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bHEC Liège, Management school of the University of Liège, 4000 Liège, Belgium
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Abstract

Segment Routing (SR), a modern network architecture enhancing traffic engineering, of-
fers flexibility by allowing traffic to be routed through intermediate nodes or links. This
paper addresses the challenge of optimizing routing in uncertain traffic distribution sce-
narios. Rather than relying on a single traffic matrix for optimization, we take a unique
approach, considering an infinite set of matrices defined by linear constraints. Our goal
is to optimize routing strategies under the worst-case scenario within this set. Through
novel formulations, we achieve significant improvements in optimization speed compared
to traditional methods that explore all extreme points or use iterative constraint genera-
tion for these matrices. This research contributes to the field by enhancing the robustness
of SR-based traffic engineering, an area previously explored using different methodologies.

Keywords: Segment Routing, Traffic Engineering, Robust Optimization, Mixed Integer
Linear Problem.

1. Introduction

Segment Routing (SR) introduces a flexible framework for routing in IP networks,
addressing the limitations of conventional routing protocols. SR is implemented over
existing routing protocols, such as OSPF or IS-IS, and provides mechanisms to route
traffic through intermediate nodes and links, known as node segments and adjacency
segments. It can be realized using different network technologies, including MPLS and
IPv6.

The Segment Routing Traffic Engineering Problem (SRTEP) builds on these under-
lying protocols, assuming fixed link weights. In the SRTEP, only the SR-paths (i.e., the
detours taken by traffic) can be adjusted, and there can only be one unique SR-path
between each ordered pair of nodes. The goal of SRTEP is typically to minimize the
maximum link utilization (MLU) based on a given traffic matrix (TM) [1].

This paper focuses on robust optimization within the SRTEP. Unlike traditional ap-
proaches that optimize based on a single traffic matrix, we address an infinite set of
matrices defined by linear constraints. Our objective is to identify routing strategies that
are robust to the worst-case scenario within this set.

We build on prior work by introducing new linear formulations inspired by the gamma-
robustness framework of Bertsimas and Sim [2]. These formulations are evaluated against
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methods such as exhaustive enumeration and constraint generation. Our findings show
that our approach provides significant speed improvements, making it a practical and
efficient solution for SR-based robust optimization.

Related work: Bhatia et al. [3] present an exact optimization model for the Segment
Routing Traffic Engineering Problem (SRTEP) through a path formulation, which can be
adapted to account for multiple Traffic Matrices (TMs). They also introduce an oblivious
formulation for demand uncertainty and an online routing approach. Callebaut et al. [4]
introduce preprocessing techniques discarding potential detours from an optimal SR in
path formulations, significantly reducing the size of such models. Jadin et al. [5] tackle
the scalability issue by utilizing a column generation approach.

Gay et al. [6] present SRLS, a heuristic designed for fast adaptation to network
changes, ensuring rapid responses to traffic variations. Schüller et al. [7] propose a failure-
resilient Mixed Integer Linear Programming (MILP) model. Parham et al. [8] explore
joint optimization of segment routing paths and shortest-path routing (SPR) weights,
combining these two mechanisms for more efficient traffic engineering.

De Boeck et al. [9] introduce a new online segment routing approach under demand
uncertainty, distinguishing itself from worst-case approaches and emphasizing the ne-
cessity for adaptive optimization strategies in segment routing networks. In addition,
comprehensive surveys by Ventre et al. [10] and Wu and Cui [11] offer a broad overview
of segment routing methodologies.

Beyond segment routing, other traffic engineering approaches also address the chal-
lenge of optimizing network performance over multiple traffic matrices. Kulfi [12] in-
troduces Semi-Oblivious Traffic Engineering (SOTE), combining oblivious routing with
dynamic rate adaptation to improve performance under uncertain demands. Adaptive
Robust Traffic Engineering in SDN [13] uses the Clustered Robust Routing (CRR) algo-
rithm to reduce reconstructions by clustering traffic matrices based on routing similarities,
maintaining performance while minimizing reconfigurations.

L-balanced Weight Settings in OSPF/IS-IS [14] explores weight-setting techniques that
balance traffic efficiently across multiple TMs, showing competitive results in handling
network hotspots. Finally, Evolutionary Computation for Robust TE [15] uses evolution-
ary algorithms to optimize routing setups under various traffic matrices and topologies,
offering a flexible approach to robust traffic engineering.

2. Base model

In the regular SRTEP, we are given a capacitated weighted graph (V,A) with vertex
set V and directed arcs a ∈ A where each arc has a capacity ca. A Traffic Matrix D is
also given and D(s,t) ∀(s, t) ∈ D indicates the traffic flowing from node s to t.

We can furthermore compute all possible SR-paths. In general, enumerating all possi-
ble paths is impracticable, but by limiting the number of segments and using preprocessing
techniques described in [4], the number of paths can be manageable. The set of segment
paths of at most k segments between two nodes s and t is denoted by Pk

(s,t). Finally,

because the underlying network protocol is defined (we assume here OSPF with Equal
Cost Multi-Path), we can also compute the ratio of flow going on a link a when using
path p ∈ Pk

(s,t) which is denoted as fp
a .

By introducing two new variables, α which is the maximum utilization and xp a binary
variable indicating if a SR-path p is used or not, we can obtain the following mixed integer
problem (MIP).
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min α (1)

s.t.
∑

p∈Pk
(s,t)

xp = 1 ∀(s, t) ∈ D (2)

∑
(s,t)∈D

D(s,t)

∑
p∈Pk

(s,t)

fp
axp ≤ caα ∀a ∈ A (3)

xp ∈ {0, 1} ∀p ∈ Pk
(s,t), (s, t) ∈ D (4)

α ∈ R (5)

In (1) we minimise the maximum link utilization. In (2), we ensure that exactly one
path is chosen between each ordered pair of nodes. In the left part of (3), we compute
the total load on an arc a by multiplying for each demand (s, t) ∈ D the demand D(s,t)

by the ratio flowing on arc a when using path p and 1 if path p is used or 0 if p is not
used. Suppose we divide this by ca on the right side of the equation. In that case, we
obtain the link utilization of a, and the inequality then ensures that α is indeed equal to
the maximum link utilization. Constraints (4) and (5) define the domain of variables.

3. Methodology

In the real world, data is often uncertain. Assuming we know a single, perfect Traffic
Matrix is elusive. One way to solve this problem is using stochastic optimization, but
we focus here on robust optimization (RO). Here, the aim is to optimize for the best
performance in the worst conditions, offering a practical solution to the challenge of
dealing with uncertain data.

The worst-case(s) still need to be defined and to do this, we start from an initial
TM that represents the expected traffic, and we add some uncertainty to this matrix. A
common approach would be to add some uncertainty to each demand of the TM, but
this is very conservative. If we, for example, added 10% inaccuracy for each demand, the
worst-case scenario (which is the one we optimize in RO) would be the scenario where all
demands are at 110% of their original capacity. One specificity of using the minimization
of the maximum link utilization as objective function is that in such a case, the resulting
optimal paths would not change, and the objective, on the other hand, would be multiplied
by 110%.

This can be seen easily from the model in Section 2. If all demands are multiplied
by a value x only equation (3) changes, and by multiplying α with the same value, an
optimal solution for the original problem would stay optimal for the new problem. This
shows that the MLU objective function is quite robust.

A drawback of robust optimisation is that it is generally considered too conservative as
illustrated by De Boeck et al. [9] who compare robust and stochastic approaches. In our
previous example, even if there was a 10% inaccuracy on the expected demands, optimising
with respect to the case where all demands take their worst value is too conservative as
it is very unlikely that all demands take their worst values simultaneously.

To handle this issue, a parameter Γ was introduced by Bertsimas and Sim [2], which
corresponds roughly to the number of measures that can be wrong. Concretely D̃(s,t) is the
random variable corresponding to the demand between nodes s and t. This variable take
values in [D(s,t)− est,D(s,t)+ est] where est is a parameter for each demand corresponding
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to how much inaccuracy we allow. In our example, if Γ is an integer, we allow up to
Γ demands to differ from D. All demands except for Γ are then equal to D(s,t) and Γ
demands are equal to D(s,t)+est since we want to optimise against the worst case scenario.

The case where Γ is not an integer is an extension of the previous case, here ⌊Γ⌋
demands take values in [D(s, t) − est,D(s, t) + est] just as previously and one variable
takes a value between in [D(s, t)− est(Γ−⌊Γ⌋),D(s, t) + est(Γ−⌊Γ⌋)]. If, for example, Γ
is equal to 2.8, then two variables take the value D(s, t) + est and one variable takes the
value D(s, t) + 0.8 ∗ est.

For ease of understanding, we assume in the remainder of the paper that Γ is integral,
but the following proof can be adapted to allow for fractional values, and the resulting
model will be the same.

3.1. Dual approach

We now show how to create the new robust model, based upon the model of Section 2,
that incorporates the parameter Γ. To do this, we introduce a new set Sa, corresponding
to the set of demands that are allowed to deviate from the original TM for each edge and
obtain the following model.

min α (6)

s.t.
∑

p∈Pk
(s,t)

xp = 1 ∀(s, t) ∈ D (7)

∑
(s,t)∈D

D(s,t)

∑
p∈Pk

(s,t)

fp
axp+

max
{Sa|Sa⊆D,|Sa|≤Γ}


∑

(s,t)∈Sa

est
∑

p∈Pk
(s,t)

fp
axp

 ≤ caα ∀a ∈ A (8)

xp ∈ {0, 1} ∀p ∈ Pk
(s,t), (s, t) ∈ D (9)

α ∈ R (10)

The approach consisting of adding a second maximization problem inside a constraint
is regularly used to write robust counterparts of LPs. With this new model, we force,
on each edge, that Γ demands deviate from their original value such that the maximum
link utilization on each edge is maximal w.r.t. our robust model. One should note that
this is slightly different from our original problem because the maximisation of Sa occurs
for each constraint of type (8) which means that for each link the Γ demands for which
the quantity

∑
(s,t)∈Sa

est
∑

p∈Pk
(s,t)

fp
axp is maximal is allowed to deviate from D(s, t). At

the same time, we would want the Γ demands that change to be the same on the whole
network. This modification to our program also implies that the flows are modified. We
show this in Figure 1.

Because Γ is equal to 1, only one demand should be different from D, in this case,
D(B,D) should be equal to 110 because this is the worst case scenario. In the robust
counterpart, on the other hand, we see that on edge AB, the value of D(A,C) is also
changed to 55, meaning that two demands are different from D(s, t). These two demands
are not different ”at the same time,” and because we use the MLU objective function,
this does not change the optimal paths nor the value of the objective function. We will
prove this later.
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A B C D
200, 50, 55 200, 150, 160 200, 100, 110

D(A,C) 50
D(B,D) 100
eAC 5
eBD 10
Γ 1

Figure 1: Network on the left with parameters on the rights forming the SRTEP. Black numbers on the
edges are the capacity, in red the flow of the non-robust optimisation problem, and in blue the flow of the
robust counterpart. The robust counterpart of the SRTEP for this network does not conserve the flow.

Now, assuming that the model from equations (6) to (10) does indeed solve our original
problem, we adapt the reformulation proposed by Bertsimas and Sim for Γ-robustness [2]
to remove the maximization constraint from the model. If we focus on the maximisation
part of constraint (8), given a vector x∗, a solution of the problem giving a boolean value
to each path, we define:

βa(x
∗) = max

{Sa|Sa⊆D,|Sa|≤Γ}


∑

(s,t)∈Sa

est
∑

p∈Pk
(s,t)

fp
ax

∗
p

 ≤ caα ∀a ∈ A (11)

This is equal to:

βa(x
∗) = max

∑
(s,t)∈D

estzst
∑

p∈Pk
(s,t)

fp
ax

∗
p (12)

s.t.
∑

(s,t)∈D

zst ≤ Γ (13)

0 ≤ zst ≤ 1 ∀(s, t) ∈ D (14)

Clearly, the optimal solution of the above problem has Γ zst variables set to 1 which
is equivalent to the selection of subset {Sa|Sa ⊆ D, |Sa| ≤ Γ} with corresponding cost
function

∑
(s,t)∈Sa

est
∑

p∈Pk
(s,t)

fp
ax

∗
p.

Now let us take the dual of the above problem;

min Γδa +
∑

(s,t)∈D

λast (15)

s.t. δa + λast ≥ est
∑

p∈Pk
(s,t)

fp
ax

∗
p ∀(s, t) ∈ D (16)

δa ≥ 0 (17)

λast ≥ 0 ∀(s, t) ∈ D (18)

In this problem, we introduce one new variable δa and |D| variables λast for each edge
a. We also need to add |D| × |A| new constraints, but most of them have no impact
because the est

∑
p∈Pk

(s,t)
fp
a part is zero and if that is the case the constraint states that

two positive variables must be greater than 0 which is always true.
Finally, we can replace the maximization problem in (8) by this dual problem. We

can do this because of the strong duality theorem. Indeed, this theorem implies that the
MLU (α) will be at least as big as the real α since the result by which we replace the
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maximisation is at least as big as the maximisation and at optimality it will have the
exact same value. The final model we obtain is the following.

min α (19)

s.t.
∑

p∈Pk
(s,t)

xp = 1 ∀(s, t) ∈ D (20)

∑
(s,t)∈D

D(s,t)

∑
p∈Pk

(s,t)

fp
axp + Γδa +

∑
(s,t)∈D

λast ≤ caα ∀a ∈ A (21)

δa + λast ≥ est
∑

p∈Pk
(s,t)

fp
axp ∀(s, t) ∈ D, a ∈ A (22)

xp ∈ {0, 1} ∀p ∈ Pk
(s,t), (s, t) ∈ D (23)

δa ≥ 0 ∀a ∈ A (24)

λast ≥ 0 ∀(s, t) ∈ D, a ∈ A (25)

We will now prove that the solution given by this model in which the error for Γ
demands is maximized at each arc is the same as the one given by the problem where
the error for Γ demands is maximized over the whole network (i.e., the same demands
on each arc). Let us take an optimal solution to the original robust problem and assume
the MLU is equal to α̃. This means that on all possible TMs where at most Γ demands
deviate from their original value, using the paths from the solution, the MLU will always
be smaller or equal to α̃. If we now use the optimal paths found for α̃ in our modified
robust problem and assume that the obtained MLU α∗ is strictly greater than α̃, then
there is an arc on which by increasing at most Γ demands, the MLU is strictly greater
than α̃. We could then simply use the traffic matrix where these demands are increased
in the original model, and we would obtain a link utilization on an edge > α̃, which is
not possible since that was our optimal solution.

The other way round, we can also see that it is impossible for α̃ to be greater than α∗,
proving that both values should always be equal. This result depends on the fact that we
use the MLU as objective function. It does not hold for general linear objectives.

3.2. Adversarial approach

Because the previous approach does not generally work with any objective function,
we also present an adversarial approach that should work in the general case.

The LP from section 2 can be adapted to have a robust routing where we optimise
with respect to a set of demand matrices instead of a unique TM. To this end, we only
have to copy constraint (3) for each demand matrix. This would then become :∑

(s,t)∈D

D(s,t)

∑
p∈Pk

(s,t)

fp
axp ≤ caα ∀a ∈ A,D ∈ D (26)

assuming that the set of demand matrices is D.
If we use a set of TMs defined by linear constraints to define all the matrices we

want to be protected against (which is the case in Γ optimisation), then we could simply
enumerate all the extreme points of this set and giving them as input to our program
would provide us with an optimal solution. An extreme point refers to a vertex of the
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feasible region, which is defined by the intersection of the linear constraints. In our case,
an extreme point is a traffic matrix where exactly Γ demands take their worst value while
the other demands remain unchanged.

Although the example provided here focuses on minimizing Maximum Link Utiliza-
tion (MLU), the adversarial approach is flexible and can accommodate other objective
functions. For example, instead of minimizing MLU, we could aim to minimize the total
delay experienced by all traffic flows in the network [16] or use the sum of piecewise linear
functions of link utilization [17]. However, the dual approach is not applicable with these
objective functions, as the proof at the end of Section 3.1 does not hold. For a comparison
of possible objective functions for traffic engineering problems, we refer to [18].

Another method consists of starting with one or multiple extreme points, solving the
problem and then generate iteratively a new matrix that gives a new worst-case scenario
and then solve the problem again with the previous matrices and the new worst-case
matrix.

When the new worst-case matrix generated does not worsen the optimal solution
anymore, we then have found an optimal solution and can stop. Because we will generate
an extreme point of the demand set at each iteration and because there is only a finite
number of extreme points, there can only be a finite number of iterations to this method.

Generating a new worst-case matrix is very simple in our case. Since all SR-paths are
known for a solution, we can access the flow ratio on each arc for each demand. To create
a new worst-case matrix, we then simply need to multiply these ratios for each arc by the
corresponding error est, we then sort them and take the Γ largest values. We recompute
the new utilization on each arc, assuming that these Γ demands take their worst possible
value. A new worst-case TM can then be created by taking the Γ chosen demands that
take their worst value on the link with the highest utilization.

To create an initial worst-case matrix, we will take the Γ demands with the highest
error est, and these demands will be the ones that deviate from their original value.

4. Results

The experiments were conducted in two stages using different sets of topologies from
the Repetita dataset [19]. In the first set of tests, 134 topologies were used, with up to
30 nodes and 98 edges. Each topology was associated with 5 traffic matrices for a total
of 670 instances. These tests were executed on a machine equipped with 62 GB of RAM
and 8 cores, each running at 2.60 GHz.

In a second set of experiments, we expanded the testing to 81 larger topologies, with
up to 68 nodes and 226 edges. For these tests, we used a machine with 110 GB of RAM,
while keeping the same 8 cores at 2.60 GHz. Unlike the previous tests, only one traffic
matrix per topology was evaluated. In both cases the traffic matrices were generated such
that an optimal general routing (in the non robust case) would result in a maximum link
utilization of 90%. Results for these tests are available in Appendix A.

The choice of using 8 cores was informed by preliminary results, which showed that
for similar LPs, using 8 cores provided faster results compared to 4 or 16 cores. According
to Gurobi’s documentation, using fewer cores can sometimes reduce the overhead of data
exchange between cores, which may explain why 8 cores yielded better performance in
these tests.

During the solving of the linear programs (LPs), two main issues were encountered.
The first issue related to Gurobi’s default optimalityTol parameter, which in some cases,
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Name α (NR) α (R) α̂ (NR) α̂ (R) t (s) (NR) t (s) (R)
Renater2008 Γ = 2 0.900 0.992 1.317 1.069 0.86 617.36
Renater2008 Γ = 5 0.900 0.961 1.466 1.174 0.86 989.66

Table 1: Example showing the impact of robustness on the topology Renater2008 with different values
of Γ

particularly with the robust dual approach, resulted in solutions considered optimal but
deviating up to 25% from the actual optimal solution. This was caused by the introduction
of small variables (δa and λast) in the robust formulation, which led to inaccurate reduced
costs. By reducing the optimalityTol parameter, we were able to achieve more accurate
solutions.

The second issue arose in the iterative constraint generation approach. When adding
new constraints to an existing model, previously added constraints were sometimes vio-
lated after solving the updated model. This was resolved by rebuilding the model from
scratch at each iteration, which did not result in slower performance compared to incre-
mentally updating the model.

4.1. Maximum utilization gain

In this section, we analyse the gains and losses in maximum utilization we obtain when
using a robust model compared to a non-robust model in the average and worst cases.
To do this, we first need to create the robust cases towards which we want to protect.
Here, we assume that up to Γ demands may double. Let us now first explain an example
in Table 1 on the topology Renater2008 with 33 nodes and 86 edges. This example is
available in Tables A.5 and A.6 from Appendix A.

The explanation for each column is the following:

• α (NR): Is the optimal load on the average case using SR (i.e. the original TM
using SR-paths optimised for that matrix).

• α (R): Is the load on the average case (i.e. original TM) using SR-paths optimised
for the robust case.

• α̂ (NR): Is the load in the worst case scenario according to the robustness used (i.e.
Γ equal to 2 or 5 depending on the row and where Γ demands may up to double)
and using SR-paths optimised for the average (i.e. original) TM.

• α̂ (R): Is the optimal load in the worst case scenario using SR.

• t (s) (NR): Is the solve time in seconds for the non-robust case (i.e. α (NR) column)

• t (s) (R): Is the solve time in seconds for the robust case (i.e. α̂ (R) column)

We mention that the ”α (R)” and ”α̂ (NR)” columns do not have computation times
since there is no optimization involved. It simply amounts to computing the load in a
network where the SR-paths are already given. Columns ”α (NR)” and ”t (s) (NR)” are
also exactly the same in both rows since these values are independent of the value of Γ
used.

We can then compute the difference between ”α (R)” and ”α (NR)”, 9.2% in the case
where Γ = 2. The interpretation of this value is the loss in maximum link utilization we
have using the optimal robust paths instead of the optimal average paths when the traffic
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Gamma=1 Gamma=2 Gamma=3

Average α (NR) 0.959
Average α (R) 1.046 1.025 1.025
Average α̂ (NR) 1.359 1.478 1.550
Average α̂ (R) 1.257 1.352 1.420

Loss in average case 0.087 0.066 0.066
Gain in worst case 0.102 0.126 0.130

Table 2: Averages of gains and losses using robust or non-robust optimization on the average and worst
case traffic matrices

is equal to the original traffic matrix. In the same way we can compute the difference
between ”α̂ (R)” and ”α̂ (NR)” which is this time 24.8%. The interpretation for this
value is then the gain in maximum link utilization when using paths optimised for the
robust problem instead of the average traffic matrix when the worst case scenario traffic
matrix occurs.

The results on the small topologies (less than 30 nodes) for values of Γ equal to 1,
2 and 3 are shown in Table 2 the average is computed over all 670 instances (i.e. 134
topologies times 5 TMs per topology). Interestingly, we see that when Γ = 1, we have
the highest loss on the average TM. When using values of 2 or 3 for Γ, we can see that
the gains and losses are approximately the same, though the maximum utilization in the
worst-case scenario differs significantly.

These results highlight the importance of choosing an appropriate value for Γ. Se-
lecting Γ as large as the number of demands would not lead to any improvements, as
the minimization of maximum link utilization is already relatively robust, as explained
in Section 3. Furthermore, although Γ = 1 may seem less robust and performs worse in
the average case, it performs best in cases where only one demand may double. Since the
purpose of Γ-robustness is to balance robustness, selecting a higher value for Γ may be un-
necessary if the scenario of multiple demand increases is unlikely. Thus, if the worst-case
scenario is improbable, it would not be beneficial to increase Γ unnecessarily.

We provide the same analysis this time for the larger topologies (30 to 68 nodes)
in Table 3. Although not all instances could be solved to optimality within the 1-hour
computation limit, the results obtained upon timeout were sufficiently close to optimal
and have been retained for analysis. This time the values of Γ have been set to 2 and 5
as it makes sense for larger topologies to use larger values of Γ.

We see here that in the case where Γ is equal to 2, the results with respect to gains
and losses in maximum utilization are approximately equivalent. We can this time also
see that a higher value of Γ results in bigger differences when comparing the different
routings on the non-robust and robust TMs which is what one would expect as long as Γ
is smaller than the number of demands divided by 2. This is because if Γ is equal to the
number of demands, all demands would double their value and an optimal routing for the
robust case would be optimal for the non-robust case.

4.2. Time analysis

In this section, we analyse the time taken for each method to find the optimal solution,
we only analyse the small instances as for the larger ones, many instances could not be
solved within the given time limit using the dual approach. Using the other approaches,
even the small instances could be very challenging. We still assume that there can be
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Gamma=2 Gamma=5

Average α (NR) 0.906
Average α (R) 0.970 0.979
Average α̂ (NR) 1.208 1.354
Average α̂ (R) 1.091 1.208

Loss in average case 0.064 0.073
Gain in worst case 0.117 0.146

Table 3: Averages of gains and losses using robust or non-robust optimization on the average and worst
case traffic matrices

Figure 2: Number of instances solved within a time limit on the 243 smallest instances

up to Γ demands that can double, and we take Γ = 2 unless specified otherwise. In
Figure 2, we first show the computation time to solve the 243 smallest instances using the
different methods. We clearly see that the brute force enumeration performs very poorly,
as expected, and does not even manage to solve all instances. The constraint generation
approach is better than expected but still much worse than the dual model. Given 24
hours of computation total time and 30 minutes per instance, the enumeration approach
only managed to solve 231 instances optimally, the constraint generation approach solved
303 instances optimally, and the dual approach solved 621 instances optimally. This
shows that the dual approach is much better than the other two methods. This is even
more obvious, knowing that all instances were ordered in increasing size, meaning that
the 318 more instances that the dual approach solved were much more challenging than
the previous ones.

Since the dual formulation seems to be the best one by far, we continue our comparisons
using only this method. In Figure 3, we compare the solving time between the non-robust
and robust approaches. Here, we can see that, as expected, adding robustness to the
problem makes it much harder to solve. We see that apart from the last few topologies,
within a certain time limit, we manage to solve over twice as many instances without
adding robustness to our problem, note that this is using only Γ = 2. We could also
analyze the impact of the parameter Γ on the solving time.

We show this impact in Figure 4. Here, we can see that despite the size of our model
not changing, the complexity of the problem increases as the computation time increases
with bigger values of Γ.
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Figure 3: Comparison in solving time between robust and non-robust approach

Figure 4: Impact of Γ on the solving time
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5. Conclusion and future work

In this article, we analysed different methods for solving the gamma-robust SRTEP.
We provided a dual formulation, slightly different from the original problem, for which
an optimal solution also is an optimal solution of our original problem.

This formulation unfortunately only works when using the maximum utilization ob-
jective function. We then compared our dual model to models exhaustively enumerating
all possible TMs and generating a new worst TM at each iteration with respect to the
robust parameter.

The dual model outperformed both models by far, but an advantage of the other
models is that they can accept any linear objective function.

We analysed the possible gains and losses on the average and worst-case TMs using
the robust paths and, surprisingly, saw that only allowing one demand to deviate from
the original TM produced the worst results on the average TM.

We also analysed the computation time needed for the robust dual model compared to
a non-robust model and noticed that over twice as many instances could be solved within
a certain time using the non-robust model compared to the robust model where up to two
demands can deviate.

Finally, we also analysed the influence of the parameter Γ on the solving time. Despite
all models having exactly the same size regardless of the Γ value, we could see that higher
values lead to increasingly difficult problems.

Moving forward we plan on exploring the constraint generating method even more.
Currently our approach involves solving the integer program optimally to produce a sin-
gle new worst-case traffic matrix in each iteration. However we envision enhancing our
methodology by generating multiple matrices at each step. Another way to speed up the
constraint generation would be to initially only solve the relaxation of the problem, in
the later stages only will the integer program be solved optimally to generate constraints
that the relaxation did not generate and finally find an optimal solution to the integer
problem.
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Appendix A. Appendix: Detailed Results

In this appendix, we present the detailed results of our experiments focusing on the
larger topologies (30-68) nodes. These topologies represent more complex and computa-
tionally significant cases, providing a clearer evaluation of the robustness and scalability of
our approach. Although similar experiments were conducted on smaller topologies (4–30
nodes), their results follow the same trends as those observed for the larger topologies
and are thus omitted here for brevity.

Table A.4 is a list of all topologies used with the number of nodes, edges and non-
dominated paths. These are the paths that are effectively used in the linear problem
[4].

Tables A.5 and A.6 present the results obtained on the larger topologies for values of
Γ respectively equal to 2 and 5. The columns represent the following data:

• α (NR): Is the optimal load on the average case using SR (i.e. the original TM
using SR-paths optimised for that matrix).

• α (R): Is the load on the average case (i.e. original TM) using SR-paths optimised
for the robust case.

• α̂ (NR): Is the load in the worst case scenario according to the robustness used (i.e.
Γ equal to 2 or 5 depending on the table and where Γ demands may up to double)
and using SR-paths optimised for the average (i.e. original) TM.

• α̂ (R): Is the optimal load in the worst case scenario using SR.

• t (s) (NR): Is the solve time in seconds for the non-robust case (i.e. α (NR) column)

• t (s) (R): Is the solve time in seconds for the robust case (i.e. α̂ (R) column)

We mention that the ”α (R)” and ”α̂ (NR)” columns do not have computation times
since there is no optimization involved. It simply amounts to computing the load in a
network where the SR-paths are already given. Columns ”α (NR)” and ”t (s) (NR)” are
also exactly the same in both tables A.5 and A.6 since these values are independent of the
value of Γ used. Finally if a computation time is greater than 3600 seconds, this means
that an optimal value was likely not found as this was the limit set per instance. The
obtained results are likely still close to optimality and are therefore left in the tables.

Name Nodes Edges Non-Dominated paths
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Arnes 34 94 7408
AsnetAm 65 158 28354
Bellcanada 48 130 29046
Bellsouth 51 132 31368
BeyondTheNetwork 53 130 30172
Bics 33 96 14316
BtLatinAmerica 45 100 7650
Canerie 32 82 8198
Cernet 41 118 5853
Cesnet200511 39 88 7478
Cesnet200603 39 88 7478
Cesnet200706 44 102 9514
Cesnet201006 52 126 18822
Chinanet 42 132 25231
Cudi 51 104 4678
Cwix 36 82 8922
DeutscheTelekom 30 110 12378
Dfn 58 174 64559
Digex 31 76 6828
Ernet 30 64 3770
Evolink 37 90 8738
Forthnet 62 124 5220
Garr200902 54 142 18770
Garr200908 54 136 18410
Garr200909 55 138 19035
Garr200912 54 136 18509
Garr201001 54 136 20215
Garr201003 54 142 18903
Garr201004 54 142 18903
Garr201005 55 144 19445
Garr201007 55 148 19610
Garr201008 55 148 19610
Garr201010 56 150 20232
Garr201012 56 150 21418
Garr201101 56 152 22148
Garr201102 57 154 23054
Garr201103 58 162 24099
Garr201104 59 166 26387
Garr201105 59 168 25387
Garr201107 59 170 25446
Garr201108 59 170 25446
Garr201109 59 172 26109
Garr201110 59 174 25149
Garr201111 60 174 23968
Garr201112 61 178 24876
Garr201201 61 178 25413
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Geant2009 34 104 16240
Geant2012 40 122 15589
Globenet 67 226 84198
Grnet 37 94 4523
GtsCzechRepublic 32 66 4006
GtsHungary 30 62 2874
GtsPoland 33 74 8576
GtsSlovakia 35 74 5082
HiberniaGlobal 55 162 60773
Internode 66 156 15760
Intranetwork 39 106 14186
IowaStatewideFiberMap 33 82 10448
Iris 51 128 33076
KentmanJan2011 38 78 2216
LambdaNet 42 92 8952
Litnet 43 86 3256
Missouri 67 166 79040
Myren 37 80 4238
Ntelos 47 122 30480
Palmetto 45 140 34786
PionierL1 36 82 9982
PionierL3 38 104 11592
Renater2004 30 72 5572
Renater2008 33 86 10390
Renater2010 43 112 25136
Rnp 31 68 3868
Roedunet 42 100 2425
RoedunetFibre 48 104 15398
Sanet 43 90 7912
Surfnet 50 146 40869
SwitchL3 42 126 19084
Tinet 53 178 68784
UsSignal 61 158 72078
Uunet 49 168 53396
Xspedius 34 98 17510

Table A.4: Summary of the topologies’ sizes

Name α (NR) α (R) α̂ (NR) α̂ (R) t (s) (NR) t (s) (R)

Arnes 0.903 1.078 1.429 1.203 0.53 118.86
AsnetAm 0.900 0.900 1.062 1.062 1.08 15.78
Bellcanada 0.900 0.900 0.933 0.917 2.14 1935.93
Bellsouth 0.900 0.944 1.012 1.012 1.44 16.44
BeyondTheNetwork 0.900 0.962 1.135 1.011 2.67 3604.38
Bics 0.900 0.912 1.022 0.942 0.98 546.18
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BtLatinAmerica 0.900 0.900 0.942 0.942 0.42 3.76
Canerie 0.900 0.995 1.071 0.978 0.60 3603.41
Cernet 0.940 1.049 1.284 1.248 0.41 15.85
Cesnet200511 0.900 0.998 1.175 1.072 0.41 86.38
Cesnet200603 0.900 1.087 1.346 1.175 0.44 299.44
Cesnet200706 0.900 1.015 1.307 1.039 0.46 693.00
Cesnet201006 0.900 1.054 1.368 1.091 1.00 542.11
Chinanet 0.900 1.132 1.708 1.517 4.98 1342.94
Cudi 0.900 0.900 1.094 1.094 0.19 2.95
Cwix 0.899 0.992 1.264 1.039 0.69 3601.91
DeutscheTelekom 0.900 0.967 1.190 0.996 0.82 3602.30
Dfn 0.900 0.930 1.142 1.006 5.87 3606.38
Digex 0.899 0.899 0.963 0.931 0.54 107.23
Ernet 0.900 0.900 1.148 1.148 0.23 1.49
Evolink 0.900 0.900 1.070 0.985 0.49 16.50
Forthnet 0.900 0.900 1.116 1.146 0.27 3.83
Garr200902 0.900 0.989 1.317 1.270 1.41 40.86
Garr200908 0.900 0.974 1.604 1.156 1.10 3603.21
Garr200909 0.957 1.134 1.467 1.296 1.49 3603.37
Garr200912 0.901 1.119 1.445 1.150 2.07 3603.33
Garr201001 0.964 1.101 1.597 1.199 1.35 1855.07
Garr201003 0.900 1.075 1.502 1.130 1.49 3603.45
Garr201004 0.928 1.009 1.448 1.248 1.34 290.25
Garr201005 0.900 1.004 1.292 1.294 1.03 81.64
Garr201007 0.900 0.938 1.386 1.194 0.87 24.75
Garr201008 0.900 1.126 1.380 1.178 1.23 1505.19
Garr201010 0.900 1.037 1.665 1.192 1.61 3604.41
Garr201012 0.900 0.929 1.144 1.167 1.25 120.25
Garr201101 0.900 1.074 1.290 1.153 1.80 2561.20
Garr201102 0.900 0.900 1.146 1.140 0.98 10.28
Garr201103 0.900 0.900 1.090 1.090 1.08 9.35
Garr201104 0.900 0.990 1.238 1.102 1.13 13.66
Garr201105 0.900 1.087 1.242 1.126 1.13 2587.96
Garr201107 0.900 0.962 1.343 1.155 1.05 64.01
Garr201108 0.900 0.957 1.253 1.118 1.14 70.87
Garr201109 0.900 1.010 1.217 1.080 1.24 699.77
Garr201110 0.900 1.019 1.365 1.233 1.18 68.69
Garr201111 0.900 0.981 1.279 1.230 1.31 72.72
Garr201112 0.900 0.901 1.183 1.042 1.13 95.98
Garr201201 0.900 1.018 1.255 1.047 1.63 1231.63
Geant2009 0.900 0.938 1.312 1.008 1.52 3602.60
Geant2012 0.900 0.960 1.213 1.015 1.21 3602.63
Globenet 0.900 0.916 0.956 0.932 5.24 3612.85
Grnet 0.900 0.900 1.248 1.175 0.25 3.33
GtsCzechRepublic 0.900 0.916 1.067 0.977 0.41 28.19
GtsHungary 0.900 0.927 1.282 1.137 0.20 5.36
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GtsPoland 0.900 0.906 1.012 0.969 0.79 3604.16
GtsSlovakia 0.900 0.900 1.326 1.141 0.32 5.21
HiberniaGlobal 0.900 0.906 0.927 0.918 4.90 3607.54
Internode 0.990 1.039 1.174 1.073 0.52 360.83
Intranetwork 0.900 0.900 0.935 0.935 1.00 13.52
IowaStatewideFiberMap 0.900 0.923 1.048 0.976 1.11 3602.22
Iris 0.900 0.900 0.942 0.922 2.29 771.06
KentmanJan2011 0.900 0.900 1.298 1.298 0.17 1.47
LambdaNet 0.900 0.920 0.984 0.946 0.98 301.87
Litnet 0.900 1.009 1.335 1.226 0.17 4.63
Missouri 0.900 0.902 0.925 0.917 4.92 3611.27
Myren 0.900 1.239 1.686 1.616 0.35 8.32
Ntelos 0.900 0.900 0.928 0.928 2.78 740.43
Palmetto 0.900 0.901 0.961 0.930 2.24 1228.94
PionierL1 0.900 0.920 0.972 0.944 0.72 3602.69
PionierL3 0.901 0.971 1.234 1.029 1.30 3602.74
Renater2004 0.951 1.147 1.556 1.270 0.57 217.62
Renater2008 0.900 0.992 1.317 1.069 0.86 617.36
Renater2010 0.900 0.917 1.076 0.962 2.73 3604.33
Rnp 0.900 0.900 0.994 0.994 0.25 2.59
Roedunet 1.041 1.041 1.795 1.633 0.17 2.12
RoedunetFibre 0.900 0.900 0.949 0.949 0.91 24.57
Sanet 0.900 0.945 1.014 0.970 0.97 594.83
Surfnet 0.900 0.902 1.038 0.969 3.90 393.91
SwitchL3 0.939 0.954 1.265 1.197 0.91 25.03
Tinet 0.900 0.908 0.971 0.941 8.47 1492.72
UsSignal 0.900 0.907 0.953 0.929 12.44 3609.73
Uunet 0.899 0.915 1.173 0.965 4.91 924.93
Xspedius 0.900 0.908 1.067 0.952 1.31 3602.23

Table A.5: Summary of results across topologies using
Γ = 2. Explanation of the columns is provided at the
beginning of the appendix.

Name α (NR) α (R) α̂ (NR) α̂ (R) t (s) (NR) t (s) (R)

Arnes 0.903 1.085 1.628 1.421 0.53 163.67
AsnetAm 0.900 0.900 1.162 1.162 1.08 12.55
Bellcanada 0.900 0.900 0.980 0.941 2.14 2675.28
Bellsouth 0.900 1.029 1.120 1.120 1.44 23.45
BeyondTheNetwork 0.900 0.962 1.259 1.111 2.67 3603.88
Bics 0.900 0.906 1.184 0.999 0.98 477.91
BtLatinAmerica 0.900 0.900 0.986 0.987 0.42 3.87
Canerie 0.900 0.993 1.245 1.078 0.60 3602.97
Cernet 0.940 1.083 1.534 1.470 0.41 12.93
Cesnet200511 0.900 0.974 1.396 1.225 0.41 3601.85
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Cesnet200603 0.900 1.034 1.519 1.331 0.44 3602.23
Cesnet200706 0.900 1.081 1.481 1.227 0.46 1331.42
Cesnet201006 0.900 0.931 1.505 1.232 1.00 3603.35
Chinanet 0.900 0.989 1.756 1.517 4.98 3003.65
Cudi 0.900 0.900 1.249 1.249 0.19 3.35
Cwix 0.899 1.060 1.378 1.159 0.69 3602.46
DeutscheTelekom 0.900 1.015 1.399 1.103 0.82 3602.42
Dfn 0.900 0.993 1.283 1.093 5.87 3607.02
Digex 0.899 0.901 1.033 0.969 0.54 1496.03
Ernet 0.900 0.900 1.341 1.341 0.23 1.64
Evolink 0.900 0.996 1.207 1.071 0.49 93.76
Forthnet 0.900 0.900 1.209 1.267 0.27 3.23
Garr200902 0.900 0.973 1.677 1.393 1.41 3603.39
Garr200908 0.900 1.006 1.655 1.323 1.10 3603.13
Garr200909 0.957 1.085 1.753 1.520 1.49 3603.20
Garr200912 0.901 0.977 1.701 1.356 2.07 3603.52
Garr201001 0.964 1.084 1.685 1.364 1.35 3603.47
Garr201003 0.900 0.980 1.678 1.354 1.49 3603.47
Garr201004 0.928 1.034 1.605 1.414 1.34 3603.38
Garr201005 0.900 0.979 1.474 1.277 1.03 3603.74
Garr201007 0.900 0.964 1.540 1.287 0.87 27.36
Garr201008 0.900 0.935 1.521 1.356 1.23 3603.50
Garr201010 0.900 1.230 1.750 1.390 1.61 3603.79
Garr201012 0.900 1.035 1.418 1.219 1.25 3603.66
Garr201101 0.900 0.988 1.527 1.354 1.80 3603.54
Garr201102 0.900 0.900 1.387 1.333 0.98 9.12
Garr201103 0.900 0.900 1.267 1.267 1.08 8.84
Garr201104 0.900 0.962 1.403 1.301 1.13 12.23
Garr201105 0.900 1.025 1.499 1.271 1.13 3604.43
Garr201107 0.900 1.077 1.447 1.320 1.05 117.47
Garr201108 0.900 1.075 1.407 1.297 1.14 42.46
Garr201109 0.900 0.953 1.369 1.241 1.24 3604.58
Garr201110 0.900 0.975 1.531 1.322 1.18 3604.35
Garr201111 0.900 1.239 1.401 1.353 1.31 3605.02
Garr201112 0.900 0.917 1.362 1.178 1.13 484.95
Garr201201 0.900 0.995 1.449 1.210 1.63 3604.59
Geant2009 0.900 0.945 1.597 1.146 1.52 3602.36
Geant2012 0.900 1.020 1.347 1.155 1.21 3602.10
Globenet 0.900 0.941 1.030 0.970 5.24 3611.91
Grnet 0.900 0.900 1.458 1.335 0.25 2.57
GtsCzechRepublic 0.900 0.928 1.218 1.077 0.41 175.11
GtsHungary 0.900 1.000 1.469 1.322 0.20 6.32
GtsPoland 0.900 0.912 1.135 1.041 0.79 3601.91
GtsSlovakia 0.900 0.900 1.469 1.254 0.32 4.61
HiberniaGlobal 0.900 0.911 0.962 0.951 4.90 3607.41
Internode 0.990 1.099 1.316 1.160 0.52 3603.81
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Intranetwork 0.900 0.900 0.980 0.980 1.00 8.66
IowaStatewideFiberMap 0.900 0.950 1.203 1.076 1.11 3601.77
Iris 0.900 0.900 0.982 0.947 2.29 519.05
KentmanJan2011 0.900 0.900 1.475 1.475 0.17 1.56
LambdaNet 0.900 0.913 1.059 0.997 0.98 564.67
Litnet 0.900 0.977 1.587 1.447 0.17 27.21
Missouri 0.900 0.902 0.958 0.935 4.92 3610.59
Myren 0.900 1.049 1.737 1.677 0.35 51.15
Ntelos 0.900 0.900 0.963 0.963 2.78 529.41
Palmetto 0.900 0.913 1.044 0.972 2.24 271.82
PionierL1 0.900 0.943 1.060 1.006 0.72 3602.53
PionierL3 0.901 1.013 1.408 1.177 1.30 3602.66
Renater2004 0.951 1.206 1.701 1.459 0.57 3601.31
Renater2008 0.900 0.961 1.466 1.174 0.86 989.66
Renater2010 0.900 0.939 1.200 1.032 2.73 3603.74
Rnp 0.900 0.900 1.127 1.089 0.25 2.27
Roedunet 1.041 1.041 1.844 1.832 0.17 2.03
RoedunetFibre 0.900 0.900 0.997 0.997 0.91 16.65
Sanet 0.900 0.970 1.147 1.040 0.97 3602.38
Surfnet 0.900 0.900 1.181 1.041 3.90 3605.05
SwitchL3 0.939 0.939 1.460 1.324 0.91 14.72
Tinet 0.900 0.909 1.034 1.004 8.47 3607.81
UsSignal 0.900 0.909 1.005 0.968 12.44 3609.80
Uunet 0.899 0.955 1.453 1.051 4.91 3606.51
Xspedius 0.900 0.904 1.220 1.018 1.31 3602.50

Table A.6: Summary of results across topologies using
Γ = 5. Explanation of the columns is provided at the
beginning of the appendix.
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