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Abstract 7 

Recent studies have shed light on the emergence and evolution of oxygenic photosynthesis. It is 8 

likely that the ancestor of Terrabacteria already possessed two distinct reaction centers, and that 9 

the ability to split water via photosystem II arose early in their evolution. Consequently, it is 10 

equally probable that the emergence of thylakoid membranes played a crucial role in the 11 

accumulation of oxygen in the atmosphere. However, the study of thylakoid emergence remains 12 

less explored than the origin of photosystems. With a highly synchronized process involving 13 

numerous assembly factors, the biogenesis of thylakoid membranes suggests the existence of 14 

intermediate evolutionary states in the emergence of these compartments. Constrained by the 15 

sulfide-rich environment of the Archean, I propose a non-oxygenic origin of thylakoid 16 

membranes, which would have been initially devoted to alternative electron flows. 17 

Main text 18 

Recent findings have significantly advanced our understanding of the origins of oxygenic 19 

photosynthesis (OxyP) and oxygenation of Earth during the Great Oxidation Event (GOE), 2.4 Gya 20 

(Bekker et al. 2004). Nishihara et al. (2024) phylogenomic analysis based on DNA-RNA binding 21 

proteins, along with phylogenetic trees of bacteriochlorophyll and chlorophyll synthetases, revealed that 22 

the common ancestor of Terrabacteria—a group of bacteria considered to be associated with terrestrial 23 

colonization, which includes cyanobacteria (Battistuzzi and Hedges 2009)—already possessed two 24 

homodimeric photosystems (PS), was capable of CO₂ fixation, and performed anoxygenic 25 

photosynthesis (Nishihara et al. 2024). In such a scenario, photosynthesis evolved among Terrabacteria 26 



through a series of gene losses, so that today, cyanobacteria are the only prokaryotes that retain both 27 

photosynthetic reaction centers (RC) (Nishihara et al. 2024). One key characteristic of cyanobacteria is 28 

that the PSII D1 subunit, containing a Mn₄CaO₅ cluster, is responsible for water splitting and oxygen 29 

release as a by-product (Oliver et al. 2023). This capability of D1 must have evolved between the 30 

emergence of the common ancestor of Terrabacteria and cyanobacteria, though the exact timeframe 31 

remains unclear (Nishihara et al. 2024). However, recent evidence suggests that a homodimeric form of 32 

PSII, as opposed to the heterodimeric form of modern cyanobacteria, may have been capable of water 33 

oxidation at least one billion years before cyanobacteria emerged (Cardona et al. 2019; Oliver et al. 34 

2021; Oliver et al. 2023) which is estimated to have occurred between 2.5 Ga (Boden et al. 2021) and 35 

3.1 – 3.3 Ga (Shih et al. 2017). Altogether, these findings imply that sister group to cyanobacteria, such 36 

as Vampirovibrionales (Soo et al. 2017; Soo et al. 2019) and Sericytochromatia (Parks et al. 2017), were 37 

once photosynthetic and may have even been capable of water splitting (Oliver et al. 2021). The 38 

existence of such an organism before the current root of cyanobacteria raises an important question 39 

about the GOE: could its later onset have been delayed by the absence of some crucial structure? 40 

 41 

In most cyanobacteria, OxyP occurs in the membrane of dedicated cellular compartments, the 42 

thylakoids. However, one group of cyanobacteria, the Gloeobacterales, lack thylakoid membranes (TM) 43 

and performs OxyP in specialized regions of the cytoplasmic membrane (CM) (Rippka et al. 1974; 44 

Guglielmi et al. 1981; Rexroth et al. 2011; Rahmatpour et al. 2021). Interestingly, Gloeobacterales 45 

represent the earliest-diverging cyanobacterial lineage, as confirmed by multiple phylogenomic analyses 46 

(Criscuolo and Gribaldo 2011; Shih et al. 2013; Soo et al. 2014; Uyeda et al. 2016). 47 

 48 

The structural advantage offered by TM, in terms of the number of PS per cell, compared to the 49 

ancestral state still observed in Gloeobacterales, has recently been hypothesized as a plausible 50 

explanation for the GOE (Guéguen and Maréchal 2022). Nevertheless, despite extensive studies on the 51 

origin of OxyP and PS, the evolution of TM has been relatively understudied so far. Tan et al. (2024) 52 

recently investigated TM emergence by analyzing metagenome-assembled genomes (MAGs) from 53 

Thermostichales, the lineage immediately following Gloeobacterales in the cyanobacterial phylogeny 54 



(Tan et al. 2024). A duplication of the PspA gene, further equipped with a C-terminal extension, 55 

occurring in the last common ancestor of cyanobacteria with TM led to the emergence of the VIPP1 56 

protein, which is thought to be involved in the biogenesis of TM (Tan et al. 2024). The TM consist of 57 

three key glycolipids, also found in CM: monogalactosyldiacylglycerol (MGDG, >50% of lipid content), 58 

digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), the latter absent in 59 

Gloeobacterales (Rast et al. 2015). MGDG facilitates TM curvature (Bottier et al. 2007), DGDG 60 

stabilizes thylakoid stacking through hydrogen bonding (Demé et al. 2014) whereas the role of SQDG 61 

is unclear. The process by which TM are formed, and how their lipid ratios differ compared to those in 62 

the CM, has been the subject of three main hypotheses: membrane fusion, vesicular transport, or direct 63 

lipid transport via soluble carriers (Jouhet et al. 2007; Rast et al. 2015). The involvement of VIPP1, a 64 

vesicle-inducing protein, seems to favor the second hypothesis. Nevertheless, the role of VIPP1 in 65 

cyanobacteria remains to be clarified: it is indeed essential for TM biogenesis in Synechocystis sp. PCC 66 

6803 (Gao and Xu 2009), but not in Synechococcus sp. PCC 7002 (Zhang et al. 2014). In addition to 67 

VIPP1, other proteins present in cyanobacteria (CPSAR1 (Garcia et al. 2010), THF1 (Wu et al. 2011), 68 

CPRabA5e (Karim et al. 2014)) have been identified as crucial for TM lipid biogenesis in Arabidopsis, 69 

although their role in cyanobacteria has never been investigated. 70 

 71 

The transition from the ancestral Gloeobacter-like state, with a linear electron transfer (LET) 72 

chain functioning in the CM, to the modern state, where all components are localized in TM, goes 73 

beyond the formation of lipidic membranes. Indeed, the integration of LET complexes into TM during 74 

biogenesis is a highly regulated stepwise process involving numerous assembly factors (AF) that act as 75 

chaperones, notably for transporting PS subunits from CM to TM (Figure 1) (Rast et al. 2015). The 76 

most studied element is PSII, whose RC biogenesis starts in CM with the precursor of D1, pD1. D1 77 

transitions through the pratA-defined membrane (PDM), where D1 assembles with D2, leading to RC 78 

photoactivation (Klinkert et al. 2004; van de Meene et al. 2006; Rast et al. 2019). PDM, named after the 79 

pratA gene, also depends on curT (Rast et al. 2019) and ancM (Ostermeier et al. 2022), and serves as a 80 

contact point between TM and CM, playing a functional role in TM biogenesis (Rast et al. 2019). Once 81 

the PSII RC is assembled, it is first incorporated into TM with the CP43 and CP47 antenna complexes, 82 



the PSII subunits (Q, U, O, V), then dimerizes and associates with the phycobilisome on the outer TM 83 

face (Heinz et al. 2016). Thirty-four AF, among which twelve also known in cyanobacteria, coordinate 84 

this process (Table 1). Elements of PSI have been identified in CM, particularly PsbA (Rast et al. 2015; 85 

H. Yang et al. 2015), but no evidence suggests that the PSI RC is assembled and activated outside the 86 

TM. While the stepwise assembly of PSI is less understood, at least thirteen AF are also associated with 87 

it, with only one detected outside the TM (Table 1), rather supporting early PSI integration within TM 88 

during evolution. Some subunits of Cytb6f and ATPase complexes have also been detected in the CM, 89 

hinting to stepwise assembly, but few corresponding AF have been reported so far (Table 1). 90 

 91 

The complexity of the biogenesis process suggests intermediate states, which have never been 92 

studied or even theorized but likely existed in the past and ultimately led to TM as we know them today. 93 

The emergence of cyanobacteria with TM occurred around the GOE (Sánchez-Baracaldo et al. 2017; 94 

Fournier et al. 2021; Sánchez-Baracaldo et al. 2022) or in early Proterozoic (Shih et al. 2017), in a 95 

sulfide-rich environment (Scott et al. 2011), although sulfide is highly toxic to OxyP as a known 96 

inhibitor of PSII (Cohen et al. 1986; Garcia-Pichel and Castenholz 1990; Miller and Bebout 2004). To 97 

address this contradiction, I propose an evolutionary model for the origin of the TM (Figure 1), where 98 

these intermediate states were linked to the alternative electron flow (AEF). Indeed, complete LET 99 

integration requires the highest number of complexes to be transferred from CM to TM, with six 100 

complexes, except for NDH1-related AEF. By contrast, AEF involves between two and six complexes 101 

(Figure 2). It is likely that there was once an ancestral organism possessing a primordial TM system 102 

dedicated to AEF, such as anoxygenic photosynthesis (AnoxyP), while maintaining a complete LET in 103 

its CM. Such an intermediary state would have provided a key evolutionary advantage for the survival 104 

of early cyanobacteria. Interestingly, the very recent discovery of the sulfide quinone oxidoreductase 105 

(SQR) gene, involved in anoxygenic H₂S-related photosynthesis, in the early-diverging Thermostichales 106 

(Tan et al. 2024), further lends supports to this hypothesis 107 



Figures & Table 108 

 109 
Figure 1: Schematic view of thylakoid membrane biogenesis and composition, along with LET and AEF. 110 

CM and the TM are composed of the same lipidic components: PG, MGDG, DGDG, with proportions varying 111 

between the two membranes. SQDG are not represented due to their unclear role and absence in Gloeobacterales. 112 

MGDG is involved in the curvature of TM. Three scenarios have been proposed for the biogenesis of TM from 113 

CM. In the primitive state, within CM of Gloeobacterales, complexes of the electron transport chains are located 114 

in specialized regions of CM, which also contain the biogenic regions. In the modern state, these complexes are 115 

found in TM, with the biogenesis of certain subunits starting in CM in a highly coordinated process; specifically, 116 

the entire reaction center (RC) of PSII is assembled in PDM, outside of TM. The outer face of TM, on the 117 

cytosolic side, is rich in ribosomes (Ribo). LET is represented in blue. Light energy is captured 118 

by phycobilisomes, composed of PE, PC and APC, before being transmitted to the chlorophyll present in the RC 119 

of PSII. Electrons originating from the dissociation of H₂O are transferred to FNR, passing through PQ, Cytb6f, 120 

PC, PSI and Fd. AEF are represented in yellow and include: 1a. the cyclic electron flow, which reduces PSI 121 

components while bypassing PSII, giving electrons directly to PQ and creating ΔpH; 1b. the cyclic pathway which 122 
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also utilizes the NDH1 complex to generate ΔpH; 2. the pseudo-cyclic flow, where electrons are transferred 123 

to FLV to reduce O₂ to H₂O, with electrons being cyclically transferred back to PSI via Cytb6f, generating ΔpH; 124 

3. the sulfide pathway (AnoxyP), where H₂S is oxidized by SQR, and electrons are transferred to Cytb6f before 125 

reaching PSI, generating ΔpH; 4. the pathway utilizing PTOX, which reduces O₂ to H₂O using electrons directly 126 

from PQ after excitation of PSII or 4b from NADPH via NADPH reductase; 5. the Mehler reaction which 127 

involves reduction of O₂ to H₂O, producing different reactive oxygen species (ROS) such as O₂⁻ or H₂O₂. The 128 

Mehler reaction can also generate a ΔpH across thylakoid membranes, although the mechanism remains unclear. 129 

TM Thylakoid membrane, CM Cytoplasmic membrane, PC in blue: Phycocyanin, PE Phycoerythrin, PSII 130 

Photosystem II, PSI Photosystem I, Cytb6f Cytochrome b6f complex, PQ plastoquinone, PC in yellow 131 

plastocyanin, Fd ferredoxin. NDH1 NADH dehydrogenase complex 1, PDM PratA-defined membrane, APC 132 

Allophycocyanin; FNR ferredoxin-NADP⁺ reductase, FLV flavodiiron proteins, SQR sulfide quinone 133 

oxidoreductase, PTOX Plastid Terminal Oxidase, Lipids: PG phosphatidylglycerol (blue), MGDG 134 

monogalactosyldiacylglycerol (green), DGDG digalactosyldiacylglycerol (yellow), SQDG 135 

sulfoquinovosyldiacylglycerol, Ribo Ribosome, LET Linear Electron Transfer, AEF Alternative Electron flow. 136 

Modified from (Cohen et al. 1986; Blankenship 2010; Rast et al. 2015; Heinz et al. 2016; Rast et al. 2019; Huokko 137 

et al. 2021; Eckardt et al. 2024). 138 

 139 

 140 
 141 
Figure 2: Evolutionary Hypothesis of Thylakoid Membranes. 142 

The evolutionary tree of cyanobacteria and their allies is depicted to highlight the current non-photosynthetic 143 

groups (gray triangles) and the two early branching groups important in the context of TM emergence, the 144 

Gloeobacterales and the Thermostichales. The complexity of thylakoid biogenesis suggests the existence of 145 

intermediate evolutionary states. The hypothesis involving the fewest transfers of complexes between CM and 146 
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TM, and the most likely given the sulfide-rich environmental conditions of the Archaean era, points to alternative 147 

electron flows (AEF). The table summarizes the number of complexes involved in the different AEF. 148 

 149 
 150 

Complexes Assembly factors 
PSI (13) Alb3 (PDM, TM) ; VIPP1 (TM) ; Ycf3 (TM) ; Ycf4 (TM) ; Ycf37 (TM) ; Y3IP1 (TM) ; PPD1 (TM) ; Psa2  (L) ; 

RubA (TM) ; Hcf101 (S) ; CnfU (S) ; APO1 (S); Ycf51 (TM) 
PSII (34) ChlG (CM, PDM) ; CtpA (PDM, CM); CyanoP (CM) ; HliA, HliB (PDM) ; HliC, HliD (PDM) ; Pittc (-) ; Pam68 

(PDM, TM) ; PratA (PDM) ; Psb27 (TM) ; Psb28 (TM) ; Psb29 (-) ; Psb32 (TM) ; Psb34 (-) ; Psb35 (PDM) ; SecY 
(PDM) ; RubA (CM) ; Sll0408 (L) ; Sll0606 (CM) ; Sll0933 (TM) ; Slr0151 (TM) ; Slr0144 (-) ; Slr0286 (-) ; Slr0565 
(CM) ; Slr1761 (L) ; Slr2013 (TM, PDM) ; Ycf39 (PDM) ; Ycf48 (PDM, TM) ; YidC (PDM, TM) ; LP2/3 (TM) ; 
LPA19 (L) ; PsbP (PDM) ; PsbN (PDM,CM) 

Cytb6f (4) HCF164 (-); trxm134 (-) ; NTA1 (-) ; DEIP1 (-) 
 151 
Table 1: List of 51 known assembly factors. 152 

AF in bold are found in cyanobacteria, all AF at the exception of Ycf51 are also found in eukaryotic chloroplasts. 153 

Localization of the AF are indicated in parentheses. Modified from (Chi et al. 2012; Rast et al. 2015; C.-C. Yang 154 

et al. 2015; Heinz et al. 2016; Johnson and Pakrasi 2022; Sandoval-Ibáñez et al. 2022; Li et al. 2023; Chen et al. 155 

2024; Dai et al. 2024) 156 
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