FINS LA LIBERTÉ DE CHERCHER

A search for transiting planets around hot subdwarfs

Valérie Van Grootel

15 July 2022

F.J. Pozuelos, A. Thuillier, M. Dévora-Pajares

Motivation

Evolution of planetary systems with stellar evolution

Introduction
 Method/Data
 Results
 Conclusion

Why hot subdwarfs? (sdB/O stars)

- Post-Red Giant Branch (RGB) stars, do no ascend Asymptotic Giant Branch

 Small stars (0.1-0.3 R_{sun})
 => well-suited for the transit method: small stars brings small planets !

 Short-lived (~100 Myr)
 => Migration or 2nd generation planets unlikely

Scientific questions

I. Do hot subdwarfs have planets?

No occurrence rates for planets around hot subdwarf stars
 => Do they have planets? If yes, which type and in which proportions?

II. Can planets survive an engulfment?

No observational constraints for engulfed planets
 => Can planet survive this process?
 => If yes, what are the remnants?

Introduction

Method/Data Results Conclusion

Data Light curves available

- Kepler+K2: 72 + 174 targets at 1-min cadence
- TESS: ~3300 targets at 2-min and 20s cadence at Sector 51
- CHEOPS: 61 targets, not observed by TESS neither by Kepler, 1-min cadence

"*CHaracterizing ExOPlanet Satellite*" ESA class S mission Heliosynchronous orbit of Earth at 700km altitude

Introduction Data/Method

Results Conclusion

Data

Introduction Data/Method Results

Conclusion

Method

1) Looking for transits with the SHERLOCK PIPEline

<u>Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers</u>

Pozuelos et al., A&A 641, A23, 2020

Available on open access on Github: https://github.com/franpoz/SHERLOCK

Gathering and detrending data, search for transits (with TLS; Hippke & Heller 2019), Vetting process (background variation, location and brightness of nearby stars, etc.)

Introduction Data/Method Results

Run 1# win size:0.7008 # P=0.82d # T0=2116.38 # Depth=41.8958ppt # Dur=43m # SNR:38.58 # SDE:22.26 # FAP:0.000080

Period (days)

Introduction

Conclusion

Results

Data/Method

Method

2) Confirming the transit by follow-up observations

TRAPPIST ULiège 0.6m telescopes "TRAnsiting Planets and PlanetesImals Small Telescope" Oukaimeden observatory (Morocco) La Silla observatory (Chile) Targets up to G~15: we can confirm a transit to ~2500 ppm depth

CHEOPS: Targets up to G~13, ~500 ppm transit depth

3) Characterizing the transiting body

Radial Velocity data to constrain the transiting body's mass:

- ESO archives
- Large surveys: SDSS, LAMOST,...
- Hot subdwarf community
- Write proposals...

Introduction Data/Method

Results Conclusion

Results

1. Injection-and-recovery tests: Kepler/K2 data

Results 1. Injection-and-recovery tests: TESS data

1-sector data, increasing magnitudes (Gmag in 12-15=90% targets)

bottom left : TIC 85400193 (Gmag 14.1), bottom right : TIC 372681399 (Gmag 15.0), From Van Grootel et al. 2021 (A&A, 650, 205). Increasing observation duration: (TIC362103375, Gmag=13.0) 1 -> 2 -> 6 sectors

Results

1. Injection-and-recovery tests: TESS data

R radius 3.0 1 sector (⊕ 2.5 ₩) 80 Injected rate (%) radius 5.0 60 Recovery Injected 40 1.5 1.0 20 1.0 2.0 3.0 5.0 4.0 Injected period (days) radius (۰. Injected

Results

CHEOPS data

 \lesssim 1 R_Earth planets can be detected in the 61 targets

Results

1. Injection-and-recovery tests

Full results on Van Grootel et al. 2021 (A&A, 650, 205)

Main conclusions:

- TESS data will allow us to measure the planet occurence rate around hot subwarfs
- Best TESS targets, Kepler/K2 targets, and CHEOPS targets will allow us to detect ≤ 1 R_E planets and small, possibly disintegrating objects

Table 3. Minimum size of planets in units of R_{\oplus} that can be detected in typical light curves with a $\gtrsim 90\%$ recovery rate.

Object ID	G Mag	Data length (d)	1 d	5 d	15 d	25 d	35 d
Kepler							
8054179	14.3	90	0.3	0.5	0.8	1.0	1.2
		30	0.5	0.6	1.0	_	_
3353239	15.2	30	0.6	0.8	1.1	_	_
5938349	16.1	30	0.7	1.1	2.0	_	_
8889318	17.2	30	0.9	1.2	2.4	_	_
5342213	17.7	30	1.2	1.7	3.2	_	_
K2							
206535752	14.1	80	0.6	0.8	1.0	1.5	2.1
		30	0.6	0.9	1.6	_	_
211421561	14.9	30	0.7	1.4	1.9	_	_
228682488	16.0	30	1.0	1.4	2.5	_	_
251457058	17.1	30	1.4	2.3	3.4	_	_
248840987	18.1	30	2.1	3.3	5.4	-	-
TESS							
147283842	10.1	27	0.5	0.7	1.5	_	_
362103375	13.0	27	1.0	1.7	2.0	_	_
		162	0.7	0.8	0.9	1.0	1.3
096949372	13.0	27	1.1	1.8	2.0	_	_
441713413	13.1	27	1.3	1.7	2.0	_	_
		54	1.3	1.7	1.9	>10	>10
085400193	14.1	27	1.8	2.3	2.8	_	_
220513363	14.1	27	1.6	1.8	2.7	-	-
		81	1.3	1.6	2.5	3.0	3.0
000008842	15.0	27	2.7	3.2	4.7	-	_

Notes. All stars have $0.175 \pm 0.025 R_{\odot}$ and $0.47 \pm 0.03 M_{\odot}$.

2. Results from TESS Cycle 1

TESS cycle 1 fully analyzed (792 stars): - 352 signals (belonging to 243 stars) but only 46 retrieved Cycle 3 (12 stars not re-observed)

- 7 stars with signals are now followed-up (2 signals retrieved thus far); 23 signals will be followed-up in coming weeks/months

- 0 planetary body confirmed

Thuillier et al., accepted to A&A https://doi.org/10.1051/0004-6361/202243554

All targets (792 stars)

Detection of a signal above thresholds and visually credible.

Stage 0 352 signals Signal recovered in TESS cycle 3.

Stage 1 46 signals

Positive to our vetting process.

Stage 2 30 s

30 signals

Recovered in follow-up observations

Stage 3 2

2 signals

Planetary nature confirmed

Stage 4 0 signal

Introduction Motivation Method Status

First statistics on planet occurrence around hot subdwarfs

With C=0.95, assuming the 549 targets are Gmag=13-13.5 and R_{*}=0.175Rsun Based on 549 stars displaying no signal (list in Thuillier et al.). The upper limit f_{max} of the occurrence rate based on this non-detection is:

$$f_{max} = 1 - (1 - C)^{rac{1}{N' + 1}}$$
(Faedi et al. 2011)

•

$$N' = N \times P_{\text{transit}} \times P_{\text{detection}}$$

First statistics on planet occurrence around hot subdwarfs

Ex: At 1d orbital period, we can exclude the presence of a 3 R_E (resp. 0.5 R_E) planets in 89.5% (resp. 50.3%) of hot subdwarfs

Thuillier et al.,

accepted

- Do hot subdwarf stars have planets?
- What happens when a planet is engulfed by its star when it evolves?
 - => Data from Kepler/K2, TESS, CHEOPS missions (~3600 sdO/B)
 => Tools to perform the analysis (Sherlock Pipeline)
 => Access to follow up observations (TRAPPIST, CHEOPS)

- Do hot subdwarf stars have planets?
- What happens when a planet is engulfed by its star when it evolves?
 - => Data from Kepler/K2, TESS, CHEOPS missions (~3600 sdO/B)
 - => Tools to perform the analysis (Sherlock Pipeline)
 - => Access to follow up observations (TRAPPIST, CHEOPS)
- TESS cycle 1 analyzed / several interesting signals under follow-up / first occurrence rates of planets around hot subdwarfs
 - => no detection : strong observational constraints for the survival of planets ! => detection : 1st planet around a hot subdwarf + potential survivor of an engulfment !

- Do hot subdwarf stars have planets?
- What happens when a planet is engulfed by its star when it evolves?
 - => Data from Kepler/K2, TESS, CHEOPS missions (~3600 sdO/B)
 - => Tools to perform the analysis (Sherlock Pipeline)
 - => Access to follow up observations (TRAPPIST, CHEOPS)
- TESS cycle 1 analyzed / several interesting signals under follow-up / first occurrence rate of planets around hot subdwarfs
 - => no detection : strong observational constraints for the survival of planets ! => detection : 1st planet around a hot subdwarf + potential survivor of an engulfment !
 - Coming:
 - Search for disintegrating planets (non-symmetric transits)
 - Machine Learning techniques for the vetting process

- Do hot subdwarf stars have planets?
- What happens when a planet is engulfed by its star when it evolves?
 - => Data from Kepler/K2, TESS, CHEOPS missions (~3600 sdO/B)
 - => Tools to perform the analysis (Sherlock Pipeline)
 - => Access to follow up observations (TRAPPIST, CHEOPS)
- TESS cycle 1 analyzed / several interesting signals under follow-up / first occurrence rates around hot subdwarfs
 - => no detection : strong observational constraints for the survival of planets ! => detection : 1st planet around a hot subdwarf + potential survivor of an engulfment !
 - Coming:
 - Search for disintegrating planets (non-symmetric transits)
 - Machine Learning techniques for the vetting process

THANKS FOR YOUR ATTENTION !