Computational & Multiscale Mechanics of Materials

Resolution of elasto-plastic finite-elements problems

by quantum annealing

Van Dung Nguyen, Ling Wu, Françoise Remacle, and Ludovic Noels

V.-D.N acknowledges the support of the Fonds National de la Recherche (F.R.S.-FNRS, Belgium). F.R. acknowledges the support of the Fonds National de la Recherche (F.R.S.-FNRS, Belgium), #T0205.20. This work is partially supported by a "Strategic Opportunity" grant from the University of Liege

By Dhatfield - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4279886

CM3

2025 AAM, Gran Canaria, Spain

Introduction to Quantum Computing

Bits vs. Qubits: Bit Qubit 0 0 Superposition of states: _ A quantum bit can be 0 or 1 at the same time • State vector of a qubit • Computational basis $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ & $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ • Notations: $\begin{cases} |\phi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle \\ \langle \phi | = (\alpha^* \ \beta^*) \end{cases} \qquad |\alpha|^2 + |\beta|^2 = 1$ $|0\rangle$ φ Qubit represented on the surface of the Bloch Sphere $|\phi\rangle = e^{i\delta} \left(\cos\left(\frac{\theta}{2}\right) |0\rangle + e^{i\varphi} \sin\left(\frac{\theta}{2}\right) |1\rangle \right)$ Global phase $e^{i\delta}$ has no observable consequence • (NB relative phase has consequence) $|1\rangle$ At measurement (in the computational basis) Either $|0\rangle$ or $|1\rangle$ with respective probability $|\alpha|^2$ and $|\beta|^2$

Introduction to Quantum Computing

- A system of K coupled qubits
 - Is a 2^{*K*} -state quantum-mechanical system
 - Whose state can be represented by any normalised linear combination of 2^{K} basis states:
 - $|\pmb{\phi}\rangle = \phi_0 |0\rangle \otimes |0\rangle \dots \otimes |0\rangle + \phi_1 |0\rangle \otimes |0\rangle \dots \otimes |1\rangle + \dots + \phi_{2^K 1} |1\rangle \dots \otimes |1\rangle \otimes |1\rangle$

with $\sum_{i=0}^{2^{K}-1} |\phi_i|^2 = 1$

Because of superposition, potentially, a quantum computer with K qubits can take 2^{K} bitstrings of size K in parallel at the same time. A classical computer can only take 1 bitstring of size K

CM3

Introduction to Quantum Computing

Quantum computers:

- Trapped-ion quantum computer
 - Suspended ions in electromagnetic field
 - Ground state and excited states
 - Interactions controlled by laser •
 - E.g. IonQ & Quantinuum
- Photonic quantum computers
 - State corresponds to direction of photon travel
- Superconducting quantum computers
 - Superconducting qubits as artificial atoms (ground state and excited state)
 - Superconducting capacitors and inductors are used to produce a resonant circuit ٠
 - Operate at temperature of 10 mK ۲
 - Qubit state controlled by external microwave signals •
 - IBM, D-Wave •
- Different platforms (2 different resolution methodologies)
 - IBM •

CM3

- 2022: 433-qubit Osprey'
- 2023: 1121-gubit Condor
- D-Wave •
 - 5000+-qubit Advantage (35000 couplers)
 - Each qubit is only connected to a reduced number of other qubits

- Universal gate
 - Gate on 1 qubit

• E.g. Hadamard
$$\mathbf{H}^{\mathbf{d}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $|0\rangle - \underline{\mathbf{H}^{\mathbf{d}}} - \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ $|1\rangle - \underline{\mathbf{H}^{\mathbf{d}}} - \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

– Gate on 2 qubits

• NB:
$$|01\rangle$$
: $\begin{pmatrix} 1 & \cdot \begin{pmatrix} 0 \\ 1 \\ 0 & \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ & $|10\rangle$: $\begin{pmatrix} 0 & \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 1 & \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ &

• E.g. controlled-not: $\mathbf{C}_{10} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$|x\rangle - |x\rangle - |x\rangle - |x\rangle - |y\rangle + |y\rangle - |y \oplus x\rangle$$

 $x, y \in \{0,1\}$, the second qubit is flipped if and only if first is 1

E.g. for
$$x = 1$$
 $y = 0$: $|\phi\rangle = 0|00\rangle + 0|01\rangle + 1|10\rangle + 0|11\rangle$
 $\begin{bmatrix} 1\\0\\0\\0\\0\end{bmatrix} \begin{bmatrix} 0\\1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix} \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix} \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix}$
 $|\phi'\rangle = C_{10}|\phi\rangle = 0|00\rangle + 0|01\rangle + 0|10\rangle + 1|11\rangle$

- Gate on n qubits ...

• Universal gate

- Circuit, e.g. on 5-qubits

- Gate-based QC
 - Universal approach (like classical computers operations are performed on qubits)
 - Highly sensitive to noise by difficulty in controlling error
 - Error controlled by using control qubits

Quantum annealer

- Goal: finding the ground state of a Hamiltonian H

 $|\boldsymbol{\phi}_{0}\rangle = \arg\min_{|\boldsymbol{\phi}\rangle} \langle \boldsymbol{\phi} | \mathbf{H} | \boldsymbol{\phi} \rangle$

- Based on quantum adiabatic theorem:
 - Considering a time-varying Hamiltonian $H_{QA}(t)$ initially at ground state, if its time evolution is slow enough, it is likely to remain at the ground state
- Adiabatic quantum computing:
 - Starts from the ground state of an easy to prepare Hamiltonian H_i
 - Evolves to the ground state of the Hamiltonian H which encodes the sought solution

$$\mathbf{H}_{\mathbf{QA}}(t) = \frac{(t_a - t)}{t_a} \mathbf{H}_i + \frac{t}{t_a} \mathbf{H}$$

- Quantum annealing
 - Exploits quantum effect such as quantum tunneling
 - Less sensitive to noise than Gate-based QC
 - We still need to design error-contained algorithm !!!
 - Less versatile than Gate-based QC
 - But minimizing energy in mechanics is natural !!!

• Ising Hamiltonian

Goal: finding the ground state of a Hamiltonian H

 $|\boldsymbol{\phi}_{0}\rangle = \arg\min_{|\boldsymbol{\phi}\rangle} \langle \boldsymbol{\phi} | \mathbf{H} | \boldsymbol{\phi} \rangle$

- Some definitions
 - Set of *K* qubits $V = \{0, ..., K 1\}$
 - Set of interactions between 2 qubits $E \subset \{(i, j) \mid i \in V, j \in V, i < j)\}$
 - Pauli- Z operator $\mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and identity $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - Pauli- Z operator applied on qubit *i*: $\mathbf{Z}_i = \underbrace{\mathbf{I}}_0 \otimes \cdots \otimes \mathbf{I} \otimes \underbrace{\mathbf{Z}}_i \otimes \mathbf{I} \otimes \cdots \otimes \underbrace{\mathbf{I}}_{K-1}$
 - Pauli- Z operator applied on qubits *i* and *j*:

$$\mathbf{Z}_{ij} = \underbrace{\mathbf{I}}_{0} \otimes \cdots \otimes \mathbf{I} \otimes \underbrace{\mathbf{Z}}_{i} \otimes \mathbf{I} \otimes \cdots \otimes \mathbf{I} \otimes \underbrace{\mathbf{Z}}_{j} \otimes \mathbf{I} \otimes \cdots \otimes \underbrace{\mathbf{I}}_{K-1}$$

- Ising Hamiltonian represented by an undirected graph (V, E):

•
$$\mathbf{H} = \sum_{i \in V} h_i \mathbf{Z}_i + \sum_{(i,j) \in E} J_{ij} \mathbf{Z}_{ij}$$

• Is a $2^K \times 2^K$ diagonal operator in the computational basis

- Quadratic Unconstrained Binary Optimization (QUBO)
 - Goal: finding the ground state of a Hamiltonian H

$$\langle \boldsymbol{\phi}_0 \rangle = \arg \min_{|\boldsymbol{\phi}\rangle} \langle \boldsymbol{\phi} | \mathbf{H} | \boldsymbol{\phi} \rangle$$
 with $\mathbf{H} = \sum_{i \in V} h_i \mathbf{Z}_i + \sum_{(i,j) \in E} J_{ij} \mathbf{Z}_{ij}$

- In terms of spin variables
 - Computational basis of **H** $|\phi\rangle = |b_0 b_1 \dots b_{K-1}\rangle$ with $b_i \in \{0, 1\}$
 - We have successively

$$\mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad \mathbf{Z} |b_i\rangle = (-1)^{b_i} |b_i\rangle \qquad |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\mathbf{Z}_i = \underbrace{\mathbf{I}}_0 \otimes \cdots \otimes \mathbf{I} \otimes \underbrace{\mathbf{Z}}_i \otimes \mathbf{I} \otimes \cdots \otimes \underbrace{\mathbf{I}}_{K-1} \qquad \qquad \mathbf{Z}_i |\phi\rangle = (-1)^{b_i} |\phi\rangle$$
$$\mathbf{Z}_{ij} = \underbrace{\mathbf{I}}_0 \otimes \cdots \otimes \mathbf{I} \otimes \underbrace{\mathbf{Z}}_i \otimes \mathbf{I} \otimes \cdots \otimes \mathbf{I} \otimes \underbrace{\mathbf{Z}}_j \otimes \mathbf{I} \otimes \cdots \otimes \underbrace{\mathbf{I}}_{K-1} \qquad \qquad \mathbf{Z}_{ij} |\phi\rangle = (-1)^{b_i} (-1)^{b_j} |\phi\rangle$$

• Defining the vector of spin variables: $\mathbf{s} = [(-1)^{b_i} \ \forall i \in V]$

The eigenvalue of **H** reads
$$\mathcal{F}_{\text{Ising}} = \sum_{i \in V} h_i s_i + \sum_{(i,j) \in E} J_{ij} s_i s_j = \mathbf{s}^T \mathbf{h} + \mathbf{s}^T \mathbf{J} \mathbf{s}$$

with $\mathbf{h} = [h_i \ \forall i \in V] \ \& \ \mathbf{J} = [J_{ij} \ \forall (i,j) \in E]$
 $|\phi_0\rangle = \arg\min_{\phi} \langle \phi | \mathbf{H} | \phi \rangle$ $s = \arg\min_{\mathbf{s}'} \mathcal{F}_{\text{Ising}}(\mathbf{s}'; \mathbf{h}, \mathbf{J})$ User programmable parameters

- Quadratic Unconstrained Binary Optimization (QUBO)
 - Goal: finding the ground state of a Hamiltonian H

$$\langle \boldsymbol{\phi}_0 \rangle = \arg \min_{|\boldsymbol{\phi}\rangle} \langle \boldsymbol{\phi} | \mathbf{H} | \boldsymbol{\phi} \rangle$$
 with $\mathbf{H} = \sum_{i \in V} h_i \mathbf{Z}_i + \sum_{(i,j) \in E} J_{ij} \mathbf{Z}_{ij}$

- In terms of spin variables
 - Computational basis of **H** $|\phi\rangle = |b_0 \ b_1 \ ... \ b_{K-1}\rangle$ with $b_i \in \{0, 1\}$
 - Vector of spin variables: $\mathbf{s} = [(-1)^{b_i} \ \forall i \in V]$

The eigenvalue of **H** reads
$$\mathcal{F}_{\text{Ising}} = \sum_{i \in V} h_i s_i + \sum_{(i,j) \in E} J_{ij} s_i s_j = \mathbf{s}^T \mathbf{h} + \mathbf{s}^T \mathbf{J} \mathbf{s}$$

with $\mathbf{h} = [h_i \ \forall i \in V]$ & $\mathbf{J} = [J_{ij} \ \forall (i,j) \in E]$ User programmable
 $|\phi_0\rangle = \arg\min_{\phi} \langle \phi | \mathbf{H} | \phi \rangle$ $\mathbf{s} = \arg\min_{\mathbf{s}'} \mathcal{F}_{\text{Ising}}(\mathbf{s}'; \mathbf{h}, \mathbf{J})$ parameters

- In terms of binary variables
 - Vector of binary variables $\mathbf{b} = [b_i \forall i \in V]$
 - Spin-binary variable transformation $s_i = 2b_i 1 : \{0, 1\} \rightarrow \{-1, 1\}$ & property $b_i^2 = b_i$

$$\mathcal{F}_{\text{Ising}} = \sum_{i \in V} h_i s_i + \sum_{(i,j) \in E} J_{ij} s_i s_j \qquad \mathcal{F}_{\text{QUBO}} = \sum_{(i,j) \in E \cup \{(i,i) \forall i \in V\}} A_{ij} b_i b_j = \mathbf{b}^T \mathbf{A} \mathbf{b}$$

• Summary

- Goal: finding the ground state of a Hamiltonian H

$$|\phi_0\rangle = \arg\min_{|\phi\rangle} \langle \phi | \mathbf{H} | \phi \rangle$$
 with $\mathbf{H} = \sum_{i \in V} h_i \mathbf{Z}_i + \sum_{(i,j) \in E} J_{ij} \mathbf{Z}_{ij}$

- Adiabatic annealing
 - Starts from the ground state of an easy to prepare H_i
 - Evolves to the ground state of the Hamiltonian H

$$\mathbf{H}_{\mathbf{QA}}(t) = \frac{(t_a - t)}{t_a} \mathbf{H}_i + \frac{t}{t_a} \mathbf{H}_i$$

Quantum annealing

- Problem reformulated in terms of binary variables
 - **b** = $[b_i \forall i \in V]$ with $b_i \in \{0, 1\}$
 - Eigenvalue $\mathcal{F}_{\text{QUBO}} = \mathbf{b}^T \mathbf{A} \mathbf{b}$
 - QUBO optimization $\mathbf{b} = \arg\min_{\mathbf{b}'} \mathcal{F}_{\text{QUBO}}(\mathbf{b}';\mathbf{A})$
- User programmable parameters

- In practice
 - Provide the QUBO matrix A
 - Set the annealing time t_a (typically 20 µs)
 - One annealing returns a sample of b
 - A single run may not provide the global minimum due to environmental noises, hardware imperfections, pre- and post-processing errors requires several reads

- Set of PDEs to be solved
 - Strong form Weak form:

- Constitutive model:

 $\boldsymbol{\sigma}(\boldsymbol{x},t) = \boldsymbol{\sigma}\big(\boldsymbol{\nabla} \otimes^{s} \boldsymbol{u}(\boldsymbol{x},t); \boldsymbol{q}(\boldsymbol{x},t)\big) \quad \text{with evolution law} \quad \boldsymbol{\mathcal{Q}}\big(\boldsymbol{\sigma}(\boldsymbol{x},t), \boldsymbol{q}(\boldsymbol{\nabla} \otimes^{s} \boldsymbol{u}(\boldsymbol{x},\tau); \tau \leq t)\big) = \boldsymbol{0}$

- Finite element formulation
 - Displacement field at quadrature point E from nodal displacements vector U

 $\boldsymbol{u}(\Xi) = N_a(\Xi)\boldsymbol{U}_a$ $\boldsymbol{\varepsilon}(\Xi) = \boldsymbol{\nabla} \otimes^s \boldsymbol{u}(\Xi) = \boldsymbol{B}_a(\Xi)\boldsymbol{U}_a$

- Resulting non-linear system of equations on time interval $[t_n t_{n+1}]$

$$\int_{V} \sigma(\mathbf{x}): \nabla \otimes^{s} \delta u(\mathbf{x}, t) dV = \int_{V} \mathbf{b}_{0} \cdot \delta u dV + \int_{\partial_{N}V} \mathbf{n} \cdot \sigma \cdot \delta u d\partial V$$

$$\implies \delta U_{b}^{\mathrm{T}} \cdot \sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \sigma((\Xi)) \omega^{\Xi} = \delta U_{b}^{\mathrm{T}} \cdot \sum_{\Xi} N_{b}(\Xi) \mathbf{b}_{0}(\Xi) \omega^{\Xi}$$
Omitting surface tractions
$$\implies \mathbf{f}_{b}^{\mathrm{int}} = \sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \sigma(\Xi) \omega^{\Xi} = \sum_{\Xi} N_{b}(\Xi) \mathbf{b}_{0}(\Xi) \omega^{\Xi} = \mathbf{f}_{b}^{\mathrm{ext}}$$
with
$$\begin{bmatrix} \sigma(\Xi, t_{n+1}) = \sigma(\mathbf{B}_{a}(\Xi)U_{a n+1}; \mathbf{q}(\Xi, t_{n+1})) \\ Q(\sigma(\Xi, t_{n+1}), \mathbf{q}(\Xi, t_{n+1}), \mathbf{q}(\Xi, t_{n})) = \mathbf{0} \end{bmatrix}$$

• Consider classical finite element resolution on Quantum Computers?

- What can be solved on a Quantum Computer?
 - Optimization problems can be solved (Actually Quantum Annealers look for a ground state)
 - Some operations can be achieved efficiently on classical computers like assembly
- Do we need the same resolution structure?
 - Do we need intricated NR loops?

CM3

• Do we even need to use the discretized form of the weak form?

- Non-linear finite element resolution on Quantum Computers?
 - Weak form: $\int_{V} \boldsymbol{\sigma}(\boldsymbol{x}) : \nabla \otimes^{s} \boldsymbol{\delta} \boldsymbol{u}(\boldsymbol{x}) dV = \int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} dV$
 - Assuming non-linear elasticity
 - Existence of a free energy $\Psi(\boldsymbol{\varepsilon}(x))$ with $\boldsymbol{\varepsilon}(x) = \nabla \otimes^{s} \boldsymbol{u}(x)$

Stress results from
$$\sigma(x) = \frac{\partial \Psi}{\partial \varepsilon}$$

The weak form becomes $\int_{V} \frac{\partial \Psi(x)}{\partial \varepsilon} : \delta \varepsilon(x) dV = \int_{V} \mathbf{b}_{0} \cdot \delta \mathbf{u} dV$

Introduction of a functional

•
$$\Phi(\boldsymbol{u}(V)) = \int_{V} \Psi(\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})) dV - W^{\text{ext}}(\boldsymbol{u}(V))$$
 & & $W^{\text{ext}} = \int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{u}(\boldsymbol{x}) dV$

• The weak form results from nulling the Gâteaux derivative

$$\Phi'(\boldsymbol{u}(V);\delta\boldsymbol{u}((V))) = \int_{V} \boldsymbol{\sigma}(\boldsymbol{x}): \nabla \otimes^{s} \boldsymbol{\delta}\boldsymbol{u}(\boldsymbol{x}) dV - \int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta}\boldsymbol{u} dV = \boldsymbol{0}$$

•

The solution of the weak form minimizes the energy: $u(V) = \arg \min_{u'(V)} \Phi(u'(V))$

- We are looking for the solution of a minimization problem
 - The potential is convex
 - But it is not quadratic
 - Quid inelastic materials?

- Non-linear finite element resolution on Quantum Computers? ۲
 - Inelastic materials _
 - Existence of a Helmholtz free energy $\Psi(\varepsilon(x), \mathbf{q}(x))$ with $\epsilon(x) = \nabla \otimes^s u(x)$
 - Dissipation \mathcal{D} and Clausius-Duhem inequality
 - $\mathcal{D} = \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}} \dot{\boldsymbol{\Psi}} \ge 0$ with $\dot{\boldsymbol{\Psi}} = \frac{\partial \boldsymbol{\Psi}}{\partial \boldsymbol{\varepsilon}} : \dot{\boldsymbol{\varepsilon}} + \frac{\partial \boldsymbol{\Psi}}{\partial \boldsymbol{q}} \cdot \dot{\boldsymbol{q}}$
 - Equality holds in case of a reversible transformation

 $\sigma = \frac{\partial \Psi}{\partial \varepsilon} \quad \text{for an irreversible process:} \quad \mathcal{D} = \mathbf{Y} \cdot \dot{\mathbf{q}} \ge 0 \quad \text{with} \quad \mathbf{Y} = -\frac{\partial \Psi}{\partial \mathbf{q}}$

Postulate the existence of a pseudo-potential $\Theta(\dot{q})$ and its convex dual $\Theta^*(Y)$

• $\Theta(\dot{\mathbf{q}}) = \max_{\mathbf{V}} [\mathbf{Y} \cdot \dot{\mathbf{q}} - \Theta^*(\mathbf{Y})]$ $\dot{\mathbf{q}} = \frac{\partial \Theta^*(\mathbf{Y})}{\partial \mathbf{V}}$ & $\mathbf{Y} = \frac{\partial \Theta(\dot{\mathbf{q}})}{\partial \dot{\mathbf{q}}}$

- Power functional \mathcal{E}
 - New independent variables ($\dot{\epsilon}, \dot{q}$)

•
$$\mathcal{E}(\dot{\boldsymbol{\varepsilon}}, \dot{\mathbf{q}}) = \dot{\Psi} + \Theta(\dot{\mathbf{q}}) = \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} : \dot{\boldsymbol{\varepsilon}} - \mathbf{Y} \cdot \dot{\mathbf{q}} + \Theta(\dot{\mathbf{q}})$$

 $\sum_{\substack{\partial c \\ \partial \dot{q}}} = -\mathbf{Y} + \frac{\partial \partial (\mathbf{q})}{\partial \dot{\mathbf{q}}} = \mathbf{0} \quad \sum_{\substack{\partial c \\ \partial \dot{q}}} \mathcal{E} \text{ has to be minimized with respect to internal state}$

- Effective power functional* $\mathcal{E}^{\text{eff}}(\dot{\boldsymbol{\varepsilon}}) = \min_{\dot{\mathbf{q}}} \mathcal{E}(\dot{\boldsymbol{\varepsilon}}, \dot{\mathbf{q}})$ with $\boldsymbol{\sigma} = \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} = \frac{\partial \mathcal{E}^{\text{eff}}}{\partial \dot{\boldsymbol{\varepsilon}}}$
- The constitutive model is also a minimization problem

*Radovitzky, R. Ortiz M, CMAME 1999 Ortiz, M., Stainier, L., CMAME 1999

- Non-linear finite element resolution on Quantum Computers?
 - In elasticity we had

•
$$\boldsymbol{u}(V) = \arg\min_{\boldsymbol{u}'(V)} \Phi(\boldsymbol{u}'(V))$$
 with $\Phi(\boldsymbol{u}(V)) = \int_{V} \Psi(\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})) dV - W^{\text{ext}}(\boldsymbol{u}(\boldsymbol{x}))$

- Double minimization problem in inelasticity

• Power functional
$$\mathcal{E}$$

 $\mathcal{E}(\dot{\boldsymbol{\varepsilon}}, \dot{\mathbf{q}}) = \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} : \dot{\boldsymbol{\varepsilon}} - \mathbf{Y} \cdot \dot{\mathbf{q}} + \Theta(\dot{\mathbf{q}})$

& $\mathcal{E}^{\text{eff}}(\dot{\boldsymbol{\varepsilon}}) = \min_{\dot{\mathbf{q}}} \mathcal{E}(\dot{\boldsymbol{\varepsilon}}, \dot{\mathbf{q}})$

 $\boldsymbol{\sigma} = \frac{\partial \mathcal{E}^{\text{eff}}}{\partial \dot{\boldsymbol{\varepsilon}}}$

Volume power functional

$$\Phi(\dot{\boldsymbol{u}}(V), \dot{\boldsymbol{q}}(V)) = \int_{V} \mathcal{E}(\nabla \otimes^{s} \dot{\boldsymbol{u}}, \dot{\boldsymbol{q}}) - \dot{W}^{\text{ext}}(\dot{\boldsymbol{u}}(V))$$

• Incremental volume energy functional on time interval $[t_n t_{n+1}]^*$

$$\Delta \Phi(\boldsymbol{u}_{n+1}, \boldsymbol{q}_{n+1}) = \int_{V} \Delta \mathcal{E}(\nabla \otimes^{s} \boldsymbol{u}_{n+1}, \boldsymbol{q}_{n+1}) - \Delta W^{\text{ext}}(\boldsymbol{u}_{n+1})$$

with $\Delta \mathcal{E}(\nabla \otimes^{s} \boldsymbol{u}_{n+1}, \boldsymbol{q}_{n+1}) = \int_{t_{n}}^{t_{n+1}} \mathcal{E}(\nabla \otimes^{s} \dot{\boldsymbol{u}}, \dot{\boldsymbol{q}}) \quad \& \quad \Delta \mathcal{E}^{\text{eff}}(\boldsymbol{\varepsilon}) = \min_{\boldsymbol{q}} \Delta \mathcal{E}(\boldsymbol{\varepsilon}, \boldsymbol{q}) \quad , \quad \boldsymbol{\sigma} = \frac{\partial \Delta \mathcal{E}^{\text{eff}}}{\partial \boldsymbol{\varepsilon}}$

• The problem solution reads

Classical finite element resolution

• Finite element as a double-minimization problem

Loop until convergence $\mathbf{q}_{n+1} = \arg \min_{\mathbf{q}' \text{ constrained}} \Delta \Phi(\mathbf{u}_{n+1}, \mathbf{q}');$ $\Delta \Phi^{\text{eff}} = \min_{\mathbf{q}' \text{ constrained}} \Delta \Phi(\mathbf{u}_{n+1}, \mathbf{q}')$ $\mathbf{u}_{n+1} = \arg \min_{\mathbf{u}' \text{ admissible}} \Delta \Phi^{\text{eff}}(\mathbf{u}')$ Internal can constrained in the second se

Internal variables can be constrained (e.g. $\mathbf{N}: \mathbf{N} = \frac{3}{2}, \Delta \gamma \ge 0$)

- Quantum annealers: ground state of an Ising-Hamiltonian
 - No need for Jacobians

CM3

- No problem of convergence (but needs to be noise-contained)
- But how to make the optimisation problem solvable by quantum annealing?

- Finite element as a double-minimization problem
 - Finite element problem

Loop until convergence $\mathbf{q}_{n+1} = \arg \min_{\mathbf{q}' \text{ constrained}} \Delta \Phi(\mathbf{u}_{n+1}, \mathbf{q}');$ $\Delta \Phi^{\text{eff}} = \min_{\mathbf{q}' \text{ constrained}} \Delta \Phi(\mathbf{u}_{n+1}, \mathbf{q}')$ $\mathbf{u}_{n+1} = \arg \min_{\mathbf{u}' \text{ admissible}} \Delta \Phi^{\text{eff}}(\mathbf{u}')$

- Ising Hamiltonian for Quantum annealing
 - Goal: finding the ground state of a Hamiltonian H: H

$$|\boldsymbol{\phi}_0\rangle = \arg\min_{|\boldsymbol{\phi}\rangle} \langle \boldsymbol{\phi} | \mathbf{H} | \boldsymbol{\phi} \rangle$$

$$\mathbf{I} = \sum_{i \in V} h_i \mathbf{Z}_i + \sum_{(i,j) \in E} J_{ij} \mathbf{Z}_{ij}$$

- Problem reformulated in terms of binary variables $\mathbf{b} = [b_i \forall i \in V]$ with $b_i \in \{0, 1\}$
- QUBO optimisation problem $\mathcal{F}_{QUBO} = \sum_{\substack{(i,j) \in E \cup \{(i,i) \forall i \in V\}}} A_{ij} b_i b_j = \mathbf{b}^T \mathbf{A} \mathbf{b}$ **b** = arg min $\mathcal{F}_{QUBO}(\mathbf{b}'; \mathbf{A})$ User programmable parameters
- Steps to follow
 - Transform the constrained minimization problem into an unconstrained one
 - Transform the general unconstrained optimization problem into a series of quadratic ones
 - Transform each continuous quadratic optimization problem into a binarized one
 - Apply the double-minimization framework

Transform the constrained minimization problem into an unconstrained one

- Constrained multivariate minimization problem
 - $\min_{\mathbf{w}} f(\mathbf{w})$ with $\mathbf{w}^{\min} \le \mathbf{w} \le \mathbf{w}^{\max}$
 - Under constraints $h(\mathbf{w}) = 0$ & $l(\mathbf{w}) \le 0$
- Augmented minimization problem

•
$$f_{\text{aug}}(\mathbf{v}) = f_{\text{aug}}(\mathbf{w}, \lambda) = f(\mathbf{w}) + c^h (h(\mathbf{w}))^2 + c^l (l(\mathbf{w}) + \lambda)^2$$
 with $\mathbf{v} = \{\mathbf{w}, \lambda \ge 0\}$

- Unconstrained minimization problem
 - $\min_{\mathbf{v}} f_{\text{aug}}(\mathbf{v})$ with $\mathbf{v}^{\min} \le \mathbf{v} \le \mathbf{v}^{\max}$
 - Bounds will be enforced during the binarization process
- Definition of the double-unconstrained minimization problem

Transform the optimization problem into a series of quadratic ones

- Unconstrained optimization problem
 - $\min_{\mathbf{v}} f_{aug}(\mathbf{v})$ with $\mathbf{v}^{\min} \leq \mathbf{v} \leq \mathbf{v}^{\max}$
- Taylor's expansion

CM3

- Taylor's expansion $f_{aug}(\mathbf{v} + \mathbf{z}) \simeq f_{aug}(\mathbf{v}) + \mathbf{z}^{T} f_{aug,\mathbf{v}} + \frac{1}{2} \mathbf{z}^{T} f_{aug,\mathbf{vv}} \mathbf{z}$ We series of optimization problems $f_{aug,\mathbf{vv}} = \frac{\partial f_{aug}}{\partial v_{i}} \Big|_{\mathbf{v}}$

- New series of optimization problems
 - Iterate on z with: $\mathbf{z} = \arg\min_{\mathbf{z}'} QF(\mathbf{z}'; f_{\operatorname{aug},\mathbf{v}}, f_{\operatorname{aug},\mathbf{vv}})$
- Application to the double minimisation problem

Loop until convergence

$$\mathbf{q}_{n+1}, \lambda = \arg\min_{\{\mathbf{q}',\lambda'\}} \Delta \Phi_{\mathrm{aug}}(\boldsymbol{u}_{n+1}, \mathbf{q}', \lambda');$$

 $\Delta \Phi^{\mathrm{eff}} = \min_{\{\mathbf{q}',\lambda'\}} \Delta \Phi_{\mathrm{aug}}(\boldsymbol{u}_{n+1}, \mathbf{q}', \lambda')$
 $\boldsymbol{u}_{n+1} = \arg\min_{\mathbf{u}' \mathrm{admissible}} \Delta \Phi^{\mathrm{eff}}(\mathbf{u}')$

Allow to contain the noise !!!

$$\Delta u = \arg \min_{\Delta u' \text{admissible}} \Delta u'^{T} \Delta \Phi_{,\mathbf{u}}^{\text{eff}} + \frac{1}{2} \Delta u'^{T} \Delta \Phi_{,\mathbf{uu}}^{\text{eff}} \Delta u'$$

$$\Delta u = \arg \min_{\Delta u' \text{admissible}} \Delta u'^{T} \Delta \Phi_{,\mathbf{uu}}^{\text{eff}} \Delta u'$$

$$\Delta q, \Delta \lambda = \arg \min_{\{\Delta q', \Delta \lambda'\}} [\Delta q'^{T} \Delta \lambda'] \Delta \Phi_{\text{aug},\{q,\lambda\}} + \frac{1}{2} [\Delta q'^{T} \Delta \lambda'] \Delta \Phi_{\text{aug},\{q,\lambda\}} [\Delta q'^{T} \Delta \lambda']^{T}$$

$$\Delta \Phi^{\text{eff}} = \Delta \Phi_{\text{aug}}(u_{n+1}, q_{n+1}, \lambda)$$

- Transform each continuous quadratic optimization problem into a binarized one
 - Optimization problems to be solved
 - $\mathbf{z} = \arg\min_{\mathbf{z}'} QF(\mathbf{z}', f_{\text{aug},\mathbf{v}}, f_{\text{aug},\mathbf{v}})$ & $QF(\mathbf{z}; f_{\text{aug},\mathbf{v}}, f_{\text{aug},\mathbf{v}}) = \mathbf{z}^{T} f_{\text{aug},\mathbf{v}} + \frac{1}{2} \mathbf{z}^{T} f_{\text{aug},\mathbf{v}} \mathbf{z}$
 - With bounds: $v_{min} \leq v + z \leq v_{max}$
 - Binarization of $z \in \mathbb{R}^N$ into $N \times L$ qubits • $b_{L-1} \dots b_0 \equiv \sum_{j=0}^{L-1} b_j \ 2^j = \boldsymbol{\beta}^T \mathbf{b}_i$ $\mathbf{a} = \mathbf{z}_i^{\min} + \epsilon_i \boldsymbol{\beta}^T \mathbf{b}_i$ • $\mathbf{z} = \mathbf{a} + \mathbf{D}(\boldsymbol{\epsilon})\mathbf{b}$ with the bounds defining $\mathbf{a} = \mathbf{z}^{\min}$ & the scale $\boldsymbol{\epsilon} = \frac{\mathbf{z}^{\max} - \mathbf{z}^{\min}}{2^L - 1}$ $QF(\mathbf{z}; f_{\text{aug},\mathbf{v}}, f_{\text{aug},\mathbf{vv}}) = \frac{1}{2} \mathbf{b}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} f_{\text{aug},\mathbf{vv}} \mathbf{D} \mathbf{b} + \mathbf{b}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} (f_{\text{aug},\mathbf{v}} + f_{\text{aug},\mathbf{vv}} \mathbf{a}) + \frac{1}{2} \mathbf{a}^{\mathrm{T}} (f_{\text{aug},\mathbf{vv}} \mathbf{a} + f_{\text{aug},\mathbf{vv}})$ $\mathcal{F}_{\text{QUBO}}(\mathbf{b};\mathbf{A})$ Minimum point **Minimization** at iteration k+1 Bound $\mathbf{a} = \mathbf{z}^{\min}$ and $v^{(k+1)}$ • Scale $\epsilon = \frac{z^{\max} - z^{\min}}{2^L - 1}$ $v^{(k)}$ $n^{(k-1)}$ Updated when building the QUBO Minimum point at iteration k kk+1Iteration index

• Application to the double-minimization problem

Loop until convergence
Loop on
$$u_{n+1} \leftarrow u_{n+1} + \Delta u$$

 $\Delta u = \arg \min_{\Delta u' admissible} \Delta u'^T \Delta \Phi_{,u}^{eff} + \frac{1}{2} \Delta u'^T \Delta \Phi_{,uu}^{eff} \Delta u'$
Loop on $q_{n+1} \leftarrow q_{n+1} + \Delta q, \lambda \leftarrow \lambda + \Delta \lambda$
 $\Delta q, \Delta \lambda = \arg \min_{\{\Delta q', \Delta \lambda'\}} [\Delta q'^T \Delta \lambda'] \Delta \Phi_{aug, \{q, \lambda\}} + \frac{1}{2} [\Delta q'^T \Delta \lambda'] \Delta \Phi_{aug, \{q, \lambda\}} [\Delta q'^T \Delta \lambda']^T$
 $\Delta \Phi^{eff} = \Delta \Phi_{aug}(u_{n+1}, q_{n+1}, \lambda)$
Loop until convergence
Loop on $u_{n+1} \leftarrow u_{n+1} + \Delta u$
 $f(\Delta u) = \Delta u^T \Delta \Phi_{,u}^{eff} + \frac{1}{2} \Delta u^T \Delta \Phi_{,uu}^{eff} \Delta u$

CM3

Application to the double-minimization problem

from dwave.system import DWaveSampler, EmbeddingComposite
sampler = EmbeddingComposite(DWaveSampler())
sampleset = sampler.sample_qubo(A, num_reads=100, annealing_time=20)
b = sampleset.first.sample

• Uniaxial-strain test

- Elasto-plastic case
 - Double minimization
 - Binarizations *L* of each nodal displacement and internal variable: $b_{L-1} \dots b_0 \equiv \sum_i b_j \ 2^j = \boldsymbol{\beta}^T \mathbf{b}_i$
 - Resolution by quantum annealing on DWave Advantage QPU

Application on 1D problems

 b_0

- Uniaxial-strain test
- Elasto-plastic case
 - Effect of double-minimization & local iterations

2

The number of local iterations decreases as the double minimisation iterations proceed

05-09 January 2025 -

2025 AAM, Grand Canaria, Spain

Application on 2D problems

2025 AAM, Grand Canaria, Spain

- 36

Application on 2D problems

• 2D-elasto-plastic case

Effect of double-minimization & local iterations

Conclusions

• Application of QC to FEM

- FE resolution needs to be rethought
- It will probably stay advantageous to solve part of the problem on classical computers

Quantum annealing

- Real annealers can now be used
- Efficient to solve optimization problem.... FEM is actually a minimization problem
- Main current limitation is the number of connected qubits

Publication

- V. D. Nguyen, F. Remacle, L. Noels. A quantum annealing-sequential quadratic programming assisted finite element simulation for non-linear and history-dependent mechanical problems. *European Journal of Mechanics – A/solids* 105, 105254 <u>10.1016/j.euromechsol.2024.105254</u>
- Data and code on
 - Doi: <u>10.5281/zenodo.10451584</u>

