditions. To
address this, the paper proposes a hybrid approach that in-
tegrates predefined rules with LLMs to create more flexible
diagrammatic reasoning templates in homework assignments.

SOFTWARE ARTEFACT

CAFÉ 2.0 is written in Python 3. It requires the Pandas
library for working properly. CAFÉ 2.0 source code is available
at this URL: https://gitlab.uliege.be/cse.
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APPENDIX A
EXAMPLE OF MORE COMPLEX CHECKING RULES

Fig.11 illustrates a fill-in-the-blank diagram containing two
types of boxes. Free boxes (in red) expect expressions, al-
lowing students the freedom to define their own variables and
apply operations to them. Constrained boxes (in green) expect
a symbol chosen from a predefined list, similar to all boxes
in Physics, as shown in Fig.4.

In the configuration file, each box is linked to a semantic
defined by typical errors (as in the Physics example). For the
checks, free boxes are mapped to a domain or a dependency
relationship with other boxes, while constrained boxes are
mapped to a symbol ID. For instance, box E should contain
the expression in box D plus 1, and box K should hold the
48th symbol in the list (i.e., “to multiply”). In this example,
the student made three mistakes in boxes B, G, and I . In box

https://gitlab.uliege.be/cse


Domain and dependence checks
Box Domain Dep Error Code

B LPM_boundVal

C 1 == 0+1  OK

D OK

E i == (i-1)+1 OK

F OK

G n != (n-1)+1 LPM_notConsec

H OK

J i-1 == i-1 OK

matching patterns

matching patterns

Mapping checks

Metamodel

Box student expected Error Code
A 22 22 OK

I 1 2 LPM_descrDone

K 48 48 OK

student answers:

box A: symb 22
box I: symb 1
box K: symb 48

student answers:

box B: 2
box C: 3
box D: 
box E: i
box F: n-1
box G: n+1
box H: fact
box J: i-1

product to multiply
9 11

N

Labels:
1. "product"

2. "factorial"
...
22. "N"

23. "to verify"
...

48. "to multiply"

Box Domain Dep Error code

B {0,1} LPM_boundVal

C boxB+1 LPM_notConsec

D {varIt -1, varIt} LPM_itVar
E boxD+1 LPM_notConsec

F {n-1} LPM_boundVal
G boxF+1 LPM_notConsec

H varRes LPM_resVar
J boxE LPM_resExpr

Box Expected Symbol ID Error code

A 22 LPM_objName

I 2 LPM_descrDone

K 48 LPM_descrTodo

n+132
A

KI

B C

D E

F G

H  J 

i-1

Figure 11. Example of fill-in-the-blank diagram, metamodel and checking
rules in CS1. Syntactic checks on free boxes are omitted for figure clarity.

B, the student entered 2, while the expected values were 0
or 1, triggering the error code LPM_boundVal. Similarly, in
box G, the expected content should match the content of box
F minus 1 (i.e., n), which is not the case. Lastly, in box I ,
the expected content was the second symbol (“factorial”), but
the student selected the first one (“product”).

APPENDIX B
EXAMPLE OF TYPICAL ERRORS

Table III presents examples of typical errors included in
our error library. The first four typical errors are syntactic
ones. They appear only during summative assessments, where
students must design their solutions from scratch. The next
eight typical errors are semantic. For instance, as indicated by
its text description, the error code F_normNotPerp occurs
when students do not realize that the normal force is applied
by the plane on the object, which is manifested by the normal
force not being perpendicular to the plane.
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